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Abstract

We propose the generative adversarial neural operator (GANO), a generative model paradigm
for learning probabilities on infinite-dimensional function spaces. The natural sciences
and engineering are known to have many types of data that are sampled from infinite-
dimensional function spaces, where classical finite-dimensional deep generative adversarial
networks (GANs) may not be directly applicable. GANO generalizes the GAN framework
and allows for the sampling of functions by learning push-forward operator maps in infinite-
dimensional spaces. GANO consists of two main components, a generator neural operator
and a discriminator neural functional. The inputs to the generator are samples of functions
from a user-specified probability measure, e.g., Gaussian random field (GRF), and the
generator outputs are synthetic data functions. The input to the discriminator is either a
real or synthetic data function. In this work, we instantiate GANO using the Wasserstein
criterion and show how the Wasserstein loss can be computed in infinite-dimensional spaces.
We empirically study GANO in controlled cases where both input and output functions
are samples from GRFs and compare its performance to the finite-dimensional counterpart
GAN. We empirically study the efficacy of GANO on real-world function data of volcanic
activities and show its superior performance over GAN. Furthermore, we find that for the
function-based data considered, GANOs are more stable to train than GANs and require less
hyperparameter optimization.

1 Introduction
Generative models are one of the most prominent paradigms in machine learning for analyzing unsupervised
data. To date, there has been considerable success in developing deep generative models for finite-dimensional
data (Goodfellow et al., 2014; Kingma & Welling, 2013; Dinh et al., 2014; Radford et al., 2015). Generative
adversarial networks (GANs) are among the most successful generative models with rich theoretical and
empirical developments (Arjovsky et al., 2017; Liu et al., 2017). The empirical success of GANs has been
mainly within finite-dimensional data regimes; there has been relatively little progress on developing generative
models for infinite-dimensional spaces–and importantly–function spaces. This is the case despite the fact that
many fields of science and engineering, including seismology, computational fluid dynamics, aerodynamics,
physics, and atmospheric sciences, work primarily with data that live in function spaces.

In this paper, we study the problem of generative models in function spaces. We propose generative adversarial
neural operator (GANO), a deep learning-based approach that enables the learning of probabilities on function
spaces, and allows for efficient sampling from such learned models. GANOs generalize the GAN paradigm
to function spaces, and in particular, to separable Polish and Banach spaces. GANO, unlike traditional
kernel density estimation methods, is computationally tractable, works on general spaces, and does not
require the existence of a density nor the assumption of defined underlying measures for density (Rosenblatt,
1956; Parzen, 1962; Craswell, 1965)1. Another line of work proposes to use neural stochastic differential
equation (SDE) solver (Tzen & Raginsky, 2019) to generate temporal signal function with finite dimensional
co-domain (Kidger et al., 2021). However, while the generated signals are infinite dimensional objects, the
lost construction in the mentioned work is still for finite dimensional spaces, for grid evaluation points,
therefore, making the learned generative model implicitly yet for finite dimensional domains. Such generative

1In finite dimensional spaces, it is conventional and standard to define density with respect to Lebesgue measures. However,
in the infinite dimensional cases considered in this paper, Lebesgue measures do not exists and a density, if exists, needs to be
defined with respect to a user-defined measure that the users need to argue for its relevance.
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Models GANO GAN

Input/output spaces Function Spaces Euclidean spaces
Input measure Gaussian Random Fields Multivariate random variables
Controls length scale, variance, energy, etc. dimension, variance, etc.

Table 1: GANOs and GANs

models require an underlying SDE solver to solve the temporal equation and is only designed for temporal
data.

GANO consists of two main components, a generator neural operator and a discriminator neural functional.
GANO architecture is empowered by neural operators, which are maps between function spaces (Li et al.,
2020b). The generator neural operator receives a function sampled from a Gaussian random field (GRF) and
outputs a function sample. This is in contrast to GAN, where the input is a sample from a finite-dimensional
multivariate random variable and the output is a finite-dimensional object. The efficiency of traditional
sampling methods from GRFs enables GANO to be considered as a computationally efficient generative
model. The discriminator neural functional consists of a neural operator followed by an integral function.
The discriminator receives either synthetic or real data as input and outputs a scalar. For the architecture
choices in the generator, we use the efficient implementation of U-shaped neural operators (U-NO) (Rahman
et al., 2022) and use Fourier integration layers, termed Fourier neural operator (FNO) (Li et al., 2020a) layers
to construct push-forward maps from GRFs to the desired probability over function data. We use a similar
architecture for the discriminator neural function and use a three-layered neural network to implement the
integral functional layer.

The effective dimension of the output function space can be controlled by restricting the effective dimension of
the GRF, e.g. by increasing the length scale of the defining covariance function. This is in contrast to GANs
where the dimension of the input space controls the dimension of the output manifold. Table 1 compares the
settings of GANOs and GANs. Since finite-dimensional spaces are special cases of infinite-dimensional spaces,
and multi-variate Gaussian is a reduction of GRFs, then, GAN is a special case of GANO.

We construct a series of controlled empirical study to assess the performance of GANO. To maintain full
control of the data characteristics and complexity of the task at hand, we generate the data itself using
GRFs of varying complexities. We show that GANO can learn probability measures on function spaces. One
important example is when the data is generated from a mixture of GRFs; GANO reliably recovers the
measure, while GAN collapses to a mode. We show that as the roughness/noisiness of the input GRF is
increased, GANO properly learns to generate functions from the underlying data probability, while if the
input GRF generates smooth or nearly fixed-value functions, the trained models lose the ability to properly
capture the data measure.

We extend our empirical study to satellite remote sensing observations of an active volcano, where each data
point is the phase of a complex-valued function defined on a 2D domain (Rosen et al., 2012). This is a real
world function dataset in which each data point represents ∼ millimeter-scale changes in the surface of a
volcano at a spatial resolution of ∼ 70 meters, measured every 12 days. This dataset constitutes a noisy and
challenging function dataset for GANO and GAN training. We show that GANO learns to generate functions
on par with the real dataset while GAN fails in generating these volcanic phase functions.

We release the code to generate the data sets in the first part of the empirical study. For the purpose of
bench-marking, we also release the processed volcano dataset, which is ready to be deployed in future studies.
We also release the implementation code along with the training procedure.

2 Related Works
The original GAN formulation can be interpreted as an adversarial game procedure in which the
Jensen–Shannon divergence between a synthetic distribution, implicitly defined by a generator model,
and a real data distribution is minimized (Goodfellow et al., 2014). However, models trained with a Jensen-
Shannon objective function require substantial tuning, suffer from stability issues, and are notoriously difficult
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to scale (Radford et al., 2015). Considerable work has therefore been devoted to developing novel architectures,
improving the formulation, and enhancing the theoretical understanding. In particular, the Wasserstein
GAN (WGAN) allows for a more stable training scheme, is less sensitive to hyperparameter and architectural
choices, and provides a loss function that correlates with output quality (Arjovsky et al., 2017). The WGAN
formulation is often understood as an attempt to minimize the Wasserstein or Earth Mover’s distance
between the synthetic and real data distributions. In Adler & Lunz (2018), a rigorous theoretical extension of
WGANs along with theoretically grounded choices of hyperparameters are presented, which the present paper
follows.

To learn densities over function spaces, non-parametric density estimation with δ-sequences on separable
Banach spaces and topological groups has been studied (Rao, 2010; Craswell, 1965). Heuristic kernel density
estimation for infinite-dimensional spaces was also developed (Dabo-Niang, 2004). Such methods assume
the existence of a density with respect to (sometimes unspecified) base measures (Lebesgue measures are
undefined for infinite-dimensional spaces) and impose strong assumptions on the metric and similarity of the
output spaces. Moreover, learning the density does not provide matching algorithmic sampling methods from
such infinite-dimensional spaces.

Pioneering work by (Li et al., 2020b) generalized the notion of neural networks to infinite-dimensional spaces
and introduced the concept of neural operators, a novel composable architecture that is able to learn mappings
between functions spaces. (Li et al., 2020a) showed that neural operators could be efficiently implemented as
a series of convolutions performed in the Fourier domain of the input function. It has also been shown that
any complex operator can be approximated by neural operators, which are compositions of linear integral
operators and non-linear activation functions (Kovachki et al., 2021). Neural operators have been successfully
used for learning the solution spaces of Partial Differential Equations (PDE). FNOs have been used to learn
the solutions to the Accustic Wave-equation in two spatial dimensions (Yang et al., 2021). Operator learning
has transformed the field of physics-informed machine learning. (Li et al., 2021; 2020a) and improvements
in the underlying architecture have allowed neural operators to learn complex solutions to multiphase flow
problems (Wen et al., 2021).

3 Generative Models in Function Spaces
One of the requirements to develop a stable model that maps an input probability measure to a general
probability measure defined on infinite dimensional spaces is to have an infinite-dimensional input space. In
this section, we describe the setting of such maps and propose GANO, a deep learning approach for learning
generative models in infinite-dimensional function spaces. We propose GANO by extending the Wasserstein
GAN formulation (Gulrajani et al., 2017) with a gradient penalty term applied to an infinite-dimensional
setting.

3.1 GANO
Let A and U denote Polish function spaces, such that for any a ∈ A, a : DA → RdA , and for u ∈ U ,
u : DU → RdU . Let G denote a space of operators and for any operator G ∈ G, we have G : A → U , an
operator map from A to U . Let L denote a space of functionals such that for any functional d ∈ L, we have
d : U → R, a functional map from U to R.

Let (A, σ(A), PA) denote a probability space induced by a GRF on the function space A, and (U , σ(U), PU )
denote the probability space on the function spaces U that the real data is generated from. For a given
function space U , let U∗ denote the dual space of U . When U is also a Banach space, and G is Fréchet
differentiable, we define ∂G as the Fréchet derivative of G. For the measure PU and the pushforward measure
of PA under map G, i.e., G♯PA, we define the Wasserstein distance as follows,

W (PU , G♯PA) = sup
d:d∈L,Lip(d)≤1

EPU [d] − EG♯PA [d] (1)

For the dual space U∗, we have that Lip(d) ≤ 1 ⇔ ∥∂d(u)∥U∗ ≤ 1, ∀u ∈ U . Therefore, we write the constraint
in the form of an extra penalty part in the objective function, i.e.,

inf
G∈G

sup
d∈L

EPU [d] − EG♯PA [d] + λEP′
A

(∥∂d∥U∗ − 1)2 (2)
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Figure 1: GANO

Note that, while the cost functional in Eq. 2 is well defined, showing that the learned measure is indeed
an approximation of PU remains an open problem. We address this issue empirically and perform a set of
experiments that demonstrate that GANO produces diverse outputs from the data probability measure.

3.2 GANO Architecture
Neural Operators are deep learning models that are the building blocks of the generator and discriminator
architectures in GANO to learn maps between function spaces, and the space of reals. In this work, we utilize
the U-NO architecture (Rahman et al., 2022) for its efficiency, stability, and robustness to the choice of hyper
parameters. We implement the generator operator G using a five layered neural operator model. The inputs
to the G model are samples generated from a GRF defined on the 2D domain of [0, 1]. The output of G are
sample functions that defined on 2D domain.

The discriminator is a neural functional that consists of a five layer neural operator followed by an integral
functional that maps the output function of the neural operator to a number in R. In other words, we feed an
input function u ∈ U to the neural operator part of the discriminator to compute the intermediate function h
and the output of the discriminator is computed as

d(u) =
∫

kd(x)h(x)dx (3)

where d(u) ∈ R, and the function kd is parameterized as a 3-layered fully connected neural network. The
function kd constitutes the integral functional

∫
kd(x) which acts point-wise on its input function. Fig. 1

demonstrate the architecture of the generator G and the discriminator d.

We represent the input function on a grid of m1 × m2. It allows us to use autograd to compute the gradient
penalty for the Wasserstein loss. Following the function space definitions, the gradient penalty using the
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autograd call of ∇d(u) is implemented as EP′
A

(||∇d(u)|| − 1/(√m1m2))2 which is different than the finite
dimensional view in GAN.

4 Experiments

In this section, we study the performance of GANO when the data is generated from a GRF. We compare
the performance of GANO against GAN in this setting. To implement the GAN baseline model, we deploy
convolutional neural networks and use Wasserstein loss for the training.

We then study the effect of the roughness and smoothness of the input GRF on the quality of learning
probability measures on function spaces. Lastly, we study the performance of GANO on a real-world remote
sensing dataset of an active volcano. This is a challenging dataset with often times very low signal-to-noise
ratio.
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(a) GRF samples
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(b) GAN samples
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(c) GANO samples
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Figure 2: The input function sample is GRF and the data is generated from another GRF. (a) The samples
of data GRF. (b) The samples of generated data from GAN model. (c) The samples of generated data from
GANO model. (d) GAN Auto correlation. (e) GAN histogram. (f) GANO auto correlation. (g) GANO
histogram

GRF data. For the setting where data is generated by sampling from a GRF, we use a dataset of random
functions drawn from a GRF. We use GAN and GANO approaches to learn the data GRF. We train the
generative models using the inputs sampled from a GRF Fig. 2. Fig. 2a demonstrate the sample data.
Subsequently, Figs. 2b and 2c demonstrate the generated samples of GAN and GANO models respectively. To
analyze the quality of the generated functions, we compare the auto-correlation and histogram of point-wise
function values of the generated data and the true data, Fig 2. We observe that GANO properly recovers
the statistics of the data GRF in terms of auto-correlation, Fig. 2d, 2f, and the histogram of the generated
function values, Figs. 2e, and 2g. We observe that, while the GAN approach provides smoother-looking
functions, the functional statistics fail to be exact.

Mixture of GRFs data. For this experiment, we aim to learn to generate data from a mixture of GRFs.
The training data is generated with an equal chance from either a GRF with a fixed mean function of 1 or
−1. We use GAN and GANO approaches to learn the data probability measure, where the input functions
are sampled from a GRF, Fig. 3. Fig. 2a demonstrate the sample data. Subsequently, Figs. 2b and 2c
demonstrate the generated samples of GAN and GANO models respectively. The auto-correlation and
histogram of point-wise function values of generated data and the true data are provided in Figs, 2d, 2f 2e,
and 2g. As we observe, GANO properly recovers the statistics of the data GRF in terms of functional statistics
of auto-correlation and histogram. Similar to the previous experiment, we observe that the GAN approach
provides smoother-looking functions, but in terms of the functional statistics, it drastically underperforms
GANO.
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(a) GRF samples
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(b) GAN samples
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(c) GANO samples
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Figure 3: The input function sample is GRF and the data is generated from a mixture of GRFs. (a) The
samples of data from a mixture of GRFs. (b) The samples of generated data from GAN model. (c) The
samples of generated data from GANO model. (d) GAN Auto correlation. (e) GAN histogram. (f) GANO
Auto correlation. (g) GANO histogram

In the previous two experiments, we observed that GANO enables us to learn measures on function spaces and
generate samples that match the functional statistics of the underlying data. In the following, we examine
the importance of the choice of input GRF on the performance of GANO.
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(d) GANO Histogram
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Figure 4: GANO trained on smooth data with rougher input GRF

GANO and the length scale of the input GRF. In GANO, when the GRF input to the generative model
is very smooth (compared with the output GRF), we expect the generator to fail to learn a proper map. We
expect this to be the case because the input lacks sufficient high-frequency components, and this smoothness
prevents the generator from generating high-frequency and rough output functions. On the contrary, we
expect that when the input GRF is much rougher than the data GRF and contains many high-frequency
components, the generator would have an easier task to generate output functions. Therefore, the length
scale and smoothness of the input GRF can play a role in regularizing GANO model, a very similar role that
the dimension of the input multivariate Gaussian plays in the GAN approach.

We first show that when the input GRF is rougher and contains more high frequency components than the
output GRF, GANO successfully learns to generate samples with similar statistic of data GRF, Fig. 4.

When the output and input GRF are identical measures, GANO still successfully learns to generate samples
with similar statistics of the data GRF, Fig. 5. However, this setting requires more delicate hyper parameter
tuning and requires more training epochs to converge. It is worth noting that, with proper choices of the
spaces, an identity map may also be a solution.
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(e) GANO Auto Correlation

Figure 5: GANO trained on same GRF as input and data
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(e) GANO Auto Correlation

Figure 6: GANO trained on rougher data with smoother input GRF

Lastly, when the input GRF is smoother than the functions samples in the output data GRF, the generative
model fails to recover higher order statistics, including the auto correlation. In this experiment the input
function is much simpler than the output functions. This study suggest that, when the real function data is
very complex, very noisy, contains varying high frequency components, and poses high entropy, it is crucial
to provide the generator with on par GRF. On the contrary, when the function data at hand poses smoother
behavior, a smooth GRF suffices for training a generator.

Volcano deformation signals in InSAR data. Interferometric Synthetic Aperture Radar (InSAR) is
a remote sensing technology used to measure deformation of Earth’s surface, often in response to volcanic
eruptions, earthquakes, or subsidence due to excessive groundwater extraction. In InSAR, a radar signal
is emitted from satellites or various types of aircraft and echoes are recorded. Changes in these echoes
over time (as measured by repeat flyovers) can be used to precisely measure the amount that a point on
the surface moves between repeats. The most common form of InSAR data is the interferogram, which
is an angular-valued spatial field u ∈ U , with u(x) ∈ [−π, π] and x ∈ D. Interferograms are known to be
highly-complex functions because they exhibit many modalities, types of noises, and patterns that depend
strongly on local atmospheric and topographic conditions. Additionally, since the values are angles on [−π, π],
if the change between two echoes is large enough, the angles can wrap around.

We produce a dataset of 4096 data points from raw interferograms, each in a grid of 128 × 128, from the
Sentinel-1 satellites covering the Long Valley Caldera, which is an active volcano near Mammoth Lakes,
California. We processed the InSAR functions/images, publicly provided by the European Space Agency,
from 2014-Nov to 2022-Mar, covering an area around Long Valley Caldera (approximately 250 by 160 km
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Figure 7: GANO samples of InSAR data for Long Valley Caldera

wide) using the InSAR Scientific Computing Environment (Rosen et al., 2012). The stack of SAR functions is
co-registered with pure geometry (precise orbits and digital elevation model) and the network-based enhanced
spectral diversity approach. Then, we pair each function (277 in total) with its three nearest neighbors in
time to form 783 initial interferograms with pixel spacing of 70 m. Finally, we subset each interferogram
into six windows non-overlapping windows of 128 × 128 grid. Examples of real samples are shown in Fig.
7a.

We train GANO on the entire dataset of 4096 inteferograms. Generated samples are shown in Fig. 7b, where
it is clear that many of the complexities of this dataset have been learned. One of the types of noise in
interferograms results from decorrelation of the radar signal between repeat flyovers, and in the most extreme
case, can lead to a stochastic process that is random uniform on [−π, π] that covers part or all of the image.
GANO is able to learn an effective operator that approximates this complex behavior. We quantitatively
evaluate the quality of the learned samples using circular statistics, which is necessary since these functions
are angular-valued. Analogously to traditional random variables, there are moments of circular random
variables. For a collection of N random angular variables, {θi}N

i=1, define zp =
∑N

j eipθ, where i =
√

−1.
Then, Rp = |zp|/N and φp = arg(zp). The circular variance is then given by σ = 1 − R1, and the circular
skewness is given by, s = R2 sin(φ2−2φ1)

(1−R1)3/2 . Figs. 7c and 7d show the performance of GANO w.r.t circular
variance and circular skewness. These results demonstrate the suitability of GANO framework on learning
complex probabilities on function spaces and emphasizes the data efficiency of this framework.

For the comparison study, we train a GAN model on the same data set. Despite extensive hyperparameter
tuning, the GAN model fails to learn to generate proper samples of functions. Fig. 8b demonstrates samples
generated using a trained GAN model. The generated samples do not resemble the true samples, neither
perceptually nor with respect to the circular variance and skewness Fig. 8c,8d. This study establishes the
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Figure 8: GAN samples of InSAR data for Long Valley Caldera

importance of learning the generative model directly in function spaces using global kernel integration instead
of local kernels.

5 Conclusion
We propose GANO, a generative adversarial learning approach for learning probabilities on function spaces
and generating samples of functions. GANO generalizes GAN, an established and powerful method for
learning generative models on finite-dimensional samples. GANO framework consists of two models, a
generator operator and a discriminator functional. We use the neural operator framework to directly model
the generator and deploy the ideas from neural operators, and propose a new deep learning paradigm, namely
neural functional, for the discriminator. We empirically show that the GANO framework is suitable for
dealing with function spaces. We show that the input to the generative model can be chosen to be a GRF for
which the length scale controls the diversity of the pushed measure. We release the code, package, datasets,
and the results of this study for future reproducibility.
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