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Abstract

Foundation models excel at single-turn reasoning, but many real-world challenges,1

from scientific research to technology development, require multi-turn exploration2

in dynamic interactive environments. Crucial components of learning from expe-3

rience in these settings, such as efficiently gathering information to test hypothe-4

ses, meta-learning a model of the world’s dynamics, and adapting to unexpected5

changes, remain largely unexplored for these models. We first evaluate foundation6

models in Feature World, a setting that primarily tests information gathering about7

a static hidden reward function. In this initial setting, we show that state-of-the-art8

foundation models come close to optimal efficiency in selecting maximally infor-9

mative actions in tasks with simple reward functions. We also show a model can10

gather information efficiently in a 3D embodied version of this task, though errors11

in vision limit some aspects of performance. In order to test exploration across12

multiple dependent turns and trials, we implement a custom, text-based version of13

the Alchemy environment, a benchmark designed for meta-learning. Here, agents14

must deduce a latent causal structure by integrating information across multiple15

state-dependent trials. In this more complex setting, we find that recent foundation16

models struggle to meta-learn strategies that enable improved performance over17

time. However, prompting the models to summarize their observations at regular18

intervals enables an emergent meta-learning process, allowing them to improve19

across trials. Notably, in some models, summarization also enabled adaptive re-20

learning of this information when the environment’s rules change unexpectedly.21

While most models performed reasonably well on simple Feature World tasks, eval-22

uations in Alchemy reveal stark differences in robustness among the models. These23

results demonstrate that scaling environmental demands is a powerful method for24

revealing both the capabilities and limitation of current agents, highlighting that25

the primary challenge is not just selecting informative actions, but integrating26

knowledge over time. Intriguingly, we find there is likely no intrinsic barrier to27

future generations of foundation agents more fully mastering these abilities.28

1 Introduction29

Foundation models have demonstrated remarkable abilities in understanding and generating complex30

human-like text and multi-modal content [Achiam et al., 2023, Gemini Team et al., 2023, Jiang et al.,31

2024, Reid et al., 2024, Dubey et al., 2024, Dai et al., 2024, Deitke et al., 2024]. However, this success32

has largely been measured in static, single-turn settings where information is provided upfront. The33

next frontier for these models lies in their application as interactive agents, which must operate34

in dynamic environments where crucial information is not given, but must be actively discovered.35

To achieve goals in such settings, an agent cannot merely react; it must proactively explore. This36

contrasts with classic reinforcement learning (RL) paradigms that use undirected exploration [Burda37
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et al., 2018, Ecoffet et al., 2019, Badia et al., 2020]. Real-world endeavors often demand a more38

sophisticated, hypothesis-driven approach. This involves strategically formulating beliefs about the39

world, designing experiments to test those beliefs, and integrating findings gathered across multiple40

trials. Such capabilities will become increasingly important as training on human-generated data41

reaches a limit and we enter the "era of experience", in which models generate their own training data42

through interaction with their environment [Silver and Sutton, 2025]. Whether, and to what extent,43

today’s foundation models possess this latent capacity for active exploration remains a critical and44

largely open question.45

We evaluate LLMs in three environments: text-based and 3D variants of Feature World, and a46

text-based version of Alchemy [Wang et al., 2021]. The Feature World is largely stateless and does47

not necessitate extensive sequential decision-making, allowing us to isolate and analyze efficiency48

of information gathering. Alchemy, in contrast, demands strategic exploration and reasoning over49

multiple trials, which allows us to evaluate the foundation models’ meta-learning and strategy50

adaptation abilities.51

In this paper, we operationally define and measure three key capabilities involved in exploration:52

efficient information gathering, meta-learning, and strategy adaptation.53

• Efficient information gathering: Selecting actions that maximally increase expected54

information gain. In Feature World, we measure this as success rate in finding a rewarding55

object within a fixed step budget, compared to a random policy.56

• Meta-learning (learning to learn): Improving expected performance on new tasks in a57

given family through experience of other tasks in that family [Thrun and Pratt, 1998]. In58

Alchemy, we measure this as a significant improvement in performance over successive59

trials within an episode.60

• Strategy adaptation: Detecting when a strategy becomes invalid due to environmental61

changes and adapting by learning a new one. In Alchemy, we measure this as performance62

recovery after an uncued change to environment dynamics.63

More specifically, this paper investigates the capacity of foundation models to conduct exploratory64

behavior within interactive environments in the zero-shot setting, using in-context prompting alone65

and without requiring task-specific training, fine-tuning, or few-shot examples.66

We performed experiments using Gemini 1.5 Pro and Flash [Reid et al., 2024], Gemini 2.5 Pro and67

Flash [Google, 2025], Claude 3.7 Sonnet [Anthropic, 2025], and ChatGPT-4o [OpenAI, 2024] and68

o4-mini [OpenAI, 2025].69

Overall, this work makes the following key contributions and findings:70

• We conduct extensive experiments evaluating multi-turn exploration performance of founda-71

tion models across a diverse set of interactive environments. We analyzed several foundation72

models and a range of in-context prompting strategies, including variations in the amount of73

prior information and the structure of demonstrations.74

• Our findings reveal a strong inherent exploratory capacity in foundation models across75

simple interactive settings. Specifically, all LLMs we evaluated demonstrated near-optimal76

performance in Feature World with simple reward functions. Likewise, some models outper-77

formed the memoryless heuristic in Alchemy, something that the RL agents benchmarked in78

the original Alchemy study were unable to do.79

• We find that in complex, multi-trial environments, such as Alchemy, foundation models80

struggle to show meta-learning (improving over trials) and strategy adaptation (re-learning a81

world model when the effects of actions unexpectedly change). However, both these abilities82

can emerge when models are prompted to summarize information across trials.83

• We find stark differences in the robustness of meta-learning and strategy adaptation in84

frontier LLMs using Alchemy, demonstrating the utility of this environment as a benchmark85

for LLM exploration capabilities.86
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2 Related Work87

Exploration has been studied in the context of games for both RL agents [e.g., Burda et al., 2018,88

Ecoffet et al., 2019, Osband et al., 2019, Guo et al., 2022, Saade et al., 2023] and foundation models89

[e.g., Wang et al., 2023a,b, Feng et al., 2023, Tan et al., 2024]. All of these works, however, focus90

more on improving agent performance rather than performing an explicit, systematic investigation of91

well-defined exploration capabilities with foundation models in controlled, zero-shot settings and in92

comparison to known optimal policies. See Section A.1 for a more detailed overview of related work.93
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Figure 1: Task structures and experimental setups for Feature World. (a) Example task setup for text
environment with single-feature reward function, with “blue” as the rewarding feature. (b) Example
task setup for text environment with conjunction reward function, with “blue” and “cube” as the
rewarding conjunction. (c) Schematic of text Feature World experiment setup.

We first evaluate models in Feature World: a simple, memory-less, text-based setting. In this95

environment, actions can be executed repeatedly without altering the underlying state dynamics due96

to previous actions, and each exploratory action provides immediate feedback.97

3.1 The Feature World environments98

3.1.1 Text environment99

To investigate information gathering, we use a task where models are presented with objects possess-100

ing multiple features (e.g., color, shape). A specific feature or conjunction of features determines a101

reward, mirroring sparse-reward RL settings.102

This task isolates multi-step information gathering within a single trial. Actions provide immediate103

feedback on a static reward function, with no latent dynamics to discover across trials.104

To assess the robustness of different models, we modulate task difficulty by adjusting two key aspects:105

the number of distinct colors (increasing the cognitive load) and the complexity of the reward function.106

Reward functions can be based on a single property (single-feature tasks) or a conjunction of two107

properties (conjunction tasks). See Figure 1 for a visualization of the tasks.108

3.1.2 3D Feature World – Construction Lab109

To test active exploration in a more realistic, multi-modal setting, we created a 3D version of Feature110

World in the Construction Lab simulation [reference-anonymized]. In this environment, the agent111

receives video input and outputs action instructions for a human to execute. This setup assesses112

exploratory behavior while introducing real-world challenges like visual understanding. To manage113

visual complexity, these 3D tasks use only three colors and a single rewarding feature, mirroring the114

simplest text-based condition.115
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(a) (b) (c)

Figure 2: Gameplay in Construction Lab. (a) The agent uses a blue laser beam to pick up objects. (b)
Result of a correct object placement. (c) Result of an incorrect object placement.

3.2 Feature World experiments and results116

Our experiments in Feature World aim to address the following two questions: (a) How does the117

complexity of the environment affect the information gathering efficiency of foundation models? (b)118

What new challenges emerge in an embodied 3D version of the task?119

We evaluate on different foundation models, using publicly available APIs with default settings unless120

noted otherwise. For Feature World, we compared ChatGPT-4o [Achiam et al., 2023, OpenAI, 2024]121

(200k context), Claude 3.7 Sonnet [Anthropic, 2025] (200k context), Gemini 1.5 Flash and Pro [Reid122

et al., 2024], and Gemini 2.5 Flash and Pro [Google, 2025] (1M context).123

3.2.1 Task setup124

Baselines We compare to two baselines: Optimal Baseline: This baseline represents an upper bound125

on exploration performance. It selects actions that maximize information gain at each step. See126

Section A.3.1 for a more detailed description of the optimal strategy. Random Baseline: This baseline127

establishes a lower bound by choosing objects randomly with replacement. Both baselines are128

evaluated with 1000 episodes.129

See Tables 1, 2, 3, and 4 in the Appendix for the prompts used in Feature World for all models.130

Evaluation To evaluate information gathering efficiency, we assess how often models are successful131

at finding a rewarding object given a fixed budget of exploration steps. We set the step budget as the132

maximum number of steps that an optimal policy would need before finding at least one rewarding133

object. This measures the model’s active exploration capabilities independent of its ability to draw134

conclusions from its observations.135

For the 3D exploration task, we measure two key metrics: 1) the number of steps required to gather136

sufficient information to identify the reward function, and 2) the model’s accuracy in correctly137

identifying that function from its observations. This second metric assesses the model’s combined138

ability to efficiently explore as an actor and to draw conclusions from visual evidence.139

3.2.2 Effects of environment complexity on exploration140

We examine the effect of two forms of environmental complexity on information gathering efficiency:141

reward function complexity and object quantity. To measure the former, we designed tasks where142

reward is determined by either a single feature (like “red” or “square”) or a conjunction of two features143

(e.g., “red” and “square”). The latter requires the agent to reason about multiple properties to identify144

the rewarding combination. To investigate the impact of cognitive load on model performance, we145

also vary the number of unique colors in the environment.146

In both single-feature and conjunction tasks, almost all models outperform the random baseline in all147

conditions (Figure 3), showing most LLMs have a robust capacity for efficient information gathering.148

In the single-feature task, all models perform better than random and most remain nearly optimal as149

cognitive load increases (Figure 3a). This shows that, when the reward function is simple, most models150

are capable of nearly optimal information gathering efficiency even as cognitive load increases.151
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(a) Single-feature tasks
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(b) Conjunction tasks

Figure 3: Fraction of Feature World episodes in which models found a rewarding object before reach-
ing the maximum number of exploration steps. (a) Single-feature reward function. (b) Conjunction
reward function. Error bars represent standard error of the mean, with 200 episodes per condition for
the models and 1000 for the random and optimal baselines.

In the conjunction task, most models show a large drop in performance compared to the single feature152

task, though Gemini 2.5 Pro maintained strong performance despite the increase in task difficulty153

(Figure 3b). This demonstrates that reward function complexity exacerbates the impact of cognitive154

load on performance for most LLMs, but not universally.155

Taken together, these results show that LLMs have a robust capacity for gathering information156

efficiently for simple reward functions. On the other hand, most LLMs degrade with increasing157

cognitive load when the reward function is more complex. Interestingly, our results show that Gemini158

2.5 Pro is an outlier in this trend, achieving nearly optimal performance across all levels of reward159

function complexity and cognitive load. This shows that robust, near-optimal information gathering160

efficiency is possible in LLMs, and may eventually become a common capability.161

3.2.3 3D embodied Feature World results162

As a proof of concept, we also tested the multimodal and visual understanding capabilities of a model163

in an embodied 3D verion of Feature World (Figure 4a). See Section A.4 for more setup details.164

Environment
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“Red disk: incorrect”

“Place the purple cube 
on the conveyor”

<MouseMove(), 
KeyPress(), …>

R
easoning

(a) 3D Feature World Setup (b) Steps to sufficient info (c) Rewarding property accuracy

Figure 4: Schematic and performance metrics for 3D exploration task, with 15 episodes per condition.
(a) Schematic of 3D task setup. (b) Mean number of exploration steps (objects placed on the conveyor)
before sufficient information is available to determine the correct factor. (c) Accuracy of the model in
determining the correct rewarding feature. Hatched blue bar represents accuracy if episodes with
vision errors are removed. Error bars represent standard error of the mean.

We show that Gemini 1.5 Pro is capable of extracting the necessary symbolic information from165

video, providing real-time instructions to a human player, and reasoning. The Gemini actor gathered166

information more efficiently than a random actor and was close to optimal (Figure 4c). This shows167

that a foundation model can gather information efficiently in a 3D embodied setting requiring vision.168

However, its accuracy in identifying the correct rewarding feature was hampered by vision errors,169

which occurred in 8 of 15 episodes. While accuracy improved to near-optimal levels on trajectories170
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without such errors, overall performance was not statistically superior to a random actor (p = 0.13,171

2-sample t-test) (Figure 4c). This suggests that multi-modal perception, rather than reasoning, is the172

primary bottleneck for applying foundation models to more complex, real-world exploratory tasks.173

See Section A.4.4 for a more detailed discussion of the 3D Feature World results.174

4 Alchemy175

We then evaluate agents in Alchemy, a more complex environment with a persistent, hidden task176

structure across multiple trials. This requires strategic exploration in early trials to inform exploitation177

in later ones. For this more demanding evaluation, we selected the Alchemy environment [Wang et al.,178

2021]. Alchemy is notable for its structured task distribution and its design to test reasoning, planning,179

and, importantly, exploration and meta-learning. In Alchemy, the agent needs to take actions to180

not only discover rewards but also latent causal dynamics, which are randomly resampled every181

episode. Additionally, constraints are introduced such that not all actions can be taken repeatedly182

within a trial (which are themselves multi-step), necessitating planning both within and across trials.183

These characteristics contribute to a more complex testbed for evaluating components of exploration184

strategies, such as meta-learning and strategy adaptation, that are measured across multiple timescales185

(i.e., within trials, across trials, and across episodes).186

4.1 The Alchemy environment187

Alchemy [Wang et al., 2021] is a procedurally generated environment specifically created to test188

meta-learning capabilities. The core gameplay involves using a set of potions to transform various189

visually distinctive stones into more valuable forms, and then depositing them into a central cauldron190

to score points. Stone appearance varies along three feature dimensions: size, color, and shape, and191

their value is visually indicated by a marker. Potion effects are determined by color. A central concept192

in Alchemy is the “chemistry”, which represents a latent causal structure that governs the value of193

stone appearances and the transformative effects of potions on stones. This chemistry is procedurally194

resampled for each episode, meaning the specific rules linking appearance, value, and potion effects195

change every time a new episode begins. We define a step as a single action (e.g., applying a potion),196

a trial as a sequence of steps ending with scoring or resource exhaustion under a fixed chemistry197

and finite set of objects, and an episode as a sequence of N trials (defaulting to N = 10) where198

the chemistry is constant, resetting only between episodes (Figure 5a-c). Within a single episode,199

the agent’s implicit challenge is to diagnose the current chemistry through repeated observation and200

experimentation. This involves operating at two timescales: making effective choices within each trial201

and synthesizing the information gathered across trials to learn about the latent dynamics, applying202

this knowledge to maximize scores in subsequent trials. After each episode, the chemistry is reset203

and all information from the previous episode is cleared from the model’s context (with the exception204

of the strategy adaption experiments: see Section 4.2.3).205

(a)

Episode 1: chemistry Episode 2: chemistry

(b)

Alchemy 
Environment LLM

Action

Episode 
History

LLM

Prompt

Outcome, new observation, new score

“Place stone 0 in potion 11”

sum
m

ary

(c)

Figure 5: Task structures and experimental setup for Alchemy. (a) The structure of an Alchemy
experiment. (b) Example chemistries, represented as graphs determining the effects of potions (edges)
on stones of different properties (nodes), that change between episodes. (c) Alchemy exploration
setup. An LLM receives feedback from the environment, a prompt, past episode history, and,
optionally, a summary. (a) and (b) are adapted, with permission, from figures in Wang et al. [2021].

4.2 Alchemy experiments and results206

Our experiments in Alchemy aim to address the following questions: (a) How does the multi-207

trial setting, which requires long-context and memory, impact the exploration performance and208
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meta-learning of foundation models? (b) How do different prompting strategies and cross-trial209

summarization methods impact exploration performance and meta-learning? (c) How well can210

foundation models adapt their learned strategies to uncued changes in environment dynamics?211

For Alchemy, we compared Gemini 2.5 Pro (1M context), Claude 3.7 Sonnet (200k context), and212

o4-mini [OpenAI, 2025] (200k context), all of which are reported to employ an explicit thinking step,213

and ChatGPT-4o (200k context), which does not employ a thinking step.214

4.2.1 Task setup215

We evaluated the LLMs on a symbolic version of Alchemy in which both actions and observations of216

the game state are represented as text. We used the same parameters as in Wang et al. [2021].217

Baselines We compare LLMs to two baselines: Optimal Baseline: the oracle baseline in Wang218

et al. [2021], which is a baseline that knows the underlying causal structure of the environment and219

can perform optimal actions. All results shown are normalized to the score of the oracle baseline.220

Heuristic Baseline: To set a baseline for reasonable performance, we use the memoryless heuristic221

described in Wang et al. [2021], which places random stones in random potions until either a stone222

reaches the maximum reward (in which case that stone is placed in the cauldron, and random selection223

then continues) or all stones are used up (in which case all positive-valued stones are placed in the224

cauldron, and the trial then ends).225

Evaluation We assess two variables impacting model performance on the Alchemy task: 1) inclusion226

of prior information on invariant principles of Alchemy in the prompt (see Section A.5.1 for details),227

and 2) use of summarization to augment learning across trials (see Section A.5.2 for details).228
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Figure 6: Mean Alchemy episode scores for different models and conditions. (a) No summariza-
tion, no prior information. (b) No summarization, prior information. (c) Summarization, no prior
information. (d) Summarization, prior information. N=10 replicates of 10-trial episodes. Error bars
represent standard error of the mean. Asterisk indicates the mean is significantly different from that
of the memoryless heuristic (p < 0.05, paired-sample t-test).

We measure model performance primarily through three metrics: 1) performance: mean score over229

the 10 trials of an episode, 2) improvement: difference of the mean score of the last 5 trials and the230

score of the first trial (Appendix Figure 10), and 3) adaptation: the mean score for 10 trials following231

an unexpected change in chemistry. For all metrics, trial score is normalized as a fraction of the score232

of an oracle that takes the optimal set of actions for the given items. We use an additional two metrics233

to gain further insight into model decision making: 1) change in the number of potions used between234

the first trial and the last five trials, and 2) the fraction of trials in which the model places at least235

one negative-valued stone in the cauldron. See A.5.7 for results on these latter two metrics. For all236

metrics, we run 10 replicate episodes with randomized chemistries.237

4.2.2 Effects of summarization and prior information on model performance and learning238

As shown in Figure 6a, Gemini and, to a lesser extent, o4-mini, significantly outperform the memory-239

less heuristic. Notably, the RL agents evaluated in Wang et al. [2021] did not significantly outperform240

the memoryless heuristic, despite being trained for 1e9 episodes. This condition with no summa-241

rization strategy and no prior information most closely mirrors the setting of the original Alchemy242

task experienced by the RL agents. This shows that some LLMs can act as powerful agents on tasks243

requiring exploitation of strategies learned through extended exploration across multiple tasks, even244

in environments originally designed for RL agents.245
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However, in Figure 7a, we see that none of the models shows a statistically significant within-episode246

improvement in score for this setting, suggesting that meta-learning is not operating efficiently.247
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Figure 7: Improvement in score over the episode, computed as mean of the last 5 trial scores minus
the score of the first trial. (a-d) Same conditions as Figure 6. N=10 replicates of 10-trial episodes.
Error bars represent standard error of the mean. Asterisk indicates the mean is significantly different
from 0 (p < 0.05, single-sample t-test).

The inclusion of prior information increased the mean scores (Figure 6b), and resulted in score248

improvements over the episode becoming significant for Gemini and Claude (Figure 7b). This shows249

that the prior information about invariant principles boosts performance and enables significant250

improvement over trials, supporting the hypothesis that it provides a framework for the model to251

generate hypotheses and targeted exploration actions1.252

However, since Alchemy was designed specifically to evaluate models’ ability to meta-learn these253

invariant principles from experience, the same prior information provided in the prompt ought to254

be present in the model’s action and observation history. As such, we hypothesized that prompting255

the models to summarize their observations and actions after each trial would encourage them to256

extract equivalent information and lead to a similar boost in performance. To test this hypothesis, we257

implemented the summarization strategy described in Section A.5.2.258

We found that, with summarization, all models showed significant score improvement over the259

episode except for o4-mini (Figure 7c). Summarization also improved the mean scores for all models260

(Figure 6c). This supports the hypothesis that summarization enables meta-learning.261

To test whether the information gained in the summarization condition is functionally similar to262

that provided in the prior information condition, we evaluated models with both summarization263

and prior information. In this setting, mean scores were similar to the prior information condition264

(Figure 6d). Score improvements were likewise similar to the cases with summarization only or265

prior information only (Figure 7d). This supports the hypothesis that summarization enabled the266

acquisition of information similar to or redundant with that provided in the prior information.267

4.2.3 Strategy adaptation following uncued change in game rules268
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(a) Mean scores after chemistry change

Figure 8: Mean normalized model scores for trials 11-20 when an uncued change in chemistry occurs
halfway through a 20-trial episode. Hatched pattern represents no summary. Error bars represent
standard error of the mean, across 10 replicates.

1We also performed ablations on the specific types of prior information provided to determine which invariant
principles were most useful to the models. See Section A.5.6 for details.

8



To evaluate strategy adaptation, a human ability associated with dorsolateral prefrontal cortex (dlPFC)269

function [Mansouri et al., 2007, Donahue et al., 2018], in LLMs, we modified the task setup such270

that the models are exposed to two consecutive episodes before their observation history is cleared.271

However, the change in chemistry in the transition to the second episode occurs silently, leaving the272

model to grapple with unexpected outcomes of previously-predictable actions. We ran experiments273

with summaries enabled and reward and potion pair information provided, but withheld causal274

information since it was no longer accurate given the change in chemistry. See Figure 11 in the275

appendix for full timeseries plots of these results.276

Of our four thinking models studied, Gemini 2.5 and Claude 3.7 were able to regain full performance277

after an initial drop following the change in chemistry (Figure 8, Figure 11a,b). However, o4-mini278

and ChatGPT-4o were indistinguishable from the heuristic policy following the change (Fig 11c,f).279

Unlike o4-mini, ChatGPT-4o had strong performance and improvement over trials prior to the change,280

showing that the ability to improve through learning of an initial strategy (meta-learning) does not281

necessarily predict the ability to learn a new strategy when the world changes (strategy adaptation).282

To test whether Gemini 2.5 and Claude 3.7 have native strategy adaptation ability without augmenta-283

tions, we evaluated both models with summary and prior information disabled. In both cases, the284

models showed a collapse in performance following the chemistry change (Figure 11d,e). This shows285

that even models with strong native exploration abilities struggle with strategy adaptation when not286

provided with task-specific prompt augmentations.287

4.3 Alchemy conclusions288

Taken together, our results show that integrating information over long time horizons through289

adaptable strategies in context is a frontier challenge in LLMs. In particular, we show that even the290

strongest models are generally poor at meta-learning and strategy adaptation without task-specific291

augmentations. However, the emergence of these skills after prompting for summarization suggests292

that LLMs have a latent ability to improve and adapt through exploration. Likewise, the comparatively293

strong performance of Gemini 2.5 and Claude 3.7 relative to other models suggests that deficits in294

exploration ability can vanish with more general model improvements.295

5 Discussion and limitations296

This work provides critical insights into the active exploration capabilities of foundation models.297

In Feature World, we find that exploration efficiency remains very close to optimal for most models298

with single-feature reward functions, and for at least one model with more complex reward functions.299

While Gemini 1.5 Pro showed efficient information gathering in the 3D Feature World, as well as the300

ability to draw conclusions about the environment dynamics (when vision errors were excluded), the301

experiments also underscored that accurate multi-modal processing can be a significant challenge,302

potentially bottlenecking performance more than reasoning capabilities alone.303

We show Alchemy is a challenging benchmark for meta-learning and strategy adaptation, where304

foundation models struggle without prompt augmentations. Critically, we find that inter-trial summa-305

rization unlocks these abilities, suggesting they are latent capabilities that are not fundamentally out306

of reach for future models.307

One limitation of our work is that our 3D embodied Feature World experiments are a preliminary proof-308

of-concept with a limited scope, involving a single model in a low-complexity setting. Furthermore,309

by using a human-in-the-loop for motor control, we intentionally abstracted away the challenges of310

action generation and physical grounding. A full assessment of embodied foundation models would311

require integration with, or generation of, motor policies.312

Overall, we demonstrate that the frontier of autonomous exploration lies in complex, multi-trial313

environments where models must continuously integrate information to meta-learn and adapt a314

world model. While challenging, these abilities can be elicited with prompt augmentations like315

summarization, suggesting no intrinsic barrier to their emergence. Benchmarks like Alchemy are316

crucial for testing these capabilities as models improve and we enter the “era of experience” [Silver317

and Sutton, 2025].318
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A Technical Appendices and Supplementary Material440

A.1 Detailed related work441

Exploration in RL Information gathering is related to exploration in RL, which has been studied for442

tasks with sparse rewards such as Montezuma’s Revenge and Pitfall in Atari, Deep-sea exploration443

and other tasks in the Behavior Suite for RL, and the DM-HARD-8 tasks [e.g., Burda et al., 2018,444

Ecoffet et al., 2019, Osband et al., 2019, Guo et al., 2022, Saade et al., 2023] as well as in unsupervised445

settings [e.g., Pathak et al., 2017, Guo et al., 2022]. These methods commonly derive an “intrinsic”446

reward from the error of a predictive model [e.g., Pathak et al., 2017, Burda et al., 2018, Guo et al.,447

2022] or by estimating the density of visited states [e.g., Saade et al., 2023]. Badia et al. [2020]448

use a combination of both of these types of intrinsic rewards and Tam et al. [2022] additionally449

use pre-trained representations. In contrast, this work relies on the prior knowledge of foundation450

models from internet-scale pre-training for exploration [e.g., Wang et al., 2023a, Feng et al., 2023,451

Lu et al., 2024a] rather than using random exploratory actions and intrinsic rewards. Also, existing452

RL environments [e.g., Todorov et al., 2012, Brockman et al., 2016, Tassa et al., 2018] often conflate453

exploration with other aspects of agent performance, making it difficult to isolate and assess a model’s454

inherent exploratory capabilities. Such aspects include sparse or deceptive rewards and noisy, non-455

stationary, or multi-agent environments. We therefore chose and designed a suite of environments456

that allows us to systematically disentangle and control the factors influencing exploration.457

Foundation models for games Foundation models have also been used to build agents that play458

games [e.g., Wang et al., 2023a,b, Feng et al., 2023, Tan et al., 2024], which often involves some459

form of exploration. Wang et al. [2023a] show that GPT-4 can reach impressive performance in460

Minecraft by incrementally building a skill library via an “automatic curriculum” stage where GPT-4461

is prompted to propose novel tasks. Feng et al. [2023] prompt an LLM to explore an environment and462

subsequently use the collected experiences for fine-tuning the model. Unlike Wang et al. [2023a] and463

Feng et al. [2023], Wang et al. [2023b] and Tan et al. [2024] use image observations rather than relying464

on access to environment internal states. All of these works, however, focus more on improving agent465

performance rather than performing an explicit, systematic investigation of information gathering,466

meta-learning, and strategy adaptation with foundation models in controlled, zero-shot settings and467

in comparison to known optimal policies. LMAct benchmarks LLMs on simple games in the very468

long context regime and VideoGameBench tests VLMs on a collection of video games [Zhang et al.,469

2025, Ruoss et al., 2024]. However, neither of these works investigates exploration as a capability470

distinct from overall performance. The BALROG benchmark incorporates a range of existing games471

used as RL environments and investigates exploration among a number of key capabilities [Paglieri472

et al., 2024]. However, this is limited to a qualitative assessment and does not involve quantitative473

measurement of multiple clearly-defined facets of exploration as this work does.474

Exploration with foundation models Several other works investigate exploration with foundation475

models, e.g., for text-based environments [Lu et al., 2024a, Huang et al., 2024], reinforcement476

learning from human feedback (RLHF) [Dwaracherla et al., 2024], and multi-armed bandit problems477

[Coda-Forno et al., 2023, Krishnamurthy et al., 2024]. Unlike Krishnamurthy et al. [2024] and478

Dwaracherla et al. [2024] and similar to Lu et al. [2024a], this work considers stateful environments.479

While Lu et al. [2024a] replace components of the exploration method introduced in Ecoffet et al.480

[2019] with an LLM, this work studies the ability of foundation models to gather information and test481

hypotheses in-context via zero-shot prompting rather than using LLMs in a more modular fashion.482

Also adopting more modular approaches, Hu et al. [2024] use foundation models as components in a483

larger exploration framework and Huang et al. [2024] propose to use a smaller agent to explore the484

environment and a larger agent to leverage the gathered information.485

Active learning The field of active learning [Settles, 2009] has studied how to best acquire data486

to improve model predictions with methods that commonly focus on highly structured data (either487

i.i.d. or on a graph). In contrast, this work explores efficient knowledge acquisition in more general488

interactive environments.489

Active embodied question answering This work studies a similar setup to embodied question490

answering (EQA) [e.g., Das et al., 2018, Zhu et al., 2023, Majumdar et al., 2024, Ren et al., 2024].491

Similar to our work, agents in the EQA setting need to actively explore an environment to gather492

information. Unlike our tasks, EQA typically does not involve performing iterative experiments to493
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infer unknown mechanisms in dynamic environments, and the optimal exploratory action typically494

does not depend on past observations.495

AI for science Hypothesis generation and testing is central to the scientific method and recent works496

research the application of foundation models in this broader domain [e.g., Romera-Paredes et al.,497

2023, Trinh et al., 2024, Lu et al., 2024b]. Such works typically use foundation models in a highly498

structured protocol designed for the fixed domain in question. In contrast, this work explores the499

capabilities of base foundation models as the complexity of the domain varies.500

Strategy adaptation The dorsolateral prefrontal cortex (dlPFC) is the brain region that has undergone501

the most reorganization in humans relative to other primates [Donahue et al., 2018]. It is involved502

in detecting when a previously-successful strategy no longer yields expected rewards and adjusting503

behavioral strategy accordingly [Mansouri et al., 2007]. Analogs of this capability have been studied504

in LLMs in the context of mental sets [Haq et al., 2025], and learning from mistakes [Tong et al.,505

2024]. However, these studies focus on single-turn static math and reasoning problems. To our506

knowledge, this is the first study to investigate strategy adaptation with LLMs in the context of either507

exploration or interactive environments.508

A.2 Prompts for Feature World509

Prompts used for the foundation models in Feature World. Prompts are provided verbatim, with the510

exception of newlines added to fit the text within the table boundaries.511

Task Prompt
Text Environment
Single Factor Task You are playing a text-based game. Your goal is to find which object property leads to a non-zero reward in as few steps as

possible.

Game Rules:
- There are objects with different colors and shapes.
- Picking up an object gives you a reward of either 0 or 1.
- There is a single property, i.e., one particular color OR shape, that leads to a reward of 1.

{scene_description}

{action_reward_description}

Respond with this format, please be specific about the object:

* Action: pick up <colored> <object>
* Stop: <YES> or <NO>
*
* Which factor influence reward? <COLOR> or <SHAPE> or <UNSURE>
* WINNING COMBINATION: <State the specific color or shape that leads to reward>

Explain your reasoning thoroughly.

Table 1: In-context prompt used for the text Feature World environments for the single-feature tasks.
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Task Prompt
Text Environment
Multi Factor Task You are playing a text-based game. Your goal is to find which combination of object properties leads to a non-zero reward in

as few steps as possible.

Game Rules:
- There are objects with different colors, shapes, and textures.
- Picking up an object gives you a reward of either 0 or 1.
- There is a single combination of two properties, i.e., a color and shape, a shape and texture, or a color and texture,
that leads to a reward of 1.

{scene_description}

{action_reward_description}

Respond with this format, please be specific about the object:

* Action: pick up <colored> <textured> <object>
* Stop: <YES> or <NO>
*
* Which combination of factors influence reward? <COLOR, SHAPE> or <COLOR, TEXTURE> or <TEXTURE, SHAPE> or <UNSURE>
* WINNING COMBINATION: <State the specific combination of properties (e.g., color and shape, shape and texture, or color and
texture.>

Explain your reasoning thoroughly.

Table 2: In-context prompt used for the text Feature World environments for the conjunction tasks.

Task Prompt
Text Environment
Single Factor Task
Structured JSON

You are playing a text-based game. Your goal is to find which object property leads to a non-zero reward in as few steps as
possible.

Game Rules:
- There are objects with different colors and shapes.
- Picking up an object gives you a reward of either 0 or 1.
- There is a single property, i.e., one particular color OR shape, that leads to a reward of 1.

{scene_description}

{action_reward_description}

Your response must conform to the following JSON format:
{{

"next_object_picked_up": What object should be picked up next? This should be in format <COLOR> <SHAPE>.
"stop": YES or NO, do you want to end the game after this step?
"rewarding_factor": What factor do you think most is related to reward? <COLOR> or <SHAPE> or <UNSURE>
"winning_combination": State the specific color or shape that leads to reward. If you’re not sure, it’s okay to say
<UNSURE>

}}

Table 3: In-context prompt used for the text Feature World environments for the single-feature tasks,
using a structured JSON output format2.
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Task Prompt
Text Environment
Multi Factor Task
Structured JSON

You are playing a text-based game. Your goal is to find which combination of object properties leads to a non-zero reward in
as few steps as possible.

Game Rules:
- There are objects with different colors, shapes, and textures.
- Picking up an object gives you a reward of either 0 or 1.
- There is a single combination of two properties, i.e., a color and shape, a shape and texture, or a color and texture,
that leads to a reward of 1.

{scene_description}

{action_reward_description}

Your response must conform to the following JSON format:
{{

"next_object_picked_up": What object should be picked up next? This should be in format <COLOR> <TEXTURE> <SHAPE>.
"stop": YES or NO, do you want to end the game after this step?
"rewarding_factor": What factors do you think most are related to reward? <COLOR, SHAPE> or <COLOR, TEXTURE> or
<TEXTURE, SHAPE> or <UNSURE>
"winning_combination": State the specific combination of properties (color and shape, shape and texture, or color and
texture) that leads to
reward. If you’re not sure, it’s okay to say <UNSURE>

}}

Table 4: In-context prompt used for the text Feature World environments for the conjunction tasks,
using a structured JSON output format.
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Task Prompt
3D Environment
Iterative Exploration:
vision

You are an expert video game player who is annotating videos of gameplay.

In this game, the player controls a robot in a factory room, which contains objects of various shapes and
colors, such as red planks, blue cubes, green cylinders, orange disks, yellow pyramids, etc.
The player can pick up and move objects using a blue laser beam.
The player is trying to place the correct type of object on the conveyor belt.
If the object is correct, the object disappears in the machine and the light on the machine turns green.
If the object is incorrect, the light on the machine turns red and the object is pushed off.

The possible colors are red, green, blue, yellow, purple, and orange.
The possible shapes are cylinder, cube, plank/board, pyramid, and disk.

Your goal is to accurately and comprehensively list every object that the player places on the input
conveyor belt, along with the timestamp of when the object was placed and whether the object is correct
or incorrect.

Your response should be in the following format:
0 [timestamp 0] <1st object placed on conveyor> : <correct / incorrect>
1 [timestamp 1] <2nd object placed on conveyor> : <correct / incorrect>
2 [timestamp 2] <3rd object placed on conveyor> : <correct / incorrect>
3 [timestamp 3] <4th object placed on conveyor> : <correct / incorrect>
...

3D Environment
Iterative Exploration:
reasoning

Now we want to explain how this game works.
The goal of the game is to place all objects with the right property, such as a particular color or
shape, on the conveyor belt.
Let’s try to find the next action to take to figure out what factor (color or shape) determines the
correctness of the object.

If there is no history of objects yet, tell the player to pick up a random object you can see in the room
from the video.
If you have no video input yet, tell the player to explore the room.
Otherwise, follow the instructions below.

Important: You have VERY FEW turns left. Choose your next action carefully to maximize information.

Think step-by-step:

1. What pattern do you see in the correct objects so far?
2. **Consider which colors and shapes have NEVER been correct. This eliminates BOTH the color AND shape
from being correct.**
3. What color or shape seems MOST promising to test next?
4. Why will this choice give you the most useful information, even if it isn’t a correct object?

Explain your reasoning thoroughly. Don’t just guess! Each turn is precious.

After doing your reasoing, respond at the end with this format, please be specific about the object:

* CORRECT PROPERTY: <COLOR> or <SHAPE> or <UNSURE>
* NEXT COMMAND: place the <colored> <object> on the conveyor belt.

Table 5: In-context prompts used for the 3D Construction Lab environment in the exploration phase
for the Gemini agent.
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Task Prompt
3D Environment
Trajectory Review:
vision

You are an expert video game player who is annotating videos of gameplay.

In this game, the player controls a robot in a factory room, which contains objects of
various shapes and colors, such as red planks, blue cubes, green cylinders,
orange disks, yellow pyramids, etc.
The player can pick up and move objects using a blue laser beam. The player
is trying to place the correct type of object on the conveyor belt. If the object
is correct, the object goes through and the light on the machine turns green.
If the object is incorrect, the light on the machine turns red and the object
is pushed off.

The possible colors are red, green, blue, yellow, purple, and orange.
The possible shapes are cylinder, cube, plank/board, pyramid, and disk.

Your goal is to accurately and comprehensively list every object that the
player places on the input conveyor belt, along with the timestamp of when the object was placed
and whether the object is correct or incorrect.

Your response should be in the following format:
0 [timestamp 0] <1st object placed on conveyor> : <correct / incorrect>
1 [timestamp 1] <2nd object placed on conveyor> : <correct / incorrect>
2 [timestamp 2] <3rd object placed on conveyor> : <correct / incorrect>
3 [timestamp 3] <4th object placed on conveyor> : <correct / incorrect>
...

3D Environment
Trajectory Review:
reasoning

Now we want to explain how this game works.
The goal of the game is to place all objects with the right property, such as a particular color or shape,
on the conveyor belt.

Based on the observations above of which objects were placed on the conveyor belt
and which ones were correct or incorrect, explain your reasoning and state what the right object
property is.
The right property is either a specific shape or a specific color.

Your response should be in the following format:
REASONING: <Explain your reasoning for how you deduced the right object property.>
TARGET PROPERTY: <State what the specific correct shape OR specific correct color is.>

3D Environment
Trajectory Review:
generalization

Based on what you determined the correct object property to be, state whether
each of the following objects would be correct if placed on the conveyor belt:

Table 6: In-context prompts used for the 3D Construction Lab environment in the review phase for
all agent conditions.
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A.3 Additional results - Feature World512

A.3.1 Description of optimal strategies513

To illustrate the optimal strategy, consider a task where the hidden rewarding property is “red.” The514

strategy unfolds in two phases. The first phase is exploration, where the goal is to find a successful515

object by maximizing information gain. If an attempt on a “blue toy” fails, the agent learns that516

if color is the rule, “blue” is not the answer, and if shape is the rule, "toy" is not the answer. The517

optimal next action is to test an object with entirely new features, like a “yellow sphere”, to efficiently518

explore the remaining possibilities.519

Once an action succeeds—for example, picking up a “red box”—the strategy shifts to the second520

phase: isolation. The agent must now disambiguate whether “red” or “box” is the true cause. The521

optimal way to do this is to test a new object that changes only one of these features, such as a “red522

sphere” or a “green box”, to definitively pinpoint the rewarding property.523

A.4 Exploration in 3D embodied environments: Construction Lab524

To further evaluate the foundation models in a 3D embodied environment, we implement an analogous525

task to the text-based environment in a factory-style simulation called Construction Lab. Construction526

Lab was introduced in [reference-anonymized] as a simulation environment that includes both527

game-like mechanics and simplified but non-trivial object manipulation and physical reasoning.528

In this work, we focus on a task that requires the player to operate a simple machine called the529

Exchanger. The Exchanger requires objects with specific properties to be placed on an input conveyor530

belt (Figure 2). If an object matches the requirement, the input is consumed, a green light shows531

for a few seconds, and an output object is produced on an output belt. If the object is invalid, the532

machine rejects it by reversing the input belt and a red error light is activated. No cues are provided533

regarding the correct input object required, and thus the task entails determining what the correct534

object properties are through trial and error, observing how the machine responds to input objects,535

and drawing appropriate inferences.536

Through the use of this 3D, visually rich environment that mirrors the challenges of the text-based537

environment, we are able to investigate the effects of visual complexity on active information538

gathering, reasoning, and hypothesis testing.539

A.4.1 Task setup540

A number of additional challenges must be addressed when performing this exploration task in a 3D541

embodied environment. First, the agent must assess both the current state of the environment and542

the consequences of any actions taken through vision. Second, the agent requires a motor control543

module to execute exploratory actions. We use Gemini 1.5 Pro’s multi-modal functionality to ingest544

video input from Construction Lab sub-sampled to 1.5 Hz and 320 x 240 resolution. To disentangle545

vision and reasoning performance from translation of natural language instructions into a complex546

keyboard-and-mouse action space, we adopt a setup in which instructions are provided to a human547

actor who performs the exploratory actions online.548

We assess Gemini 1.5 Pro’s ability to generate these exploratory instructions by comparing against549

an optimal and random baseline, mirroring those in the text environment. The optimal strategy was550

performed by a single human performing the task according to an optimal policy that maximally551

reduced uncertainly about the correct property. The random strategy was performed according to a552

policy that selects a random object from the room at each step, with replacement.553

As running the 3D environment and using human actors in the loop reduces experimental throughput,554

we limit ourselves to a single level of environment and reward function complexity. We choose the555

condition with 3 colors and 1 causal factor, as conditions with more colors had significant visual556

clutter. Each task is randomly generated as follows: at the beginning of the episode, 3 unique557

colors and 3 unique shapes are randomly selected from 6 colors and 5 shapes, and objects with each558

shape-color combination are placed in random locations in the environment, for a total of 9 objects.559

One property, either a shape or a color, is randomly selected as the correct property, for a total of 3560

correct objects. The player and the Exchanger machine with input and output conveyor are likewise561
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placed randomly in the room. A gameplay episode ends when either all 3 correct objects are placed562

on the input conveyor or 2 minutes have elapsed.563

A.4.2 Gemini-based agent564

The Gemini agent is implemented as follows: every 10 seconds, the model is fed the most recent565

100 video frames (or 67 seconds) of gameplay and queried in two stages, during which gameplay is566

paused for the human actor. We implement a two-stage procedure with a vision stage and a reasoning567

stage, which we found improves accuracy for each stage compared with running both together. In568

the first stage, Gemini is asked to list, for every object placed on the input conveyor, the timestamp569

at which it was placed, its color and shape, and whether it was correct or not (as indicated by a red570

or green light on the machine). In the second stage, Gemini is provided the output of the first stage571

(subsequent video frames and list of objects placed with their reward values) and prompted to select a572

next exploratory action to maximize information gain, similar to the text environment. The human573

actor is provided only with the command generated by the second stage, such as “place the red cube574

on the conveyor.”575

All video trajectories are processed in the same way, regardless of how the exploration instructions576

were generated. Specifically, we truncate the video to include only the first 4 object attempts. Gemini577

is then called on the truncated video in three steps: vision, reasoning, and generalization. In the vision578

step, it is asked to list all the objects placed on the conveyor and whether they were correct, similar to579

the vision step in the exploration policy. In the reasoning step, it is asked to deduce the correct object580

property based on its observations. In the generalization step, it is asked to predict whether each581

object in a list of hypothetical objects would give a reward. See Appendix A.2 for specific prompts582

used.583

A.4.3 Evaluation584

To evaluate different aspects of performance for each agent type, we measure relevant property585

accuracy and number of objects until sufficient information is acquired to determine the correct586

property, assuming perfect reasoning. We also record the number of vision errors made by the VLM587

when listing objects in the full video, defined as misclassifying the shape, color, or correctness of an588

object placed on the conveyor, or omitting mention of an object placed on the conveyor. Because589

internal game states are not exposed in our experiments, we use manual human annotation of video590

trajectories to collect the above metrics and error counts. We collect a total of 15 trajectories for each591

agent type.592

A.4.4 Results593

In the exploration efficiency metric, we see the same trends in the results for the 3D embodied envi-594

ronment as for the text environment, with Gemini’s exploration efficiency significantly outperforming595

the random baseline and approaching the optimal baseline (Figure 4b). These results suggest that the596

additional complexity of an imperfect vision system and partially observed environment state are not597

significant limitations in generalizing directed exploration capabilities to embodied 3D environments.598

In the accuracy metric (Figure 4c), the picture is more nuanced. For relevant property accuracy, the599

difference between performance with the Gemini agent and the random agent was not statistically600

significant (p > 0.05, paired sample t-test).601

This result is interesting because VLM vision is also necessary for the exploration phase, where602

there was no discrepancy in performance. A likely reason for this is that the iterative nature of the603

exploration task makes it robust to occasional errors. Because the model must re-list all objects604

placed at each step, chance errors made during one step do not propagate to later steps.605

To probe the reason for the gap in accuracy performance, we also computed results where we filtered606

out trajectories in which the vision step made an error (Figure 4c). In these results, accuracies for607

the Gemini and optimal agents are nearly identical and their differences with the random agent are608

statistically significant (p < 0.05, two sample t-test). These results suggest that errors in the vision609

step, rather than reasoning or exploration, are responsible for the relatively reduced accuracy in the610

Gemini agent condition.611

Taken together, results in the Construction Lab show that the directed exploration capabilities of612

foundation models robustly generalize from text-based environments to embodied 3D environments,613
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though overall accuracy of the system is somewhat reduced by imperfect performance of the VLM’s614

object and action recognition in videos. This indicates that the challenges of multi-modal reasoning615

from realistic simulated video could be addressed by focusing on the vision and action recognition616

capabilities of foundation models separately from their reasoning capabilities.617

A.5 Additional Alchemy details and results618

A.5.1 Invariant principles in Alchemy619

While the specific chemistry changes per episode, Alchemy includes invariant principles or abstract620

regularities that span all episodes. These invariants are crucial because discovering and exploiting621

them over many episodes is the essence of the meta-learning problem in Alchemy.Such invariant622

properties include, among others: 1. within an episode, stones with the same visual features have the623

same value and respond identically to potions, and potions of the same color likewise have the same624

effects; 2. potions come in fixed pairs (e.g., red/green, yellow/orange, pink/turquoise) which always625

have opposite effects; 3. the underlying causal graph topology is structured by a generative grammar,626

though some edges might be missing, creating "bottlenecks"; and 4. the maximum stone score is627

15, and the minimum score is -3. It’s important to note that all of our experiments were conducted628

without any post-training, and so all models are presumed to lack knowledge of these invariant task629

structures.3 We therefore conduct experiments to test the effects of including various components of630

these invariant properties into the prompt. This allows us to disentangle the challenge of acquiring631

such meta-learned knowledge from that of already possessing it and being able to use it to inform632

smart exploration.633

In the case with no prior information, the model is given the main prompt to introduce Alchemy,634

which describes the general gameplay mechanics (Figure 9). We hypothesized that, in order to learn635

which potions optimally improve stone reward value for a given combination of stone properties, the636

models require an understanding of the invariant properties of the Alchemy tasks, which provide a637

framework on which the model can integrate evidence from its observations. To test this hypothesis,638

we provided additional information about the reward, potion pairing, and causal mechanics of the639

game (prior information condition, Figure 9).640

Main
prompt

Reward
information

Potion pairing
information

Causal
information

You are playing a text-based game called Alchemy where you place stones
of different shapes (round or pointy), sizes (small or large), and colors (blue
or purple) into potions that change the stones’ properties. The goal is to
maximize the reward value of the stones, and then place them into the cauldron
to increase the total score. Placing a stone in the cauldron adds the current
reward value of that stone to the total score. However, there might be more
rules to the game than mentioned here.

The maximum stone reward value is 15 and the minimum is -3.

There are six different potion colors, which come in three pairs: yellow/orange,
red/green, and pink/turquoise. Potions in a pair have the opposite effect from
each other on a given property.

A stone’s reward value is determined by its properties. The game is
deterministic: a potion of a given color always has the same effect on a stone
with given properties, and a stone with given properties always has the same
reward value.

Figure 9: Prompt and different components comprising the prior information (reward information,
potion pairing information, and causal information).

3Because the Alchemy environment was published in 2021, knowledge of it may be included in the pretraining
data for the foundation models studied here. However, when we probed the models, we found they entirely
lacked knowledge about potion pairs and min/max rewards and had limited knowledge of the environment in
general.
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A.5.2 Cross-trial summarization641

The multi-trial structure of Alchemy introduces a need to manage very long contexts and perform642

inference across multiple timescales and abstraction—a challenge that often arises in real-world, and643

particularly multi-modal, settings. Even in the case that it is possible to fit all observations, actions,644

and rewards from a multi-turn interaction within the model’s context window, it is unclear whether645

current models are capable of natively managing ever-growing context while maintaining inference646

and reasoning capabilities. We therefore examined and along-context summarization method. We647

hypothesized that summarization would offer a benefit due to the multi-trial structure of the task that648

requires extended directed exploration and inference across multiple timescales.649

Specifically, the summary is constructed at the end of each trial by asking the model to create a650

summary conditioned on the current trial’s events as well as the summary from the previous trial. At651

each step, the model is asked to take actions based on the summarization as well as the current trial’s652

events so far. We additionally have a no summarization condition, in which all episode events up653

until the current step are included in the context.654

A.5.3 Alchemy experimental setup details655

We implemented a custom version of symbolic Alchemy, modified so that observations and actions are656

given in natural language format. Episode chemistries are sampled every episode and held constant657

for the duration of 10 trials, although new stones and potions are resampled every trial. Trials last for658

a maximum of 20 steps, and the agent could choose to end the episode at any step. At each step, the659

agent could choose to select a stone and then either a potion or the cauldron (to cache the stone and660

obtain the reward), or to end the trial. See Figure 5 (d) for a visualization of the tasks.661

We considered the condition of procedural generation in which the transition graph has random662

bottlenecks: This is the hardest version of the task in which certain transformations (e.g., the effect of663

a blue potion) are only possible if specific initial conditions of the stone are met (e.g., the stone being664

transformed is large and round).665

trial 1mean(trials 6-10) score improvement

(a) Computation of score improvement

Figure 10: Illustration of how score improvement is computed for an Alchemy episode.

A.5.4 Example model outputs in Alchemy666

Below, we display examples of raw outputs of Gemini 2.5 from trail 1 and trial 5. For each trial, we667

show 1) the model’s reasoning in step 1 of the trial, 2) the model’s reasoning in step 5 of the trial, and668

3) the model’s summary of the trial. All outputs are drawn from the condition with summaries but no669

prior information.670

For the reasoning steps, we also display the observation of the game state provided to the model by671

the environment, labeled GAME STATE UPDATE.672
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Condition Output
Trial 1 Step 1

GAME STATE UPDATE:
New episode
New trial
New observation
You see the following stones:
0: purple small pointy with reward -1
1: blue small pointy with reward 1
2: purple large pointy with reward 1
You see the following potions:
0: pink
1: turquoise
2: turquoise
3: pink
4: yellow
5: red
6: yellow
7: red
8: red
9: turquoise
10: pink
11: orange

Current trial score: 0

MODEL RESPONSE:
OBSERVATION: This is the first action of the trial. I have not yet used any potions, so their effects are unknown.
REASONING: My initial goal is to understand the effects of the different potions. I will begin by testing the first available
potion, which is the pink potion at index 0. I am choosing to use stone 0 (purple small pointy, reward -1) for this
experiment. Since this stone has a negative reward, there is little risk in modifying it, and any positive change would be a
significant gain. This action will reveal what pink potions do to purple, small, and pointy stones.
ACTION: Place stone 0 in potion 0.

Trial 1 Step 5
GAME STATE UPDATE:
What stone do you use? 1
What potion do you use? 5
Outcome stone: purple small pointy with reward -1
New observation
You see the following stones:
0: purple large pointy with reward 1
1: purple small pointy with reward -1
2: purple large pointy with reward 1
You see the following potions:
0: None
1: None
2: None
3: pink
4: None
5: None
6: yellow
7: red
8: red
9: turquoise
10: pink
11: orange

Current trial score: 0

MODEL RESPONSE:
OBSERVATION: Placing stone 1 (blue small pointy, reward 1) into the red potion at index 5 changed its color from blue to
purple. This also inverted its reward value from 1 to -1. The stone is now a purple small pointy stone.
REASONING: The last action revealed that red potions change blue stones to purple and reduce their reward. My new stone 1 is
now a purple small pointy stone with a reward of -1, which is exactly what stone 0 was at the start of the trial. In step 2,
I learned that a turquoise potion changed stone 0 from a small purple stone to a large purple stone, increasing its reward
from -1 to 1. I will now attempt to replicate this effect on the new stone 1 using the turquoise potion at index 9. This will
both confirm my hypothesis about turquoise potions and improve the value of a stone.

Trial 1 Summary
### Potion Effects
* **Pink Potion:** Appears to have no effect. It was tested on a ‘purple small pointy‘ stone with no change.
* **Red Potion:** Changes a stone’s color from ‘blue‘ to ‘purple‘. It does not affect ‘purple‘ stones. The effect on the
reward depends on the stone’s size: the reward is inverted for ‘small‘ stones but stays the same for ‘large‘ stones.
* **Turquoise Potion:** Changes the size of ‘purple small‘ stones to ‘purple large‘. It has no effect on ‘blue‘ stones or
already ‘large‘ stones. The reward is inverted.
* **Yellow Potion:** Changes a stone’s shape from ‘round‘ to ‘pointy‘. It has no effect on ‘pointy‘ stones. The reward is
inverted.
* **Orange Potion:** Changes a stone’s shape from ‘pointy‘ to ‘round‘. It has no effect on ‘round‘ stones. The reward is
inverted.
### Highest Reward Combination
The highest reward value seen in the game is **+1**. Based on the potion effects, the combinations of properties that result
in this highest reward
are:
* ‘blue small pointy‘
* ‘purple large pointy‘
* ‘blue large pointy‘
* ‘purple small round‘

Table 7: Outputs of Gemini 2.5 for Trial 1 of Alchemy in the condition with summarization and no
prior information.
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Condition Output
Trial 5 Step 1

GAME STATE UPDATE:
New observation
You see the following stones:
0: blue small round with reward -1
1: purple large round with reward -1
2: blue large pointy with reward 15
You see the following potions:
0: orange
1: orange
2: red
3: pink
4: yellow
5: red
6: red
7: green
8: red
9: red
10: orange
11: pink

MODEL RESPONSE:
OBSERVATION: The game has started with one stone (Stone 2) already in the ‘blue large pointy‘ state, which I have identified
as the highest possible reward state (+15).
REASONING: Stone 2 currently has a reward of 15. Based on my previous findings, this is the maximum achievable reward. Using
any potion on it would risk lowering its value. Therefore, the most logical first step is to place it in the cauldron
immediately to lock in the +15 score.
ACTION: Place stone 2 in the cauldron.

Trial 5 Step 5
GAME STATE UPDATE:
What stone do you use? 0
What potion do you use? 0
Outcome stone: blue small round with reward -1
New observation
You see the following stones:
0: blue small round with reward -1
1: None
2: None
You see the following potions:
0: None
1: orange
2: red
3: pink
4: None
5: red
6: red
7: None
8: red
9: red
10: orange
11: pink

Current trial score: 30

MODEL RESPONSE:
OBSERVATION: The Orange potion had no effect on the ‘blue small round‘ stone. This confirms my hypothesis that Orange potions
only work on ‘pointy‘ stones.
REASONING: My only remaining stone is ‘blue small round‘ with a reward of -1. I cannot improve its properties towards the
maximum reward state because I lack the necessary Yellow and Turquoise potions. Placing it in the cauldron would lower my
score. I have many Red potions, and my current hypothesis is that they change ‘blue‘ stones to ‘purple‘. Since I cannot
improve this stone, I will use this opportunity to test the effect of a Red potion on it to gather more data.
ACTION: Place stone 0 in potion 2.

Trial 5 Summary
* **Green Potion:** Changes a stone’s color from ‘purple‘ to ‘blue‘. The reward change depends on the stone’s shape.
* If the stone is ‘round‘, its reward increases by 2.
* If the stone is ‘pointy‘, its reward increases by 14.
* **Red Potion:** Changes a stone’s color from ‘blue‘ to ‘purple‘. This transformation consistently subtracts 2 from the
stone’s reward.
* **Yellow Potion:** Changes a stone’s shape from ‘round‘ to ‘pointy‘. This transformation consistently adds 2 to the
stone’s reward.
* **Orange Potion:** Changes a stone’s shape from ‘pointy‘ to ‘round‘. This transformation subtracts 2 from the stone’s
reward. This potion has no effect on ‘round‘ stones.
* **Turquoise Potion:** Changes a ‘purple small‘ stone into a ‘purple large‘ stone. This transformation adds 2 to the
stone’s reward. It appears to have no effect on stones that are already ‘large‘ or are ‘blue‘.
* **Pink Potion:** Has no effect on a stone’s properties or reward value.
### Highest Reward Combination
The single combination of stone properties with the highest reward is: **blue large pointy**
This specific combination results in a reward value of **+15**. This state is best achieved by transforming a ‘purple pointy‘
stone with a Green potion to gain the +14 reward bonus.

Table 8: Outputs of Gemini 2.5 for Trial 5 of Alchemy in the condition with summarization and no
prior information.
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A.5.5 Strategy adaptation timeseries results673
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(e) Claude 3.7 Sonnet, no summary
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Figure 11: Normalized model score by trial when an uncued change in chemistry occurs halfway
through the episode. (a-i) Trace of score across 20 trials. The vertical dotted line denotes the point at
which the change in chemistry occurs, following trial 10. Error bars represent standard error of the
mean, across 10 replicates.
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Figure 12: Mean trial scores for each model with no summarization when various pieces of prior
information have been removed from the prompt. (a) Prompt ablations for Gemini 2.5. (b) Prompt
ablations for Claude 3.7. (c) Prompt ablations for o4-mini. N=10 replicates of 10-trial episodes. Error
bars represent standard error of the mean. Asterisk indicates the mean is significantly different from
that of the memoryless heuristic (p < 0.05, paired-sample t-test).

To further investigate the effect of prior information in the prompt, we performed ablations in which675

we removed either reward information, potion pairing information, or causal information from the676

prompt with prior information (see Figure 9). We ran the models with the ablated prompt and no677

summaries enabled and measured the performance.678

We found that the effects of prior information ablation differed substantially depending on the679

model. Gemini 2.5 is the most robust to the ablations, showing only a slight decrease in performance680

when no prior information is provided (Figure 12a). Interestingly, Claude 3.7 showed no decrease681

in performance with any of the single ablations, but still showed a large decrease when all prior682

information was removed (Figure 12b). This suggests that Claude 3.7 is more robust at meta-683

learning without summaries, but still struggles without at least a small amount of initial prior684

information to build off of. Performance of o4-mini was reduced slightly without causal and685
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reward information, and moderately without potion pair information or when no information is686

provided (Figure 12c). Performance of ChatGPT-4o was reduced substantially and became statistically687

insignificant compared to the heuristic policy with removal of any piece of prior information (Figure688

12d). This shows that this model is less robust at learning principles on its own, potentially due to its689

lack of thinking ability.690

A.5.7 Alchemy item usage691

To investigate the mechanism behind the score improvement in the models, we analyzed reduction in692

the number of potions used by the models in later trials (Figure 13). The most apparent finding is693

that Gemini 2.5 shows a significantly larger reduction in potions used than the other models when694

summaries are enabled. This demonstrates that the summary has a substantial effect on the model’s695

strategy, despite the fact that the summary only improves the already-high performance of Gemini696

2.5 a small amount. We also found that Gemini and Claude reduced their potion use substantially697

more than ChatGPT-4o overall, suggesting that these models owe part of their superior performance698

to an ability learn to make more efficient use of potions.699

Finally, to analyze the propensity of the models for clear reasoning errors in different conditions, we700

computed the fraction of trials in which a model places at least one negative-valued stone into the701

cauldron (Figure 14). Such an action is obviously counterproductive, and is never performed by the702

memoryless heuristic. We found that all models place negative stones into the cauldron at least a703

small number of times, but in most cases in less than 10% of trials. Interestingly, however, in the704

prior information conditions, Claude places negative stones in the cauldron in between 20% and 25%705

of trials, despite being a high performing model in these conditions. It is not clear why this occurs,706

but it suggests there is room for significant improvement in Claude on this task.707
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Figure 13: Reduction in the number of potions used over the course of the episode, computed as the
potions used in the first episode minus the mean of the potions used in the last 5 episodes. (a-d) Same
conditions as Figure 6. N=10 replicates of 10-trial episodes. Error bars represent standard error of
the mean.
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Figure 14: The fraction of trials in which at least one negative-valued stone was placed in the cauldron
by the model. (a-d) Same conditions as Figure 6. N=10 replicates of 10-trial episodes. Error bars
represent standard error of the mean.
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NeurIPS Paper Checklist708

The checklist is designed to encourage best practices for responsible machine learning research,709

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove710

the checklist: The papers not including the checklist will be desk rejected. The checklist should711

follow the references and follow the (optional) supplemental material. The checklist does NOT count712

towards the page limit.713

Please read the checklist guidelines carefully for information on how to answer these questions. For714

each question in the checklist:715

• You should answer [Yes] , [No] , or [NA] .716

• [NA] means either that the question is Not Applicable for that particular paper or the717

relevant information is Not Available.718

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).719

The checklist answers are an integral part of your paper submission. They are visible to the720

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it721

(after eventual revisions) with the final version of your paper, and its final version will be published722

with the paper.723

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.724

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a725

proper justification is given (e.g., "error bars are not reported because it would be too computationally726

expensive" or "we were unable to find the license for the dataset we used"). In general, answering727

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we728

acknowledge that the true answer is often more nuanced, so please just use your best judgment and729

write a justification to elaborate. All supporting evidence can appear either in the main paper or the730

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification731

please point to the section(s) where related material for the question can be found.732

IMPORTANT, please:733

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",734

• Keep the checklist subsection headings, questions/answers and guidelines below.735

• Do not modify the questions and only use the provided macros for your answers.736

1. Claims737

Question: Do the main claims made in the abstract and introduction accurately reflect the738

paper’s contributions and scope?739

Answer: [Yes]740

Justification: See the introduction: Section 1.741

Guidelines:742

• The answer NA means that the abstract and introduction do not include the claims743

made in the paper.744

• The abstract and/or introduction should clearly state the claims made, including the745

contributions made in the paper and important assumptions and limitations. A No or746

NA answer to this question will not be perceived well by the reviewers.747

• The claims made should match theoretical and experimental results, and reflect how748

much the results can be expected to generalize to other settings.749

• It is fine to include aspirational goals as motivation as long as it is clear that these goals750

are not attained by the paper.751

2. Limitations752

Question: Does the paper discuss the limitations of the work performed by the authors?753

Answer: [Yes]754

Justification: See Section 5.755
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Guidelines:756

• The answer NA means that the paper has no limitation while the answer No means that757

the paper has limitations, but those are not discussed in the paper.758

• The authors are encouraged to create a separate "Limitations" section in their paper.759

• The paper should point out any strong assumptions and how robust the results are to760

violations of these assumptions (e.g., independence assumptions, noiseless settings,761

model well-specification, asymptotic approximations only holding locally). The authors762

should reflect on how these assumptions might be violated in practice and what the763

implications would be.764

• The authors should reflect on the scope of the claims made, e.g., if the approach was765

only tested on a few datasets or with a few runs. In general, empirical results often766

depend on implicit assumptions, which should be articulated.767

• The authors should reflect on the factors that influence the performance of the approach.768

For example, a facial recognition algorithm may perform poorly when image resolution769

is low or images are taken in low lighting. Or a speech-to-text system might not be770

used reliably to provide closed captions for online lectures because it fails to handle771

technical jargon.772

• The authors should discuss the computational efficiency of the proposed algorithms773

and how they scale with dataset size.774

• If applicable, the authors should discuss possible limitations of their approach to775

address problems of privacy and fairness.776

• While the authors might fear that complete honesty about limitations might be used by777

reviewers as grounds for rejection, a worse outcome might be that reviewers discover778

limitations that aren’t acknowledged in the paper. The authors should use their best779

judgment and recognize that individual actions in favor of transparency play an impor-780

tant role in developing norms that preserve the integrity of the community. Reviewers781

will be specifically instructed to not penalize honesty concerning limitations.782

3. Theory assumptions and proofs783

Question: For each theoretical result, does the paper provide the full set of assumptions and784

a complete (and correct) proof?785

Answer: [NA]786

Justification: This paper does not include theoretical results.787

Guidelines:788

• The answer NA means that the paper does not include theoretical results.789

• All the theorems, formulas, and proofs in the paper should be numbered and cross-790

referenced.791

• All assumptions should be clearly stated or referenced in the statement of any theorems.792

• The proofs can either appear in the main paper or the supplemental material, but if793

they appear in the supplemental material, the authors are encouraged to provide a short794

proof sketch to provide intuition.795

• Inversely, any informal proof provided in the core of the paper should be complemented796

by formal proofs provided in appendix or supplemental material.797

• Theorems and Lemmas that the proof relies upon should be properly referenced.798

4. Experimental result reproducibility799

Question: Does the paper fully disclose all the information needed to reproduce the main ex-800

perimental results of the paper to the extent that it affects the main claims and/or conclusions801

of the paper (regardless of whether the code and data are provided or not)?802

Answer: [Yes]803

Justification: Experimental setups are described in sufficient detail in the main text and804

Appendix for reproducibility.805

Guidelines:806

• The answer NA means that the paper does not include experiments.807

28



• If the paper includes experiments, a No answer to this question will not be perceived808

well by the reviewers: Making the paper reproducible is important, regardless of809

whether the code and data are provided or not.810

• If the contribution is a dataset and/or model, the authors should describe the steps taken811

to make their results reproducible or verifiable.812

• Depending on the contribution, reproducibility can be accomplished in various ways.813

For example, if the contribution is a novel architecture, describing the architecture fully814

might suffice, or if the contribution is a specific model and empirical evaluation, it may815

be necessary to either make it possible for others to replicate the model with the same816

dataset, or provide access to the model. In general. releasing code and data is often817

one good way to accomplish this, but reproducibility can also be provided via detailed818

instructions for how to replicate the results, access to a hosted model (e.g., in the case819

of a large language model), releasing of a model checkpoint, or other means that are820

appropriate to the research performed.821

• While NeurIPS does not require releasing code, the conference does require all submis-822

sions to provide some reasonable avenue for reproducibility, which may depend on the823

nature of the contribution. For example824

(a) If the contribution is primarily a new algorithm, the paper should make it clear how825

to reproduce that algorithm.826

(b) If the contribution is primarily a new model architecture, the paper should describe827

the architecture clearly and fully.828

(c) If the contribution is a new model (e.g., a large language model), then there should829

either be a way to access this model for reproducing the results or a way to reproduce830

the model (e.g., with an open-source dataset or instructions for how to construct831

the dataset).832

(d) We recognize that reproducibility may be tricky in some cases, in which case833

authors are welcome to describe the particular way they provide for reproducibility.834

In the case of closed-source models, it may be that access to the model is limited in835

some way (e.g., to registered users), but it should be possible for other researchers836

to have some path to reproducing or verifying the results.837

5. Open access to data and code838

Question: Does the paper provide open access to the data and code, with sufficient instruc-839

tions to faithfully reproduce the main experimental results, as described in supplemental840

material?841

Answer: [No]842

Justification: Open access to the data and code for Alchemy are provided in the paper843

introducing that environment [Wang et al., 2021]. Open access to data and code for Fea-844

ture World and for running running experiments with the LLMs are not provided due to845

organizational policies.846

Guidelines:847

• The answer NA means that paper does not include experiments requiring code.848

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/849

public/guides/CodeSubmissionPolicy) for more details.850

• While we encourage the release of code and data, we understand that this might not be851

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not852

including code, unless this is central to the contribution (e.g., for a new open-source853

benchmark).854

• The instructions should contain the exact command and environment needed to run to855

reproduce the results. See the NeurIPS code and data submission guidelines (https:856

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.857

• The authors should provide instructions on data access and preparation, including how858

to access the raw data, preprocessed data, intermediate data, and generated data, etc.859

• The authors should provide scripts to reproduce all experimental results for the new860

proposed method and baselines. If only a subset of experiments are reproducible, they861

should state which ones are omitted from the script and why.862
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• At submission time, to preserve anonymity, the authors should release anonymized863

versions (if applicable).864

• Providing as much information as possible in supplemental material (appended to the865

paper) is recommended, but including URLs to data and code is permitted.866

6. Experimental setting/details867

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-868

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the869

results?870

Answer: [Yes]871

Justification: Sufficient setup information to understand the results is provided in the main872

text, with full details and exact prompts included in the Appendix.873

Guidelines:874

• The answer NA means that the paper does not include experiments.875

• The experimental setting should be presented in the core of the paper to a level of detail876

that is necessary to appreciate the results and make sense of them.877

• The full details can be provided either with the code, in appendix, or as supplemental878

material.879

7. Experiment statistical significance880

Question: Does the paper report error bars suitably and correctly defined or other appropriate881

information about the statistical significance of the experiments?882

Answer: [Yes]883

Justification: Error bars are included in all plots and represent standard error of the mean.884

t-tests are used to verify statistical significance for all key results. See Sections 3.2 and 4.2.885

Guidelines:886

• The answer NA means that the paper does not include experiments.887

• The authors should answer "Yes" if the results are accompanied by error bars, confi-888

dence intervals, or statistical significance tests, at least for the experiments that support889

the main claims of the paper.890

• The factors of variability that the error bars are capturing should be clearly stated (for891

example, train/test split, initialization, random drawing of some parameter, or overall892

run with given experimental conditions).893

• The method for calculating the error bars should be explained (closed form formula,894

call to a library function, bootstrap, etc.)895

• The assumptions made should be given (e.g., Normally distributed errors).896

• It should be clear whether the error bar is the standard deviation or the standard error897

of the mean.898

• It is OK to report 1-sigma error bars, but one should state it. The authors should899

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis900

of Normality of errors is not verified.901

• For asymmetric distributions, the authors should be careful not to show in tables or902

figures symmetric error bars that would yield results that are out of range (e.g. negative903

error rates).904

• If error bars are reported in tables or plots, The authors should explain in the text how905

they were calculated and reference the corresponding figures or tables in the text.906

8. Experiments compute resources907

Question: For each experiment, does the paper provide sufficient information on the com-908

puter resources (type of compute workers, memory, time of execution) needed to reproduce909

the experiments?910

Answer: [Yes]911

Justification: We use the public APIs for all models studied, and information on pricing for912

these are available on the corresponding public websites.913
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Guidelines:914

• The answer NA means that the paper does not include experiments.915

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,916

or cloud provider, including relevant memory and storage.917

• The paper should provide the amount of compute required for each of the individual918

experimental runs as well as estimate the total compute.919

• The paper should disclose whether the full research project required more compute920

than the experiments reported in the paper (e.g., preliminary or failed experiments that921

didn’t make it into the paper).922

9. Code of ethics923

Question: Does the research conducted in the paper conform, in every respect, with the924

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?925

Answer: [Yes]926

Justification: Our research conforms to the NeurIPS Code of Ethics in all respects.927

Guidelines:928

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.929

• If the authors answer No, they should explain the special circumstances that require a930

deviation from the Code of Ethics.931

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-932

eration due to laws or regulations in their jurisdiction).933

10. Broader impacts934

Question: Does the paper discuss both potential positive societal impacts and negative935

societal impacts of the work performed?936

Answer: [NA]937

Justification: This work primarily benchmarks and analyzes the performance of existing938

models, rather than introducing new models or methods. While our finding that summa-939

rization enables meta-learning in models could be used to improve the autonomy of LLM940

agents, the focus is on characterization of different models and behaviors given our specific941

settings and benchmarks. For these reasons, we expect the primary impacts of our work to942

be an improved understanding of the existing capabilities of LLM agents and we do not943

anticipate any negative societal impacts for the research in this paper.944

Guidelines:945

• The answer NA means that there is no societal impact of the work performed.946

• If the authors answer NA or No, they should explain why their work has no societal947

impact or why the paper does not address societal impact.948

• Examples of negative societal impacts include potential malicious or unintended uses949

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations950

(e.g., deployment of technologies that could make decisions that unfairly impact specific951

groups), privacy considerations, and security considerations.952

• The conference expects that many papers will be foundational research and not tied953

to particular applications, let alone deployments. However, if there is a direct path to954

any negative applications, the authors should point it out. For example, it is legitimate955

to point out that an improvement in the quality of generative models could be used to956

generate deepfakes for disinformation. On the other hand, it is not needed to point out957

that a generic algorithm for optimizing neural networks could enable people to train958

models that generate Deepfakes faster.959

• The authors should consider possible harms that could arise when the technology is960

being used as intended and functioning correctly, harms that could arise when the961

technology is being used as intended but gives incorrect results, and harms following962

from (intentional or unintentional) misuse of the technology.963

• If there are negative societal impacts, the authors could also discuss possible mitigation964

strategies (e.g., gated release of models, providing defenses in addition to attacks,965

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from966

feedback over time, improving the efficiency and accessibility of ML).967
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11. Safeguards968

Question: Does the paper describe safeguards that have been put in place for responsible969

release of data or models that have a high risk for misuse (e.g., pretrained language models,970

image generators, or scraped datasets)?971

Answer: [NA]972

Justification: This paper poses no such risks.973

Guidelines:974

• The answer NA means that the paper poses no such risks.975

• Released models that have a high risk for misuse or dual-use should be released with976

necessary safeguards to allow for controlled use of the model, for example by requiring977

that users adhere to usage guidelines or restrictions to access the model or implementing978

safety filters.979

• Datasets that have been scraped from the Internet could pose safety risks. The authors980

should describe how they avoided releasing unsafe images.981

• We recognize that providing effective safeguards is challenging, and many papers do982

not require this, but we encourage authors to take this into account and make a best983

faith effort.984

12. Licenses for existing assets985

Question: Are the creators or original owners of assets (e.g., code, data, models), used in986

the paper, properly credited and are the license and terms of use explicitly mentioned and987

properly respected?988

Answer: [Yes]989

Justification: We cite the original paper that produced the Alchemy environment, which is990

licensed under Apache License 2.0.991

Guidelines:992

• The answer NA means that the paper does not use existing assets.993

• The authors should cite the original paper that produced the code package or dataset.994

• The authors should state which version of the asset is used and, if possible, include a995

URL.996

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.997

• For scraped data from a particular source (e.g., website), the copyright and terms of998

service of that source should be provided.999

• If assets are released, the license, copyright information, and terms of use in the1000

package should be provided. For popular datasets, paperswithcode.com/datasets1001

has curated licenses for some datasets. Their licensing guide can help determine the1002

license of a dataset.1003

• For existing datasets that are re-packaged, both the original license and the license of1004

the derived asset (if it has changed) should be provided.1005

• If this information is not available online, the authors are encouraged to reach out to1006

the asset’s creators.1007

13. New assets1008

Question: Are new assets introduced in the paper well documented and is the documentation1009

provided alongside the assets?1010

Answer: [NA]1011

Justification: This paper does not release new assets1012

Guidelines:1013

• The answer NA means that the paper does not release new assets.1014

• Researchers should communicate the details of the dataset/code/model as part of their1015

submissions via structured templates. This includes details about training, license,1016

limitations, etc.1017
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• The paper should discuss whether and how consent was obtained from people whose1018

asset is used.1019

• At submission time, remember to anonymize your assets (if applicable). You can either1020

create an anonymized URL or include an anonymized zip file.1021

14. Crowdsourcing and research with human subjects1022

Question: For crowdsourcing experiments and research with human subjects, does the paper1023

include the full text of instructions given to participants and screenshots, if applicable, as1024

well as details about compensation (if any)?1025

Answer: [NA]1026

Justification: This paper does not involve crowdsourcing nor research with human subjects.1027

Guidelines:1028

• The answer NA means that the paper does not involve crowdsourcing nor research with1029

human subjects.1030

• Including this information in the supplemental material is fine, but if the main contribu-1031

tion of the paper involves human subjects, then as much detail as possible should be1032

included in the main paper.1033

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1034

or other labor should be paid at least the minimum wage in the country of the data1035

collector.1036

15. Institutional review board (IRB) approvals or equivalent for research with human1037

subjects1038

Question: Does the paper describe potential risks incurred by study participants, whether1039

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1040

approvals (or an equivalent approval/review based on the requirements of your country or1041

institution) were obtained?1042

Answer: [NA]1043

Justification: paper does not involve crowdsourcing nor research with human subjects.1044

Guidelines:1045

• The answer NA means that the paper does not involve crowdsourcing nor research with1046

human subjects.1047

• Depending on the country in which research is conducted, IRB approval (or equivalent)1048

may be required for any human subjects research. If you obtained IRB approval, you1049

should clearly state this in the paper.1050

• We recognize that the procedures for this may vary significantly between institutions1051

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1052

guidelines for their institution.1053

• For initial submissions, do not include any information that would break anonymity (if1054

applicable), such as the institution conducting the review.1055

16. Declaration of LLM usage1056

Question: Does the paper describe the usage of LLMs if it is an important, original, or1057

non-standard component of the core methods in this research? Note that if the LLM is used1058

only for writing, editing, or formatting purposes and does not impact the core methodology,1059

scientific rigorousness, or originality of the research, declaration is not required.1060

Answer: [NA]1061

Justification: The core method development in this research does not involve LLMs as any1062

important, original, or non-standard components.1063

Guidelines:1064

• The answer NA means that the core method development in this research does not1065

involve LLMs as any important, original, or non-standard components.1066

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1067

for what should or should not be described.1068
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