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Abstract

Recently, there has been significant progress in learning-based diffusion samplers,
which aim to sample from a given unnormalized density. Many of these approaches
formulate the sampling task as a stochastic optimal control (SOC) problem using a
canonical uninformative reference process, which limits their ability to efficiently
guide trajectories toward the target distribution. In this work, we propose the Non-
Equilibrium Annealed Adjoint Sampler (NAAS), a novel SOC-based diffusion
framework that employs annealed reference dynamics as a non-stationary base
SDE. This annealing structure provides a natural progression toward the target
distribution and generates informative reference trajectories, thereby enhancing
the stability and efficiency of learning the control. Owing to our SOC formulation,
our framework can incorporate a variety of SOC solvers, thereby offering high
flexibility in algorithmic design. As one instantiation, we employ a lean adjoint
system inspired by adjoint matching, enabling efficient and scalable training. We
demonstrate the effectiveness of NAAS across a range of tasks, including sampling
from classical energy landscapes and molecular Boltzmann distributions.

1 Introduction

A fundamental task in probabilistic inference is to draw samples from a target distribution ν(x)
given only its unnormalized density function, where the normalizing constant is intractable. This
challenge arises across a wide range of scientific domains, including Bayesian inference (Box and
Tiao, 2011), statistical physics (Binder et al., 1992), proteins (Jumper et al., 2021; Bose et al., 2024),
and molecular chemistry (Weininger, 1988; Tuckerman, 2023; Midgley et al., 2023). Traditional
approaches predominantly leverage Markov Chain Monte Carlo (MCMC) algorithms, which construct
a Markov chain whose stationary distribution is the target distribution ν (Metropolis et al., 1953;
Neal, 2001; Del Moral et al., 2006). However, these methods often suffer from slow mixing times,
leading to high computational cost and limited scalability.

To overcome this limitation, recent research has focused on Diffusion Neural Samplers—a fam-
ily of learned stochastic differential equation (SDE)–based samplers in which the dynamics are
parameterized by neural networks (Zhang and Chen, 2022; Vargas et al., 2023; Chen et al., 2024;
Albergo and Vanden-Eijnden, 2024; Phillips et al., 2024; Chen et al., 2024). Among diffusion neural
samplers, many of the prior SOC-based approaches (Zhang and Chen, 2022; Vargas et al., 2023;
Domingo-Enrich et al., 2025; Behjoo and Chertkov, 2025) aim to solve the stochastic optimal control
(SOC) problem to construct unbiased diffusion samplers. However, these methods typically learn the
controlled dynamics starting from a stationary or uninformative base reference, and therefore do not
fully leverage annealed reference dynamics that progressively guide trajectories toward the target
distribution.

Motivated by this limitation, we propose Non-Equilibrium Annealed Adjoint Sampler (NAAS), a
new SOC-based diffusion framework that employs annealed reference dynamics as the base SDE.
The annealing structure provides a natural progression toward the target distribution and generates
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Table 1: Compared to prior diffusion samplers, our Non-equilibrium Annealed Adjoint Sampler
(NAAS) effectively guides the sampling process toward the target distribution by leveraging annealed
reference dynamics, without using importance weighted sampling (IWS) during training.

Method Require IWS Annealed Reference SDE

PIS (Zhang and Chen, 2022) DDS (Vargas et al., 2023) No ✗
LV-PIS & LV-DDS (Richter and Berner, 2024) No ✗
iDEM (Akhound-Sadegh et al., 2024) yes ✗
AS (Havens et al., 2025) No ✗
PDDS (Phillips et al., 2024) Yes ✓
CRAFT (Matthews et al., 2022) SCLD (Chen et al., 2024) Yes ✓

NAAS (Ours) No ✓

informative reference trajectories, which substantially improve the stability and efficiency of learning
the control. As demonstrated empirically, this design leads to enhanced sample quality and target
matching, especially when compared with methods relying on static references. To the best of our
knowledge, NAAS is the first diffusion sampler that integrates the stochastic optimal control (SOC)
perspective with reference annealed SDEs.

Because our method is formulated within the SOC framework, it can naturally integrate diverse
solver choices (Nüsken and Richter, 2021; Domingo-Enrich et al., 2025), allowing flexible adaptation
to different optimization settings. In contrast to existing annealed samplers (Albergo and Vanden-
Eijnden, 2024; Phillips et al., 2024; Chen et al., 2024), which rely on importance-weighted sampling
(IWS), NAAS supports solver choices that are independent of resampling-based estimators. Among
these possible instantiations, we adopt Adjoint Matching (Domingo-Enrich et al., 2025)—a recently
proposed, scalable, and practical solver that achieves low-variance gradient estimation and stable
optimization in high-dimensional SOC problems.

As shown in Figure 1, our SOC formulation can be decomposed into two complementary SOC
subproblems: (i) learning a prior distribution µ from the initial distribution δ0 with standard base
reference, and (ii) transporting µ to the target ν using controlled annealed dynamics. Together,
these components define a controlled diffusion process that realizes the transport δ0 → µ → ν,
resulting in a sampler whose terminal distribution matches the target. In practice, we employ an
alternating scheme to update the two control functions associated to these subproblems. We evaluate
the effectiveness of NAAS on standard synthetic benchmarks and a challenging molecular generation
task involving alanine dipeptide, demonstrating stable convergence and strong sample quality across
settings.

Our main contributions are summarized as follows:

• We introduce a SOC-based unbiased sampler where the reference dynamics is governed by
an annealed SDE. This formulation allows sampling to begin from a well-behaved initial
process that gradually transitions toward the target distribution.

• We develop an efficient optimization algorithm based on adjoint matching, which provides a
sample-efficient, and scalable approach to solving high-dimensional SOC problems.

• We assess our method on standard synthetic benchmarks and an alanine dipeptide molecular
generation task. Our approach consistently outperforms existing baselines, demonstrating
superior sample quality and diversity.

2 Preliminary

Throughout the paper let ν be the target distribution in space X , and let U1 : X → R be an energy
function of the distribution ν, i.e. ν(·) ∝ e−U1(·).

Stochastic Optimal Control (SOC) The SOC problem studies an optimization problem subjected
to the controlled SDE while minimizing a certain objective. We focus on one type of SOC problems
formulated as (Kappen, 2005; Todorov, 2007)
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Figure 1: Visualzation of Training Process of NAAS. Given an annealing reference dynamics
that provide high-quality—yet imperfect—initial samples in high-density regions of the target
distribution ν, NAAS learns to sample from both the target ν and the debiased source µ by alternate
optimization between two control functions, uθ and vθ, with Adjoint Matching (eq. (21)) and
Reciprocal Adjoint Matching (eq. (24)). This iterative procedure progressively aligns the sampling
path with the optimal control plan, leading to unbiased and efficient sampling from the target ν.

min
u

E
[∫ 1

0

(
1

2
∥ut(Xt)∥2 + ft(Xt)

)
dt+ g(X1)

]
, (1)

s.t. dXt = [bt(Xt) + σtut(Xt)] dt+ σtdWt, X0 ∼ µ, (2)

where µ is an initial distribution of random variable X0, bt(Xt) is a given reference drift and σt is
the diffusion term. Here, we denote f : [0, 1] × X → R as the running state cost and g : X → R
as the terminal cost. Throughout the paper, we denote pbase and p⋆ as path measures induced
by reference dynamics and optimal dynamics, respectively. The optimal control u⋆ is given by
u⋆t (x) = −σt∇Vt(x), where the value function V : [0, 1]×X → R is defined as follows:

Vt(x) = inf
u

E

[∫ 1

t

(
1

2
∥ut(Xt)∥2 + ft(Xt)

)
dt+ g(X1)

∣∣∣∣∣ Xt = x

]
, s.t. eq. (2). (3)

Adjoint Matching (AM) Naively backpropagating through the SOC objective (1) induces pro-
hibitive computational costs. Instead, Domingo-Enrich et al. (2025) proposed a scalable and efficient
approach, called Adjoint Matching (AM), to solving the SOC problem in (1). The AM objective is
built on the insight that the optimal control policy u⋆ can be expressed in terms of the adjoint process.
Specifically, AM constructs a surrogate objective by aligning the control function u and a quantity
derived from the adjoint process. The precise formulation is as follows:

min
u

EX∼pū

[∫ 1

0

∥ut(Xt) + σtā(t;X)∥2dt
]
, ā = stopgrad(a), ū = stopgrad(u), (4)

where
d
dt
a(t;X) = − [a(t;X)∇bt(Xt) +∇ft(Xt)] , a(1;X) = ∇g(X1). (5)

Here, X ∼ pū denotes full trajectories sampled from the controlled dynamics using the current
detached policy ū, and ā represents a detached lean adjoint process a(t;X), which is obtained by
backward dynamics starting from the terminal condition ∇g(X1).

Reciprocal Adjoint Matching Recently, Adjoint Sampling (AS) (Havens et al., 2025) propose
a more efficient variant of adjoint matching tailored for the special case where both the drift term
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and the running cost vanish, i.e. b ≡ 0 and f ≡ 0. In this setting, the lean adjoint a(t;X) admits a
closed-form expression; a(t;X) = ∇g(X1), which is constant over time. Furthermore, they observe
that since the optimal controlled path measure satisfies the reciprocal property:

p⋆(X) = p⋆(X0, X1)p
base(X|X0, X1), (6)

the conditional law of intermediate states given the endpoints remains the same under both the optimal
and the reference dynamics (Léonard et al., 2014). This insight simplifies the AM objective (4)
to bypass the need to store full state-adjoint pairs {(Xt, at)}t∈[0,1]. Instead, one can sample an
intermediate state Xt from the reference distribution pbase

t|0,1(·|X0, X1) given only the boundary states
(X0, X1). Note that since the drift term vanished, i.e. b ≡ 0, this conditional sampling is tractable.

SOC-based (Memoryless) Diffusion Samplers We now consider the SOC problem (1) under the
specific setting where

f ≡ 0, g(x) := log
pbase
1 (x)

ν(x)
, pbase

0,1 (X0, X1) = pbase
0 (X0)p

base
1 (X1). (7)

The final condition implies that the initial and terminal states of the reference process are indepen-
dent—a property we refer to as memorylessness. Under this assumption, the value function at the
initial time, V0(x), becomes constant by Feynman-Kac formula (see Domingo-Enrich et al. (2025)).
Then, applying Radon-Nikodym derivative on path measures p⋆ and pbase yields the following
(Dai Pra, 1991; Pavon and Wakolbinger, 1991; Chen et al., 2021)

dp⋆0,1(X0, X1)

dpbase
0,1 (X0, X1)

∝ e−g(X1)−V0(X0) ⇒ p⋆1(X1) ∝
∫
X
e−g(X1)−V0(X0)pbase

0,1 (X0, X1)dX0,

⇒ p⋆(X1) ∝ e−g(X1)pbase
1 (X1) = ν(X1).

That is, the terminal distribution induced by the optimal controlled SDE exactly matches the desired
target ν. Thus, solving the corresponding SOC problem leads to an unbiased diffusion-based sampler.
Notably, several recent diffusion samplers can be understood within this memoryless SOC framework:

• Path Integral Sampler (PIS; Zhang and Chen, 2022) set µ = δ0, where the reference dynamics
automatically becomes memoryless. The reference dynamics is defined as follows:

dXt = σdWt, pbase
1 (x) = N (x; 0, σ2I). (8)

Several methods have been proposed to solve the associated SOC problem, including the adjoint
system approach (Zhang and Chen, 2022), log-variance loss (LV) (Richter and Berner, 2024), and
reciprocal adjoint matching (Havens et al., 2025).

• Denoising Diffusion Sampler (DDS; Vargas et al., 2023) This method constructs an approximately
memoryless reference process using an Ornstein-Uhlenbeck (OU) dynamic. The initial distribution
is set as µ = N (0, σ2I) , and the dynamics is given by:

dXt = −βt
2
Xtdt+ σ

√
βt,dWt, pbase

1 (x) = N (0, σ2I), (9)

where the annealing schedule βt is chosen so that e
1
2

∫ 1
0
βtdt ≈ 0, ensuring approximate indepen-

dence between X0 and X1.

3 Non-Equilibrium Annealed Adjoint Sampler

In this section, we introduce NAAS, a novel SOC-based diffusion sampler that generates samples
using non-equilibrium annealed processes. Specifically, NAAS is based on a newly designed SOC
problem featuring annealed reference dynamics (Section 3.1). Since the problem requires sampling
from an intractable prior µ, we present a complementary SOC problem in Section 3.2 to approximate
samplesX0 ∼ µ. Finally, Section 3.3 provides a detailed description of the algorithm and its practical
implementation details. A detailed proof for theorems in this section are provided in Appendix A.
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3.1 Stochastic Optimal Control with Annealing Paths

Let U0 and U1 be the energy potentials of some tractable prior (e.g., Gaussian) and the desired target
distribution ν, respectively. We define a smooth interpolation between these potentials as follows:

Ut(x) := I(t, U0(x), U1(x)), with Ut=0(x) = U0(x), Ut=1(x) = U1(x), (10)
where I(t, ·, ·) denotes an interpolation scheme—such as linear or geometric interpolation. Based on
this interpolation, we define an annealed SDE that serves as our reference dynamics:

dXt = −σ
2
t

2
∇Ut(Xt)dt+ σtdWt, X0 ∼ µ. (11)

We denote a path measure induced by the reference process as pbase. The following theorem introduces
our newly designed SOC problem whose solution yields a sampler that transforms the specific prior
distribution µ to the desired target distribution ν ∝ e−U1(·):
Theorem 3.1 (SOC-based Non-equilibrium Sampler). Let {Ut}t∈[0,1] be a time-dependent potential
function defined in eq. (10). Consider the following SOC problem:

min
u

∫ 1

0

E
[
1
2∥ut(Xt)∥2 + ∂tUt(Xt)

]
dt,

s.t. dXt =

[
−σ

2
t

2
∇Ut(Xt) + σtut(Xt)

]
dt+ σtdWt, X0 ∼ µ,

(12)

where the initial distribution µ is defined as
µ(x) ∝ exp (−U0(x)− V0(x)) , (13)

and Vt(x) is the value function associated with the corresponding path measure. Note that V1(x) ≡ 0
due to the absence of terminal cost. Then, the marginal distribution p⋆t (x) of the optimally controlled
process admits the following form:

p⋆t (x) ∝ exp (−Ut(x)− Vt(x)) , for all t ∈ [0, 1]. (14)

In particular, the terminal distribution satisfies p⋆1(x) ∝ exp (−U1(x)) =: ν(x). Hence, the optimal
controlled dynamics generates the desired target distribution ν.

Sketch of Proof We outline the proof to provide an intuition behind the design of the objective
function in the SOC formulation of eq. (12). Suppose φt(x) = e−Vt(x) and φ̂t(x) = p⋆t (x)e

Vt(x).
Then, the pair (φ, φ̂) satisfies the following PDEs, namely Hopf-Cole transform (Hopf, 1950):{

∂tφt(x) =
σ2
t

2 ∇Ut · ∇φt − σ2
t

2 ∆φt + ∂tUtφt, φ0(x)φ̂0(x) = µ(x),

∂tφ̂t(x) =
σ2
t

2 ∇ · (∇Utφ̂+∇φ̂t)− ∂tUtφ̂t, φ1(x)φ̂1(x) = ν(x).
(15)

Note that the ∂tUt terms in both PDEs arise from the running state cost in the SOC objective. The
inclusion of this term allows us to derive closed-form expression of φ̂:

φ̂t(x) = Ce−Ut(x),

up to some multiplicative constant C. By the definition, we obtain

p⋆t (x) = φt(x)φ̂t(x) ∝ e−Ut(x)φt(x) = exp(−Ut(x)− Vt(x)),

which recovers eq. (14) claimed in the theorem.
Remark. Importantly, the SOC problem (12) generally has an intractable prior distribution µ,
making the direct sampling from µ non-trivial. In Section 3.2, we propose a practical method to
obtain a sample from µ.

Interpretation of Theorem 3.1 In this paragraph, we highlight a special case in which µ becomes
tractable. This case reveals an insightful connection to Denoising Diffusion Samplers (DDS) (Vargas
et al., 2023). Since U0 is prescribed and often tractable, µ ∝ e−U0(x)−V0(x) is tractable when V0(x)
is constant. This can be achieved by setting the memoryless reference dynamics from [0, τ) where
Ut∈[0,τ) := U0 for some τ < 1, which ensures that the uncontrolled dynamics are sufficiently mixed
between t ∈ [0, τ ]. In particular, if we choose τ = 1, our SOC problem (12) reduces to DDS (Vargas
et al., 2023):
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Corollary 3.2. When Ut∈[0,1)(x) := U0(x) =
∥x∥2

2σ̄2 and βt = σ̄2σ2
t , the problem (12) degenerates to

min
u

E
[∫ 1

0

1
2∥ut(Xt)∥2dt+ U1(X1)− U0(X1)

]
,

s.t. dXt =

[
−βt

2
Xt + σ̄

√
βtut(Xt)

]
dt+ σ̄

√
βtdWt, X0 ∼ µ,

(16)

and setting µ ∝ e−U0 and βt to a memoryless noise schedule recovers DDS formulation in eq. (9).

Because Ut∈[0,1)(x) = U0(x), the annealing mechanism is absent in DDS, implying that the reference
dynamics does not guide the particles toward the desired target distribution ν.

3.2 Debiasing Annealed Adjoint Sampler through Learning Prior

From now on, we consider the specific case where the initial potential is given by U0(x) =
∥x∥2

2σ̄2 , i.e.
e−U0 ∝ N (0, σ̄2I). We begin by formulating a stochastic optimal control (SOC) problem whose
optimal dynamics generates samples X0 from the (intractable) prior distribution µ.

Lemma 3.3. Let U0(x) =
∥x∥2

2σ̄2 . Given the value function V : X × [0, 1] → R of the SOC problem
eq. (12), consider the following SOC problem:

min
v

E
[∫ 0

−1

1

2
∥vt(Xt)∥2dt+ V0(X0)

]
,

s.t. dXt = σ̄vt(Xt)dt+ σ̄dWt, X−1 ∼ δ0.

(17)

Note that the time interval of the underlying dynamics is [−1, 0]. Then, the terminal distribution
induced by optimal control dynamics is µ := e−U0(·)−V0(·).

By the definition of the value function in eq. (3), V0(x) is the expected cost of the SOC problem (12)
conditioned by X0 = x. Thus, V0(·) in eq. (17) can be replaced by eq. (12). As a result, we arrive at
a unified SOC problem that defines an unbiased annealed sampling framework:
Theorem 3.4. Consider the following SOC problem:

min
u,v

E
[∫ 0

−1

1

2
∥vt(Xt)∥2dt+

∫ 1

0

1

2
∥ut(Xt)∥2dt+

∫ 1

0

∂tUt(Xt)dt
]
, (18)

s.t. dXt = σ̄vt(Xt)dt+ σ̄dWt for − 1 ≤ t < 0, X−1 ∼ δ0, (19)

dXt =

[
−σ

2
t

2
∇Ut(Xt) + σtut(Xt)

]
dt+ σtdWt for 0 ≤ t ≤ 1. (20)

Then, the optimal control dynamics is an unbiased sampler, i.e., p⋆1 = ν ∝ e−U1 .

3.3 Practical Implementation

In this section, we present a practical algorithm for solving the SOC problem in eq. (18). Our
approach alternates between updating the control policies u and v for the annealed dynamics (20)
and the prior-estimation dynamics (19), respectively. We employ adjoint matching to gain a scalability
and efficiency. The following two paragraphs describes the training objective for the controls u and v.

Adjoint Matching for Annealed Dynamics We now describe how to optimize the control function
ut(x) for annealed control dynamics eq. (20). Let uθ be the parameterization of this control. Given an
initial state X0 sampled from eq. (19), we simulate the forward trajectory X = {Xt}t∈[0,1] using the
current control estimate uθ. To update the control uθ, we adapt the AM framework eq. (4), yielding

L(uθ;X) =

∫ 1

0

∥uθt (Xt) + σta(t;X)∥2dt, X ∼ pū, ū = stopgrad(uθ), (21)

where
da(t;X)

dt
= −

[
a(t;X) ·

(
−σ

2
t

2
∇2Ut(Xt)

)
+ ∂t∇Ut(Xt)

]
, a(1;X) = 0, (22)
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Algorithm 1 Non-equilibrium Annealed Adjoint Sampler (NAAS)

Require: Tractable energy U0, twice-differentiable target energy U1(x), two parametrized networks
uθ : [0, 1]×X → X and vθ : [−1, 0]×X → X for control parametrization, buffers Bu and Bv .
Number of epochs Nu and Nv .

1: for stage k in 1, 2, . . . do
2: for epoch in 1, 2, . . . Nu do
3: Sample {Xt}t∈[−1,1] through eq. (19) and eq. (20). ▷ forward pass
4: Compute lean adjoint {at}t∈[0,1] through eq. (22). ▷ backward pass
5: Push {(t, at, Xt)}t∈[0,1] into a buffer Bu. ▷ add to buffer
6: Optimize uθ by eq. (21) with samples from Bu. ▷ adjoint matching
7: end for
8: for epoch in 1, 2, . . . Nv do
9: Sample {Xt}t∈[−1,1] through eq. (19) and eq. (20). ▷ forward pass

10: Compute lean adjoint {at}t∈[0,1] through eq. (22). ▷ backward pass
11: Push (X0, a0) into a buffer Bv . ▷ add to buffer
12: Optimize vθ by eq. (24) and (25) with samples from Bv . ▷ reciprocal adjoint matching
13: end for
14: end for

where ∇2Ut is the Hessian of Ut(x) whose vector-Hessian product can be computed efficiently by

a(t;X) ·
(
−σ

2
t

2
∇2Ut(Xt)

)
= −σ

2
t

2
∇ (ā(t;X)∇Ut(Xt)) ā = stopgrad(a). (23)

Note that this AM scheme is not as computationally efficient as AS (Havens et al., 2025), since it
requires solving a backward ODE due to the use of annealed reference dynamics. Nevertheless, it
remains more efficient than alternative approaches such as naive backpropagation or the log-variance
method proposed in Richter and Berner (2024).

Reciprocal Adjoint Matching for Sampling the Prior Similarly, we address the optimization of
the control function vt(x) corresponding to eq. (19), parameterized as vθ. We employ the reciprocal
AM framework to learn vθ. Specifically, we begin by sampling the initial states X0 from controlled
dynamics with current control vθ. We then generate full trajectories X = {Xt}t∈[0,1] using the
annealed dynamics associated with uθ, and simulate the backward adjoint process via eq. (22). Then,
we obtain a state-adjoint pair (X0, a0) on t = 0. Since the reference dynamics w.r.t. v has vanishing
drift and state cost, we can apply reciprocal adjoint matching (Havens et al., 2025) as follows:

L(vθ;X) =

∫ 0

−1

∥vθt (Xt) + σta0∥2dt, ū = stopgrad(u), (24)

where Xt ∼ pbase
t|0 (·|X0) := N

(
(1 + t)X0, (1 + t)(2− t)σ̄2I

)
. (25)

Thus, to update vθ, it is only required to cache state-adjoint pair (X0, a0) at t = 0, which is memory
efficient. For the detailed derivation of conditional distribution, see Appendix A.

Replay Buffers Computing the full forward-backward system at every iteration is computationally
expensive. To address this, we employ replay buffers that store the necessary state-adjoint pairs used
to train the control networks. Specifically, instead of recomputing the lean adjoint system at each step,
we refresh the buffer every 200–500 iterations, which significantly reduces computational overhead.
For training uθ, we maintain a buffer Bu containing triplets (t,Xt, at) for t ∈ [0, 1]. For training vθ,
we use a separate buffer Bv to store the state-adjoint pair (X0, a0) at t = 0. The implementation
details are provided in Appendix D.

Algorithm As described in Algorithm 1, we optimize the control functions uθ and vθ in an
alternating fashion using the adjoint matching objective desribed in eq. (21) and eq. (24). To compute
the required state-adjoint pair, we solve the forward-backward systems defined in eq. (22) and eq. (25).
To avoid the computational overhead of solving these systems at every iteration, we adopt a replay
buffer strategy that caches previously computed state-adjoint pairs.
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(a) GMM40 (50d) (b) MoS (50d)

Figure 2: Qualitative Comparison on GMM40 (50d) and MoS (50d). For each task, we visualize
the kernel density estimate (KDE) of the target distribution alongside the generated samples (shown
as red dots), projected onto the first two principal axes. The samples from NAAS closely follow the
structure and support of the ground-truth, demonstrating accurate mode coverage and high sample
fidelity in high-dimensional settings.

The role of two optimization stages The two optimization problems in our framework, (i) learning
the prior distribution µ over the interval [−1, 0], and (ii) optimizing the controlled annealed dynamics
over [0, 1], exhibit fundamentally different learning dynamics and objectives.

• The first-stage optimization over [−1, 0] learns a prior distribution µ = e−U0−V0 , where U0 is a
simple, prescribed energy function (typically corresponding to Gaussian distribution). This prior is
designed to have broad and smooth support, in contrast to the often sharp or multimodal structure
of the target distribution ν. The objective here is not to capture fine-scale structure, but to construct
a low-complexity distribution that can be easily sampled using a simple base process, while still
broadly covering the support of ν.

• In contrast, the second-stage optimization over [0, 1] focuses on refining the annealed dynamics to
guide trajectories from µ toward the target distribution ν. Since the annealed reference dynamics
already bias the flow toward high-density regions of the target, the control at this stage primarily
serves to correct residual mismatches. Because we only required to learn the residual mismatch,
the second optimization problem is also easy to learn.

By decoupling these two objectives, the alternating scheme enables more stable and effective training.
Each optimization stage solves a simpler and more focused subproblem: the first constructs a
well-behaved initialization, and the second incrementally corrects the flow toward the target. This
separation reduces optimization interference and improves both convergence and sample quality.

4 Related Works

Sequential Monte Carlo and Annealed Sampler Many recent works have focused on Markov
Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods (Chopin, 2002; Del Moral
et al., 2006; Guo et al., 2024), which sequentially sample from a series of intermediate (often annealed)
distributions that bridge a tractable prior and a complex target distribution. A large number of these
methods leverage annealed importance sampling (AIS) (Neal, 2001; Guo et al., 2025) to correct for
discrepancies between the proposal and target distributions, often improving the quality of proposals
over time. Several earlier approaches that do not rely on neural networks (Wu et al., 2020; Geffner
and Domke, 2021; Heng et al., 2020) have been developed to learn transition kernels for MCMC.
Later, transition kernels has been explicitly parameterized using normalizing flows (Dinh et al.,
2014; Rezende and Mohamed, 2015), enabling more expressive and tractable models. Based on this
idea, various approaches (Arbel et al., 2021; Matthews et al., 2022) have been proposed by refining
SMC proposals via variational inference with normalizing flows. More recently, diffusion-based
annealed samplers (Vargas et al., 2024; Akhound-Sadegh et al., 2024; Phillips et al., 2024), inspired
by score-based generative modeling (Song et al., 2021), have gained attention. These methods utilize
annealed dynamics derived from denoising diffusion processes and typically combine importance
sampling with a matching loss to account for the mismatch between the sampling trajectory and
the target distribution. On other line of work, Sequential Control for Langevin Dynamics (SCLD)
(Chen et al., 2024) improves training efficiency by employing off-policy optimization over annealed
dynamics. However, it still relies on importance sampling to ensure accurate marginal sampling.
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Table 2: Results on synthetic energy functions. We report Sinkhorn distance (↓) and MMD (↓).
References for each comparison method are provided in Table 1 and Section 5. All comparison values
are taken from SCLD (Chen et al., 2024).

MW54 (d = 5) Funnel (d = 10) GMM40 (d = 50) MoS (d = 50)

Method Sinkhorn MMD Sinkhorn Sinkhorn MMD Sinkhorn

SMC 20.71 ± 5.33 - 149.35 ± 4.73 46370.34 ± 137.79 - 3297.28 ± 2184.54
SMC-ESS 1.11 ± 0.15 - 117.48 ± 9.70 24240.68 ± 50.52 - 1477.04 ± 133.80
CRAFT 11.47 ± 0.90 0.115 ± 0.003 134.34 ± 0.66 28960.70 ± 354.89 0.257 ± 0.024 1918.14 ± 108.22
DDS 0.63 ± 0.24 0.172 ± 0.031 142.89 ± 9.55 5435.18 ± 172.20 0.131 ± 0.001 2154.88 ± 3.861
PIS 0.42 ± 0.01 - - 10405.75 ± 69.41 0.218 ± 0.007 2113.17 ± 31.17
AS 0.32 ± 0.06 - - 18984.21 ± 62.12 0.210 ± 0.004 2178.60 ± 54.82
CMCD-KL 0.57 ± 0.05 0.095 ± 0.003 513.33 ± 192.4 22132.28 ± 595.18 - 1848.89 ± 532.56
CMCD-LV 0.51 ± 0.08 - 139.07 ± 9.35 4258.57 ± 737.15 - 1945.71 ± 48.79
SCLD 0.44 ± 0.06 - 134.23 ± 8.39 3787.73 ± 249.75 - 656.10 ± 88.97

NAAS (Ours) 0.10 ±0.0075 0.076 ± 0.004 132.30 ± 5.87 496.48 ± 27.08 0.113 ± 0.070 394.55 ± 29.35

5 Experiments

In this section, we evaluate NAAS across a diverse set of sampling benchmarks. Further implementa-
tion details are provided in Appendix D.

• Our primary focus on challenging synthetic distributions, including the 32-mode many-well (MW54,
5d) distribution, the 10d Funnel benchmark, a 40-mode Gaussian mixture model (GMM40) in 50d,
and a 50d Student mixture model (MoS). We assess the performance using the maximum mean
discrepancy (MMD) following Akhound-Sadegh et al. (2024) and the Sinkhorn distance (Sinkhorn)
with a small entropic regularization (10−3) following Chen et al. (2024).

• We demonstrate the practical applicability of NAAS by extending our evaluation to the generation of
Alanine Dipeptide (AD) molecular structures. This molecule consists of 22 atoms in 3D. Following
the implementation of Midgley et al. (2023); Wu et al. (2020), we use the OpenMM library
(Eastman et al., 2017) and represent the molecular structure using internal coordinates, resulting
in a 60-dimensional state space. We evaluate KL divergence (DKL) between 2000 generated and
reference samples for the backbone angles ϕ, ψ and the methyl rotation angles γ1, γ2, γ3, which
are referred to as torsions. Moreover, we report Wasserstein distance between energy values of
generated and reference samples (E(·)W2).

Main Results As shown in Table 2, our proposed method, NAAS, consistently outperforms existing
baselines across the majority of synthetic sampling benchmarks. On the MW54 and GMM40 tasks,
NAAS improves over the second-best method by more than 75%, demonstrating exceptionally strong
performance. Furthermore, on both the Funnel (MMD) and MoS benchmarks, NAAS achieves sub-
stantial improvements over competing methods. These results collectively highlight the effectiveness
of NAAS as a high-quality sampler across diverse and challenging targets.

Figure 2 presents qualitative results for the GMM40 and MoS benchmarks, showing side-by-side
visualizations of samples generated by NAAS and the corresponding ground truth. The generated
samples accurately capture the structure and support of the true distributions. All modes are well-
represented without collapse or over-concentration, indicating high sample diversity and fidelity.

Figure 3 illustrates the training dynamics of NAAS, with both MMD and Sinkhorn distance plotted
over training iterations. In particular, the MoS experiment Figures 3b and 3c highlight that our
initial dynamics are remarkably strong; our model begins training with an MMD around 0.22 and a
Sinkhorn distance near 2600. These values are already competitive with, or even superior to, the final
performance achieved by several established baselines such as SMC, SMC-ESS (Buchholz et al.,
2021), PIS (Zhang and Chen, 2022), and DDS (Vargas et al., 2023). All comparison benchmarks,
including SMC, SMC-ESS, and CMCD (Vargas et al., 2024) are taken from SCLD (Chen et al., 2024).
This favorable starting point is a direct consequence of the annealed reference dynamics employed
by our method, which provides a meaningful initialization that captures coarse features of the target
distribution. NAAS then further improves the sampler by learning the control. Ultimately, NAAS
surpasses the second-best method, SCLD (Chen et al., 2024), by more than 30% in both metrics,
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(a) Funnel (MMD) (b) MoS (MMD) (c) MoS (Sinkhorn)

Figure 3: Visualization of training dynamics over epochs. Each runs are presented in a different color.

demonstrating that its performance gains are not merely due to favorable initialization, but also to
its ability to effectively learn corrections to the reference dynamics. This highlights the strength
of NAAS in combining informative priors with principled learning for efficient and high-fidelity
sampling.

Alanine Dipeptide Generation We compare our model to PIS (Zhang and Chen, 2022) and DDS
(Vargas et al., 2023), which can be viewed as a special case of our framework that excludes the
annealed path measure. As shown in Table 3, our model achieves significantly better performance in
terms of γ1 and E(·)W2, while showing comparable results on the remaining metrics. It also achieves
favorable values across all torsion angles while maintaining a similar energy distribution, indicating
the absence of mode collapse. Furthermore, as illustrated by the qualitative results in Figure 4, the
torsion angle distributions produced by our model closely follow the trends of the reference density.

Table 3: Results for AD generation. We report
KL divergence for torsions (DKL) and Wasserstein
2-distance for energies E(·)W2.

Method ϕ ψ γ1 γ2 γ3 E(·)W2

PIS 0.597 0.952 0.453 0.498 7.038 5.918
DDS 0.493 0.154 4.095 0.111 0.150 5.467

NAAS (Ours) 0.260 0.236 0.272 0.132 0.156 1.076

Figure 4: Comparison of five torsions between
generated and reference samples

6 Conclusion

We proposed NAAS, a novel and unbiased sampling algorithm grounded in SOC theory under
annealed reference dynamics. Our key contribution is on formulating the SOC problem that results
unbiased diffusion sampler tailored to have annealed reference process. To construct an unbiased
estimator, we propose a joint SOC problem involving two distinct control functions, which are
optimized in an alternating manner using an adjoint matching. We validated NAAS on a diverse set
of synthetic benchmarks, demonstrating state-of-the-art performance across all tasks. Additionally,
we extended our framework to molecular structure generation with alanine dipeptide, suggesting
that NAAS can scale to more complex and structured domains. Despite these encouraging results, it
remains to be tested its effectiveness on larger-scale and real-world scenarios, potentially with more
expressive annealing schedules. Moreover, a deeper investigation into the trade-off between the two
optimization stages—examining how the strength of the annealing term influences the behavior of
NAAS—remains an important direction for future work. As a limitation, NAAS requires computing
the Hessian of the given energy function during sample generation, which introduces computational
overhead. Moreover, NAAS requires two networks to train due to its alternating scheme. We do not
see any negative societal consequences of our work that should be highlighted here.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our abstract and introduction clearly state the claim including contributions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide assumptions and proofs in Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details necessary to reproduce the results in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: All data used in this work is open-source. Due to organizational policy, we
are currently unable to release our source code, but we plan to make it publicly available as
soon as possible.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See Table 2. We report mean and variance of each experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and comply with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Section 6.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original papers of the authors that release the assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not introduce new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not utilize crowdsourcing or do research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not utilize crowdsourcing or do research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this paper does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs and Additional Theorems

A.1 Proof of Theorem 3.1

Proof. Let V : [0, 1]×X → R be a value function defined as eq. (3). Then, the necessary condition,
namely Hamilton-Jacobi-Bellman (HJB) equation (Bellman, 1954), is written as follows:

0 = ∂tVt(x)−
σ2
t

2
∇Ut(x) · ∇Vt(x) +

σ2
t

2
∆Vt(x)−

σ2
t

2
∥∇Vt(x)∥22 + ∂tUt(x), V1(x) = 0,

(26)
where u⋆t (x) = −σt∇Vt(x). Moreover, the corresponding Fokker-Planck equation (FPE) (Risken,
1996) can be written as follows:

∂tp
⋆
t (x) = −∇ ·

((
−σ

2
t

2
∇Ut(x)− σ2

t∇Vt(x)
)
p⋆t (x)

)
+∇2 ·

(
σ2
t

2
p⋆t (x)

)
(27)

Now, let φt(x) = e−Vt(x) and φ̂t(x) = p⋆t (x)e
Vt(x). Then,

∂tφt(x) = −∂tVt(x)e−Vt(x),

=

(
−σ

2
t

2
∇Ut(x) · ∇Vt(x) +

σ2
t

2
∆Vt(x)−

σ2
t

2
∥∇Vt(x)∥22 + ∂tUt(x)

)
e−Vt(x),

=
σ2
t

2
∇Ut(x) · ∇φt(x)−

σ2
t

2
∆φt(x) + ∂tUt(x)φt(x).

(28)

Following the eq. (52) in Liu et al. (2022), we can derive

∂tφ̂t = exp(Vt)

(
∂p⋆t
∂t

+ p⋆t
∂Vt
∂t

)
= exp(Vt)

(
∇
(
σ2
t

2
∇Utp

⋆
t

)
+ σ2

t∆Vtp
⋆
t + σ2

t∇Vt · ∇pt +
σ2
t

2
∆p⋆t

)
+ exp(Vt)p

⋆
t

(
σ2
t

2
∇Ut · ∇Vt −

σ2
t

2
∆Vt +

σ2
t

2
∥∇Vt∥22 − ∂tUt

)
=
σ2
t

2
exp(Vt)

(
2∆Vtp

⋆
t + 2∇Vt · ∇pt +∆p⋆t + ∥∇Vt∥22 −∆Vt

)︸ ︷︷ ︸
=∆φ̂t

+
σ2
t

2
exp(Vt) (∇ (∇Utp

⋆
t ) + p⋆t∇Vt∇Ut)︸ ︷︷ ︸

∇·(∇Utφ̂t)

−∂tUt exp (Vt)p
⋆
t︸ ︷︷ ︸

=:φ̂t

=
σ2
t

2
∆φ̂t +

σ2
t

2
∇ · (∇Utφ̂t)− ∂tUtφ̂t.

Therefore,

∂tφ̂t(x) =
σ2
t

2
∇ · (∇Utφ̂+∇φ̂t)− ∂tUtφ̂t.

Therefore, by combining these equation, we obtain a joint PDE, namely a Hopf-Cole transform (Hopf,
1950), i.e. {

∂tφt(x) =
σ2
t

2 ∇Ut · ∇φt − σ2
t

2 ∆φt + ∂tUtφt, φ0(x)φ̂0(x) = µ(x),

∂tφ̂t(x) =
σ2
t

2 ∇ · (∇Utφ̂+∇φ̂t)− ∂tUtφ̂t, φ1(x)φ̂1(x) = ν(x).
(29)

Notice that p⋆t (x) = φt(x)φ̂t(x) and φ1(x) = constant by the definition. Moreover, by simple
calculation, one can derive that φ̂ has the following closed-form expression:

φ̂t(x) = Ce−Ut(x),

up to some multiplicative constant C. Combining these equations we obtain

p⋆t (x) = φt(x)φ̂t(x) ∝ e−Ut(x)φt(x) = exp(−Ut(x)− Vt(x)).

Hence,
p⋆0(x) ∝ exp(−U0(x)−V0(x)), p⋆1(x) ∝ exp(−U1(x)−V1(x)) = C exp(−U1(x)) ∝ ν(x). (30)
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A.2 Proof of Corollary 3.2

Proof. Let Ut∈[0,1)(x) := U0(x) =
∥x∥2

2σ̄2 and βt = σ2
t /σ̄

2. Then,

−σ
2
t

2
∇Ut(x) = −σ

2
t

2
∇U0(x) = −βt

2
x.

Thus, by substituting all these variables into eq. (12), the equation degenerates to

min
u

E
[∫ 1

0

1
2∥ut(Xt)∥2dt+ U1(X1)− U0(X1)

]
,

s.t. dXt =

[
−βt

2
Xt + σ̄

√
βtut(Xt)

]
dt+ σ̄

√
βtdWt, X0 ∼ µ.

(31)

By Feynman-Kac formula (Le Gall, 2016),

exp (−V0(X0)) = EX∼pbase(X|X0) [exp (−(U1(X1)− U0(X1)))] , (32)
eq. (7)
= EX1∼pbase

1 (·) [exp (−(U1(X1)− U0(X1)))] = constant. (33)

Therefore, by substituting V0 ≡ constant to eq. (30), we obtain

p⋆0(x) = C exp(−U0) = N (0, σ̄2I), (34)

for some constant C.

Note that since

pbase(X1|X0) = N
(
X1; e

− 1
2

∫ 1
0
βtdtX0, σ̄

2
(
1− e−

∫ 1
0
βtdt

)
I
)
, (35)

the reference dynamics is (almost) memoryless when
∫ 1

0
βtdt ≈ ∞.

A.3 Proof of Lemma 3.3

Proof. Since φ̂0(x) ∝ e−U0(x),

V0(X0) = log φ̂0(X0)− logµ(X0) = logN (x; 0, σ̂2I)− logµ(X0) + constant,

the SOC problem (17) can be rewritten as follows:

min
u

E
[∫ 0

−1

1

2
∥u(Xt, t)∥2dt+ log

N (X0; 0, σ̄
2I)

µ(X0)

]
,

s.t. dXt = σ̄u(Xt, t)dt+ σ̄dWt, X−1 ∼ δ0.

(36)

By setting the terminal target distribution as µ, this optimization problem becomes identical to the
formulation in eq. (8), which we refer to as PIS. Consequently, the terminal distribution induced by
its optimal solution is guaranteed to match µ.

A.4 Proof of Theorem 3.4

Proof. Let V : [−1, 1]×X → R be a value function defined on the given SOC problem (18). Then,
the corresponding HJB equation can be written as follows:

0 = ∂tVt(x) +
σ̄2

2
∆Vt(x)−

σ̄2

2
∥∇Vt(x)∥2 for t < 0, eq. (26) for t ≥ 0. (37)

Let φt(x) = e−Vt(x) and φ̂t(x) = p⋆t (x)e
Vt(x) for −1 ≤ t ≤ 1. Then, similar to the proof of

Theorem 3.1, one can easily derive the following paired PDE:{
∂tφ(x, t) = − σ̄2

2 ∆φ

∂tφ̂(x, t) =
σ̄2

2 ∆φ̂
when t < 0, φ(x, 1) = 1, (38){

∂tφ(x, t) =
σ2
t

2 ∇Ut · ∇φ− σ2
t

2 ∆φ+ ∂tUtφ

∂tφ̂(x, t) =
σ2
t

2 ∇ · (∇Utφ̂+∇φ̂)− ∂tUtφ̂
when t ≥ 0, (39)
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As shown in the proof of Theorem 3.1, one can check that the solution (for some multiplicative
constant C) to eq. (39) is

φ̂t(x) = Ce−Ut(x), t ≥ 0. (40)

Therefore, φ̂0(x) = Ce−U0(x) for some multiplicative constant C.

Now, over the interval t ∈ [−1, 0], the function φ̂ evolves according to the heat equation. Thus, we
can explicitly write the solution for φ̂ on [−1, 0] given the terminal condition eq. (40) as follows:

φ̂t(x) = C ′e
− ∥x∥2

2σ̄2(t+1) for − 1 < t < 0,

for some multiplicative constant C ′. Note that limt→−1 φ̂t ∝ δ0. Combining these equation, φ̂
admits a explicit solution, which can be written in a piecewise form over the full domain:

φ̂t(x) =

{
C ′e

− ∥x∥2

2σ̄2(t+1) for − 1 < t < 0,

Ce−Ut(x) for 0 ≤ t ≤ 1.
(41)

Thanks to the explicitly written φ̂t, we can easily derive the following conditions:

φ−1φ̂−1 = δ0, φ0φ̂0 ∝ e−V0−U0 ∝ µ, φ1φ̂1 ∝ e−U1 ∝ ν. (42)
Therefore, the solution to our stochastic optimal control (SOC) formulation in (18) yields the desired
unbiased sampler.

A.5 Detailed Explanation of Reciprocal Adjoint Matching

By using the lean adjoint matching loss, we can update both uθ, vθ. Precisely, the original lean
adjoint matching loss can be written as follows:

L(uθ, vθ;X) =

∫ 0

−1

∥vθt (Xt) + σ̄a(t;X)∥2dt+
∫ 1

0

∥uθt (Xt) + σta(t;X)∥2dt, (43)

where X ∼ p(v̄,ū), (v̄, ū) = stopgrad((vθ, uθ)), a(1;X) = 0, (44)

da(t;X)

dt
= −

[
a(t;X) ·

(
−σ

2
t

2
∇2Ut(Xt)

)
+ ∂t∇Ut(Xt)

]
, t ≥ 0, (45)

da(t;X)

dt
= 0, t < 0. (46)

Thus, in the backward interval t < 0, the lean adjoint variable remains constant: a(t;X) =
a(0;X) =: a0 for all t < 0. Furthermore, as discussed in eq. (6), the optimal backward control vθ
satisfies the reciprocal property. That is, under the optimal dynamics, the marginal distribution of Xt

given the endpoints X−1 = 0 and X0 corresponds to a conditional Gaussian:

Xt ∼ pbase
t|−1,0(· | X−1 := 0, X0) ⇒ Xt ∼ N

(
(t+ 1)X0, (t+ 1)(2− t)σ̄2I

)
, (47)

for all t ∈ [−1, 0). By leveraging this optimality condition, we obtain our reciprocal adjoint matching
objective as eq. (24).

B Further Discussion on NAAS

B.1 Discussion on Scalability and Algorithmic Stability

This section elaborates on three aspects of NAAS: (i) scalability with two learnable control functions,
(ii) the rationale behind the alternating optimization scheme, and (iii) the complexity and stability of
Algorithm 1.

Scalability Although NAAS employs two control networks, the overall computational and memory
costs remain comparable to existing neural control frameworks. Both control functions share the
same lightweight architecture and are trained over disjoint annealing intervals, such that the doubled
parameter count does not lead to doubled runtime or memory overhead. Empirically, both stages
converge within similar iteration counts, and the per-iteration training time remains nearly unchanged
since gradients are backpropagated through independent adjoint integrations. This modular design
preserves scalability even in high-dimensional settings.
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Alternating Optimization The optimization of NAAS is deliberately decoupled into two stages,
each targeting a distinct subproblem:

• Stage 1 (t ∈ [−1, 0]) learns a smooth, broad prior distribution that provides wide support
over the target space. This stage functions as a coarse-scale initialization similar to multiscale
optimization methods.

• Stage 2 (t ∈ [0, 1]) refines the control to transport samples from the coarse prior to the
target distribution. As the annealed dynamics naturally bias trajectories toward high-density
regions, this refinement primarily corrects residual mismatches, ensuring stability and data
efficiency.

This alternating design mitigates interference between global and local objectives, leading to more
stable convergence than a fully joint optimization. It also facilitates clearer diagnostics, as each
stage’s role—broad coverage versus fine refinement—can be independently verified.

Empirical Comparison with Joint Optimization To verify the effect of our alternating algorithm,
we compared it with a joint optimization scheme that trains a single control over the entire time
horizon t ∈ [−1, 1]. Evaluations were conducted on the MW54 and MoS benchmarks. As shown in
Table 4, our alternating optimization consistently outperforms the joint optimization across both tasks.
These empirical findings align well with our theoretical motivation, demonstrating that decomposing
the learning process into two focused stages yields better convergence and overall performance.

Table 4: Comparison between joint and alternating optimization schemes on MW54 and MoS. We
report Sinkhorn distance (↓).

Scheme MW54 MoS

Joint 0.20 597.99
Alternating (Ours) 0.10 394.55

B.2 Difference between NAAS and NETS

Non-equilibrium Sampling In a similar spirit to AIS (Neal, 2001), non-equilibrium samplers are
methods that progressively guide samples over a finite horizon using a meaningful reference annealing
path defined by the annealing energy Ut between target and prior distributions, for instance, the same
reference path eq. (11) is considered for both NAAS and NETS (Albergo and Vanden-Eijnden, 2024).
Such guidance from non-equilibrium—or reference—distribution exp(−Ut) indeed plays a key role
in these methods.

Difference between NETS and NAAS NETS (Albergo and Vanden-Eijnden, 2024) apply Jarzyn-
ski’s equality (Jarzynski, 1997) to match intermediate distribution at time t to be proportional to
exp(−Ut). So, in NETS, an additional component ut in drift term is introduced to eliminate the
discrepancy between reference dynamics and the desired distribution pt ∝ exp(−Ut).

On the other hand, while NAAS also appends an additional term ut to the same reference path
eq. (11), , its ut is derived within the stochastic optimal control framework, aiming to solve a specific
objective formulated in eq. (12). This distinction alters the effect of ut in modifying the reference
path eq. (11) between the two methods, as the objective of NAAS eq. (12) does not explicitly enforce
ut to match the reference distribution exp(−Ut). Indeed, we prove in Section 3.1 that the proposed by
NAAS results in a controlled SDE whose instantaneous distribution pt satisfies pt ∝ exp(−Ut − Vt),
where V1 = 0. That is, the instantaneous distribution of NAAS is highly correlated with the reference
distribution exp(−Ut), but is biased by an additional term exp(−Vt), which vanishes at the terminal
time t = 1. Furthermore, we highlight that since V1 = 0, p1 ∝ exp(−U1 − V1) = exp(−U1) ∝ ν.
Hence, the controlled SDEs proposed by NAAS do converge to the desired target distribution ν at
terminal time t = 1.
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B.3 Connection between NAAS and PDDS

Particle Denoising Diffusion Sampler (PDDS) (Phillips et al., 2024) considers a stochastic process
between Normal distribution N and the target π = γ

Z

dYt = [−β1−tYt + 2β1−t∇ log g1−t(Yt)] dt+
√

2β1−tdBt, Y0 ∼ N (0, I), Y1 ∼ π = γ
Z ,
(48)

where the “guidance” gt is given by

gt(y) :=

∫
g0(x)p0(x|xt = y)dx, g0 =

γ

N
, (49)

p(x0|xt) = N (x0;
√

1− λtxt, λtI), λt = 1− exp

(
−2

∫ t

0

βτdτ

)
(50)

and can be learned, v(x, t; θ) ≈ ∇ log g1−t(x), via the NSM loss:1∫ 1

0

E∥v(x, t; θ)− κ1−t∇ log g0(X0)∥2dt, κt :=
√
1− λt = exp

(
−
∫ t

0

βτdτ

)
, (51)

where the expectation is taken over the optimal distribution corrected via IWS.

SOC formulation for PDDS In this paragraph, we introduce the SOC problem that corresponds to
the optimal solution of PDDS. Moreover, we further discuss that the adjoint matching loss for the
SOC problem is equivalent to NSM loss.
Proposition B.1. Equation (48) is the optimal controlled process to the following SOC problem

min
u

E
[∫ 1

0

1
2∥ut(Xt)∥2dt+ log N

γ (X1)

]
, (52)

s.t. dXt =
[
−β1−tXt +

√
2β1−tut(Xt)

]
dt+

√
2β1−tdBt, X0 ∼ N (0, I). (53)

That is, the optimal control to (52) is

u⋆t (x) =
√
2β1−t∇ log g1−t(x). (54)

Furthermore, the lean adjoint matching loss (w.r.t. the optimal distribution) for (52) is the same as
the NSM loss (51).

Proof. The optimal control to (52) follows

u⋆t (x) = −
√

2β1−t∇xVt(x)

= −
√
2β1−t∇x

(
− logEX1∼p1(·|Xt=x)

[
exp

(
− log N

γ (X1)
)])

=
√
2β1−t∇x

(
log

∫
γ

N
(x1)p1(x1|xt = x)dx1

)
=

√
2β1−t∇ log g1−t(x)

where the last equality follows by the fact that pt(x|xs) = N (x;
√
1− λ|t−s|xs, λ|t−s|I), due to

pt = N (0, I) for all t ∈ [0, 1], and hence∫
γ

N
(y)p1(y|xt = x)dy =

∫
g0(y)p1−2t(y|x1−t = x)dy = g1−t(x).

Next, notice that the lean adjoint ODE in this case reads

dãt
dt

= β1−tãt, ã1 = ∇ log N
γ (X1). (55)

1We substitute the identity, ∇ log πs(x) + x = ∇ log gs(x), into the original NSM loss, E∥∇ log πθ
s(Xt) +

Xt − κs∇ log g0(X0)∥2.
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The solution to (55) admits the form ãt = C exp
(∫ t

0
β1−sds

)
, where C is such that ã1 =

C exp
(∫ 1

0
β1−sds

)
= ∇ log N

γ . Hence, (55) can be solved in closed form

ãt = ∇ log N
γ · exp

(∫ t

0

β1−sds−
∫ 1

0

β1−sds

)
= ∇ log N

γ · exp
(
−
∫ 1

t

β1−sds

)
= ∇ log N

γ · exp
(∫ 0

1−t

βτdτ

)
= −∇ log g0 · κ1−t,

where the third equality is due to change of variable τ := 1− s. Applying lean adjoint matching,

E∥u(x, t; θ) +
√
2β1−tãt∥2 = E∥u(x, t; θ)−

√
2β1−t · κ1−t · ∇ log g0∥2 (56)

with a specific parametrization u(x, t; θ) =
√
2β1−t · v(x, t; θ) yields the NSM loss (51).

Connection to NAAS The stochastic optimal control (SOC) problem underlying PDDS (Phillips
et al., 2024)—formulated in eq. (52)—shares the same structure as the SOC problem defined in
DDS (Vargas et al., 2023), i.e. eq. (9). As discussed in Section 3.1, the DDS objective is itself a
special case of the more general SOC formulation introduced by NAAS (12). Therefore, the SOC
perspective of PDDS naturally inherits this structure and can also be regarded as a special case
within the broader NAAS framework. Despite the close connection in problem formulation, the
methods used to solve the SOC problem are different. NAAS and DDS solve the SOC problem using
adjoint-based learning objectives. In contrast, PDDS employs a non-adjoint-based objective, NSM
loss (51). Instead, PDDS use the IWS strategy.

B.4 Solving NAAS via Importance Sampling

In this section, we explore an alternative algorithmic approach for optimizing the SOC problem
defined in eq. (18). While we do not empirically evaluate this method in the current work, we present
it as a promising direction for future research. Our SOC formulation eq. (18) can be addressed
in various method, resulting flexible algorithm design. Here, we provide another algorithm that
handles our SOC problem based on important weighted sampling (IWS). Then, we introduce the
close connection to PDDS (Phillips et al., 2024).

Basic formula Consider the SOC problem in eq. (1). In the seminar papers (Dai Pra, 1991; Pavon
and Wakolbinger, 1991), the Radon-Nikodym (RN) derivative between the optimal and reference
path measures can be written as follows:

dp⋆

dpbase (X) = exp

(
−
∫ 1

0

ft(Xt)dt− g(X1) + V0(X0)

)
, (57)

Now, let pu be the path measure induced by the control u. By the Girsanov theorem (see Nüsken and
Richter (2021)), we can derive

dp⋆

dpu
(X) =

dpbase

dpu
(X)

dp⋆

dpbase (X)

∝ exp

(∫ 1

0

−1

2
∥ut(Xt)∥2dt− ut(Xt) · dWt

)
· exp

(
−
∫ 1

0

ft(Xt)dt− g(X1)

)
/φ0(X0).

(58)

where

φ0(X0) = e−V0(X0) = EX∼pbase(X|X0)

[
exp

(
−
∫ 1

0

ft(Xt)dt− g(X1)

)]
,

by Feynman-Kac formula (Le Gall, 2016).
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Importance Sampling for NAAS Now, consider our SOC problem (18). Because X−1 = 0,
eq. (58) can be rewritten as follows:

dp⋆

dpu
(X) ∝ exp

(∫ 0

−1

−1

2
∥vt(Xt)∥2dt− vt(Xt) · dWt

)
· exp

(∫ 1

0

−1

2
∥ut(Xt)∥2dt− ut(Xt) · dWt −

∫ 1

0

∂tU(Xt, t)dt

)
. (59)

Note that we can discard φ−1(X−1) since X−1 = 0. Given this expression, we can approximate
the optimal path distribution p⋆ by sampling trajectories from pu and reweighting them using the
Radon–Nikodym derivative (59). Specifically, the following importance sampling procedure allows
us to recover samples from p⋆:

1. For given N , obtain a collection of trajectories {X(i)}Ni=1 where X(i) ∼ pu.

2. Compute the importance weights {w(i)}Ni=1 where w(i) := dp⋆

dpu (X
(i)) by eq. (59).

3. Resample {X(i)}Ni=1 by following categorical distribution:

X̂ ∼ Cat
(
{ŵ(i)}Ni=1, {X(i)}Ni=1

)
, (60)

where ŵ(i) = w(i)∑N
i=1 w(i) .

Importance Sampled Bridge Matching for NAAS In this paragraph, we propose an IWS-based
method for learning the optimal control v⋆ over the interval t ∈ [−1, 0]. Since v⋆ governs a transition
from the Dirac distribution δ0 to the intermediate distribution µ, this subproblem can be framed as a
Schrödinger bridge problem (SBP) between δ0 and µ. Specifically, v⋆ is the solution to the following
stochastic control problem:

min
v

E
[∫ 0

−1

1

2
∥vt(Xt)∥2dt

]
s.t. dXt = σ̄vt(Xt)dt+ σ̄dWt, X−1 ∼ δ0, X0 ∼ µ. (61)

Recent works (Shi et al., 2023; Liu et al., 2024) introduce the bridge matching (BM) loss as a scalable
surrogate objective for solving SBPs. Under this framework, the optimal control v⋆ is obtained by
minimizing following regression problem:

v⋆ = arg inf
v
EX0∼µ

[
∥vt(Xt)− σ̄∇ log pbase

t|−1,0(Xt|X−1, X0)∥2
]
. (62)

The only missing component is the ability to sample from the intractable intermediate distribution µ.
Given a current estimate of the control vθ, we can (asymptotically) sample from µ using importance-
weighted sampling (IWS) as described in eq. (60). By combining IWS with the BM loss, we arrive at
an iterative IWS-based algorithm for learning v⋆, as detailed in Algorithm 2.

C Additional Results

Effect of Learning the Prior Distribution µ In this section, we demonstrate the effect of learning
the prior distribution µ in eq. (24). To isolate the impact of the reciprocal update, we compare against
a baseline where vθ ≡ 0 is held fixed. In other words, we remove the update of vθ described in lines
8–14 of Algorithm 1. Theoretically, this corresponds to optimizing the SOC problem in eq. (12)
under the fixed prior µ ∝ e−U0 , which we refer to as a biased estimator. We conduct experiments on
a simple two-dimensional Gaussian mixture model (GMM) target distribution, denoted GMM-grid,
which the target distribution ν is defined as follows:

ν(x) =
1

9

3∑
i=1

3∑
j=1

N (5 (i− 2, j − 2) , 0.3I). (63)

As shown in Figure 5, both Sinkhorn and MMD measurement of the biased estimator quickly plateaus
over training epochs, while the full NAAS algorithm continues to improve, achieving a sixfold
improvement in performance. Moreover, as illustrated in Figure 6, NAAS provides significantly more
uniform mode coverage compared to the biased variant, consistent with our theoretical result.
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Algorithm 2 IWS-NAAS

Require: Tractable energy U0, twice-differentiable target energy U1(x), two parametrized networks
uθ : [0, 1]×X → X and vθ : [−1, 0]×X → X for control parametrization, buffers Bu and Bv .
Number of epochs Nu and Nv .

1: for stage k in 1, 2, . . . do
2: for epoch in 1, 2, . . . Nu do
3: Sample {Xt}t∈[−1,1] through eq. (19) and eq. (20). ▷ forward pass
4: Compute lean adjoint {at}t∈[0,1] through eq. (22). ▷ backward pass
5: Push {(t, at, Xt)}t∈[0,1] into a buffer Bu. ▷ add to buffer
6: Optimize uθ by eq. (21) with samples from Bu. ▷ adjoint matching
7: end for
8: for epoch in 1, 2, . . . Nv do
9: Sample trajectories {X(i)}Ni=1 through eq. (19) and eq. (20). ▷ forward pass

10: Obtain resampled samples {X̂(i)
0 }Ni=1 through eq. (60). ▷ IWS

11: Push {X̂(i)
0 }Ni=1 into a buffer Bv . ▷ add to buffer

12: Optimize vθ by eq. (62) with samples from Bv . ▷ bridge matching
13: end for
14: end for

Effect of the Annealed Reference Dynamics We investigate the role of annealed reference
dynamics by varying the strength of the annealed reference dynamics. In the annealed SDE defined in
eq. (11), stronger guidance can be achieved by increasing the diffusion scale σtt ∈ [0, 1]. Following
the geometric noise schedule (Song et al., 2021; Karras et al., 2022), we define σt as

σt = σt
minσ

1−t
max

√
2 log

σmax

σmin
, (64)

where σmin and σmax are hyperparameters selected by design. Increasing σmax effectively imposes
a stronger guiding signal throughout the training. To assess its impact, we test three values of
σmax—1000, 100, and 10—on the MoS (50d) distribution. As shown in Figure 7, we refer to these
settings as strong, moderate, and weak guidance, respectively. As shown in the figure, stronger
guidance improves training dynamics: larger σmax results in lower initial Sinkhorn distance, faster
convergence, and superior final performance. These results highlight the critical role of the annealed
reference in steering the sampler during optimization.

Results on High-dimensional Sampling Problems We evaluate the scalability of NAAS on a
high-dimensional 100D GMM40 task, comparing it with two strong baselines: AS (Havens et al.,
2025), which employs standard reference dynamics without annealing, and SCLD (Chen et al., 2024),
a state-of-the-art importance sampling method. We also report wall-clock time for the 50D setting,
measured on a single NVIDIA A6000 GPU. As shown in Table 5, NAAS achieves superior sample
quality and convergence stability, while maintaining competitive runtime. Its efficiency partly stems
from the use of replay buffers, which stabilize optimization and enable sample reuse. Although
solving the backward adjoint state eq. (22) introduces additional computational overhead, the resulting
improvements in stability and sample quality justify this minor cost, highlighting the practicality and
scalability of our approach.

Table 5: Results on the GMM40 benchmark across various dimensions.

Method d = 4 d = 16 d = 50 d = 100 Running time

SCLD (Chen et al., 2024) 157.90 1033.19 3787.73 12357.49 30-40 mins
AS (Havens et al., 2025) - - 18984.21 - 30 mins

NAAS (Ours) 25.15 37.96 496.48 633.20 120 mins

Additional Experiments on Variance Measurement Formally, IWS methods approximate the
target distribution by ν ≈

∑N
i=1 w

(i)δX(i) , where the unnormalized weights are obtained by w(i) ∝
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Figure 5: Training dynamics for the GMM-grid energy function over training epochs. We compare
NAAS trained without prior correction (Biased, blue) and original NAAS (Unbias, orange). In the
original NAAS setup, we update the control vθ and uθ in an alternating fashion every 50 epochs.
The shaded regions in lightblue and lightcoral indicate periods during which vθ and uθ are updated,
respectively. Our results show that the original NAAS consistently achieves lower Sinkhorn and
MMD scores (both ↓), indicating that the prior correction term plays a key role in debiasing the
sampler and improving sample quality.

Figure 6: Side-by-side comparison of ground truth (left), NAAS w/o prior correction (Biased, middle),
and NAAS (right). We visualize both the generated samples (red dots) and the corresponding
kernel density estimates (KDE). As shown, the KDE plot for NAAS (Ours) exhibits more uniform
coverage across all modes compared to the NAAS w/o correction, demonstrating that learning the
prior distribution correctly debiases the sampler.

Figure 7: Visualization of Sinkhorn metric over training epochs for varying levels of reference
guidance. We compare three variants of the annealed reference dynamics, each using a different
guidance strength. Specifically, we set σmax = 1000, 100, and 10 to represent strong, moderate, and
weak guidance, respectively. As shown, stronger guidance leads to better initial performance, faster
convergence, and superior final performance.
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dp⋆

dp (X(i)) with the ratio between the target path measure p⋆ and proposal p. When the support or
mass of the proposal and target distributions are misaligned—as is common in high-dimensional or
complex energy landscapes—these weights can suffer from high variance, as noted in prior works
(Del Moral et al., 2006; Stoltz et al., 2010). This leads to poor effective sample size and significant
variance in the empirical approximation, and can be further exacerbated when the number of samples
N is insufficient.

To see it in empirically, we report the variance of the importance weights across various benchmarks.
We choose LV-PIS as the baseline for comparison as the method directly optimizes the variance of
importance weights and, similar to our NAAS, starts the generation from Dirac delta. For NAAS, we
compute its importance weights using eq. (59). As shown in Table 6, the variance of the importance
weights for NAAS is significantly smaller than that of LV-PIS. Remarkably, NAAS achieves this
reduction in variance despite never explicitly optimizing the variance of importance weights.

Table 6: Comparison on the Variance of Importance Weights (↓)

Method MW54 Funnel

LV-PIS (Richter and Berner, 2024) 21.11 5.46
NAAS (Ours) 1.84 0.11

Effect of Annealed Reference Dynamics We conduct additional experiments to verify whether
the improved performance of NAAS over AS arises from the use of annealing reference. Specifically,
we instantiate NAAS with a particular choice of Ut, which remains equal to U0 for all t ∈ [0, 1) and
jump to Ut = U1 at terminal t = 1. This setup effectively leads to a two-staged AS baseline that
retains the same first process [−1, 0] as NAAS, while completely removing the annealing reference in
the second stage. As we proved in Corollary 3.2, the optimal process of this two-staged AS baseline
satisfies the desired target. As shown in Table 7, the two-stage AS (first row) performs similarly to the
original AS. In contrast, our NAAS (second row) outperforms this baseline by a significant margin.
These results highlight the important role of the annealed reference in NAAS, which contributes
non-trivially to its improved performance.

Table 7: Comparison between two-staged AS (Havens et al., 2025) and NAAS. We report Sinkhorn
distances (↓).

Method Interpolation MW54 GMM40

two-staged AS Ut∈[0,1) = U0 0.43 19776.91
NAAS Ut = (1− t)U0 + tU1 0.10 496.48

Effect of σt The diffusion term σt on time t ∈ [0, 1] is a key hyperparameter of our method.
This controls the guidance scale of annealed reference dynamics, so if σt is large, then gives more
guidance, small then small guidance. As shown in Table 8, we ablate the performance of NAAS on
GMM40 benchmark by gradually increasing the σmax that defines σt := σt

minσ
1−t
max

√
2 log σmax

σmin
.

As shown in Table 8, it is evident that the performance of NAAS depends on σmax, as the hyperpa-
rameter directly affects its exploration capability. However, once σmax surpasses some threshold ( 20
for this specific benchmark), the performance of NAAS stabilizes and becomes insensitive to further
increase of σmax. That said, tuning σt in practice could be straightforwardly performed with e.g., grid
or binary search, without having access to samples from or near target distribution. We emphasize
these results as strong evidence of the robustness of NAAS for practical usages.

Table 8: Ablation studies on σmax. We report Sinkhorn distances (↓).

Method σmax = 1 σmax = 10 σmax = 20 σmax = 50 σmax = 100 σmax = 200

NAAS 22893.72 1350.76 639.86 496.48 443.55 492.83
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(a) σmax = 3

(b) σmax = 20

(c) σmax = 50

Figure 8: Ablation on σmax. As σt increases, the prior distribution µ at t = 0 becomes increasingly
similar to the stationary distribution ∝ e−U0 .

Visualizing Samples for Various σmax We visualize the effect of varying the guidance strength,
parameterized by σt. As shown in eq. (13), increasing σt drives the prior distribution µ at t = 0
closer to the reference distribution, i.e., ∝ e−U0 . As illustrated in Figure 8, larger values of σt make
µ increasingly resemble a Gaussian distribution N (0, 32I) ∝ e−U0 , which is consistent with our
theoretical expectation.

Mode Coverage We further conduct experiments to assess whether the proposed sampler can
accurately recover mode weights in multimodal distributions with non-uniform component weights.
Following the setup introduced in LRDS (Noble et al., 2025), we consider a bimodal Gaussian
mixture with components located at N (−a1d,Σ1) and N (a1d,Σ1), associated with mixture weights
w1 = 2

3 and w2 = 1
3 , respectively.

As reported in Table 9, our method achieves competitive performance and accurately recovers the
true mode proportions, indicating that NAAS does not exhibit mode blindness or mode switching
in this setting. Interestingly, we observe that the controlled dynamics in the first stage (t ∈ [−1, 0])
play a crucial role in reweighting the modes. At the beginning of training, the estimated weights
are approximately ŵ1 ≈ 0.5, but as the control for t ∈ [−1, 0] is learned, the sampler gradually
reallocates mass toward ŵ1 ≈ 2

3 , aligning with the true distribution.

Table 10 summarizes our results across varying between-mode distances a. NAAS consistently
recovers the correct mode weights and performs comparably to LRDS, even as the separation between
modes increases. For LRDS, we retained the default hyperparameters but trained longer for a = 1, 2, 3
to ensure convergence; we note that its performance could likely be further improved with additional
tuning. We emphasize, however, that these results are not intended as an extensive comparison
between NAAS and LRDS, but rather as an ablation study demonstrating the robustness of NAAS in
challenging multimodal scenarios with widely separated modes.

We also evaluate NAAS and LRDS on simpler benchmarks, MW54 and Funnel. As shown in Table 11,
NAAS achieves slightly better overall performance than LRDS under these settings.
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Table 9: Comparison on
mode coverage. We re-
port the absolute deviation in
mode weight, |ŵ1 − w1| (↓).

Method d = 16 d = 32

AS 20.5 % -
LRDS 1.7 % 2.7 %
NAAS 3.3 % 2.0 %

Table 10: Ablation study on mode dis-
tance a with dimension d = 16. We
report the absolute deviation in mode
weight, |ŵ1 − w1| (↓).

Method a = 1 a = 2 a = 3

LRDS 1.7 % 6.5 % 6.7 %
NAAS 1.7 % 3.2 % 3.6 %

Table 11: Comparison on
MW54 and Funnel. We
report Sinkhorn distance
(↓).

Method MW54 Funnel

LRDS 0.85 152.09
NAAS 0.10 132.30

D Implementation Details

In this section, we provide the detailed setup for our synthetic energy experiments in Table 1. We
evaluate our model on four synthetic energy functions, namely MW-54, Funnel, GMM40, MoS
following SCLD (Chen et al., 2024). These examples are typical and widely used examples to
examine the quality of the sampler. Throughout the discussion, let d be a dimension of the state and
let

x = (x1, x2, . . . , xd).

MW-54 We use the same many-well energy function as in SCLD (Chen et al., 2024). We consider
many-well energy function, where the corresponding unnormalized density is defined as follows:

ν(x) ∝ exp−
m∑
i=1

(x2i − δ)2 − 1

2

d∑
m+1

x2i , (65)

where d = 5, m = 5, and δ = 4, leading to 2m = 25 = 32 wells in total.

Funnel We follow the implementation introduced in Neal (2003); Chen et al. (2024), which is a
funnel-shaped distribution with d = 10. Precisely, it is defined as follows:

ν(x) ∝ N (x1; 0, σ
2)N ((x2, . . . , xd); 0, exp(x1)I), (66)

with σ2 = 9.

GMM40 Let the target distribution ν is defined as follows:

ν(x) =
1

m

m∑
i=1

νi(x). (67)

Following (Blessing et al., 2024; Chen et al., 2024), each mode of Gaussian Mixture Model (GMM)
is defined as follows:

νi = N (mi, I), mi ∼ Ud(−40, 40), (68)

where Ud(a, b) is a uniform distribution on [a, b]d. We use d = 50.

MoS We also use the same Mixture of Student’s t-distribution (MoS) following Blessing et al.
(2024); Chen et al. (2024). Following the notation of eq. (67), we define MoS of m = 10 and d = 50,
where each mode νi is defined as follows:

νi = t2 +mi, mi ∼ Ud(−10, 10), (69)

where t2 is a Student’s t-distribution with a degree of freedom of 2.

Alanine Dipeptide (AD) is a molecule that consists of 22 atoms in 3D, therefore, in total 66-
dimension data. Following prior work (Zhang and Chen, 2022; Wu et al., 2020), we aim to sample
from its Boltzmann distribution at temperature 300K. Moreover, we convert energy function to a
internal coordinate with the dimension d = 60 through the OpenMM library Eastman et al. (2017).
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Table 12: Hyperparameter Settings

Hyperparameter MW54 Funnel GMM40 MoS AD

K 3 10 5 5 10
(Nu, Nv) (100, 100) (100, 100) (100, 100) (100, 100) (1000,200)
(Mu,Mv) (400, 400) (400, 400) (400, 400) (400, 400) (2000,2000)

B 512 512 512 512 512
|B| 10000 10000 10000 10000 10000
N 2048 512 512 512 200
Emax 100 1000 1000 1000 1000
Amax - 100 100 100 10

(lru, lrv) (10−5, 10−8) (10−4, 10−4) (10−6, 10−8) (10−4, 10−6) (10−4, 10−8)
σ̄ 1.0 1.0 50 15 1
σmax 1.0 9 50 1000 2
σmin 0.01 0.01 0.01 0.01 0.01

gradient clip 1.0 1.0 1.0 1.0 1.0

Training Hyperparameters We adopt the notation of the hyperparameter of Algorithm 1. For
additional hyperparameters, let B be the batch size, lru and lrv be the learning rate for uθ and vθ,
respectively. Moreover, note that we use Adam optimizer (Kingma and Ba, 2014) with (β1, β2) =
(0, 0.9) for all experiments. Let |B| := |Bu| = |Bv| be the buffer size for both buffers, K be a total
number of stages (see line 1), and let Mu and Mv be a total number of iterations to optimize lines 6
and 12, respectively. Let N be the number of samples generated in lines 3 and 9, hence, a total of
N samples are eventually added to the buffer in line 6 and 12. Moreover, for stability, we clip the
maximum gradient of energy function ∇Ut with clip parameter of Emax, and also clip eq. (23) with
hyperparameter of Amax. We use geometric noise scheduling from Song et al. (2021); Karras et al.
(2022) to schedule the noise levels {σt}t∈[0,1], controlled by hyperparameters σmax and σmin (See
eq. (64)). The hyperparameters for each experiment are organized in Table 12.

Comparisons and Evaluation metric For both the MMD and Sinkhorn distance in Table 2, we
follow the implementation of (Blessing et al., 2024). The benchmark results are taken from Blessing
et al. (2024), Chen et al. (2024) and Akhound-Sadegh et al. (2024). For metrics in Table 3, we evaluate
KL divergence (DKL) and Wasserstein distance between energy values (E(·)W2) of generated and
reference samples. For W2 estimation, we use Python OT (POT) library (Flamary et al., 2021). For
all metrics, we use 2000 generated and reference samples.
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