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Abstract

We investigate how model architectures and pre-training
objectives influence feature richness, and introduce a sim-
ple method to leverage these features for domain general-
ization. Given a pre-trained feature space, we first discover
latent domain structures, referred to as pseudo-domains,
that capture domain-specific variations in an unsupervised
manner. We then augment classifiers with these comple-
mentary representations, improving generalization to di-
verse unseen domains. We also analyze how different pre-
training feature spaces differ in terms of the granularity of
domain-specific variances they capture. Our analysis re-
veals that diffusion models, in particular, effectively sepa-
rate domains in their latent spaces. Across five datasets, our
approach improves test accuracy by up to 4% over the base-
line Empirical Risk Minimization (ERM). Code is available
at: xthomasbu.github.io/GUIDE.

1. Introduction
It is now a common practice to use models pre-trained on
billion-scale data [17, 19, 39, 44, 46, 49, 51] as defacto
backbones for diverse downstream tasks [36, 57]. A vari-
ety of powerful pre-training strategies have been designed
to make these models “foundational,” offering rich feature
representations. Some aim to eliminate the need for clean
labeled data [7, 8, 11, 18, 66], some align visual and tex-
tual signals [25, 49], while others learn by predicting large
hidden regions of images [19]. Despite such progress, what
exactly is captured in the underlying latent space remains an
open question, particularly in diffusion models due to their
iterative denoising objective.

This work aims to understand the feature landscape
learned from different pre-training models and objectives in
the context of domain generalization. Robust generalization
to unseen domains has been a long-standing goal [5, 41],
particularly when collecting domain-specific information is
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Figure 1. T-SNE visualization of the latent space from different pre-
training objectives: CLIP [49], DiT [46], MAE [19], ResNet-50 [17] on
the domain generalization benchmark VLCS [14]. VLCS is curated from 4
different datasets, thus dataset-specific biases like spatial composition and
object size variations serve as different domains. Note how the diffusion
features separate domains effectively, suggesting that latent domain struc-
tures can be captured without explicit supervision. Best viewed in color.

infeasible. In such cases, models must learn to general-
ize without relying on explicit domain labels during train-
ing [33].

We posit that the first step to make fundamental progress
towards designing foundational models is to examine and
interpret how current state-of-the-art models structure vi-
sual information and uncover their strengths and limita-
tions. For instance, how are object, scene, and domain-
specific variations internally encoded in a latent space? Do
domain-specific traits manifest in distinct regions of the la-
tent space or are they engulfed along with low- to mid-level
scene and object level information?

We study these questions in detail. Specific to the task
of domain generalization, we analyze how different pre-
training objectives and architectures influence the granular-
ity of visual information captured in their feature space. Our
key insight is that certain internal states of diffusion mod-
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els effectively capture abstract information such as photo-
graphic styles and camera angles. Building on this insight,
we develop an unsupervised method for discovering latent
domain structures. Next, we alter a standard domain gen-
eralization classification [58] pipeline with one key differ-
ence: we augment the classifier’s representations with the
discovered latent domain representations. We show through
extensive empirical analysis that this simple tweak to the
standard pipeline assists in training a model that general-
izes well to unseen domains [4].

Our framework, GUIDE (Generalization using Inferred
Domains from Latent Embeddings), offers a simple and ef-
fective method to “guide” a given feature space to adapt
better to unseen domains.

Contributions:
• We propose a method of unsupervised pseudo-

domain discovery from frozen pre-trained feature
spaces and use them to improve a model’s ability to
generalize to diverse domains (Sec. 3).

• We analyze different pre-training objectives and
architectures and investigate how they influence the
structure of the feature latent landscape (Sec. 4.2).

• We shine light on the ability of diffusion models to
capture domain-specific information (Fig. 1), and
demonstrate their effectiveness to domain generaliza-
tion (Sec. 4.3).

2. Related Work

Diffusion features for representation learning: Diffusion
models [22, 52] have advanced image and video generation,
with their intermediate features proving useful across tasks
such as classification [29], segmentation [2, 63], depth es-
timation [62, 68], and visual reasoning [61]. Recent stud-
ies [27, 38, 60] demonstrate that features extracted across
layers and timesteps encode rich semantic information,
ranging from coarse patterns to fine-grained details. We
study how these features encode class- and domain-specific
signals and leverage them for domain generalization.
Domain generalization: Domain generalization aims to
build models that perform well on unseen domains [5].
Various methods have been proposed to address this by
learning domain-agnostic representations [24, 42], data or
latent augmentation methods [23, 34, 37, 53], and meta-
learning [1, 6]. Dubey et al. [13], Thomas et al. [56] ex-
plore techniques to incorporate pseudo-domain information
into classifiers to make them generalizable to unseen do-
mains. Our work differs from these prior arts in several cru-
cial ways: we leverage pre-trained models instead of learn-
ing a separate domain prototype network as in [13], utilize
a more domain-rich feature space compared to [56], and do
not rely on domain labels as in [6, 13].
Diffusion models for domain generalization. Prior ap-

proaches [20, 67] use diffusion models for synthetic data
augmentation, often requiring test-time access or model
fine-tuning. In contrast, we propose a method to use frozen
diffusion features in an unsupervised manner for domain
generalization.

3. Approach
First, we introduce the preliminaries of diffusion models
and the setting of domain generalization. Then, we present
our two-step framework where we first learn pseudo-
domain representations in an unsupervised manner and use
them to adapt a classifier to unseen domains. We stress that
we do not have domain label information during both train-
ing and test phases.
Diffusion models [22, 52] are generative models that learn
data distributions by denoising progressively noised images
{xt}Tt=1, where noise ϵ is added over T timesteps. A model
θ is trained to predict the added noise ϵθ(xt, t) at each step.

Latent Diffusion Models (LDMs) [51] extend this by op-
erating in a lower-dimensional latent space z = E(x), us-
ing a Variational Autoencoder (VAE) [28] with an encoder
E and decoder D. The model learns to denoise latent vari-
ables zt via:

LLDM = EE(x),t,ϵ∼N (0,1)∥ϵ− ϵθ(zt, t)∥22

Domain Generalization. Let X and Y denote input data
and labels, and Φ a feature extractor. In supervised learn-
ing, a predictor f maps features Φ(x) to labels y, i.e.,
f(Φ(x)) → y. Domain generalization extends this by
assuming access to data from multiple training domains
{P tr

d }dtr

d=1, with the goal of generalizing to an unseen test
domain P te

d [5]. A common baseline is Empirical Risk Min-
imization (ERM) [58], which trains a domain-agnostic pre-
dictor by pooling all training data. However, this ignores
inter-domain variations and may fail when the test domain
differs significantly [13].
Learning and leveraging pseudo-domain representa-
tions. Inspired by prior work on leveraging domain-specific
representations [6, 13, 40, 56], we augment features with
complementary pseudo-domain information. Without ac-
cess to domain labels, we uncover latent domain structure
by clustering pre-trained features Ψ via K-Means++, treat-
ing the K resulting centroids as pseudo-domains. Each
sample is assigned to its nearest centroid Ψ̂k. To improve
generalization, we concatenate each input feature Φ(x)

with a transformed pseudo-domain vector T (Ψ̂k), where T
is a Radial Basis Function (RBF) kernel ridge regressor that
maps Ψ to Φ to reduce feature drift. At test time, we extract
Ψ(x), assign it to the nearest cluster, apply T , and concate-
nate the result with Φ(x) before passing it to the classifier.
Our method (GUIDE) requires no domain supervision and
makes no assumptions about the test domains.
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Dataset DiT SD-2.1 MAE CLIP DINOv2 RN50

PACS 0.85 0.82 0.71 0.54 0.55 0.59
VLCS 0.58 0.26 0.20 0.01 0.05 0.22
TerraInc 0.22 0.55 0.21 0.01 0.01 0.25
OfficeHome 0.25 0.28 0.10 0.12 0.38 0.08
DomainNet 0.54 0.51 0.52 0.32 0.47 0.46

Table 1. Comparison of domain NMI scores across datasets. The
highest domain NMI score depends both on the type of pre-training feature
space and the underlying domain shifts in the dataset as noted in Sec 4.2.
We note that inherent domain label noise can impact domain NMI scores.
Thus, NMI is more valuable when used as a relative measure rather than
an absolute indicator of domain separability.

4. Experiments
We outline the implementation details and training setup
for GUIDE in Sec 4.1, followed by a detailed analysis of
the capability of different feature extractors (Ψ) in captur-
ing domain-specific information to augment class-specific
features (Φ) in Sec 4.2. We empirically show how our ap-
proach leads to a more domain generalizable classifier on
unseen test domains in Sec. 4.3.

4.1. Implementation Details
We evaluate on five DomainBed [16] datasets: PACS [30],
VLCS [14], TerraIncognita [3], OfficeHome [59], and Do-
mainNet [47]. We provide details of the domain shifts in
each dataset in Appendix B. We use the default DomainBed
setup: batch size of 32 per domain, learning rate of 5×10−5,
5001 steps, and no dropout or weight decay. Results are av-
eraged over three seeds using leave-one-domain-out cross-
validation. For the classifier backbone Φ, we use ResNet-
50 pretrained with AugMix [21]. For latent features Ψ,
we compare ResNet-50 [17], CLIP [49], DINOv2 [44],
MAE [19], Stable Diffusion 2.1 [51], and DiT [46]. The
transformation T is an RBF kernel ridge regressor mapping
each pseudo-domain centroid Ψ̂k to the average Φ feature
vector of the samples assigned to that cluster. We set the
number of clusters using K = max({1, 3, 5} × nc, 200),
where nc is the number of classes.

To evaluate the expressivity [13] of pseudo-domains, we
compute normalized mutual information (NMI) [40, 56]
between discovered clusters and ground-truth domain or
class labels. Given cluster assignments U and ground truth
class / domain labels V , NMI is defined as NMI(U, V ) =

2·I(U,V )
H(U)+H(V ) , where I is mutual information and H is en-
tropy. Higher domain NMI values reflect stronger domain
separation in the latent space.

4.2. Effect of the Choice of Ψ on Domain Separation
Next, we study how different pre-training objectives affect
the separation of domain-specific signals using domain
NMI (↑) (introduced in Sec. 4.1), which measures how well
domains are separated in the latent space. We acknowledge
that all models are of varied architectural complexities,
trained on very different datasets, thereby making it

nonviable to concretely isolate the cause of performance
discrepancies in domain separation. Nevertheless, we
believe our below analysis is valuable to understand the
semantic information captured by different pre-training
objectives. The domain shifts in each dataset studied are
presented in Appendix B.

ResNet-50 [17] (RN50) is pre-trained on ImageNet [12] us-
ing a cross-entropy loss, encouraging object-level discrim-
ination. Consequently, the feature space evolves to aid ob-
ject discrimination, making samples from the same class
cluster together across domains. This results in low domain
NMI but high class NMI across datasets (Table 1, and Ta-
ble 4 in the Appendix); e.g., on PACS, class NMI is 0.29 vs.
0.08 for DiT. This makes RN50 well-suited for Φ but less
effective for modeling domain-sensitive features as Ψ.
CLIP [49] is pre-trained on noisy image-text pairs using
a contrastive loss that aligns images with textual descrip-
tions in a joint embedding space. This prioritizes high-level
semantic similarity, making CLIP’s feature space reflect
global context rather than object-specific details. Images
of the same object may not form tight clusters if captions
differ in contextual emphasis (e.g., “a dog on a beach” vs.
“a golden retriever indoors”). Thus, CLIP, though rich in
broader contextual semantics, yields low class and domain
NMI scores across all datasets in (Tables 1 and 4).
DINOv2 [44] is a self-supervised vision transformer trained
by aligning representations between a student and teacher
network across global and local crops. This encourages the
model to capture primarily low-level features, while also
capturing global relationships to some extent [26, 44, 57].
These features are particularly effective for datasets like Of-
ficeHome (domain NMI of 0.38 in Table 1), where domain
shifts arise from low-level style differences such as bold
outlines in “clipart” vs. soft, natural edges in “real” domain.
Masked Autoencoders [19] (MAEs) are pre-trained to
reconstruct locally masked patches, which may induce a
strong locality bias and hinder capturing global context, as
studied in [35, 69]. We hypothesize that this limits their
ability to offer complementary domain-specific representa-
tions (as seen in Table 1). However, MAEs achieve rela-
tively high domain NMI on PACS (0.71) and DomainNet
(0.52) by leveraging local details such as textures, shading,
and brushstrokes. A similar trend is observed with DINOv2,
suggesting both models perform better when domain shifts
are driven by low-level visual variations. MAEs perform
poorly on TerraIncognita, where domain separation likely
requires both local and global spatial understanding (e.g.,
vegetation density, terrain patterns).

Diffusion models for domain separation
We now focus on diffusion models and examine how their
architectural design impacts domain separation. As dis-
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Figure 2. t-SNE visualization of how pseudo-domains are clustered
together in the latent space of DiT for PACS. Note how the sketch do-
main forms distinct clusters, with light and dark pencil strokes mapped to
separate regions in the latent space. Best viewed in color.

cussed in Sec. 3, the iterative denoising objective encour-
ages models to first capture broad structures before refin-
ing details [45, 48]. We hypothesize that this implicit hi-
erarchical learning, along with the absence of an explicit
class-discriminative loss, allows domain-specific variations
to emerge more prominently. This is reflected in Table 1,
where diffusion features consistently yield higher domain
NMI scores than non-diffusion counterparts. Figure 2 il-
lustrates how pseudo-domains in diffusion latent space en-
code domain-specific structure. We compare two diffusion
backbones: the transformer-based DiT [46] and the convo-
lutional U-Net of SD-2.1 [51]. Both are trained on differ-
ent datasets and exhibit complementary strengths. Follow-
ing Kim et al. [27], we extract features at timestep t=50:
for DiT, from the 14th transformer block; for SD-2.1, from
the second upsampling layer (up ft:1).

DiT’s self-attention captures global context effectively,
excelling on datasets with high-level semantic variation.
It achieves the highest domain NMI on PACS (0.85) and
on VLCS (0.58) (Table 1), where domains reflect dataset-
specific biases. In contrast, SD-2.1 encodes fine-grained
spatial detail, performing best on TerraIncognita (0.55),
where domain shifts involve changes in foliage and terrain
patterns.

Both models perform poorly on OfficeHome (DiT: 0.25,
SD-2.1: 0.28) (Table 1), likely due to high inter-domain vi-
sual similarity (more details in Appendix). On DomainNet,
DiT achieves the best score (0.54), though all models per-
form moderately, likely due to varied low- and high-level
domain shifts (Appendix B).

4.3. Domain Generalization Performance
In this section, we compare GUIDE against prior domain
generalization methods and examine the impact of different
feature extractors (Ψ) in capturing domain-specific infor-
mation to enhance classification performance.
Choice of Ψ on domain generalization: We evaluate dif-
ferent feature spaces for GUIDE on DomainBed [16]. As

Dataset DiT SD-2.1 RN50 CLIP DINOv2 MAE ERM

VLCS 78.5 77.0 76.3 76.8 77.3 76.4 76.6
PACS 87.1 86.9 84.8 84.7 84.9 84.6 83.8
OH 68.4 68.6 65.7 64.6 68.3 65.2 67.2
TI 48.2 51.3 49.8 47.4 48.4 50.2 47.0

Avg 70.6 71.0 69.1 68.4 69.7 69.1 68.7

Table 2. GUIDE performance on different Ψ spaces. The pseudo-
domain representations obtained from the latent space of diffusion models
provide the highest gains in accuracy.

uses multi-
layer

features

uses
domain
labels

Algorithm VLCS PACS OH TI DN Avg

- - ERM [58] 76.6 83.8 67.2 47.0 44.1 63.7

✓ ✓ MLDG [31] 77.2 84.9 66.8 47.7 41.2 63.6
✓ ✓ MMD [32] 77.5 84.7 66.3 42.2 23.4 58.8
✓ ✓ CORAL [54] 78.8 86.2 68.7 47.6 41.5 64.5
✓ ✓ SagNet [43] 77.8 86.3 68.1 48.6 40.3 64.2
✗ ✓ DANN [15] 78.6 83.6 65.9 46.7 38.3 62.6
✗ ✓ Fishr [50] 77.8 85.5 67.8 47.4 41.7 64.0
✓ ✗ MIRO [10] 79.0 85.4 70.5 50.4 44.3 65.9
✗ ✗ Mixup [64, 65] 77.4 84.6 68.1 47.9 39.2 63.4
✗ ✗ LatentDR (SA) [37] 78.7 85.8 69.0 49.9 45.1 65.7
✗ ✗ LatentDR (Pool) [37] 78.0 86.3 68.4 49.5 43.9 65.2

✗ ✓ DA-ERM ([13]) 78.0 84.1 67.9 47.3 43.6 64.1
✗ ✗ AdaClust ([56]) 78.9 87.0 67.7 48.1 43.6 64.9
✗ ✗ GUIDE-DiT (ours) 78.5 87.1 68.4 48.2 45.8 65.6
✗ ✗ GUIDE-SD-2.1 (ours) 77.0 86.9 68.6 51.3 45.9 65.9
✗ ✗ GUIDE-BEST (ours) 78.5 87.1 68.6 51.3 45.9 66.3

Table 3. Comparison of GUIDE with prior domain generalization
methods across 5 datasets using the DomainBed test bed. Methods are
grouped by (1) whether they use features from multiple intermediate lay-
ers, and (2) whether they require ground truth domain labels during train-
ing. The best performing method is underlined; the overall best is in bold.
Cyan rows denote domain-adaptive classifiers (Sec. 3), among which

GUIDE performs best. GUIDE-BEST reports the best performance among
the two diffusion latent spaces (DiT and SD-2.1.

shown in Table 2, diffusion features (DiT, SD-2.1) con-
sistently outperform non-diffusion counterparts across all
datasets. GUIDE-DiT yields strong performance on VLCS
(+1.9%) and PACS (+3.3%) over the baseline (ERM).
GUIDE-SD-2.1 performs best on TerraIncognita (+4.3%).
These results align with domain NMI trends from Table 1.
Comparison with prior art: In Table 3, we com-
pare GUIDE with other state-of-the-art domain gen-
eralization algorithms1 and note that GUIDE-BEST
achieves the highest average performance of 66.3%
without using domain labels at any point. Compared to all
methods, GUIDE-BEST shows the largest improvements
on the PACS, TerraIncognita, and DomainNet datasets. Ad-
ditional results incorporating enhanced training strategies
from ERM++ [55] into GUIDE are presented in Appendix J.

5. Conclusion
We analyzed how pre-training objectives and architectures
affect domain separation, showing that diffusion models
naturally encode domain-specific variation. Building on
this, GUIDE leverages latent domain structure in pre-
trained feature spaces to improve generalization without re-
quiring domain labels at train or test time.

1We compare against algorithms reported in [13, 37, 56].
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Appendix:
What’s in a Latent? Leveraging Diffusion Latent Space for Domain

Generalization

A. Class NMI Scores

Dataset DiT SD-2.1 MAE CLIP DINOv2 RN50

PACS 0.08 0.08 0.11 0.05 0.15 0.29
VLCS 0.12 0.15 0.17 0.01 0.11 0.39
TerraInc 0.32 0.35 0.32 0.01 0.16 0.30
OfficeHome 0.16 0.22 0.28 0.10 0.23 0.59
DomainNet 0.16 0.20 0.22 0.13 0.19 0.36

Table 4. Comparison of class NMI scores across datasets. In order to choose auxiliary features for domain separation, a feature space that yields lower
class NMI score along with high domain NMI is desirable, i.e. the latent space should favor grouping domains over object classes.

B. Underlying Domains in Each Dataset
We begin by summarizing the types of domain shifts present in the datasets we study. PACS [30] image dataset captures
7 object categories and 4 domains: real-world photos, art paintings, cartoons, and sketches. Thus, the domains have stark
visual distinctions driven by both global and local changes such as shapes, colors, and edges. VLCS [14] is curated from
different datasets, making dataset-specific biases such as spatial composition and object size variations as different domains.
OfficeHome [59] similar to PACS also has images belonging to four domains: artistic, clip-art, product catalog, and real-
world images. Thus, while there is some overlap in the underlying structural characteristics of the objects across domains, the
domain shifts primarily involve style differences such as variations in texture, color, and outlines. TerraIncognita [3] consists
of images taken from different camera trap locations, and each camera serves as a domain. Thus, the domain shifts are driven
by physical environmental aspects such as variations in foliage density, terrain patterns, and spatial patterns of vegetation.
DomainNet [? ] is composed of six domains such as quick-draw, infographic, real images, and so on, and exhibits a broader
range of domain shifts than PACS, spanning both coarse and fine-grained variations. For example, the “quickdraw” domain
consists of simple, rough sketches, while “sketch” has more detailed drawings with shading and varied strokes, showing
style differences. By contrast, “real” domain captures fully detailed images, indicating shifts of varied granularities between
different domains.

C. Pseudo-domains Examples

(a) Animal
portraits

(b) Oil paintings

(c) Similar color
schemes

Figure 3. Pseudo-domains captured in the diffusion latent space of DiT on PACS. The clusters group images based on nuanced style-specific variances
rather than class-specific variances.
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D. Transformation Function

Transformation (T ) Acc

ERM 83.8

Direct Concatenation (No Transformation) 84.3
Cluster-Based Replacement 84.6
Linear Regression 85.7
RBF Kernel Ridge Regression 87.1

Table 5. Effect of T on Test Accuracy for PACS, using GUIDE-DiT. We find that the RBF step (Sec 4.1) aids in classification performance on unseen
domains.

Effect of the choice of T :
As noted in Sec. 3, we apply a transformation function T : Ψ 7→ Φ to bring the latent manifold of Ψ closer to Φ and

mitigate feature domain drift. To understand the role of T , we explore the following alternatives to it:
• (a) Direct concatenation, i.e., appending pseudo-domain representations (from Ψ) to the features (from Φ) without any

transformation. While this introduces domain-specific information, lack of alignment between the two feature spaces
led to a minimal improvement of +0.5% over ERM.

• (b) Cluster-based replacement, where pseudo-domains identified in the Ψ space are used to compute cluster centroids
using features from Φ space, i.e. cluster samples are averaged in Φ space. This provides a slightly better alignment
yielding an accuracy gain of +0.8% over the baseline.

• (c) Linear regression, where a linear mapping is learned between the pseudo-domain centroids and the centroids ob-
tained in (b). This helps in bridging differences between Ψ and Φ better, leading to a larger improvement of +1.4%.

• (d) RBF kernel ridge regression, where the linear regressor in (c) is replaced with an RBF kernel (Sec 4.1). We note
that this achieves the highest accuracy gains of +3.3%, highlighting its effectiveness of bridging feature domain drift
while incorporating pseudo-domain information into the classifier.

These results underscore the necessity of a well-chosen transformation to fully leverage the pseudo-domain information.

E. Domain Predictability

Dataset DiT SD-2.1 MAE CLIP DINOv2 RN50

PACS 98.89 98.95 98.69 98.29 98.89 97.85
VLCS 96.08 92.72 94.03 83.87 81.86 88.48
TerraInc 99.97 99.94 99.91 99.83 99.87 99.79
OfficeHome 89.16 86.43 82.55 83.41 78.28 77.52
DomainNet 88.55 89.58 87.50 87.61 87.24 87.21
Synth-Artists 100 99.00 97.00 92.00 90.00 97.00
Synth-Photography 83.33 87.50 86.67 73.33 78.33 77.50

Table 6. Comparison of Domain Predictability Scores Across Datasets. Diffusion models consistently outperform other models in domain predictability
scores, highlighting the effectiveness of encoding domain-specific information in their latent space.

Domain Predictability: To complement NMI, we evaluate domain predictability and predict domain labels from latent
feature representations. Specifically, we use a single-layer MLP classifier, trained on an 80-20 train-test split. We report the
mean test accuracy over 3 such random splits. While NMI measures alignment and variance across samples belonging to a
domain, domain predictability directly assesses a latent representation’s ability to learn to classify domain information. We
observe in Table. 6 that diffusion models attain the highest domain predictability scores, highlighting their effectiveness in
encoding domain-specific information.
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F. Label Noise and Domain Inconsistencies

Figure 4. Examples of inconsistent or confusing domain labels. Given that most datasets in this study are web-scraped, we expect there to be label noise
and domain inconsistencies which may impact the NMI scores. These examples from the PACS dataset and SD-2.1 feature space illustrate cases where
domain assignments may be unclear or conflicting. The color of the border on the images denotes the ground truth domain label.
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G. Effect of Text-Conditioning in SD-2.1 for Domain Separation

Dataset Domain NMI Domain Predictability

Empty Prompt Prompt Empty Prompt Prompt

PACS 0.82 0.85 98.95 99.51
OfficeHome 0.22 0.24 86.43 92.91

Table 7. Domain NMI and predictability scores for empty vs text conditioned prompts for SD-2.1 on PACS and OfficeHome. For text conditioning
we used the prompt: “A photo of an object in the style of {domain}”. Similar to the findings of Kim et al. [27], text conditioning appears to activate more
relevant features.

H. Effect of Layer and Timestep in Diffusion Models for Domain Separation (DiT vs SD-2.1) on
PACS, and VLCS

Following Kim et al. [27], we choose a lower noise level at timestep (t=50), with a motivation to capture rich fine-grained
visual information. We use t=50 for both DiT (at block 14) and SD-2.1 (at up ft:1) for both class and domain NMI scores
(in Tables 1, and 4), and to obtain the classification accuracies in Table 3. In Fig. 5, we observe that t=50 provides the highest
domain NMI score for PACS using DiT. We also note that on VLCS, the bottleneck layer outperforms the domain NMI
score obtained from up ft:1 in Fig. 6, likely due it’s focus on coarse-grained features as noted in [27].

Figure 5. Domain NMI comparison across layers and timesteps for PACS. Top: Domain NMI scores for SD-2.1 layers (best: up ft:1) and DiT blocks
(best: block:14). Bottom: Domain NMI scores across various denoising timesteps for SD-2.1 and DiT on PACS.

Figure 6. Domain NMI comparison across layers for VLCS. The Bottleneck Layer of Stable Diffusion (SD-2.1) which capture more coarse-grained
features aids in separating high-level domain shifts in VLCS. However, DiT’s superior capability to capture global context via self-attention outperforms the
domain NMI scores at bottleneck and up ft:1.
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Training Data
Pseudo-Domain 
Centroids

Pseudo-Domain 
Features

Transformed 
Centroids

Concatenated Features

Clustering

Figure 7. Training Pipeline. The green-shaded region represents the clustering and transformation step. Green solid arrows indicate gradient flow, while
red arrows represent non-gradient operations. The feature extractor Ψ first clusters samples to compute the pseudo-domain centroids. The transformation
function T then transforms these centroids to the latent space of Φ, producing transformed pseudo-domain centroids, which are concatenated with the
features from Φ, and sent to the classifier.

I. GUIDE Pseudo-code

Algorithm 1 Training Pseudocode with RBF Kernel Ridge Regression
Input: Training data Dtr, transform schedule Ttransform, K: #clusters
Output: Fimage(.;ω), FMLP(.;W), mapping T

Initialize: Compute feature representations Ψ,Φ, initialize model parameters ω0,W.
{ψk}, {Dk} ← CLUSTERING(Ψ,K)
for t = 1 to T do

if t ∈ Ttransform then
For each k: Φ̂k = 1

|Dk|
∑

x∈Dk
Φ(x)

Compute pairwise distances ∥ψi − ψj∥2, ∀i ̸= j
γ ← 1/(2 · median(pairwise distances)2) {using median heuristic}
Fit T via RBF Kernel Ridge Regression using {ψ̂k} 7→ {Φ̂k} and γ
ψ′
x ← T (ψx)

end if
for batch (x, ψx, y) in Dtr do

Φ(x)← Fimage(x;ωt)
ψ′
x ← T (ψx)

ŷ ← FMLP
(

CONCAT
(
Φ(x), ψ′

x

)
;Wt

)
Update ωt+1,Wt+1 via SGD STEP on L = CROSSENTROPY(ŷ, y)

end for
end for
Return Fimage(.;ωT ), FMLP(.;WT ), and T

Inference
Input: Test data Dtest, transformation function T , and centroids {ψ̂k}Kk=1
Output: Predicted labels ŷ

for x ∈ Dtest do
ψx ← NEARESTCENTROID

(
Ψ,x

)
{Find closest cluster in Ψ-space}

ψ′
x ← T (ψx) {Apply same RBF transform as in training}

Φ(x)← Fimage(x;ωT )
ŷ ← FMLP

(
CONCAT(Φ(x), ψ′

x);WT

)
end for
Return ŷ
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J. Effect of enhanced training strategies

Dataset ERM / ERM++ GUIDE / GUIDE++ (DiT) GUIDE / GUIDE++ (SD-2.1)

PACS 83.8 / 88.0 87.1 / 89.2 86.9 / 88.6
TI 47.0 / 50.7 48.2 / 52.7 51.3 / 53.6

Table 8. ERM++ [55] training strategies on GUIDE boost performance.

We follow the ERM++ [55] implementation from DomainBed [16] which improves ERM by better utilization of training
data, model parameter selection, and weight-space regularization techniques. From Table 8, ERM++ improves over standard
ERM by +4.2% on PACS and +3.7% on TerraIncognita. Applying the same strategies to GUIDE, we achieve even greater
improvements, with GUIDE++ outperforming ERM by +5.4% on PACS and +6.6% on TerraIncognita. These results show
that GUIDE could benefit from any training optimizations proposed over ERM, such as SWAD [9].

13



K. Domain Shift Examples and Domain Separation in Feature Spaces
In this section, we provide:

• Example images, i.e. class samples across domains for each dataset.
• Class vs Domain NMI scores for each feature extractor (Ψ) studied in this work, on each dataset.
• Feature space visualizations for each feature extractor (Ψ) studied in this work, on the PACS, VLCS, OfficeHome, and

TerraInognita datasets.

K.1. PACS [30]

Figure 8. Class examples across domains in the PACS dataset. Each column represents a domain, and each row corresponds to a class.

Domains Classes
art painting, cartoon, photo, sketch dog, elephant, giraffe, guitar, horse, house, person

Table 9. 4 domains and 7 classes of the PACS dataset.
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Figure 9. Class vs Domain NMI scores for PACS. Note how RN50 has the highest class NMI and diffusion models have low class NMI
scores. Diffusion models also has the highest domain NMI scores, thereby capturing domain-specific class invariant structures.

Figure 10. T-SNE visualization of domain separation for PACS. Each point represents a sample, colored by its domain. Notice how well separated the
domains are when diffusion features are used compared to other models.
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K.2. VLCS [14]

Figure 11. Class examples across domains in the VLCS dataset. Each column represents a domain, and each row corresponds to a class.

Domains Classes
Caltech101, LabelMe, SUN09, VOC2007 bird, car, chair, dog, person

Table 10. 4 domains and 5 classes of the VLCS dataset.
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Figure 12. Class vs Domain NMI scores for VLCS. Note how RN50 has the highest class NMI score, and diffusion models have low
class NMI scores. DiT has a much higher domain NMI score than SD-2.1, resulting from its stronger capability in capturing high-level
dataset-specific biases, as discussed in Sec. 4.2.

Figure 13. T-SNE visualization of domain separation for VLCS. Each point represents a sample, colored by its domain. Note how the
DiT feature space best separate the domains.

17



K.3. OfficeHome [59]

Figure 14. Class examples across domains in the OfficeHome dataset. Each column represents a domain, and each row corresponds to a
class.

Domains Classes
Art, Clipart, Product, Real World Alarm Clock, Backpack, Batteries, Bed, Bike, Bot-

tle, Bucket, Calculator, Calendar, Candles, Chair, Clip-
boards, Computer, Couch, Curtains, Desk Lamp, Drill,
Eraser, Exit Sign, Fan, File Cabinet, Flipflops, Flowers,
Folder, Fork, Glasses, Hammer, Helmet, Kettle, Key-
board, Knives, Lamp Shade, Laptop, Marker, Monitor,
Mop, Mouse, Mug, Notebook, Oven, Pan, Paper Clip,
Pen, Pencil, Post-it Notes, Printer, Push Pin, Radio,
Refrigerator, Ruler, Scissors, Screwdriver, Shelf, Sink,
Sneakers, Soda, Speaker, Spoon, TV, Table, Telephone,
ToothBrush, Toys, Trash Can, Webcam.

Table 11. 4 domains and 65 Classes of the OfficeHome dataset.
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Figure 15. Class vs Domain NMI scores for OfficeHome. Note how RN50 has the highest class NMI score and DINOv2 has the highest
domain NMI score, resulting form its stronger ability in capturing low-level style shifts, as discussed in Sec. 4.2. DiT and SD-2.1 have
moderate domain NMI scores, with DiT having a lower class NMI score.

Figure 16. T-SNE visualization of domain separation for OfficeHome. Each point represents a sample, colored by its domain. All
models struggle to separate the domains in this dataset. The “real” domain has considerable overlap with the other domains.
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K.4. TerraIncognita [3]

Figure 17. Class examples across domains in the TerraIncognita dataset. Each column represents a domain, and each row corresponds to a
class.

Domains Classes
Location 100, Location 38, Location 43, Location 46 bird, bobcat, cat, coyote, dog, empty, opossum, rabbit,

raccoon, squirrel

Table 12. 4 domains and 10 classes of the TerraIncognita dataset.
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Figure 18. Class vs Domain NMI scores for TerraIncognita. Most models have a high class NMI score. SD-2.1 has the highest domain
NMI score, resulting from its stronger capability in capturing spatial information, as discussed in Sec. 4.2.

Figure 19. T-SNE visualization of domain separation for TerraIncognita. Each point represents a sample, colored by its domain. Note
how the SD-2.1 feature space best groups samples from the same domain closer together, and separate from other domains.
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K.5. DomainNet [47]

Figure 20. Class examples across domains in the DomainNet dataset. Each column represents a domain, and each row corresponds to a
class.

Figure 21. Class vs Domain NMI scores for DomainNet. Note how RN50 has the highest class NMI and diffusion models, and MAE
have the highest domain NMI scores, with DiT having a lower class NMI score. All models except CLIP exhibit a moderate domain NMI
score, likely due to the varied domain shifts inherent in the dataset, as discussed in Sec. 4.2.
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Domains Classes
clipart, infograph, painting, quickdraw, real, sketch The Eiffel Tower, The Great Wall of China, The Mona Lisa,

aircraft carrier, airplane, alarm clock, ambulance, angel, animal
migration, ant, anvil, apple, arm, asparagus, axe, backpack, ba-
nana, bandage, barn, baseball, baseball bat, basket, basketball,
bat, bathtub, beach, bear, beard, bed, bee, belt, bench, bicy-
cle, binoculars, bird, birthday cake, blackberry, blueberry, book,
boomerang, bottlecap, bowtie, bracelet, brain, bread, bridge,
broccoli, broom, bucket, bulldozer, bus, bush, butterfly, cactus,
cake, calculator, calendar, camel, camera, camouflage, campfire,
candle, cannon, canoe, car, carrot, castle, cat, ceiling fan, cell
phone, cello, chair, chandelier, church, circle, clarinet, clock,
cloud, coffee cup, compass, computer, cookie, cooler, couch,
cow, crab, crayon, crocodile, crown, cruise ship, cup, diamond,
dishwasher, diving board, dog, dolphin, donut, door, dragon,
dresser, drill, drums, duck, dumbbell, ear, elbow, elephant, en-
velope, eraser, eye, eyeglasses, face, fan, feather, fence, finger,
fire hydrant, fireplace, firetruck, fish, flamingo, flashlight, flip
flops, floor lamp, flower, flying saucer, foot, fork, frog, fry-
ing pan, garden, garden hose, giraffe, goatee, golf club, grapes,
grass, guitar, hamburger, hammer, hand, harp, hat, headphones,
hedgehog, helicopter, helmet, hexagon, hockey puck, hockey
stick, horse, hospital, hot air balloon, hot dog, hot tub, hour-
glass, house, house plant, hurricane, ice cream, jacket, jail, kan-
garoo, key, keyboard, knee, knife, ladder, lantern, laptop, leaf,
leg, light bulb, lighter, lighthouse, lightning, line, lion, lipstick,
lobster, lollipop, mailbox, map, marker, matches, megaphone,
mermaid, microphone, microwave, monkey, moon, mosquito,
motorbike, mountain, mouse, moustache, mouth, mug, mush-
room, nail, necklace, nose, ocean, octagon, octopus, onion,
oven, owl, paint can, paintbrush, palm tree, panda, pants, pa-
per clip, parachute, parrot, passport, peanut, pear, peas, pencil,
penguin, piano, pickup truck, picture frame, pig, pillow, pineap-
ple, pizza, pliers, police car, pond, pool, popsicle, postcard,
potato, power outlet, purse, rabbit, raccoon, radio, rain, rainbow,
rake, remote control, rhinoceros, rifle, river, roller coaster, roller-
skates, sailboat, sandwich, saw, saxophone, school bus, scissors,
scorpion, screwdriver, sea turtle, see saw, shark, sheep, shoe,
shorts, shovel, sink, skateboard, skull, skyscraper, sleeping bag,
smiley face, snail, snake, snorkel, snowflake, snowman, soccer
ball, sock, speedboat, spider, spoon, spreadsheet, square, squig-
gle, squirrel, stairs, star, steak, stereo, stethoscope, stitches, stop
sign, stove, strawberry, streetlight, string bean, submarine, suit-
case, sun, swan, sweater, swing set, sword, syringe, t-shirt, table,
teapot, teddy-bear, telephone, television, tennis racquet, tent,
tiger, toaster, toe, toilet, tooth, toothbrush, toothpaste, tornado,
tractor, traffic light, train, tree, triangle, trombone, truck, trum-
pet, umbrella, underwear, van, vase, violin, washing machine,
watermelon, waterslide, whale, wheel, windmill, wine bottle,
wine glass, wristwatch, yoga, zebra, zigzag

Table 13. 6 domains and 325 classes of the DomainNet dataset.
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