
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Whole Page Unbiased Learning to Ranking
Anonymous Author(s)

ABSTRACT
The page presentation biases in the information retrieval system,
especially on the click behavior, is a well-known challenge that
hinders improving ranking models’ performance with implicit user
feedback. Unbiased Learning to Rank (ULTR) algorithms are then
proposed to learn an unbiased ranking model with biased click
data. However, most existing algorithms are specifically designed
to mitigate position-related bias, e.g., trust bias, without consid-
ering biases induced by other features in search result page pre-
sentation(SERP), e.g. attractive bias induced by the multimedia.
Unfortunately, those biases widely exist in industrial systems and
may lead to an unsatisfactory search experience. Therefore, we
introduce a new problem, i.e., whole-page Unbiased Learning to
Rank(WP-ULTR), aiming to handle biases induced by whole-page
SERP features simultaneously. It presents tremendous challenges:
(1) a suitable user behavior model (user behavior hypothesis) can be
hard to find; and (2) complex biases cannot be handled by existing
algorithms. To address the above challenges, we propose a Bias
Agnostic whole-page unbiased Learning to rank algorithm, named
BAL, to automatically find the user behavior model with causal
discovery and mitigate the biases induced by multiple SERP fea-
tures with no specific design. Experimental results on a real-world
dataset verify the effectiveness of the BAL.

CCS CONCEPTS
• Information systems→ Social networks; Learning to rank.

KEYWORDS
Information Retrieval, Unbiased Learning to Rank, User Modeling
ACM Reference Format:
Anonymous Author(s). 2018. Whole Page Unbiased Learning to Ranking.
In Woodstock ’18: ACM Symposium on Neural Gaze Detection, June 03–05,
2018, Woodstock, NY. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/1122445.1122456

1 INTRODUCTION
A key component in modern information retrieval systems is the
ranking model which provides highly relevant documents given
the particular user query. It is of great practical value in multiple
scenarios, e.g., e-commerce and the web search engine. Ideally, the
ranking model should be learned with experts’ annotated relevance
labels, which, unfortunately, is both expensive and labour-intensive.
A more affordable alternative is to utilize the implicit biased user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Woodstock ’18, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

feedback, i.e., click, as training labels, which are easy to collect and
more suitable to meet the large data requirement in deep learning.
However, the click is affected by biases induced by search result
presentation features (SERP) from the whole page, such as trust
bias [1] induced by position, attractive bias [44] induced by ab-
stract, and vertical bias [9, 25, 27] induced by multimedia types.
To mitigate biases in implicit user feedback, Unbiased Learning to
Rank (ULTR) [23, 39, 40] algorithms have been introduced. Gen-
erally, most existing ULTR algorithms often consist of two pro-
cedures: (1) User behavior model design (i.e., the user behavior
assumption [11, 28, 32]) aims to model how the user click behavior
is influenced by both SERP features and relevance score, such as
the trust position-based model [1], and the mobile user behavior
model [28]. Unfortunately, these user behavior models are proposed
with predefined assumptions from human knowledge, which are
designed for position-related bias and inapplicable to biases from
more complex SERP features. (2) Unbiased learning focuses on
mitigating biases and learning toward an unbiased ranking model
under the defined user behavior model, e.g., the IPW [33] method.
However, existing ULTR algorithms only consider position-related
biases. Such position-based Unbiased Learning to Rank (PB-ULTR)
is insufficient for themodern search engine that often presents more
biases on multiple SERP features. Consequently, unsatisfactory re-
sults have been observed on the real-world dataset [49], where
PB-ULTR solutions, including IPW [23], PairD [18], and REM [40],
perform no better than that trained on biased click data directly.

The challenges mentioned above motivate us to introduce a new
research problem in this work, i.e., whole-page Unbiased Learning
to Rank (WP-ULTR). It aims to simultaneously mitigate all biases
introduced by features on the whole search page presentation,
such as position, SERP height, and multi-media type. Unfortunately,
there are tremendous challenges in user behavior model design and
unbiased learning for WP-ULTR. For the user behavior model
design step, heuristic user behavior hypothesis in PB-ULTR is not
applicable for the following reasons: (1) Existing user behavior
hypotheses have been designed specifically for the position, which
cannot be directly extended to other SERP features. (2) Crafting
the user behavior model under the effects of multiple SERP fea-
tures is difficult. For example, the web with video usually has larger
height, often leading to more clicks. However, such bias has not
been touched by existing literature. (3) An universal user behavior
hypothesis, e.g., the examination hypothesis [32], might not exist
in the WP-ULTR. Different scenarios may have distinct SERP fea-
tures, and each scenario typically requires a specific user behavior
model. For example, a vertical search engine like Linkedin1 has
a substantially different whole-page presentation from a general
search engine like Google2.

We are desired to design an algorithm that can automatically
identify the complicated relationships in the user behavior model
instead of heuristic designs. For the unbiased learning step, the

1https://www.linkedin.com
2https://www.google.com

1

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

major challenge attributes to the complexity of the user behavior
model. Existing unbiased learning algorithms have usually been
designed for the specific and simple user behavior model on the
position. However, biases of WP-ULTR are much more compli-
cated and beyond the scope of existing PB-ULTR algorithms. For
example, existing algorithms do not consider the bias caused by
confounders (i.e., a variable that causes spurious association be-
tween two target variables by influencing both of them) between
click and the SERP features. In our WP-ULTR scenario, the rele-
vance between query and document can be the confounder that
introduces spurious association between the click and SERP fea-
tures (e.g., SERP height, ranking position) by influencing both of
them. Correspondingly, ignoring such bias may lead to inaccurate
bias estimation and unsatisfying performance. Therefore, we need
to design a more general unbiased learning algorithm suitable for
general user behavior models.

In this work, we propose BAL, a Bias Agnostic whole page un-
biased Learning to rank algorithm. It can automatically discover
and mitigate biases induced by whole-page SERP features. For the
user behavior model design step, instead of the hand-drafted
heuristic design with the causal discovery algorithm, BAL can auto-
matically design the user behavior model. We first introduce causal
discovery techniques in the context of ULTR to discover the causal
relationship among click, true relevance, and whole-page SERP fea-
tures with a certain guarantee. Therefore, it avoids the difficulties
to design the user behavior model with heuristic hypotheses which
could be both inaccurate and labor-intensive. For the unbiased
learning step, we propose a general unbiased learning algorithm
that could easily handle various scenarios with different biases.
We first recognize confounding effects on the user behavior model
and propose an Importance Reweighting [26] based algorithm to
remove the confounding affect. After that, we can estimate how
SERP features and query-document relevance influence the user
behavior, separately. Then we directly learn the effect of query-
document relevance on the user behavior while ignoring the one
from SERP features. Then, we further mitigate the bias induced by
SERP features by blocking the gradient related to SERP features and
only learning the effect from the relevance score to click directly.
The advantages over the existing algorithms are two-fold. First, it
can mitigate the relevance score’s confounding bias on click and
SERP features, i.e., the inaccurate bias estimation. Second, it can
be easily extended to mitigate biases from multiple SERP features
rather than only position. Remarkably, though the BAL does not
rely on any predefined click behavior hypothesis, BAL is still ex-
plainable since it generates the causal graph to indicate how the
click is biased on SERP features (depicted in Figure 3). In summary,
the main contributions of our work are as follows:

• We introduce a novel problem whole-page Unbiased Learning
to Rank (WP-ULTR) that considers biases induced by SERP
features other than position.

• We propose a bias-agnostic whole-page ULTR algorithm BAL
that can discover the user behavior model automatically and
mitigate biases from multiple SERP features simultaneously.

• Extensive experiments on a large-scale real-world dataset indi-
cate the effectiveness of our algorithm.

2 PRELIMINARY
In this section, we provide a brief introduction to the problem of
whole-page unbiased learning to rank. The causal graph is then
introduced to describe biases formally.

Learning to Rank The task of a ranking model r̂ = 𝑓 (q, d;Θ) is
to rank the document with more relevance to the top of the ranking
list. Θ is the model parameters. The query q is sampled from a
collection of queries Q. Each query q is relevant to a number of
documents Dq = {d𝑖 }𝑁𝑖=1 retrieved from all indexed documents D.
With the estimated relevance score r̂ on query and document, a
ranking list 𝜋f,q is generated by descendingly sorting documents
Dq according to r̂. Therefore, the goal of learning a rank model
is to maximize the order-consistent evaluation metric i.e. 𝜗 (e.g.,
DCG [20], PNR [50], and ERR [7]) as

f∗ = max
f
Eq∈Q𝜗 (Yq, 𝜋f,q) . (1)

where Yq = {yd}d∈Dq is a set of annotated relevance labels 𝑦𝑑
corresponding to q, d. Usually, yd is the graded relevance in 0-4
ratings, which indicates the relevance of document d𝑖 as {bad,
fair, good, excellent, perfect}, respectively. To learn the scoring
function f , a loss function is to approximate yd with f (q, d) as

ℓ (f𝑖𝑑𝑒𝑎𝑙) = Eq∈Q

∑︁
d∈Dq

Δ(f (q, d), yd)
 , (2)

where Δ is a function that computes the individual loss for each doc-
ument. However, the above loss is impractical since the annotated
relevance labels acquired from expert judgment are expensive.

Whole-Page Unbiased Learning to Rank Unbiased Learning
to Rank is proposed as an alternative and intuitive approach to
utilize the user’s implicit feedback as the training signal, which
is much easier to obtain. For example, by replacing the relevance
label 𝑦𝑑 with click label 𝑐𝑑 in Eq. 2, a naive empirical ranking loss
is derived as follows

ℓ𝑛𝑎𝑖𝑣𝑒 (f) =
1

|Q𝑜 |
∑︁
q∈Q𝑜

∑︁
d∈Dq

Δ (f (q, d), cd)
 , (3)

where Q𝑜 is the training query set. cd, indicating whether the
document d in the ranked list is clicked, is utilized as the training
signal. However, the above loss function is biased on thewhole-page
SERP features x = {x1, x2, · · · , x𝑛} ,e.g., visual appearances, multi-
media types, and position, related with the document d. To address
this issue, we propose whole-page Unbiased Learning to rank (WP-
ULTR). It aims to find the suitable loss function to remove the effect
of data bias induced by multiple SERP features x = {x1, x2, · · · , x𝑛}.
Remarkably, x can be with arbitrary data types, e.g., categorical,
continuous, and ordinal features.

Bias Biases in ULTR domain could be described as the differ-
ence between click user behavior and query-document relevance.
User behavior model, which describes how click 𝑐 is influenced by
the query-document relevance 𝑒 and SERP features 𝑥 , is generally
utilized to provide a formal description on biases. For example,
Position-based user behavior Model [23] assumes that a document
displayed at a higher position is more likely to receive clicks than
a document at a lower position. It suggests that bias is from the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Whole Page Unbiased Learning to Ranking Woodstock ’18, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Document 𝒅

Query 𝒒

Ranking

model

𝒇 𝒒, 𝒅;𝚯

Relevance

score ො𝒓

Click 𝒄

SERP height 𝒉

Multimedia

Type 𝒎 : image

Position 𝒑: 3

SERP Features 𝒙

Biased

observation

inputs

Ƹ𝑟 𝑐

𝑚 ℎ

𝑝

Confounding effect

induced from ො𝒓

User Behavior Model Design

Causal

discovery

User behavior

model modification

Ƹ𝑟 𝑐

𝑚 ℎ

𝑝 Ranking model

learning

Ƹ𝑟 𝑐

𝑚 ℎ

𝑝

Learn the effect from relevance to the click

Unbiased Learning

Blocked SERP features

Figure 1: An overall procedure illustration of the BAL algorithm. The biased observation inputs include the query-document
relevance score r̂, the click c, and SERP features x. BAL has two steps: (1) User behavior model design step learns a causal graph
with causal discovery; (2) Unbiased learning steps mitigate biases found in the causal graph towards an unbiased model.
influence from the position. ULTR algorithms are then designed to
mitigate biases in the user behavior model.

Existing user behavior models [1, 23] are hand-crafted assump-
tions on how the user behavior is affected by the position SERP
feature. However, existing user behavior models may not meet the
real-world scenario for they focus on the position-based biases,
while ignoring many other biases induced by other SERP features
as shown in [49]. A more detailed description on the potential bi-
ases in the ranking system can be found in [5]. Moreover, existing
user behavior models can be hard to extend to other SERP features
with different data types and unique properties. The main obstacle
is the lack of suitable heuristic design on how SERP features affect
user behavior. To address the above challenge, we adopt the causal
graph to describe the user behavior model. The advantages are as
follows: (1) The causal graph can be easily extended to more SERP
features. It can denote the complex relationships among click, rele-
vance score, and multiple SERP features; and (2) Causal discovery
techniques, instead of the traditional heuristically designed user
behavior model, can be employed to discover biases with causal
graphs automatically. In the following paragraph, we will discuss
the details on defining bias and unbiasedness in causal graph.

Causal graph The causal graph G = (V, E) is utilized to describe
the user behavior model. V is a set of nodes where each node
corresponds to a variable. In WP-ULTR, variables include those
corresponding to SERP features 𝑥 = {𝑥1, 𝑥2, · · · , 𝑥𝑛}, user click 𝑐 ,
and the query-document relevance score 𝑟 generated by the ranking
model. E is a set of directed edges where each edge denotes the
causal relationship between cause (starting node) and effect (ending
node). Bias on WP-ULTR can be described as the causal effect from
SERP features 𝑥 to click 𝑐 . Unbiasedness is defined as precisely
estimating and learning the causal effect from relevance score 𝑟 to
click. An example can be found in Fig. 2(a)(3).

The confounding effect is the main obstacle on estimating the
causal effect from SERP features 𝑥 to click 𝑐 . Confounding effect
means that two variables are dependent on a hidden variable, i.e., a
confounding variable. It appears as a spurious correlation between
those two variables. Not surprisingly, there exists such confounding
effect in WP-ULTR. An example is illustrated in Fig. 2(a)(1). The
click 𝑐 and the position 𝑝 are both dependent on the relevance score

𝑟 . Without explicitly considering these hidden causal relations, the
spurious correlation between position and click could greatly bias
ranking models. Unfortunately, most of the current developments
have not considered this confounding bias. To mitigate such con-
founding effect, we block the backdoor path from relevance score
𝑟 to the position. We can then achieve a correct estimation on the
causal effect from SERP features 𝑥 to click 𝑐 as shown in Fig. 2(a)(2).
Learning the causal effect leads to an unbiased ranking system.

3 BIAS AGNOSTIC LEARNING ALGORITHM
In this section, we first provide an overview of our BAL algorithm
shown in Figure 1. It consists of two major steps: the user behavior
model design step and the unbiased learning step.

The user behavior model design step aims to identify and esti-
mate biases from logged user behavior data. Specifically, we first uti-
lize the data-driven causal discovery technique to automatically find
the user behavior model. The user behavior model is described with
the causal graph, which shows the complicated relationship among
click c, relevance score r̂, and SERP features x = {x1, x2, · · · , x𝑛} .
An example is illustrated in Fig. 1, where we could identify the bias
effect of SERP features, including multimedia type, SERP height,
and ranking position. Moreover, relevance score 𝑟 shows a typical
confounding effect on 𝑝 and 𝑐 . An influence score estimation is
utilized to estimate how click is affected by different SERP features.

With biases found in the above step, the unbiased learning step
aims to mitigate biases and learn an unbiased ranking model in two
sub-steps: user behavior model modification and ranking model
learning. In the former sub-step, we mitigate the confounding ef-
fect 𝑟 via removing the backdoor path from 𝑟 to 𝑝 with sample
reweighting. In the ranking model learning sub-step, we achieve
an unbiased ranking model by only learning the effect of relevance
score to click by blocking the gradient from other SERP features.

3.1 User Behavior Model Design
In this subsection, we focus on utilizing the causal discovery algo-
rithm to automatically find the user behavior model with the biased
observation data. Then we can identify biases in the user behavior
model and estimate the influence score on the SERP feature for
measuring and mitigating biases in the unbiased learning steps.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

𝑝

𝑐Ƹ𝑟

𝑝

𝑐Ƹ𝑟

𝑝

𝑐Ƹ𝑟

Learn the effect

on relevance

Remove

Confounder

1 2 3

(a) The confounder case1 where 𝑟 is the only parent node for 𝑝 . 𝑝 is the SERP
feature related to click 𝑐

𝑝

𝑐Ƹ𝑟

𝑝

𝑐Ƹ𝑟

𝑝

𝑐Ƹ𝑟

Learn the effect

on relevance

𝑚 𝑚 𝑚

Remove

Confounder

1 2 3

(b) The confounder case2 where both 𝑟 and other SERP feature𝑚 are parent nodes
for 𝑝 . 𝑝 is the SERP feature related to the click 𝑐 .

Figure 2: Two representative cases on how the relevance score 𝑟 reveals the confounding bias. The unbiased learning algorithm
first removes the confounding bias then learns the click effect on the relevance score. 𝑟 , 𝑟 , 𝑐, 𝑝, and𝑚 correspond to the relevance
score, true relevance, click, position, and multimedia types, respectively.

SERP feature preprocessing The WP-ULTR problem has more
SERP features with multiple data types, which PB-ULTR algorithms
cannot handle. In general, there are three SERP feature types: contin-
uous, ordinal, and categorical. Since deep learning is more suitable
for continuous features, we convert ordinal and categorical features
into continuous features. For the ordinal feature like the ranking po-
sition p, we transform it into a continuous one with a Bradly-Terry
model [6, 29, 41, 42] as 𝑝𝑖, 𝑗 = 𝑒𝑠𝑖

𝑒𝑠𝑖 +𝑒𝑠𝑗 , where 𝑝𝑖, 𝑗 is the probability
that the ranking position 𝑖 is lower than the position 𝑗 . 𝑠 is the trans-
formed continuous score, where a larger score represents a higher
rank. Then we can obtain the continuous score 𝑠 by maximizing
the likelihood optimization objective shown below. With all the
position pairs (𝑖, 𝑗) ∈ 𝜛 satisfying position 𝑖 lower than position 𝑗 ,
we maximize the log-likelihood of𝜛 as

∑
(𝑖, 𝑗) ∈𝜛

log𝑝𝑖, 𝑗 . For example,

the score 𝑠 on position p = 2 should be larger than any score with
a higher position p > 2.

For the categorical features, e.g., multimedia type, we utilize the
embedding E = {e1, e2, · · · , e𝑛} ∈ R𝑛×𝑑 to transform the discrete
one into the learnable continuous embedding.

Causal discovery The fundamental challenge in WP-ULTR is
that multiple SERP features are newly introduced. It adds more dif-
ficulties to heuristically designing a suitable user behavior model.
To address this challenge, we adopt the causal discovery technique,
which can automatically find the user behavior model with the
training data. It identifies the causal relation among the click c,
whole-page presentation features x = {x1, · · · , x𝑛}, and the rele-
vance score r̂ generated by the biased ranking model. Specifically,
we apply the PC algorithm [35] with Kernel-based Conditional
Independence test (KCI) [46] to discover the causal graph with
mixed-type data. PC algorithm consists of two phases, i,e, skeleton
search and orientation propagation. In the first phase, edges are
removed from a complete graph in a certain order by the results of
(conditional) independence tests; in the second phase, orientations
are decided by a set of rules. KCI is a conditional independence
test method which could consider both continuous and discrete
input data. It is a kernel-based non-parametric method with the
guarantee to apply to general distributions without limitations on
functional relations and data types [46]. We refer to [35, 46] for
more details. By applying the considered causal discovery method,
we aim to recover the hidden structure in the context of real-world
learning-to-rank. Moreover, some prior knowledge in ULTR is pre-
defined on the causal graph as follows: (1) relevance score 𝑟 must

be the parent of click 𝑐 since users only click the document when
it is relevant to the query. (2) click 𝑐 cannot be the parent of SERP
features 𝑥 since users click the document after they observe the
SERP features. (3) SERP features 𝑥 cannot be the parent of relevance
score 𝑟 . The SERP features are designed to optimize the ranking
metric, for example, DCG [20], after we estimate the relevance of all
candidate documents. Therefore, the SERP features are determined
by the relevance score to some extent, and SERP features are not
the parent of the relevance score.

The causal graph Ĝ generated by the causal discovery algorithm
is utilized to describe the user behavior model. It can help identify
biases in user behaviors easily. Based on the aforementioned prior
knowledge, there are two types of potential bias as follows: (1)
Confounding bias: the relevance score 𝑟 is connected with both the
SERP feature 𝑥𝑖 and the click 𝑐 . Meanwhile, the SERP feature 𝑥𝑖 is
connected with click 𝑐 . Then the spurious correlation exists from
𝑥𝑖 to 𝑐𝑖 , which can lead to the overestimation on the relationship
between 𝑥𝑖 and 𝑐𝑖 . (2) SERP bias: both SERP features 𝑥𝑖 and the
relevance score 𝑟 are connected with the click 𝑐 . Then if we learn
directly from the click with the loss in Eq. (3), the model will learn
the effects from both the SERP feature 𝑥𝑖 and the relevance score
𝑟 to click. However, the ranking model should only consider the
relevance between the query and the document with no effect from
the SERP feature 𝑥𝑖 .

Influence score estimation on the SERP feature After the
causal discovery sub-step, we can identify where biases are from.
However, how those biases affect the click behavior for each data
instance is still unclear. To achieve this goal, it is necessary to first
estimate the influence on the SERP feature. The influence score esti-
mation on the SERP feature is defined as 𝑝 (𝑥𝑖 |𝜋𝑥𝑖), the conditional
probability of the SERP feature 𝑥𝑖 given its parent variables 𝜋𝑥𝑖
including the relevance score and other SERP features connected in
the causal graph. Intuitively speaking, the influence score estimates
the sample influence on the confounding bias, i.e., changes of user
behavior model whether the confounding bias is mitigated or not.

Multiple layer perceptron (MLP) is utilized as the probability esti-
mator. It is expressive to deal with most parametric families of con-
ditional probability distributions 𝑃 (𝑥𝑖 |𝜋𝑥𝑖). For each SERP feature
x𝑖 , we learn an MLP parameterized with 𝜙𝑖 = {W1

𝑖
,W2

𝑖
, · · · ,W𝐿

𝑖
},

where 𝐿 is the number of layers in MLP. We first concatenate
click c, relevance score r̂, and SERP features x as the input data,
Z = [c, r̂, x1, · · · , x𝑛] ∈ R𝑑 . Then we preprocess each SERP feature

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Whole Page Unbiased Learning to Ranking Woodstock ’18, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

x𝑖 to the corresponding masked input Z𝜋𝑥𝑖 by only keeping fea-
tures corresponding to the parent nodes of x𝑖 while masking others.
Then, we forward the masked input to the corresponding network
as follows:

H𝑖 = W𝐿
𝑖 𝑓 (· · · 𝑓 (W

2
𝑖 𝑓 (W

1
𝑖 Z𝜙𝑖

) · · ·) (4)

where H𝑖 ∈ R𝑚 with 𝑚 parameters which describe the desired
distribution. For example, if the desired distribution is a Gaussian
distribution, then 𝑚 = 2 corresponds to the mean and standard
deviation, respectively.

The maximum likelihood optimization objective is as follows:

max
𝜙
E𝑋∼𝑃𝑋

| G |∑︁
𝑖=1

log𝑝𝑖
(
X𝑖 | X𝜋𝑖 ;𝜙𝑖

)
(5)

Remarkably, the maximum likelihood objective may be different for
different types of SERP features. In this work, we use polynomial
distribution for categorical features and Gaussian distributions for
continuous ones, respectively.

3.2 Unbiased learning
The goal of the unbiased learning step is to mitigate biases and
learn toward an unbiased ranking model. In this work, we propose
following two sub-steps to mitigate the biases, i.e., the confounding
bias and SERP bias, discussed in Section 3.1: (1) Unbiased user be-
havior model modification sub-step aims to diminish the influence
of confounding bias. It modifies the user behavior model for remov-
ing the backdoor path the relevance score to the SERP features with
importance reweighting. (2) Ranking model learning sub-step aims
to mitigate the SERP bias and learning towards a ranking model
based on query-document relevance with no influence by SERP
features. To achieve this goal, we blocks the gradients related to
SERP features to avoid learning SERP features’ affect on click. In
the following, we first introduce the backbone model of WP-ULTR
and then present the detail of the above two sub-steps.

Ranking model backbone The large-scale language model
BERT architecture[14] is utilized as the default backbone. Query,
document title, and document abstract are concatenated with [SEP]
separator as the input. The ranking model is first warmed up by
pretraining with both Masked Language Model (MLM) loss [14],
and the naive loss in Eq. (3) with no ULTR techniques. Remarkably,
the pre-trained ranking model is biased on SERP features. Then,
our BAL algorithm is proposed to discover and mitigate biases in
the pre-trained ranking model to train toward the unbiased one.

Unbiased user behavior model modification This subsection
focuses on the confounding bias induced by the relevance score on
the SERP feature and the click. As shown in Figure 2(a)(1), relevance
score r̂ shows influence on both the position p and click c. This
bias induced by the confounder r̂ results in the spurious correla-
tion between the position p and click c. This spurious correlation
leads to the SERP feature’s over-estimated influence on the click
and relevance’s under-estimated influence on the click. Ideally, the
causal graph structure without confounding effect is demonstrated
in Figure 2(a)(2) where relevance r̂ has no relationship with the
position p. With this user behavior model, we can further accu-
rately estimate the relevance’s effect on the click and achieve the
unbiased learning.

To remove the backdoor path from the relevance score to the
SERP feature, we create a pseudo population following the un-
confounded causal graph through importance reweighting [26].
Specifically, we explain two typical scenarios in Figure 2(a) and Fig-
ure 2(b). For the formal case, we identify the suitable reweighting
score by making a comparison between the data distribution of the
original causal graph Ĝ in Figure 2(a)(1) and the expected causal
graph G in Figure 2(a)(2). The data distribution for the original
causal graph Ĝ is:

𝑝 Ĝ (r̂, c, p) = 𝑝 (r̂) · 𝑝 (p|r̂) · 𝑝 (c|p, r̂). (6)

And the data distribution for the expected causal graph G is:

𝑝G (r̂, c, p) = 𝑝 (r̂) · 𝑝 (p) · 𝑝 (c|p, r̂) (7)

To reweight the data distribution of Ĝ towards the data distribution
ofG, the reweighting score on the position should bew𝑝 =

𝑝 (𝑝)
𝑝 (𝑝 |𝑟) =

𝑝G (𝑟,𝑐,𝑝)
𝑝Ĝ (𝑟,𝑐,𝑝)

, where 𝑝 (𝑝 |𝑟) is the influence score on SERP feature from
Section 3.1.

The other scenario is that the SERP feature 𝑝 is not only depen-
dent on the click but also on other SERP features𝑚 as illustrated
in Figure 2(b). Similarly, the reweighting score is w =

𝑝G (r,c,p,m)
𝑝Ĝ (r̂,c,p,m) =

𝑝 (p | r̂,m)
𝑝 (p |m) , where 𝑝 (p|r̂,m) can be obtained from the SERP propensity
score estimator easily. 𝑝 (p|m) can be estimated via data permu-
tation in batch as 𝑝 (p|m) = ∑

r̂′∈R 𝑝 (r̂′)𝑝 (p|r̂′,m). R is a batch of
relevance score data.

Taking the above two scenarios into consideration, we can re-
move the backdoor path on each SERP feature. Then, the effect of
SERP features and relevance score on the click can be corrected by
maximizing the reweighted maximum likelihood objective as:

max
𝜙
E𝑋∼𝑃𝑋 w𝑖 log 𝑝

(
c | Z𝜋𝑐 , 𝜙𝑐

)
(8)

where w =
∏

𝑖 w𝑖 is the total reweighting score defined as the
product of the reweighting score w𝑖 on each SERP feature with
confounding bias on the relevance score. 𝑝

(
c𝑖 | Z𝜋𝑐 ;𝜙𝑐

)
can be esti-

mated with an MLP parameterized with 𝜙𝑐 , similar to the influence
estimator on the SERP feature. Then, we can get a well-learned
MLP estimator on the data distribution of the unconfounded causal
graph G.

Ranking model learning After mitigating the confounding
bias from the relevance score, the SERP bias still exists, where
the relevance score and the SERP feature can affect the click user
behavior. The ranking model should only consider the relevance
between the query and the document while ignoring SERP features.
To learn a ranking model without effect from SERP features, we
block the gradient related to SERP features and only learn the
relationship from relevance to click, shown in Figure 2(a)(3) with a
red arrow. We utilize the item-wise loss:

max
Θ
E𝑋∼𝑃𝑋 w𝑖 log 𝑝

(
c | Z𝜋𝑐 , 𝜙𝑐

)
(9)

where Θ is the parameters of the ranking model, which is BERT
in our experiment. Note that the unbiased user behavior model
modification sub-step utilizes the same optimization object but on a
different parameter set, 𝜙𝑐 , with the goal of removing the backdoor
path. Ultimately, we discover and mitigate biases from multiple
SERP features and learn towards an unbiased ranking model.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Performance comparison of BAL algorithm and PB-ULTR baseline algorithms on the Baidu-ULTR dataset. The best
performance is highlighted in boldface. The first and second terms are performance expectation and standard deviation.

DCG@1 DCG@3 DCG@5 DCG@10 ERR@1 ERR@3 ERR@5 ERR@10
Naive 1.235±0.029 2.743±0.072 3.889±0.087 6.170±0.124 0.077±0.002 0.133±0.003 0.156±0.003 0.178±0.003
IPW 1.239±0.038 2.742±0.076 3.896±0.100 6.194±0.115 0.077±0.002 0.133±0.003 0.156±0.004 0.178±0.003
REM 1.230±0.042 2.740±0.079 3.891±0.099 6.177±0.126 0.077±0.003 0.132±0.003 0.156±0.004 0.178±0.004
PairD 1.243±0.037 2.760±0.078 3.910±0.092 6.214±0.114 0.078±0.002 0.133±0.003 0.156±0.003 0.179±0.003
DLA 1.293±0.015 2.839±0.011 3.976±0.007 6.236±0.017 0.081±0.001 0.137±0.001 0.160±0.001 0.181±0.001
BAL 1.383±0.018 3.086±0.078 4.088±0.142 6.410±0.117 0.098±0.003 0.153±0.004 0.171±0.004 0.192±0.003

Table 2: Performance comparison of ULTR algorithms on queries with different frequencies in the Baidu-ULTR dataset. The
best performance is highlighted in boldface.

DCG@1 DCG@3 DCG@5 DCG@10
High Tail High Tail High Tail High Tail

Naive 1.730±0.053 0.875±0.044 3.726±0.052 2.028±0.072 5.029±0.093 3.060±0.086 8.873±0.118 4.203±0.107
IPW 1.743±0.061 0.872±0.074 3.697±0.174 2.047±0.101 5.020±0.110 3.078±0.065 8.872±0.133 4.216±0.080
REM 1.734±0.073 0.863±0.051 3.711±0.119 2.034±0.054 5.015±0.123 3.106±0.079 8.869±0.136 4.320±0.097
PairD 1.752±0.068 0.873±0.064 3.674±0.122 2.060±0.084 4.938±0.181 3.129±0.073 8.898±0.141 4.261±0.127
DLA 1.883±0.099 0.864±0.053 3.791±0.057 2.146±0.016 5.054±0.033 3.332±0.019 9.017±0.029 4.689±0.013
BAL 2.100±0.113 0.861±0.107 4.525±0.083 2.039±0.113 5.734±0.129 2.890±0.132 9.247±0.157 4.710±0.175

4 EXPERIMENT
In this section, we design experiments to validate the effectiveness
of BAL by answering the following research questions.
• RQ1: How does the performance of BAL the first algorithm

in WP-ULTR, compare with the state-of-the-art PB-ULTR algo-
rithms in the real-world dataset?

• RQ2: How BAL performs on queries with different frequencies?
• RQ3: How do different components in BAL affect effectiveness?
• RQ4: How does the user behavior model (the causal graph)

change along with the ULTR procedure?

4.1 Experiment Setting
Dataset. Our experiments are conducted on the largest real-world
ULTR dataset, Baidu-ULTR [49], to analyze the effectiveness of
our proposed BAL algorithm. It includes 383,429,526 queries and
1,287,710,306 documents with clicks recorded for training. 7,008
queries and 367,262 documents with expert annotations are utilized
for evaluation. The relevance annotation of each document to the
specific query is judged by expert annotators in five levels, i.e., {bad,
fair, good, excellent, perfect}. Baidu-ULTR is the only open-source
ULTR dataset providing the whole-page SERP features, including
the ranking position, the document title, the document abstract, the
multimedia type of the SERP (e.g., video, image, and advertisement),
the SERP height (the vertical pixels), and the maximum SERP height.
The title and the abstract of the document are utilized to gener-
ate the query-document relevant score. And the click feedback is
collected from the real-world Baidu search engine, rather than the
synthetic data generated with the heuristic assumption in most
existing ULTR datasets [7, 13, 31].

Remark. Synthetic experimental analysis on the previous PB-
ULTR works [2, 19, 23, 40] cannot be utilized in the WP-ULTR
scenario. The position-based click model (PBM) [8] is usually uti-
lized to generate the synthetic click data. The PBM utilizes the

examination assumption [32] as 𝑝 (𝑐) = 𝑝 (𝑜) · 𝑝 (𝑟), where 𝑝 (𝑐),
𝑝 (𝑜), and 𝑝 (𝑟) are the probabilities of click, observation, and rele-
vance, respectively. However, PBM and other click models cannot
be extended to theWP-ULTR scenario since the generated click data
is only biased to the position while ignoring other SERP features.
Moreover, we cannot examine how well the algorithm estimates
the bias since we do not know what the true bias is in WP-ULTR.

Metric.We follow the same evaluation metrics utilizing in the
Baidu-ULTR dataset [49] and the WSDM CUP 20233, including
DCG (Discounted Cumulative Gain) [20] and ERR [16] (Expected
Reciprocal Rank), to access the performance of the relevance model.
For both metrics, we report the results at ranks of 1, 3, 5, and 10.

Baselines & Implementation details.We select representative
ULTR algorithms as baseline methods including IPW [23], DLA [2],
REM [40], and PairD [19]. Notice that all the algorithms which
belong to the PB-ULTR algorithm only consider position-related
biases. Moreover, a naive algorithm is utilized which trains the
ranking model directly with the biased click data, as stated in Eq. 3.
We adopt the open-source ULTR toolkit4 [37] for both baseline
methods implementation and hyperparameter selection. Remark-
ably, the naive algorithm may not be necessary to show the worst
performance. Other ULTR baseline algorithms may not also per-
form as expected if real-world datasets do not meet their predefined
user behavior hypotheses.

Remark:All the baseline methods are PB-ULTRmethods, which
only consider the position-based biases. They can still work well in
our WP-ULTR scenario since position-related biases are still very
important as shown in [49]. However, it can be hard to extend those
baselines to mitigate biases induced by other SERP features. The
main reasons are two-fold: (1) baseline algorithms are specifically

3https://aistudio.baidu.com/aistudio/competition/detail/534/0/introduction
4https://github.com/ULTR-Community/ULTRA_pytorch

6

https://aistudio.baidu.com/aistudio/competition/detail/534/0/introduction
https://github.com/ULTR-Community/ULTRA_pytorch

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Whole Page Unbiased Learning to Ranking Woodstock ’18, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

designed for position-based user behavior models (2) SERP fea-
tures can have different feature types with unique properties. It
still remains under-explored how those SERP features biased the
user behavior. There is no existing predefined user behavior model
related to other SERP features other than position that we can di-
rectly apply baselines on. Therefore, we use the original baseline
implementation which only mitigates the position-based biases

4.2 Overall Performance Comparison (RQ1)
The experimental results of all baselines, and our proposed BAL al-
gorithm on DCG@{1, 3, 5, 10} and ERR@{1, 3, 5, 10} are illustrated in
Table 1. We can observe that our BAL algorithm shows consistently
better results than all baseline algorithms across all the evaluation
metrics. The maximum gains on DCG@N metrics and ERR@N
metrics over the best baseline performance are 0.247 and 0.017, re-
spectively. Remarkably, maximum gains on DCG@N and ERR@N
are from 𝑁 = 1, 3, respectively. It indicates that our algorithm can
be more beneficial on those small-screen devices like mobile phones
where users usually only browse a few documents. For the baseline
methods focusing on the PB-ULTR scenarios, PairD, REM, and IPW
show similar performance with the naive algorithm while the DLA
shows limited performance improvement. The existing PB-ULTR
algorithms are not suitable for the real-world dataset with more
complicated biases. It indicates the necessity of introducing the new
WP-ULTR problem. Further fine-grain analysis on the effectiveness
of BAL over existing PB-ULTR algorithms is in Section 4.4.

Discussion. There could be two key reasons why PB-ULTR algo-
rithms show no better performance than the biased naive algorithm.
First, position-based hypotheses are not sufficient in the real-world
scenario since there are biases induced by other SERP features. For
example, users are more likely to click on the document with the
video type. Evidence from one empirical observation can further
support this perspective – the training loss of PB-ULTR algorithms
can vary from 100 to 0.5 between two training steps while the naive
algorithm shows a more stable training procedure. This attributes
to the unsuitable reweighting score on the inaccurate position hy-
pothesis in the training procedure across different data batches.
Second, position-based biases have been extensively studied thus
existing PB-ULTR algorithmsmay have already been adopted by the
existing search engines. That is why applying the same algorithm
to the newly generated click data shows no additional benefit.

4.3 The Impact of Query frequency (RQ2)
In the real-world search engine, user search queries follow heavy-
tailed distributions. We further conduct experiments to investigate
how algorithms perform on queries with different frequencies. The
evaluation set with expert annotations provides a frequency identi-
fier for each query. Queries are split into 10 buckets descendingly
according to the query frequency. We illustrate our performance
on the queries with high and tail frequencies, which correspond to
buckets 0, 1, 2, 3, 4, and buckets 5, 6, 7, 8, 9, respectively.

The experimental results are shown in Table 2. One observa-
tion is that all algorithms show much better performance on high-
frequency queries than on tail-frequency queries. It indicates that
learning to rank on the tail queries is still a challenging problem.
Our proposed BAL algorithm can consistently perform significantly
better than baseline algorithms for high-frequency queries. While

the performance on the tail-frequency queries is only slightly bet-
ter than baseline methods. The main reason is that the statistic
significance-based causal discovery algorithm is more likely to find
biases in high-frequency queries. Another potential reason could
be that the existing search results for tail queries are of low quality
with unsatisfying search experiments. For example, there are 93%
tail queries having no high-relevant documents with excellent or
perfect relevant labels. The user behavior may become unstable
without consistent causal patterns.

4.4 Effects of BAL and its components (RQ1,3,4)
In this subsection, we conduct further experiments to investigate
the effectiveness of (1) the entire BAL algorithm, (2) the click
model design, and (3) the unbiased learning. The experiment for
the effectiveness of the unbiased learning step shows how the causal
graph varies in different training steps, which also responds to RQ4.

Effectiveness of BAL algorithm To further support the ef-
fectiveness of BAL, we conduct a fine-grained analysis to see how
algorithms perform on each original position. We first identified
the document at each position given by the original ranker, i.e., the
ranker trained with the naive algorithm. After re-rank by the ULTR
algorithms, we calculate the new document average positions at
the original position. Moreover, re-rank results with ground truth
relevance annotation are also included as the upper bound. The
results on Baidu-ULTR are illustrated in Figure 4(a). The curve and
corresponding shadow area stand for the mean value and the stan-
dard deviation, respectively. Note that, we provide the results on the
top 10 documents with the original ranker for better visualization.
The top documents are also the most important for the ranking
system. One observation is that the curves of position-based ULTR
algorithms are more distant from that of true relevance labels. This
further indicates position bias may have already been alleviated
in the new click data. Contrastively, the curve of our BAL is the
closest one to the true relevance annotation in most cases, which
further indicates the superiority of our algorithm.

Effectiveness of clickmodel design To verify the effectiveness
of our click model design, we propose two variants of our proposed
BAL without the causal discovery algorithm as follows: (1) Position
Based BAL (PB-BAL) replaces the causal discovery algorithm with
the predefined user behavior model frequently utilized in PB-ULTR,
with only two edges, from the position and relevant score to the
click. (2) Fully biased BAL (FB-BAL) recognizes that the click is
biased on all SERP features. The causal graph of the FB-BAL is that
the relevance score 𝑟 will affect all SERP features, and all SERP
features will affect the click.

Experimental results are illustrated in Figure 4(b). We note that
both variants show performance drop which indicates the impor-
tance of click model design. For the PB-BAL algorithm, its perfor-
mance is only comparable with the naive algorithm. It further indi-
cates that only considering position-based biases is not sufficient
for the WP-ULTR problem. For the FB-BAL algorithm, it shows the
worst performance across all algorithms. This observation suggests
that if mitigating the bias improperly, the true relationship may be
removed by mistake, leading to unsatisfied results.

Effectiveness of unbiased learning To verify how well unbi-
ased learningworks, we examine how the user behaviormodel (causal
graph) changes along with the training procedure. This experiment

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Ƹ𝑟 𝑐

𝑝

𝑚

ℎ

𝑚ℎ

Ƹ𝑟 𝑐

𝑝

𝑚

ℎ

𝑚ℎ

Ƹ𝑟 𝑐

𝑝

𝑚

ℎ

𝑚ℎ

Ƹ𝑟 𝑐

𝑝

𝑚

ℎ

𝑚ℎ

Ƹ𝑟 𝑐

𝑝

𝑚

ℎ

𝑚ℎ

0 step 13000 step 13010 step 13020 step 50000 step

Figure 3: An illustration of how the causal graph changes during the training procedure on Baidu-ULTR. 𝑟 , 𝑐, 𝑝,𝑚, ℎ, and𝑚ℎ

correspond to relevance score, click, position, multimedia types, SERP height, and maximum SERP height, respectively.

1 2 3 4 5 6 7 8 9 10
Position given by Original Ranker

2

4

6

8

10

12

Av
er

ag
e

Po
sit

io
n

af
te

r R
e-

Ra
nk

in
g

IPW
DLA
REM
PairD
BAL
Relevance Label

(a) Effectiveness of BAL algorithm

0

1

2

3

4

5

6

7

DCG@1 DCG@3 DCG@5 DCG@10

BAL PB-BAL FB-BAL Naïve

(b) Effectiveness of user behavior model design

Figure 4: (a) Average positions after re-ranking of documents
at the top-10 original position by different ULTR methods.
(b) Performance comparison on the naive algorithm, BAL
and its variants without user behavior model design.

also provides a closer look at how biases are mitigated in the BAL
training procedure. Results are shown in Figure 3. First, we figure
out what the original causal graph and the expected graph after
training are. For the original causal graph, we observe that mul-
tiple biases exist. The click is biased to both the multimedia type
and the position. Remarkably, relationships also exist among SERP
features. The height shows an effect on the maximum height. For
the expected causal graph after training, all backdoor paths from
the relevance score to SERP features are removed. Then we make
the following observations on how the causal graph varies dur-
ing training as follows: (1) The backdoor path from the relevance
score to the position is mitigated first. This may further indicate
that the position bias has already been alleviated by the feature
process. It is much easier to mitigate position bias. (2) A new edge
from relevance score to height appears. (3) The above new edge
disappears quickly. The main reason for this observation is that the
causal discovery algorithm is conducted on only a small portion
of queries. Some relationships may appear in some particular data.
However, it is not a common pattern across the whole dataset. It
will quickly disappear in a few training steps. We ignore other
similar small fluctuations that appeared in the training procedure.
(4) The backdoor path from the relevance score to the position is
removed. The above results verify the unbiased learning step of our
BAL can successfully mitigate biases found by the click model.

5 RELATEDWORK
Unbiased Learning to Rank Unbiased learning to rank aims to
optimize with an unbiased estimation of the loss function based
on biased user feedback. Existing ULTR algorithms only focus on
position-based biases without taking other biases into consideration.

[39] mitigates the position bias with two key components: (1) an
estimator on the predefined examination user behavior model [32]
which can estimate the examination propensity score of each docu-
ment by result randomization experiments. (2) an unbiased learning
procedure with Inverse Propensity Weighting (IPW) [33]. [23] fur-
ther proves that the learning objective with IPW is an unbiased
estimate of the true relevance loss function based on the exam hy-
pothesis. [40] improves the estimator with the regression-based EM
algorithm with no requirement for the results permutation. [18]
improves the unbiased learning procedure from a pointwise view
to a pairwise view, which focuses more on the relative order of
documents rather than the absolute relevant score of documents.
Furthermore, [3] indicates that those two components are actually
a dual problem and can be learned jointly. Despite the position bias,
other position-based biases have also been taken into consideration.
[1] takes the position-dependent trust bias [21] into consideration
which is more robust to noise. However, those position-based algo-
rithms cannot be successfully utilized in the real-world WP-ULTR
scenario with biases induced by multiple SERP features. User be-
havior model The user behavior models [21, 22, 24, 32, 38, 44]
are proposed to analyze how click is biased on the user SERP fea-
tures. [32] finds the examination model where the model with a
higher position is more likely to be examine. Then both position
and examination will lead to the final click. [44] shows that the
more attractive results are more likely to receive clicks. The most
frequently utilized one is the [22] which proposes that the user
shows more attention to the document with a higher position. In
the existing studies, only position-related user behavior models
are utilized for further study. More discussion and related work on
Click Model and Causal discovert are in Appendix.

6 CONCLUSION & FUTUREWORK
In this paper, we propose a new problem, i.e., Whole-page Unbi-
ased learning to Rank (WP-ULTR). It takes biases induced by all
SERP features into consideration. In particular, we propose the BAL
algorithm to automatically find and mitigate biases instead of the
heuristic design. Extensive experiments on a large-scale real-world
dataset indicate the effectiveness of BAL. One future direction is to
extend our WP-ULTR to more user behaviors. As previous works
only consider the click user behavior while other user behaviors,
(e.g., SERP time, SERP count, and slip-off count), are ignored. We
may be able to include more user behaviors to find more complex
user behavior models and mitigate the real-world biases.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Whole Page Unbiased Learning to Ranking Woodstock ’18, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Aman Agarwal, Xuanhui Wang, Cheng Li, Michael Bendersky, and Marc Najork.

2019. Addressing trust bias for unbiased learning-to-rank. In The World Wide
Web Conference. 4–14.

[2] Qingyao Ai, Keping Bi, Cheng Luo, Jiafeng Guo, and W. Bruce Croft. 2018.
Unbiased Learning to Rank with Unbiased Propensity Estimation. In The 41st
International ACM SIGIR Conference on Research & Development in Information
Retrieval (Ann Arbor, MI, USA) (SIGIR ’18). ACM, New York, NY, USA, 385–394.
https://doi.org/10.1145/3209978.3209986

[3] Qingyao Ai, Jiaxin Mao, Yiqun Liu, and W. Bruce Croft. 2018. Unbiased Learning
to Rank: Theory and Practice. In Proceedings of the 27th ACM International
Conference on Information and Knowledge Management (Torino, Italy) (CIKM ’18).
ACM, New York, NY, USA, 2305–2306. https://doi.org/10.1145/3269206.3274274

[4] Bryan Andrews, Joseph Ramsey, and Gregory F. Cooper. 2019. Learning High-
dimensional Directed Acyclic Graphs with Mixed Data-types. Proceedings of
machine learning research 104 (2019), 4–21.

[5] Leif Azzopardi. 2021. Cognitive biases in search: a review and reflection of
cognitive biases in Information Retrieval. In Proceedings of the 2021 conference
on human information interaction and retrieval. 27–37.

[6] Ralph Allan Bradley and Milton E. Terry. 1952. RANK ANALYSIS OF INCOM-
PLETE BLOCK DESIGNS. Biometrika (1952).

[7] Olivier Chapelle and Yi Chang. 2011. Yahoo! learning to rank challenge overview.
In Proceedings of the learning to rank challenge. PMLR, 1–24.

[8] Olivier Chapelle and Ya Zhang. 2009. A dynamic bayesian network click model
for web search ranking. In WWW ’09.

[9] Danqi Chen, Weizhu Chen, Haixun Wang, Zheng Chen, and Qiang Yang. 2012.
Beyond ten blue links: enabling user click modeling in federated web search. In
WSDM ’12.

[10] David Maxwell Chickering. 2002. Optimal structure identification with greedy
search. Journal of machine learning research 3, Nov (2002), 507–554.

[11] Aleksandr Chuklin, Pavel Serdyukov, and M. de Rijke. 2013. Click model-based
information retrieval metrics. Proceedings of the 36th international ACM SIGIR
conference on Research and development in information retrieval (2013).

[12] Nick Craswell, Onno Zoeter, Michael J. Taylor, and Bill Ramsey. 2008. An
experimental comparison of click position-bias models. In WSDM ’08.

[13] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking
with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 1–31.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805 (2018).

[15] Georges Dupret and Benjamin Piwowarski. 2008. A user browsing model to
predict search engine click data from past observations.. In SIGIR ’08.

[16] Elham Ghanbari and Azadeh Shakery. 2019. ERR. Rank: An algorithm based on
learning to rank for direct optimization of Expected Reciprocal Rank. Applied
Intelligence 49, 3 (2019), 1185–1199.

[17] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard
Schölkopf. 2008. Nonlinear causal discovery with additive noise models. Ad-
vances in neural information processing systems 21 (2008).

[18] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART: An
Unbiased Pairwise Learning-to-Rank Algorithm. The World Wide Web Conference
(2019).

[19] Ziniu Hu, Yang Wang, Qu Peng, and Hang Li. 2019. Unbiased LambdaMART:
An Unbiased Pairwise Learning-to-Rank Algorithm. In The World Wide Web
Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019. ACM, 2830–
2836.

[20] K. Järvelin and Jaana Kekäläinen. 2017. IR evaluation methods for retrieving
highly relevant documents. In SIGIR’17.

[21] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, and Geri
Gay. 2017. Accurately Interpreting Clickthrough Data as Implicit Feedback. ACM
SIGIR Forum 51 (2017), 4 – 11.

[22] Thorsten Joachims, Laura A. Granka, Bing Pan, Helene Hembrooke, Filip Radlin-
ski, and Geri Gay. 2007. Evaluating the accuracy of implicit feedback from clicks
and query reformulations in Web search. ACM Trans. Inf. Syst. 25 (2007), 7.

[23] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
learning-to-rank with biased feedback. In Proceedings of the Tenth ACM Interna-
tional Conference on Web Search and Data Mining. 781–789.

[24] Mark T. Keane and Maeve O’Brien. 2006. Modeling Result-List Searching in the
World Wide Web: The Role of Relevance Topologies and Trust Bias.

[25] Dmitry Lagun and Eugene Agichtein. 2014. Effects of task and domain on
searcher attention. Proceedings of the 37th international ACM SIGIR conference on
Research & development in information retrieval (2014).

[26] Tongliang Liu and Dacheng Tao. 2015. Classification with noisy labels by impor-
tance reweighting. IEEE Transactions on pattern analysis and machine intelligence
38, 3 (2015), 447–461.

[27] Zeyang Liu, Yiqun Liu, Ke Zhou, Min Zhang, and Shaoping Ma. 2015. Influence of
Vertical Result in Web Search Examination. Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval
(2015).

[28] Jiaxin Mao, Cheng Luo, Min Zhang, and Shaoping Ma. 2018. Constructing Click
Models for Mobile Search. The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval (2018).

[29] John Marden. 1996. Analyzing and Modeling Rank Data.
[30] Ignavier Ng, Yujia Zheng, Jiji Zhang, and Kun Zhang. 2021. Reliable Causal

Discovery with Improved Exact Search and Weaker Assumptions. Advances in
Neural Information Processing Systems 34 (2021), 20308–20320.

[31] Tao Qin, Tie-Yan Liu, Jun Xu, and Hang Li. 2010. LETOR: A benchmark collection
for research on learning to rank for information retrieval. Information Retrieval
13, 4 (2010), 346–374.

[32] Matthew Richardson, Ewa Dominowska, and Robert J. Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In WWW ’07.

[33] Paul R. Rosenbaum and Donald B. Rubin. 1983. The central role of the propensity
score in observational studies for causal effects. Biometrika 70 (1983), 41–55.

[34] Shohei Shimizu, Patrik O Hoyer, Aapo Hyvärinen, Antti Kerminen, and Michael
Jordan. 2006. A linear non-Gaussian acyclic model for causal discovery. Journal
of Machine Learning Research 7, 10 (2006).

[35] Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. 2000.
Causation, prediction, and search. MIT press.

[36] Peter L Spirtes, Christopher Meek, and Thomas S Richardson. 2013. Causal
inference in the presence of latent variables and selection bias. arXiv preprint
arXiv:1302.4983 (2013).

[37] Anh Tran, Tao Yang, and Qingyao Ai. 2021. ULTRA: An Unbiased Learning To
Rank Algorithm Toolbox. In Proceedings of the 30th ACM International Conference
on Information & Knowledge Management. 4613–4622.

[38] Chao Ching Wang, Yiqun Liu, Min Zhang, Shaoping Ma, Meihong Zheng, Jing
Qian, and Kuo Zhang. 2013. Incorporating vertical results into search click
models. Proceedings of the 36th international ACM SIGIR conference on Research
and development in information retrieval (2013).

[39] Xuanhui Wang, Michael Bendersky, Donald Metzler, and Marc Najork. 2016.
Learning to rank with selection bias in personal search. In Proceedings of the 39th
International ACM SIGIR conference on Research and Development in Information
Retrieval. 115–124.

[40] Xuanhui Wang, Nadav Golbandi, Michael Bendersky, Donald Metzler, and Marc
Najork. 2018. Position bias estimation for unbiased learning to rank in personal
search. In Proceedings of the Eleventh ACM International Conference onWeb Search
and Data Mining. 610–618.

[41] Fangzhao Wu, Jun Xu, Hang Li, and Xin Jiang. 2014. Ranking Optimization with
Constraints. Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management (2014).

[42] Yongkai Wu, Lu Zhang, and Xintao Wu. 2018. On Discrimination Discovery
and Removal in Ranked Data using Causal Graph. Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining (2018).

[43] Wanhong Xu, Eren Manavoglu, and Erick Cantú-Paz. 2010. Temporal click model
for sponsored search. Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval (2010).

[44] Yisong Yue, Rajan Patel, and Hein Roehrig. 2010. Beyond position bias: examining
result attractiveness as a source of presentation bias in clickthrough data. In
WWW ’10.

[45] Kun Zhang and Aapo Hyvarinen. 2012. On the identifiability of the post-
nonlinear causal model. arXiv preprint arXiv:1205.2599 (2012).

[46] Kun Zhang, Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2012. Kernel-
based conditional independence test and application in causal discovery. arXiv
preprint arXiv:1202.3775 (2012).

[47] Xiujun Zhang, Xing-Ming Zhao, Kun He, Le Lu, Yongwei Cao, Jingdong Liu,
Jin-Kao Hao, Zhi-Ping Liu, and Luonan Chen. 2012. Inferring gene regulatory
networks from gene expression data by path consistency algorithm based on
conditional mutual information. Bioinformatics 28, 1 (2012), 98–104.

[48] Yujia Zheng, Ignavier Ng, and Kun Zhang. 2022. On the Identifiability of Nonlin-
ear ICA: Sparsity and Beyond. Advances in neural information processing systems
(2022).

[49] Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, ShuaiqiangWang,
and Dawei Yin. 2022. A Large Scale Search Dataset for Unbiased Learning to
Rank. In Advances in neural information processing systems.

[50] Lixin Zou, Shengqiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Shuaiqiang
Wang, Daiting Shi, Zhicong Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in Baidu search. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 4014–4022.

9

https://doi.org/10.1145/3209978.3209986
https://doi.org/10.1145/3269206.3274274

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Woodstock ’18, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A EXPERIMENTAL DETAILS
We utilize the same backbone ranking model, which employs the
BERT architecture, for approximating the scoring function 𝑓 (q, d).
The encoder of the ranking model has 12 layers, where each layer
has 768 dimensions with 12 heads. It is pre-trained on both the
MLM loss [14] and the naive loss shown in Eq. (3). We directly
utilized the trained model parameters provided by [49], which
can be found in the link5. An MLP decoder is built upon on the
[CLS] embedding. The hidden layer dimensions of the 4-layer MLP
decoders are 512-256-128. The library causal-learning6 is utilized
for the causal discovery for click model design. And the Adam
optimizer is utilized for training. Each experiment result is obtained
by 5 repeat runs on different random seeds. The best performance
is selected based on the highest performance on DCG@10. All the
models are trained on the machine with 80G Memory, 4 NVIDIA
A100 GPUs, and 128T Disk.

B MORE RELATEDWORKS
Click Model Instead of the end-to-end training in ULTR, click
models [8, 12, 15, 43] mitigate the bias with the following two steps:
(1) extract the true relevance feedback from the click data (2) use
the new signal to train an unbiased ranking model. [12] is a cascade
model designed with position bias. It assumes that users are more
likely to click document in a higher position since users will read the
result page from top to down. User behavior model [8] incorporates
the examination bias based on the position and last click.

Remark. Click model is different from the user behavior model.
The user behavior model is a probabilistic graph describing the
existing biases in the search engine. By contrast, the click model and
ULTR algorithms are specific techniques to utilize the assumptions
in the user behavior model to learn an unbiased ranker.

Causal discovery Causal discovery aims to learn the causal
relationship among variables from purely observational data. It
serves as one of the key tools for scientific discovery in various
fields, such as Biology [47]. One major class of methods, namely
constraint-based methods, leverage conditional independence tests
to estimate the causal graph (e.g., PC [35] and FCI [36]). Another
popular category is score-based methods, of which the GES [10]
is a representative one. Besides, much attention has been drawn
to weakening the assumptions and extending the applicability, for
instance, relaxing functional or distributional constraints [17, 34, 45,
48], focusing on mixed data types [4], or improving the scalability
[30].

In our setting, we are required to deal with complex real-world
data, suggesting that our method should be able to deal with general
distributions with arbitrary functional relations and data types. By
utilizing nonparametric tests, such as Kernel Conditional Indepen-
dence test (KCI) [46], constraint-based methods (e.g., PC) can be
applied in the general setting. Thus, we adopt PC with KCI for the
procedure of structure learning.
5https://github.com/ChuXiaokai/baidu_ultr_dataset
6https://github.com/cmu-phil/causal-learn

10

https://github.com/ChuXiaokai/baidu_ultr_dataset

	Abstract
	1 Introduction
	2 Preliminary
	3 Bias Agnostic Learning Algorithm
	3.1 User Behavior Model Design
	3.2 Unbiased learning

	4 Experiment
	4.1 Experiment Setting
	4.2 Overall Performance Comparison (RQ1)
	4.3 The Impact of Query frequency (RQ2)
	4.4 Effects of BAL and its components (RQ1,3,4)

	5 Related Work
	6 Conclusion & future work
	References
	A Experimental details
	B More related works

