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Convert and Speak: Zero-shot Accent Conversion with Minimum
Supervision
Anonymous Authors

ABSTRACT
Low resource of parallel data is the key challenge of accent con-
version(AC) problem in which both the pronunciation units and
prosody pattern need to be converted. We propose a two-stage
generative framework "convert-and-speak" in which the conver-
sion is only operated on the semantic token level and the speech is
synthesized conditioned on the converted semantic token with a
speech generative model in target accent domain. The decoupling
design enables the "speaking" module to use massive amount of
target accent speech and relieves the parallel data required for the
"conversion" module. Conversion with the bridge of semantic token
also relieves the requirement for the data with text transcriptions
and unlocks the usage of language pre-training technology to fur-
ther efficiently reduce the need of parallel accent speech data. To
reduce the complexity and latency of "speaking", a single-stage AR
generative model is designed to achieve good quality as well as
lower computation cost. Experiments on Indian-English to general
American-English conversion show that the proposed framework
achieves state-of-the-art performance in accent similarity, speech
quality, and speaker maintenance with only 15 minutes of weakly
parallel data which is not constrained to the same speaker. Extensive
experimentation with diverse accent types suggests that this frame-
work possesses a high degree of adaptability, making it readily scal-
able to accommodate other accents with low-resource data. Audio
samples are available at https://convert-and-speak.github.io/demo/.

CCS CONCEPTS
• Computing methodologies→ Accent Conversion.

KEYWORDS
accent conversion, generative model, speech synthesis

1 INTRODUCTION
Accent brings a barrier of understanding when having a conversa-
tion between speakers with different accents. The technology of
accent conversion aims to break such barriers to make the source
accent speakers sound like target accent speakers by changing the
pronunciation pattern and prosody while preserving the linguistic
content and his/her own speaker identity. This problem is quite chal-
lenging since the accent feature affects speech in many aspects such
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as intonation, rhythm and pronunciation patterns[8]. Take Indian-
English for example, they may pronounce ′𝑣 ′ as ′𝑤 ′ or vice versa,
′𝑡ℎ′ as ′𝑡 ′ or ′𝑑′ and ′𝑝′ as ′𝑏′. Besides such pronunciation units
difference, the prosody, e.g. intonation and stress is also changed a
lot according to the accent. As the example in Appendix(Examples
of accent speech), the pitch contour of the Indian-English accent is
presented with more ups and downs. Another key challenge is the
lack of parallel data. Strictly parallel data with one speaker speaking
the same sentence with two different accents barely existed in the
public research area.

Some early researches [8] try to explicitly model the pronun-
ciation patterns by building some accent-specific dictionaries to
include all possible pronunciations of every word according to the
accent type. These methods tend to have poor adaptation because
of its assumptions that phonetic knowledge about every accent is
available and can be depicted thoroughly in a dictionary and all
speakers can be categorized into a few accent clusters are hardly
held in the real scenario.

One of the conventional AC methods [5, 13, 28, 30] simplify
the accent conversion problem by just converting the voice of the
target accent speaker to that of the source accent speaker assuming
the utterance with the same content in target accent is available.
This kind of method just requires to extract the speaker identity
from the source speech without disentangling content with prosody
which makes it easier to achieve accent conversion. However, these
methods hinder their usage in real applications since the target
accent reference is hardly available at conversion stage.

Therefore, reference-free AC methods are more practical and
appealing for usage. Some previous approaches [17, 29] try to learn
the acoustic mapping between the source accent speech and target
accent speech directly with the parallel data in which the same
speaker speaks the same content with two different accents. How-
ever, such data is extremely rare. So the main idea of this kind of
method is to use the voice conversion(VC) technology [14, 24] to
synthesize the data set by converting the speaker identity of the
target accent speech to that of the source speaker. Such end-to-end
mapping-based methods require large amounts of strictly parallel
data to achieve a good conversion quality and generalization ability.
However, such massive high-quality data can hardly be achieved
and the distortions are introduced from the VC stage, even though
these VC models have been fine-tuned on the target AC dataset.

To relieve the dependence of parallel data, another kind of ap-
proaches [9, 15, 32] which leverage disentanglement technology to
remove accent from content, speaker identity, prosody and resyn-
thesize to the target waveform through a synthesizer, e.g. text-to-
speech(TTS) model [21]. The synthesizer is trained on the target
accent speech to generate speech with prosody in target accent. To
remove accent from content and speaker identity, some auxiliary
models or tasks are carefully designed, e.g. accent-agnostic auto-
matic speech recognition(ASR) model or phoneme classification

https://convert-and-speak.github.io/demo/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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task. Text transcriptions are largely used in these solutions to pro-
vide the supervision of accent-agnostic semantic representation.
Such two-stage mapping-based methods still require large amounts
of (text-accent speech) pairs combined with dedicated auxiliary
tasks to achieve accent-agnostic semantic feature and generate
diverse speech in target accent.

In this work, we propose a two-stage generative framework with
conversion stage and speaking stage to achieve accent conversion.
The conversion stage is operated on semantic level by generating
the semantic tokens in target accent from source accent. The speak-
ing stage is using a generative-based synthesis model conditioned
on the converted semantic tokens to generate the speech with
prosody in target accent. Splitting the AC task into these two sub-
tasks and realizing conversion with the bridge of semantic tokens
which are extracted from raw speech enable the "speaking" module
to be independent of parallel data and use massive amount of target
accent speech without text transcriptions to generate speech with
good quality and diversity in the target accent domain. Meanwhile,
it makes it easier for the conversion part to just learn the pronunci-
ation pattern/phoneme difference with a small amount of weakly
parallel data which is not constrained to the same speaker.

Both of the stages are seq2seq tasks based on decoder-only Trans-
former architectures [22]. Inspired by the ideas from machine trans-
lation community to reduce the need for supervision, we leverage
the BART/T5-style pre-training [12] to significantly reduce the
amount of parallel supervision required to train the conversion
part. Such pre-training with a pretext task on target-accent data is
designed to learn the pattern of generating semantic units, e.g. the
joint probability of phonetic units in target accent space. Further-
more, to reduce the complexity and latency of the speech generation
process, we design a single-stage autoregressive generative model
which generates all vector quantizers(VQs) in one step based on
TF-Codec [10].

Our contributions:(i)We propose a state-of-the-art generative-
based framework for accent conversion which is capable of convert-
ing prosody pattern as well as pronunciation units, as evaluated
with objective and subjective metrics on public Indian-English ac-
cent to general American-English accent conversion test set. (ii)We
use the pre-training technology on the conversion part to largely
reduce the amount of parallel supervision to only 15 minutes of
weakly parallel data. (iii)This framework can be easily extended to
other low-resource accents as our experiments on Chinese-English
accent and Korean-English accent shown. (iv)We propose a single-
stage speech generative model based on TF-Codec with better
speech quality and speaker similarity at lower computation cost
and latency compared with the multi-stage generation process in
other generative models based on Encodec (proposed: 50 AR steps/1
sec of audio vs Encodec-based: 75 AR steps+7 NAR steps/1 sec of
audio).

The paper is organized as follows. Section 2 introduces the
background of accent conversion and speech generative models.
Section 3 introduces the proposed framework in detail. Section 4
validates the performance of the proposed framework mainly on
Indian-English accent to general American-English accent and ex-
tensive experiments are undertaken to substantiate the efficacy of
our model design. Section 5 concludes the paper.

2 BACKGROUND
2.1 Accent conversion
For accent conversion task, there has not been a public parallel
corpus that contains pairs of audios having the same contents yet
coming from the same speakers in different accents. So mainly two
kinds of methods are proposed to accomplish this task in the litera-
ture. One is to synthesize the dataset containing the pairs of audios
in the same voice but in two different accents with another voice
conversion model and learn the acoustic mapping between them to
accomplish accent conversion. [29] build the golden speaker utter-
ance by converting the general American-English speaker’s voice
to the source-accent speaker’s with a pretrained source speaker’s
synthesizer. Then use this golden speaker utterance as the target to
learn the mapping of the mel-spectrogram based on a seq2seq VC
system. [17] use a pretrained VC model to build the parallel data
and trained the AC model based on Tacotron[21] conditioned on
the semantic representation extracted from wav2vec 2.0[1]. This
end-to-end mapping-based approach needs large amounts of data
to achieve a good zero-shot ability and the auxiliary VC model usu-
ally needs to be fine-tuned on the AC data set to alleviate the error
caused by voice conversion step. These methods also constrain the
output to be generated with the same length of the input which
limits the conversion quality since the prosody of the speech is
largely affected by the accent.

Another approach is to regard accent conversion as a decompo-
sition and resynthesis task in which the accent is separated from
content, speaker identity, prosody and resynthesize to the target
waveform in a TTS manner. [15] disentangles different features
in multi-stage with several off-the-shelf models. Specifically, an
accent-robust ASR model is trained using source accent speech
with text labels to separate the source accent from the content. A
multi-speaker TTS model with a global speaker encoder is trained
with a large corpus of target-accent speech to map the accent-
agnostic linguistic features to acoustic features with the voice of
source speaker and target accent prosody. Similarly, [32] learns
the semantic embeddings directly from the accent speech with the
supervision of text embeddings extracted from text labels. Such
two-stage mapping-based non-parallel AC approach relieves the
burden on the parallel data but needs to leverage large amounts of
(text-accent speech) data and dedicated auxiliary tasks. With regard
to performance, these methods are not good enough in conversion
quality and diversity. It also suffers from poor zero-shot general-
ization ability with limited high-quality data available. The same
accent speaker is used in their training and testing. Another work
[9] treats the decomposition and resynthesis in an end-to-end man-
ner. It designs a Pseudo Siamese Disentanglement Network (PSDN)
with two streams in which one stream is used to learn the acoustic
feature of target accent speech and the other auxiliary stream is
used to build the information gap with the target stream to disentan-
gle the content with accent, complemented with another adversarial
accent classifier with gradient reversal layer(GRL). This framework
can be used in the zero-shot scenario but the performance is not
clear since their demo page is out-of-date and the metrics in their
paper can not be compared with other public works.

Compared to prior AC approaches, the proposed generative
framework neither requires large amounts of parallel data spoken
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by the same speaker nor supervision from text labels or auxiliary
tasks to achieve a good conversion quality.

2.2 Speech generative models
Recently, the speech generative models show large potential in
generating contextual consistent, natural and diverse audio/speech
based on a speech neural codec with the in-context learning of a
referenced prompt. AudioLM[2], designed for zero-shot audio gen-
eration, uses Soundstream[26] codes as intermediate representation
of acoustic features for speech synthesis. It also shows the strong
ability of in-context learning with a short prompt to maintain acous-
tic information such as speaker identity, prosody style and acoustic
environment in the continuations. VALL-E[23], verified in the TTS
task, based on Encodec[4] tokens has also shown better zero-shot
ability, speech naturalness and diversity than non-generative based
TTS models.

For model structure, these models take the decoder-only auto-
regressive Transformer structure[22] to build the conditional corre-
lation of the acoustic features tokenized by a neural speech codec
and the semantic tokens/phoneme sequences. When generating
codes, they usually needmultiple stages since the neural codecs they
use are built on residual vector quantization(RVQ) which consists
of a hierarchy of all VQs. In AudioLM, the first several quantizer
layers are predicted in the first stage to get the coarse informa-
tion of the speech and the rest layers are predicted based on the
coarse layers to get the fine details of the speech. VALL-E simplifies
the generating process by replacing the second stage with non-
autoregressive(NAR). In its design, the first quantizer is generated
with the AR model and the others are generated with the NAR
model(all frames are predicted simultaneously when predicting
each codebook) based on the previous quantizers.

Different from these existing generative models, we propose a
one-stage AR generative model which generates all VQs in one step
to achieve lower complexity and latency as well as better quality.

3 PROPOSED FRAMEWORK
3.1 Overview
In the proposed framework, as shown in Figure 1, the pronunciation
patterns are converted at discrete semantic token level and the
prosody is re-synthesized in target accent with a speech generative
model. Specifically, we use a pre-trained self-supervised speech
representation model, e.g. HuBERT[6] to extract discrete semantic
tokens. A neural codec based speech generative model is used
to generate the acoustic codes of the codec conditioned on the
converted semantic tokens with the style prompt to maintain the
source speaker’s voice. Both the conversion and generative models
are based on autoregressive decoder-only Transformer structure.
More details are discussed in Section 3.2 and Section 3.3.

3.2 Semantic token conversion
The conversion module is designed as a seq2seq task in discrete
semantic token space in which the source accent semantic tokens
are converted to the target accent semantic tokens iteratively in
an autoregressive manner. To handle the shortage of parallel data,
inspired by BART and T5[12, 20], we use large amounts of target
accent data to pre-train the conversion module with a pretext task

in our scenario. We then fine-tune the conversion module with a
small amount of weakly parallel data.

Pre-training. In our scenario, the pretext task is designed to
build the probability space of discrete semantic tokens in the target
accent domain so that the target accent semantic tokens can be
generated according to its context of previous tokens in the target
accent domain in a closed-loop manner. In this pretext task, the
model is trained in a self-supervised manner which is to produce
the original token sequence 𝑌 = {𝑦0, ...𝑦𝑡 }, 𝑡 < 𝑇 conditioned on
the corrupted token sequence𝑌 = {𝑦0, ...𝑦𝑡 }, 𝑡 < 𝑇 , formulated as

𝑝 (𝑌 |𝑌 ;𝜃𝐴𝑅) =
𝑇∏
𝑡=0

𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑌 ;𝜃𝐴𝑅) (1)

We have experimented with corruptions like token masking,
token deletion, and token in-filling and we find the token in-filling
scheme works the best. Specifically, following the text in-filling
scheme in BART[12], a number of text spans are sampled accord-
ing to 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑖 (𝑝) where 𝑝 = 0.5. The span lengths are drawn
from a Poisson distribution(𝜆 = 5). We train the pretext task with
large amounts of target accent data which is available in the public
corpus.

Fine-tuning. Since some phonemes in the source accent need
to be converted to the target accent ones, a mapping between these
phonemes needs to be learned. Specifically, we fine-tune the pre-
trained conversion model conditioned on the semantic tokens in
source accent with a small amount of weakly parallel accent data.
Correspondingly, the training can be formulated as

𝑝 (𝑌 |𝑋 ;𝜃𝐴𝑅) =
𝑇∏
𝑡=0

𝑝 (𝑦𝑡 |𝑦<𝑡 , 𝑋 ;𝜃𝐴𝑅) (2)

in which 𝑋 = {𝑥0, ...𝑥𝑡 }, 𝑡 < 𝑇 is the source accent semantic token
sequence and 𝑌 = {𝑦0, ...𝑦𝑡 }, 𝑡 < 𝑇 is the target accent semantic
token sequence.

3.3 Target accent speech generation
The target accent speech generation is achieved by training a sepa-
rate generative model on a large target accent speech corpus. We
design a new speech generative model based on TF-Codec[10]. This
model generates acoustic tokens of TF-Codec iteratively through
a single-stage causal speech generation, conditioned on the con-
verted/target accent semantic tokens.

3.3.1 Speech tokenizer with TF-Codec. We use the pre-trained
causal speech neural codec TF-Codec to extract the acoustic to-
ken of each frame. Unlike [10], we remove the predictive loop and
use the non-predictive model at 6 kbps for efficient acoustic mod-
eling with high-quality output. Specifically, the TF-Codec takes
the 16kHz magnitude-compressed time-frequency spectrum with a
window length of 20 ms and a hop length of 5 ms as input. Then
a stack of 2D causal convolutional layers, followed by a tempo-
ral convolutional module (TCM) and a gated recurrent unit (GRU)
block is used to capture the short-term and long-term temporal
dependencies between the input frames in a causal manner. For the
quantization, it combines 4 frames together, producing a frame rate
of 50 Hz for quantization. Instead of using RVQ, it employs group
quantization where the latent embedding is split into 𝐾 groups and
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Figure 1: Proposed framework. the source accent semantic tokens are converted to target accent semantic tokens in the first
stage and the speech is generated with target accent prosody conditioned on the converted semantic tokens in the second
stage. The style prompt is extracted from the first 3 seconds of the source speech. TF-Codec token is a group of concatenated
embeddings of each quantizer.

each group is quantized by a vector quantizer with a codebook of
1024 codewords. All𝐾 acoustic codes are concatenated and decoded
to get the reconstructed waveform.

3.3.2 Single-stage causal speech generation. As the group quanti-
zation in TF-Codec encodes each group independently, we leverage
a single-stage causal speech generation to generate acoustic codes
of all 𝐾 quantizers simultaneously for each frame. As shown in
Figure 1, TF-Codec token, which is the concatenated embeddings
corresponding to all 𝐾 quantizers, is generated in one-stage au-
toregressive manner conditioned on the target accent/converted
semantic tokens and style acoustic tokens. For each group em-
bedding in TF-Codec token, the dimension is 𝐷𝑡𝑜𝑘𝑒𝑛/𝐾 , in which
𝐷𝑡𝑜𝑘𝑒𝑛 is the dimension of the embedding in transformer. 𝐾 clas-
sification heads are employed to predict the 𝐾 acoustic codes for
current frame separately. The training target can be formulated as

𝑝 (𝐶: |𝑌,𝐶:;𝜃𝐴𝑅) =
𝑇∏
𝑡=0

𝑝 (𝑐𝑡 |𝑐<𝑡 , 𝑌 ,𝐶:;𝜃𝐴𝑅) (3)

in which 𝑌 = {𝑦0, ...𝑦𝑡 }, 𝑡 < 𝑇 is the semantic token sequence from
target accent speech.𝐶: is TF-Codec token sequence of target accent
speech.𝐶: is the TF-Codec token sequence of style acoustic prompt.
We do not distinguish 𝐶: from 𝐶: in training. The concatenation of
𝐶: and 𝐶: is a whole sequence. During inference, the first 3 seconds
of the source speech is used as 𝐶:.

4 EXPERIMENTS
To evaluate the performance of the proposed framework, we take
Indian-English as source accent and general American-English as
target accent which is a common scenario in the research literature.

4.1 Experimental Setup
Dataset. To train the speech generative model and pre-train the
conversion model, LibriTTS dataset [27] is used as our training
data. The dataset contains approximately 585 hours of general
American-English speech data, sourced from audiobooks available

on the public LibriVox project. To fine-tune the conversion model,
L1-L2 ARCTIC dataset [11, 31] is used. L1-L2 ARCTIC dataset is a
dataset with accent speakers speaking the same content. To build
the parallel data, we select a general American-English speaker
named "bdl" as the target accent speaker and "ASI" as the Indian-
English speaker. Among all their utterances, 1000 utterances, about
50 minutes of speech are used in the training, 50 utterances are used
in validation and the remaining 100 utterances are used for testing.
To better verify the zero-shot ability, we also add speaker p248
from VCTK dataset and another 4 Indian-Englsh speakers which
are not used in training from L1-L2 ARCTIC dataset into testing.
To be noted that the 20 utterances from speaker p248 in VCTK
are used to compare with the existing machine-learning based AC
method [15]. Besides these 20 cases, we add another 20 utterances
of each testing speaker in L1-L2 ARCTIC for objective evaluation,
e.g. 120 cases in total, and random 8 utterances per speaker for
subjective evaluation, e.g. 60 cases in total.

Model and configuration. For semantic tokenizer, we employ
the HuBERT-Base model1 and k-means algorithm with 500 clus-
ters to extract semantic tokens. It is trained on LibriSpeech[18]
mostly consisting of general American-English. It generates a dis-
crete semantic token sequence at 50Hz framerate for 16kHz audio.
Previous studies[7, 19] show that HuBERT is a good representation
of speech content and removes most of the speaker identity so
that we can use the weakly parallel data in the fine-tuning stage
of the conversion module. For the acoustic tokenizer, the number
of quantizers in TF-Codec (𝐾 ) is set to 16. The transformer used in
conversion model and generative model is the same structure with
12 layers of 16 attention heads, a feed-forward layer with dimension
of 4096, and a dropout layer with rate of 0.1. The embedding di-
mension in transformer(𝐷𝑡𝑜𝑘𝑒𝑛) is 1024. The generative model and
pre-training stage of conversion model are trained on 8 NVIDIA
TESLA V100 32GB GPUs with a batch size of 4k tokens per GPU.
The ScaledAdam[25] optimizer is used. The learning rate is set to

1https://huggingface.co/facebook/hubert-base-ls960

https://huggingface.co/facebook/hubert-base-ls960
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Table 1: Evaluation on VCTK test set(20 cases from speaker p248 as Liu. et al’s). SPK of accent source is computed on different
utterances of the source speaker.

Framework NISQA-TTS(↑) MOS-Naturalness(↑) SPK(↑) MOS-Accent(↑)

Accent source 4.60 4.52±0.06 0.594 0.5%
Referenced ground truth 4.41 4.34±0.06 - 70.0%
Liu. et al [15] 3.84 3.95±0.07 0.168 67.6%
Generative-only model(EnCodec) 3.65 3.84±0.08 0.429 35.1%
Generative-only model(TF-Codec) 4.10 4.00±0.05 0.502 35.0%
Proposed(conversion+generative) 4.24 4.08±0.06 0.408 69.3%

Table 2: Evaluation on L1-L2 ARCTIC test set. LCSR of ground truth speech is calculated between ground truth utterances of
different speakers.

Framework NISQA-TTS(↑) MOS-
Naturalness(↑)

SPK(↑) LCSR(↑) MOS-Accent(↑)

Accent source 3.65 4.16±0.07 0.641 0.545 0.5%
Referenced ground truth 3.54 4.14±0.08 - 0.744 79.3%
Generative-only model(EnCodec) 3.32 3.79±0.07 0.511 0.545 35.0%
Generative-only model(TF-Codec) 3.59 3.91±0.06 0.543 0.545 35.2%
Proposed(conversion+generative) 3.84 3.93±0.06 0.438 0.622 74.3%

0.01, with a warmup for the first 5k steps and decays exponentially.
The speech generative model is trained for 500k steps and the con-
version model is trained for 100k steps. The fine-tune stage of the
conversion model is processed on one GPU of NVIDIA Tesla A100
80GB, with a batch size of 20k tokens. The same optimizer is used.
The learning rate is set to 2 × 10−5, with a warmup for the first 160
steps. The fine-tuning of the model is trained for 1k steps. During
inference, we employ Top-𝑘 algorithm to generate each token, in
which 𝑘 = 2 for conversion model and 𝑘 = 10 for speech generative
model. For each case, we infer 5 times and select the one with best
LCSR metric as the choice.

Baseline models. To show the superiority of the proposed
framework, we select 3models as our baselines. The existingmachine-
learning based ACmethod [15], which is the best model available in
the public to our knowledge. The generative-only models without
the conversion module are also used as our baselines, in which
we compare with the commonly-used EnCodec-based multi-stage
generative model and the proposed single-stage TF-Codec based
generative model.

Evaluation methods on accent similarity. To evaluate the
performance of accent conversion, both objective and subjective
metrics are used. Intuitively, we use the metric Longest Common
Subsequence(LCS) to evaluate the similarity of the converted seman-
tic token sequence and referenced target semantic token sequence.
To eliminate the disturbance of the duration of each word, the du-
plicated tokens in the sequence are removed. To remove the effect
of the utterance length in the final average statistics, the Longest
Common Subsequence Ratio (𝐿𝐶𝑆𝑅 = 𝐿𝐶𝑆/𝑢𝑡𝑡𝑒𝑟𝑎𝑛𝑐𝑒_𝑙𝑒𝑛𝑔𝑡ℎ) is
used. The smaller utterance length is used to calculate the LCSR

of the testing pair. We also use the latest state-of-the-art English
accent classification model CommonAccent2 [33] to identify the
accent of the synthesized speech. Besides, we conduct a subjective
A/B testing in which participants are asked to choose the one that
sounds more close to general American-English accent in an A/B
pair. Each A/B pair contains cases chosen from any two of the
competitors. The accent source and ground truth are also included
to ensure the validity of the testing. To remove the potential fac-
tor of speaker identity in the subjective testing, in Table 2, both
the accent source and referenced ground truth are chosen from
multiple speaker’s utterances, e.g. 5 Indian-English speakers and 4
general American-English speakers from L1-L2 ARCTIC test set.
To be noted, the referenced ground truth is used here with the
same sentence spoken by different speakers. Particularly, the partic-
ipants are trained to distinguish the accent difference by listening
to several pairs of <Indian-English, general American-English>
samples before the formal testing. 20 participants who are proficient
in general American-English are invited to conduct these evalu-
ations. MOS-Accent, the percentage of being selected as general
American-English accent is used as the metric of this subjective
testing.

Evaluationmethods on speaker similarity and speech qual-
ity. To evaluate the speaker identity maintenance, the speaker simi-
larity metric is calculated as the cosine similarity of the two speaker
vectors, which are extracted from the source accent speech and the

2https://huggingface.co/Jzuluaga/accent-id-commonaccent_ecapa

https://huggingface.co/Jzuluaga/accent-id-commonaccent_ecapa
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Figure 2: Accent classification results for VCTK test set, evalu-
ated by CommonAccent.

Figure 3: Accent classification results for L1-L2 ARCTIC test
set, evaluated by CommonAccent.

converted speech, correspondingly. WavLM-TDNN3 [3], a state-of-
the-art speaker verification model, is used to get the speaker vector
from a speech. To evaluate the naturalness, we use NISQA-TTS[16],
which is commonly used for synthesized speech. We also conduct
MOS testing, in which the raters are asked to give a score ranging
from 1 (lowest quality) to 5 (highest quality) according to the overall
subjective quality. The MOS-Naturalness with confidence level of
95% is used as the metric.

4.2 Results
Accent similarity. As shown in Table 1 and Table 2, the MOS-
Accent metric of the proposed framework on both datasets ranks
the highest and very close to the ground truth. Compared with the
generative-only models, e.g. Generative-only model(EnCodec) and
Generative-only model(TF-Codec), the proposed framework highly
surpasses them for accent conversion performance, indicating the
effectiveness of the conversion module. This is also verified by
the LCSR metric on L1-L2 ARCTIC test set in Table 2, where the
proposed framework closely approaches the ground truth LCSR
after conversion. The analysis on HuBERT with accent input in
Section 4.5.1 also shows the HuBERT tokens are affected by the
source Indian-English accent, especially for those accent speech
with phonetic changes, indicating the necessity of the semantic con-
version module. Figure 2 and Figure 3 show the accent classification
results from CommonAccent. Compared with other methods, the
proposed framework converts most of the Indian-English accent
input to the target general-American English accent. In Figure 3,
for the rest of 11% cases which are identified as Indian-English ac-
cent, besides classification error, most of the cases are short and the
conversion quality of some cases is not good enough which leaves
room for further improvement on the robustness of the generative
framework. For Liu. et al [15]’s method, it is interesting to find that
there is a big gap between classification metric(as bad as accent

3https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_
verification

source) as shown in Figure 2 and MOS-Accent(relatively good) as
shown in Table 1. We think the bad result in terms of classification
metric comes from its poor conversion ability on the pronunciation
units. Most of the pronunciation units are not converted well, e.g.
the pair of (′𝑏′,′ 𝑝′). For prosody conversion, the quality is rela-
tively good compared with the source accent, which contributes
to the high subjective metric. The audio samples can be found in
our demo page. Overall, the proposed framework achieves much
better accent conversion performance as verified by both objective
classification metric and subjective metric.

Speech quality and Speaker similarity. According to the
NISQA-TTS andMOS-Naturalness metric in Table 1 and Table 2, the
proposed framework ranks at the top level. Compared with Liu’s
method, the proposed framework achieves much better speech
quality and speaker similarity. Artifacts of Liu’s model can be
found in some cases, as shown in the demo page. What’s more,
we find the better speech quality and speaker similarity can be
achieved with TF-Codec based generative model according to the
comparison of Generative-only model(TF-Codec) and Generative-
only model(EnCodec). This can also be verified by our demo cases.
Compared with Generative-only model(TF-Codec), the SPK value
of the proposed framework drops a bit but the subjective judge-
ment on the demo cases are quite similar. We think this is caused by
the error from the speaker vector extractor WavLM-TDNN. Since
WavLM-TDNN is not trained on accent speech so the extracted
vector contains not only the speaker identity but also accent in-
formation. So with better accent conversion, the speaker vector
of the converted speech and the accent source speech tend to be
more different, resulting in a lower cosine similarity. It should be
more reasonable to use this metric to compare Generative-only
model(EnCodec) with Generative-only model(TF-Codec) and the
proposed with Liu’s method since both of them are with/without
accent leak in the converted speech.

https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
https://github.com/microsoft/UniSpeech/tree/main/downstreams/speaker_verification
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Table 3: Complexity comparison of speech generative mod-
ule.

Framework Model
parameters(M) Decoding steps(/s)

Generative-only
model(EnCodec) 262.3 75 AR + 7 NAR

Generative-only
model(TF-Codec) 100.8 50 AR

Table 4: Accent conversion quality with parallel data of 50
mins, 30 mins, 15 mins.

Parallel data amount MOS-Accent(↑)

50 mins 59.3%
30 mins 58.1%
15 mins 56.8%

4.3 Efficiency of single-stage causal speech
generation

Herewe compare the complexity of the proposed single-stage causal
speech generation scheme based on TF-Codec with the multi-stage
speech generation scheme based on Encodec. In the Encodec-based
generative models, two stages are usually taken, with a combination
of autoregressive(AR) stage to generate the first quantizer and NAR
stage to generate the rest of the quantizers of all time steps based
on the previous quantizers. The Encodec used in the experiment is
composed of 8 quantizers with the frame rate of 75 Hz and sample
rate of 24kHz. The complexity is shown in Table 3 in terms of model
parameters and decoding steps. According to Table 3, TF-Codec
based generative model saves more than 50% in model size and
takes a pure causal decoding scheme with fewer steps.

4.4 Training with minimum supervision
In this section, we further reduce the parallel data used in the fine-
tuning stage of the conversion model, from 50 minutes (proposed
in Table 1 and Table 2) to 30 minutes and 15 minutes, respectively.
We use the MOS-Accent as the evaluation metric and test on the
VCTK test set. We also add the baseline models into A/B testing for
comparison. As shown in Table 4, by decreasing the data amount,
the performance drop is negligible. With the minimum supervision
of 15 minutes, the performance is still relatively good, which shows
its high potential for extension on other accents with low-resource
data, such as Chinese-English accent and Korean-English accent to
general American-English accent cases in Section 4.7.

4.5 Supportive analysis
4.5.1 HuBERT tokens from accent speech. In this section, we eval-
uate how accent affects the HuBERT tokens. Specifically, we build
a parallel data set from L1-L2 ARCTIC dataset in which the Indian-
English speaker and general American-English speaker speak the

same content. Both of them are fed into the HuBERT model used in
the paper to get the semantic token sequence. The LCSR metric is
used to evaluate the content similarity between these two HuBERT
token sequences. 1000 pairs are used in this experiment. To fur-
ther study the phoneme change effect, the accent cases are divided
into the one with phoneme changes and without phoneme changes.
Since the speakers of each pair are different, the effect of the speaker
identity on the LCSR metric is also calculated as a reference. As
Table 5 shows, with the source accent introduced, HuBERT tokens
have changed a lot, degrading from 0.747 to 0.569 in terms of LCSR.
For those cases with specific phoneme changes, more tokens have
been changed from the target accent references(LCSR: 0.541).

4.5.2 Accent effect on the style prompt in speaking module. We
use the accent source as the style prompt in the speech generative
model to extract speaker identity of the source speaker. This section
is to evaluate if the accent feature will be extended through the
in-context learning in the speech generative model. We conduct
empirical study to substantiate such usage. Specifically, we design
an A/B testing to compare the accent similarity of the synthesized
speech generatedwith two kinds of prompts in different accents con-
ditioned on the same content. For testing, we take Indian-English
and general American-English as two prompt types for comparison.
We build 100 pairs of samples to test. Each pair contains an utter-
ance in general American-English accent which is used to extract
HuBERT semantic tokens, an utterance from a general American-
English speaker and from an Indian-English speaker working as
the style prompts. The prompts are cut to 3 seconds. Examples
can be found in our demo page. For subjective testing, 20 partici-
pants who are college students majoring in American-English are
asked to distinguish the two synthesized speech and choose the one
which sounds closer to general American-English. The percentage
of being selected as general American-English accent is used as
the evaluation metric. We also use the CommonAccent to identify
the two synthesized speeches. As Table 6 shows, no matter general
American-English or Indian-English prompt type, the percentage
to be selected as general American-English by users is about 50%
and almost all the synthesized speeches are identified as general
American-English. The similar results are observed from the test-
ing with more accent prompt types as Chinese-English accent and
Korean-English accent in Appendix(In-context learning with more
accent prompt types). Furthermore, we find accent prompts do
have effect on the prosody modeling but are quite limited. Accord-
ing to our experiments on the effect of accent prompt length in
Appendix(Effects of accent prompt length), with the prompt in
Indian-English accent becomes longer, increased from 3s to 7s, the
percentage of predicted general American-English accent drops
from 84% to 73%. So we can use 3 seconds of accent source as a
prompt to catch the source speaker’s identity without bringing the
source accent back to the converted speech.

4.6 Ablation Study
Decoupling design We compare with the solution in which the
parallel data is used to fine-tune the generative-only model di-
rectly. In such a way, the model is guided to learn the phoneme
and prosody conversion simultaneously and blindly through an AR
Transformer model. As Table 7 shown, the LCSR of generative-only
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Table 5: HuBERT tokens from accent speech. Lower LCSR means less similarity between source accent speech and target accent
speech. Source accent: Indian-English. Target accent: general American-English.

Influencing factors LCSR(↑)

Speaker identity 0.747
Accent without phoneme changes(w. speaker identity change) 0.569
Accent with phoneme changes(w. speaker identity change) 0.541

Table 6: Comparison of the synthesized speech with two accent prompt types: general American-English and Indian-English.
CommonAccent metric shows the percentage of being predicted as general American-English. A/B testing metric shows the
percentage of being selected as general American-English in the A/B pair.

Prompt type CommonAccent A/B testing

General American-English accent 98% 50%
Indian-English accent 97% 50%

Table 7: Ablation study on the decoupling design.

Framework LCSR(↑)

Proposed(w. decoupling) 0.622
w.o decoupling 0.020

Table 8: Comparison of the semantic conversion quality
w./w.o pre-training.

Framework LCSR(↑)

Proposed (w. pre-training) 0.622
w.o pre-training 0.103

Table 9: Results on general American-English accent con-
version from Chinese-English accent and Korean-English
accent. CommonAccent metric shows the percentage of be-
ing predicted as general American-English.

Source accent type CommonAccent

Chinese-English accent 95%
Korean-English accent 100%

model without decoupling on L1-L2 ARCTIC test set is quite low
at 0.02, indicating most of the content has been destroyed and the
model fails to learn such mapping with so little amount of parallel
data.

The effect of pre-training for semantic conversion module
To verify the validity of the language pre-training technology

used for the semantic conversion module, we compare it with the
solution where the conversion model is trained from scratch with
theweakly parallel data. All parallel data(about 50mins) are used for
training. As Table 8 shows, without pre-training, the results degrade
by a large margin. This is reasonable since the pre-training stage
lays a good foundation for the fine-tuning stage to just focus on
learning few semantic units which are different in the two accents.

4.7 Extensions to more source accent types
We extend the proposed framework to Chinese-English accent and
Korean-English accent. Specifically, another 15 minutes of weakly
parallel data of <Chinese-English accent, general American-English
accent> and <Korean-English accent, general American-English
accent> from L1-L2 ARCTIC dataset is used in the fine-tuning stage
of the conversion module. The conversion accuracy of Chinese-
English accent is 95% and Korean-English accent is 100%, identified
by the CommonAccent metric as shown in Table 9. Audio samples
can be found in our demo page.

5 CONCLUSIONS
In this work, we propose a two-stage generative framework for
accent conversion task in which the conversion is operated on the
semantic token level and synthesized to a target accent speech with
TF-Codec based generative model. Experimental results show the
proposed framework achieves the state-of-the-art performance in
terms of accent similarity, speech quality and speaker maintenance
with limited parallel data. With the language pre-training technol-
ogy, only 15 minutes of parallel data, not constrained to the same
speaker reaches to a good conversion quality, which shows large
potential for an easy extension for other accents with low-resource
data. The proposed single-stage AR generative model achieves bet-
ter speech quality at lower complexity, which can be used for other
speech generative tasks. In the future, we will further improve the
robustness of the generative framework for AC task.
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