Published as a conference paper at COLM 2025

RWKV-7 "Goose" with Expressive Dynamic State Evolution

Bo Peng * Ruichong Zhang * Daniel Goldstein *
EleutherAl, Tsinghua University EleutherAl,

RWKYV Project (Linux zhangrc24@mails Recursal Al
Foundation AI & Data) .tsinghua.edu.cn dan@recursal.ai

pengbo863@gmail.com

FEric Alcaide XingjianDu Haowen Hou JiajuLin Jiaxing Liu Janna Lu

EleutherAl University of Guangdong Pennsylvania Zhejiang Recursal Al,

USI, IDSIA Rochester Laboratory of State University George Mason
Al and Digital = University University
Economy (57)

William Merrill Guangyu Song Kaifeng Tan Saiteja Utpala Nathan Wilce

New York EleutherAl Shenzhen EleutherAl EleutherAl,
University Tano Labs University Recursal Al
Johan S. Wind Tianyi Wu Daniel Wuttke Christian Zhou-Zheng
University Beijing Normal EleutherAl, EleutherAl
of Oslo University Denigma

Abstract

We present RWKV-7 "Goose", a new sequence modeling architecture with con-
stant memory usage and constant inference time per token. Despite being
trained on dramatically fewer tokens than other top models, our 2.9 billion
parameter language model achieves a new 3B SoTA on multilingual tasks and
matches the current 3B SoTA on English language downstream performance.
RWKV-7 introduces a newly generalized formulation of the delta rule with vector-
valued gating and in-context learning rates, as well as a relaxed value replace-
ment rule. We show that RWKV-7 can perform state tracking and recognize all
regular languages, while retaining parallelizability of training. This exceeds the
capabilities of Transformers under standard complexity conjectures, which are
limited to TC°. To demonstrate RWKV-7’s language modeling capability, we also
present an extended open source 3.1 trillion token multilingual corpus, and train
four RWKV-7 models ranging from 0.19 billion to 2.9 billion parameters on this
dataset. To foster openness, reproduction, and adoption, we release our models’
and dataset component listing? on Hugging Face, and our training and inference
code® on GitHub; all under the Apache 2.0 License.

1 Introduction

Autoregressive Transformers (Vaswani et al., 2017) have recently dominated sequence modeling
tasks, enjoying excellent in-context processing and highly parallelizable training due to their use
of softmax attention. However, softmax attention incurs quadratic computational complexity and
memory usage with respect to sequence length due to its linearly expanding key-value cache. For

*Equal first authorship. Others listed alphabetically.

IModel weightsathttps://huggingface.co/RWKV

2Dataset components listed athttps://huggingface.co/RWKV
3Source code at: https://github.com/RWKV/RWKV-LM

https://huggingface.co/RWKV
https://huggingface.co/RWKV
https://github.com/RWKV/RWKV-LM

Published as a conference paper at COLM 2025

Name State Evolution Scalars LS FD DD GE
RWKV-4 s;=e Vos,1+ek o, X v X X
si=eVos,_ |+ ek
RetNet S =wS8;_1+ v[Tkt w Vv X X X
RWKV-5 S;=S;1diag(w) + v!'k; v o vox X
Mamba S;=Si10exp(-(w!DoeexpA)) +(w,0v)Tky v v VvV X
RWKV-6 & GLA S, =8;1diag(w,) + v! 'k, v v v X
HGRN-2 S; = 8,1diag(wy) + vl (1 - wy) v v v X
Mamba-2 Si=wSi1+vlk; w, voX v X
TTT 4 St:St_l—atVl(St_l,kt,Ut) / X X \/
Longhorn S;=Si10U-al'k?) +(ax) Tk, v v v X
Gated DeltaNet Si=wSi(I-arkl k) +avlk, whpa; vX VY
Titans ¢ M;=(1-a)M;_1+S; we,ar Vv X v v
S=wSi-1—a;VI(My_1, ki, vy)
Generalized A Rule Sy = S;_;(diag(w;) + thbt) + U[Tkt v Vv v v
RWKV-7 (ours) S, = 8,1 (diag(w,) -k (a; 0 %))+ vk, v v vV

Table 1: Recent RNN architectures used for language modeling.

LS (Large State): matrix-valued states, or state size at least 4 times larger than the model dimension.

FD (Flexible Decay): the dimension of the decay term w or wy is not smaller than the model dimension.
DD (Dynamic Dependence): the decay term wy is a function over the input x;.

GE (Generalized Eigenvalue): evolution matrix admits eigenvalues outside of the interval [0, 1].

% Shown with mini batch size 1 for simplicity.

short sequences, much of this cost can be covered by modern GPU parallelism techniques (Dao,
2023), but Transformer inference becomes increasingly costly as sequence lengths grow.

This limitation has inspired significant research into the design of recurrent neural network (RNN)
architectures with compressive states that afford linear computational complexity and constant
memory usage, while still allowing highly parallel training. Two of the most commonly proposed
alternatives that satisfy these requirements are linear attention variant models (Katharopoulos
et al., 2020b; Sun et al., 2023; Peng et al., 2024b; Yang et al., 2023a) and State Space Models (Gu
& Dao, 2023). These architectures have grown more sophisticated, with many recent proposals
incorporating some form of the delta rule, as embodied by parallelized DeltaNet (Schlag et al., 2021;
Yang et al., 2024c). Such models have achieved impressive downstream performance results: since
RWKV-4 (Peng et al., 2023), RNN models have shown increasing potential to rival Transformers
when given equivalent model size and training compute, while dramatically reducing inference
costs.

We present a new architecture, RWKV-7 "Goose", which generalizes the delta rule for use in
sequence modeling. First, we add a vector-valued state gating mechanism, enhancing expressivity
and providing implicit positional encoding. Second, we expand the in-context learning rate (see
Section 2) from a scalar to become vector-valued, allowing the model to selectively replace state
data on a channel-wise basis. Third, we decouple the keys at which the delta rule removes from
and adds to the state. Finally, we place these innovations within a modified RWKV-6 architecture,
inheriting important features such as token-shift, bonus, and a ReLU? feedforward network. We
also introduce an expanded 3.1 trillion token RWKV World v3 corpus designed for enhanced
English, code, and multilingual task performance. We use this architecture and corpus to train
new state-of-the-art open-source language models, upgraded from preexisting RWKV-5/RWKV-6
checkpoints.

Our main contributions are as follows:

e The RWKV-7 "Goose" architecture, which dramatically improves downstream bench-
mark performance over RWKV-6 and demonstrates state-of-the-art multilingual perfor-
mance at 3B scale and near SoTA English language performance, despite being trained
on many fewer tokens than the top models in its class.

Published as a conference paper at COLM 2025

* The RWKV World v3 public dataset, comprised of 3.1 trillion tokens of publicly available
multilingual data.

* Public release of four pretrained RWKV-7 World v3 language models, ranging from 0.19
to 2.9 billion parameters trained on 1.6 to 5.6 trillion tokens.

* Public release of three pretrained RWKV-7 Pile language models, using the GPT-NeoX
tokenizer (Black et al., 2022), ranging from 0.17 to 1.47 billion parameters, useful for
comparative study with other architectures.

* Proofs that the generalized delta rule employed in RWKV-7 can solve problems outside of
TC% under the widely held complexity conjecture that TC® # NC!. This includes solving
an S state tracking problem known to be in NC! using only a single layer, and recognizing
all regular languages using only a constant number of layers.

* A method for upgrading the RWKYV architecture without pretraining from scratch,
producing increasingly competitive trained models at reduced computational expense.

2 Background

Linear attention’s major advantage over softmax attention is that it can be formulated as a RNN
with constant running time per token and constant memory usage (Katharopoulos et al., 2020a),
while softmax attention takes O(N) time per token and O(N) memory with regard to sequence
length. Despite this dramatic efficiency improvement, linear attention has its own significant
drawbacks including a fixed-size state that is added to but never truly erased (Schlag et al., 2021;
Han et al.,, 2024; Fan et al., 2025; Yang et al., 2024b).

Delta Rule. DeltaNet (Schlag et al., 2021) sidesteps the problem of additive state by partially
replacing the value stored at the current key with the same amount of a new value, allowing the
model to both take away old memories and add new ones on a per-key basis. It reformulates
the state update as an explicit online learning problem where the goal is to retrieve the correct
value as output for a given key as input. DeltaNet was the first to apply the foundational Error
Correcting Delta Rule (Widrow et al., 1960) to key-value compressive states, akin to those stored
in the RNN formulation of linear attention. This update rule is equivalent to a single step of
stochastic gradient descent, training the state S; at test time to output the desired values v; for

the keys k; as inputs using loss £ = %II (S:k;— vy)|I? and gradient % =SkTk-v'"k, leading to a
recurrent update formula of §; = §;_1 (I — aktT k) + avtTkt, where a is a scalar learning rate. The
ideas behind this internal state update can be traced back to fast weights (Schmidhuber, 1992).

There has been significant recent interest in improvements to DeltaNet, in order to bring its
efficiency and downstream performance in line with Transformers while still capturing the speed
and memory benefits of Linear Attention. Parallelizing DeltaNet (Yang et al., 2024c) showed that
DeltaNet used diagonal plus low-rank (DPLR) state evolution like S4 (Gu et al., 2022), and could be
parallelized across the time dimension, creating a path to efficiently train such models. Our work
further extends that parallelization to cover the generalized delta rule formulation introduced
herein, as well as the specific formula of RWKV-7.

Concurrent Work. Concurrent work with our own has focused on architectural improvements
beyond DeltaNet while still using the delta rule or variations thereof. Longhorn (Liu et al., 2024)
employs an update rule that approximates a closed-form solution to a globally optimal update
objective, applied on an otherwise unchanged Mamba architecture. Gated Delta Networks (Yang
et al., 2024a) applies gating w; to the DeltaNet state, essentially multiplying the transition matrix
by a data-dependent scalar per head. This combines the DeltaNet update rule with the scalar
decay found in some modern RNNs like RetNet and Mamba-2. TTT (Test-Time Training) (Sun
et al,, 2024) and Titans (Behrouz et al., 2024) also both apply scalar decay, but eschew per-step
gradient descent update rules in favor of a batched multi-timestep approach. Titans also adds
momentum to the otherwise classical SGD update applied to the state.

Grazzi et al. (2024) demonstrated the potential for increased expressiveness that comes from
allowing the state transition matrix to contain negative eigenvalues. We show a result signifi-

Published as a conference paper at COLM 2025

cantly beyond this, proving that RWKV-7 and our generalized delta rule can recognize all regular
languages using only a small constant number of layers.*

3 Architecture

Time Mix

|
] Readout

@ | WKV7 ‘4’

Kernel

Time Mix AL

Embedding

Figure 1: RWKV-7 overall architecture. See Appendix F for details.

T
-% o)+Emjjj
ook

whkvy whkvy.| diag(wy) K1 (aOK))

1
~~

Figure 2: A simple illustration of the update mechanism of a single head of RWKV-7’s state. Note
that the actual state size is 64 x 64 per head, not 4 x 4.

Unlike the other work described above, RWKV-7 generalizes the delta update rule into an extended
formula S; = S;_; (diag(wy) + thbt) + v[Tkt to increase expressivity (see Table 1). This is still a
diagonal plus rank one update rule, which admits efficient forms of parallelization (Yang et al.,
2024c). Here, w; is a more expressive data-dependent vector-valued decay, unlike the scalar decays
featured in the other works previously described. Our use of z; and b; in this extended formula
permits a flexible approach to state update, while retaining the important reduction in non-SRAM
memory bandwidth usage that comes from using small data-dependent vectors instead of large
matrices. One example of this flexibility is our use of different removal and replacement keys.

RWKV-7’s extended delta rule replaces data-dependent vector-valued amounts of the state, allow-
ing each key channel in the state to vary independently. We parameterize z; = —k; and b; = k;0 a;
where a; has elements in (0, 1). This keeps the update stable (see Appendix C), while maintaining
increased expressivity. We show ablations for these improvements in Appendix M.2.

RWKV-7 has a non-diagonal and input-dependent transition matrix, allowing it to represent more
complex functions than its predecessors. (Merrill et al., 2024) In fact, we demonstrate that RWKV-7
possesses expressive power surpassing that of TC? under standard complexity conjectures and
can recognize all regular languages with a constant number of layers. One new component of this
power, not present in the original delta rule, is the ability to represent the "copy" state transition
(Lemma 3). This is a key element in our proof. As a result, we have the following theorems:

Theorem 1. RWKV-7 can solve a problem which is NC! -complete under AC° reductions.

Theorem 2. For any regular language, there exists a 4-layer RWKV-7 model that recognizes it.

4For now, we choose to allow only part of the range of possible negative eigenvalues in our pretrained
large language models due to experimentally observed training instabilities.

Published as a conference paper at COLM 2025

See Appendix D for proofs and details.

We replace the main RWKV-6 (Peng et al., 2024b) diagonal transition matrix with our extended delta
rule and make several other changes to the RWKV architecture, observing significant modeling
improvements. These include updates to the channel mixing module and the token shift module.
We remove the data dependency of token-shift and the receptance gating of channel mixing, both
of which contribute to faster training and inference. We increase the use of low-rank projections
to generate more of our intermediate calculations, striking a balance between the total number of
model parameters, training and inference speed, and downstream performance.

4 Method

In this section, we use D to denote the model dimension. Bold capital letters represent trainable
matrices, and vectors without a subscript ¢ are trainable parameters. The first subscript denotes
sequence position and second subscript denotes layer index, where necessary. We use the con-
vention that all vectors are row vectors unless explicitly transposed, so all matrices operate on
the right side, therefore a’ b is an outer product and ab” is an inner one. We use the square
subscript to denote a placeholder for variable names and use the [] sign for cumulative matrix
multiplication. See Appendix G for a pseudocode implementation of these formulas.

4.1 Time Mixing
Weight Preparation Along the lines of (Peng et al., 2024b), we introduce the following notation
templates for common operators in the model, using the square subscript to denote a variable:
lerp(a,b,x) = a+ (b—a) o x, (1)
loramlp(f, x,bias) = f(xAg)Bo + (Ag if bias else 0), 2
Unless explicitly stated, all vectors appearing in this section are dimension D.

We extend the use of low-rank MLP (a 2-layer MLP with small hidden dimension compared to input
and output), abbreviated as loramlp, to implement data dependency using minimal parameters.

The replacement key k, value v, decay w, removal key «, in-context learning rate a, receptance r,
and rwkv gate g parameters are computed as follows (outputs annotated with >):

x‘tj =lerp(xs, xi-1,p0) Oe€fir,k,v,d,a, g}, token shifted inputs 3)
a; = sigmoid(loramlp , (Identity, x{, bias=True)), >in-context learning rate 4
k= xf Wy, key precursor 5)
K=k 04, >removal key (6)
I~ct =k;olerp(1, as,), >replacement key @
v; = sigmoid(loramlp,, (Identity, xt” ,bias=True)), value residual gate 8)

Vl;, 1= x}’ w,, value precursor 9

Vio» layer [=0

Ut = , ,) >value (10)
lerp(vy , Ve Vi) layer [=1

d; =loramlp ,(tanh, xf, bias=True), decay precursor (11)
we = exp(—e‘o'ssigmoid(dt)), >decay (12)

re=x, W, >receptance (13)
8 = loramlp (sigmoid, x‘f ,bias=False) >rwkv gate (14)

{ is alearned parameter representing the removal key multiplier, which transforms the original
key into a version to be removed from the state. In practice, ¢ lies in a range of approximately
[-5.3,9.4].

a is a learned parameter representing the replacement rate booster, which adjusts the amount
added back to the state after the transition matrix is applied.

Published as a conference paper at COLM 2025

Unlike r, k and v which are the main carriers of information, g,d,v and a act like gates which
control the amount of information allowed to pass.

For comprehensive statistics of {, @ and biases of d; observed in the released RWKV-7 model,
including extremum values, mean measurements, and distribution trends, see Appendix O.

For the computation of xtD, we removed data dependency of linear interpolation from RWKV-6 to
improve training speed.

We adapted the idea of Value Residual Learning Zhou et al. (2024) for the computation of v, which
has shown to improve the final language modeling loss. v; represents the value residual mix,
which interpolates between the layer zero and current layer value precursors: vy and vy,;.

We also updated the formula for computation of wy, restricting all entries in (exp(-e~%°),1) in
favor of a smaller condition number for diag(w;), which maintains better training stability, and
was beneficial to accuracy of the backward pass.

The k, in the formula can be regarded as a "normalized key", a design to ensure that the state
of wkv contains columns of O(1) size. Normally, we expect I~c[= k;© (1 - wy), as employed in
RWKV-6c¢ (see Appendix F), so that wkwv, rows are linear interpolations between wkv;_; and vtT k;
controlled by w;. However, to further enhance expressivity, we decide to decouple w; and a;. We
further decouple a; from the amount actually added to the state, allowing the replacement rate
booster «a to interpolate the amount added between the normal in-context learning rate and 1.0.
Importantly, all of these modifications operate on a per-channel basis. The numerical range of
RWKV-7’s wkv entries are generally stable as in RWKV-6¢, unlike RWKV-6, where entries of the
states can accumulate to thousands (see Appendix N for a state visualization).

The Weighted Key Value State Evolution After weight preparation, we reshape (r, w, k v,x a);,
splitting them to & heads, with each head sized D/h. We always assume that # is a factor of D and
heads are equally split. All operations in this section are shown per-head. Before mixing in the
time dimension, x; is normalized per head:

Re=x/lIxell2 (15)

The wkv (Weighted Key Value) is a multi-headed matrix-valued state of fast weights that un-
dergoes dynamic evolution. The evolution of wkv is crucial for encoding context information
by learning at test time to map keys to values. We start by defining the WKV time mixing as the
recurrence relation

0, (16)

wkv, = wkv,_; (diag(w,) - k! (a; 0 k) + v -k a7

wkv

Compared to RWKV-5 and RWKV-6, the wkv in this paper is transposed to ensure consistency
with RWKV-7’s code. The wkv; attention calculation can alternatively be written in a parallel
manner:

t t

wkv, = Z (vl.Tk,- H (diag(wj) —kJ-T(aj ij))) e RP/MxD1h) (18)
i=1 j=i+l

The recurrent transition design has parallels with Schlag et al. (2021), but crucially the transition

matrix

a
G, = diag(w,) -k (a,0%,) = (I— kf(j © fq)) diag(w,) = (I -2&!%,)diag(w,) (19)
t

is no longer a Householder matrix but a scaled approximation of it, as K ; # ff,—t[kt- This mimics a

Householder matrix but with expanded dynamics, while still having all eigenvalues in a stable
range of [-1,1] and allows the network to decay information in all subspaces if necessary. It
contrasts with the case of a Householder-like matrix with learning rate (I — av’ v), a € [0,1], as
used in Schlag et al. (2021); Yang et al. (2024c) where all eigenvalues are one except for the last one
corresponding to 1 — a. Given these properties, we refer to w; as "in-context weight decay" and to
a; as "in-context learning rate" (ICLR). The RWKV-7 transition matrix, therefore, allows for both
dynamic state evolution and approximation to a forget gate at the same time. See Appendix C for
the details on the eigenvalue of the transition matrix, and when the transition matrix is guaranteed
to be stable.

Published as a conference paper at COLM 2025

WKV Bonus and Output All operations in this section are shown per-head unless otherwise
specified. Receptance, which acts like the query found in transformers, is applied to the WKV
state, and the result is normalized. An added bonus, the amount of which is weighted by p, allows
the model to place extra attention on the current shifted input token without requiring it to store
that token in the state.

ur=(ri-(pok)’) v, bonus (20)
p: = LayerNorm(r; wkvtT) + Uy >attention result 21)

Finally, the heads are recombined via reshaping so that p, € R?, gated, and transformed into the
output as follows:

0/ = (8@ pIW,eR” (22)

4.2 MLP

The MLP module of RWKV-7 is no longer identical to the Channel Mixing module of previous
RWKV-4,5,6 architectures (Peng et al., 2024b). We remove the gating matrix W,, making it a
two-layer MLP. In compensation for the removed gating parameters to satisfy the equi-parameter
condition, we set the hidden dimension to be 4 times the size of model dimension.

k; = lerp(x;, xlt—l’ u;c) Wy e R*P (23)
0, = ReLU(K})*W , € R” (24)

5 RWKV World v3 Dataset

We train our models on the new RWKV World v3 Dataset, a new multilingual 3.119 trillion token
dataset drawn from a wide variety of publicly available data sources. This dataset aims to help
close the gap with the amount of data used to train modern LLMs, which may consume as many as
15 - 18 trillion tokens (Qwen et al., 2025; Grattafiori et al., 2024). We select the data to approximate
the distribution of our previous World datasets, including English, multilingual, and code, while
slightly enhancing Chinese novels. We describe the composition of our dataset in Appendix B.

6 Pretrained Models

We have pretrained and publicly released seven Apache 2.0 licensed RWKV-7 models:

1. Trained on Pile: RWKV7-Pile of sizes 0.1B, 0.4B, and 1.4B
2. Trained on RWKV World V3: RWKV7-World-3 of sizes 0.1B, 0.4B, 1.5B, and 2.9B

Due to compute budget constraints, we used a new method to convert and train these models
from upgraded pre-existing RWKV-5 and 6 checkpoints. See Appendix E for details.

7 Experiments

Speed and Memory Usage We test training speed and memory usage of RWKV-7, RWKV-6,
and Flash Attention v3 (Shah et al., 2024) kernels on H100 SXM. Due to linear scaling, RWKV-7
surpasses Flash Attention’s speed around 4096 sequence length. The new RWKV-7 kernel is also
about 3x faster than the official RWKV-6 kernel. See Figure 3 and Appendix I for details.

LM Evaluation Harness Benchmarks We evaluated RWKV-7 alongside several new open models
which are state-of-the-art in their parameter count ranges on a series of common English and
multilingual benchmarks using LM Evaluation Harness v0.4.8 (Gao et al., 2023) in fp32, as shown
in Figures 4 and 7 and Tables 2 and 3.

The RWKV-7-World models establish a new multilingual state-of-the-art for their size, expand-
ing upon RWKV-6-World models already strong capabilities on multilingual benchmarks and
significantly outperforming SmolLM2 (Allal et al., 2025), Llama-3.2 (Grattafiori et al., 2024), and

Published as a conference paper at COLM 2025

304 1201
—eo— RWKV-7

--A~» RWKV-7 fp32
—e— RWKV-6
Flash Attention v3

1001
204 80 4

60 -

Time (ms)

104 404

20 1

500 1k 2k 4k 2k 4k 6k 8k 10k 12k 14k 16k
Sequence Length Sequence Length

Figure 3: Kernel forward-+backward time vs. sequence length (H100)

65 80

Qwen2.5 7B

RWKV7-World3 2.9B

60 78

3B
55 1.58

0.4B
Qwen2.5 0.5B

0.198 / 260M

45 SmolLM2 135M

1.7B
50

Average Accuracy (%)

40 40
1E+20 1E+21 1E+22 1E+23 1E+20 1E+21 1E+22 1E+23

Training FLOPs (log scale) Training FLOPs (log scale)

Figure 4: FLOPS vs. average benchmark accuracy for multilingual (left) and English (right). Multi-
lingual benchmarks omit Pile models due to a lack of multilingual training data in the Pile.

Qwen-2.5 (Qwen et al., 2025). We find that RWKV-7 is generally able to match the English perfor-
mance of Qwen2.5 despite being trained on less than one third as many training tokens. In Figure
4 we plot FLOPs used for training versus average accuracy across the same sets of common bench-
marks, demonstrating a very dramatic multilingual Pareto improvement versus the transformer
models. We theorize that the difference would be even greater were we less compute constrained
and able to train from scratch, instead of from pretrained checkpoints of earlier RWKV versions.

Mechanistic Architecture Design We evaluate RWKV-7 on the Mechanistic Architecture Design
(MAD) benchmark (Poli et al., 2024), a suite of synthetic token manipulation tasks designed to
probe architectural capabilities in sequence modeling, as shown in Table 4.

RWKV-7 achieves the highest average score across all six tasks, outperforming previous architec-
tures. It demonstrates perfect accuracy on In-Context and Noisy Recall tasks, matching DeltaNet
while setting a new state-of-the-art for Fuzzy Recall. RWKV-7 also shows strong performance in
memorization and selective copying, suggesting effective combination of attention-based and
recurrent model strengths.

Recent Internet Data Evaluation Despite careful data cleaning, benchmark data leakage remains
a challenge, potentially compromising the validity of these evaluations. To complement traditional
benchmarks, we evaluated RWKV-7 and other leading open-source models using temporally novel
internet data, from after the models’ training periods, removing data leakage concerns. See Table
5 and Appendix J.3 for full discussion and results.

Published as a conference paper at COLM 2025

Model Tokens Imb.o hella piqga arcE arcC glue WG sciq mmlu avg
(Name) (T) acct acc_n! acct acc! acc] “acct accl accl acc! acct
RWKV5-World1-0.1B 0.6 38.4 319 614 442 199 455 529 763 23.1 437
SmolLM2-135M 2.0 42.9 43.1 68.4 64.4 28.1 49.0 53.0 84.0 25.8 51.0
RWKV7-World2.8-0.1B 1.6 48.1 42.1 673 593 255 481 52.7 86.3 25.4 505
RWKV5-World2-0.4B 1.1 54.0 409 66.5 54.0 24.0 50.0 532 86.9 23.8 50.4
SmolLM2-360M 4.0 53.8 56.4 72.1 70.4 36,5 50.7 59.0 91.2 26.3 57.4
Qwen2.5-0.5B 18.0 52.5 521 70.2 64.6 29.5 54.7 56.4 93.1 47.8 57.9
RWKV7-World2.9-0.4B 3.1 58.6 56.8 72.9 68.7 31.9 494 59.9 89.7 26.1 57.1
RWKV6-World2.1-1.6B 2.5 67.4 61.1 744 643 31.0 51.0 60.7 89.5 25.1 58.3
Llama3.2-1B b15.0 63.0 63.7 745 655 313 49.7 60.7 914 32.1 59.1
SmolLM2-1.7B 11.0 67.7 715 77.0 777 44,7 515 66.1 93.3 50.3 66.6
Qwen2.5-1.5B 18.0 63.0 67.7 758 755 412 65.0 634 94.2 61.0 67.4
RWKV7-World3-1.5B 5.6 69.5 708 77.1 78.1 44,5 624 68.2 943 43.3 67.6
RWKV6-World2.1-3B 2.5 71.7 68.4 76.4 712 356 563 663 92.2 28.3 629
Llama3.2-3B b15.0 70.5 73.6 76.7 745 422 50.7 699 95.7 56.5 67.8
Qwen2.5-3B 18.0 67.1 735 786 774 450 70.2 685 96.2 65.7 714
RWKV7-World3-2.9B 5.6 73.4 76.4 79.7 81.0 48.7 61.8 72.8 950 55.0 71.5

@ glue is the average accuracy of 8 subtasks: mnli, mnli_mismatch, mrpc, qnli, qqp, rte, sst2 and wnli
b 1]ama3.2-1B and 3B were pruned and distilled from Llama3.1-8B (Grattafiori et al., 2024)

Table 2: English focused benchmarks, including LAMBADA (Imb.o) (Paperno et al., 2016),
Hellswag (hella) (Hampel, 1974), PIQA (Bisk et al., 2020), AI2 ARC (arcE, arcC) (Bhakthavatsalam
etal., 2021), GLUE (Wang et al., 2018), Winogrande (WG) (Sakaguchi et al., 2021), SciQ (Welbl et al.,

2017), MMLU (Hendrycks et al., 2021). MMLU 5-shot, others 0-shot.

Model Tokens Imb.m Imb.m pawsx xcopa xnli xsClz xwin avg
(Name) (T “ppl] accl acct acc! accl acc! acc] accl
RWKV5-World1-0.1B 0.6 270 22.0 48.6 53.0 36.1 51.7 59.5 45.1
SmolLM2-135M 2.0 1514 18.6 51.2 52.2 349 50.6 61.7 449
RWKV7-0.1B 1.6 114 31.6 46.1 53.3 37.6 52.6 64.1 47.5
RWKV5-World2-0.4B 1.1 66 36.8 49.5 54.0 38.5 54.1 65.6 49.8
SmolLM2-360M 4.0 389 25.8 514 51.7 36.0 51.2 67.8 47.3
Qwen2.5-0.5B 18.0 108 329 52.6 54.4 38.6 53.9 67.8 50.0
RWKV7-World3-0.4B 3.1 52 39.6 48.7 55.4 40.3 55.3 72,9 52.0
RWKV6-World2.1-1.6B 2.5 28 47.2 52.5 58.1 41.4 58.2 76.5 55.7
Llama3.2-1B b15.0 52 39.0 53.9 55.3 41.2 56.6 72.2 53.0
SmolLM2-1.7B 11.0 85 37.1 56.5 53.1 38.1 54.1 72.8 52.0
Qwen2.5-1.5B 18.0 49 40.0 55.3 574 40.6 57.7 75.8 54.5
RWKV7-World3-1.5B 5.6 25 48.4 54.8 59.7 43.7 614 79.8 58.0
RWKV6-World2.1-3B 2.5 21 51.0 53.4 60.2 42.7 61.3 78.8 57.9
Llama3.2-3B b15.0 30 459 599 585 442 606 792 58.1
Qwen2.5-3B 18.0 36 435 533 590 385 596 798 55.6
RWKV7-World3-2.9B 5.6 18 52.9 58.2 63.1 454 64.7 824 61.1

@ The perplexity is the geometric mean, rather than arithmetic average, across 5 languages
b 1]ama3.2-1B and 3B were pruned and distilled from Llama3.1-8B (Grattafiori et al., 2024)

Table 3: Multilingual benchmarks, including LAMBADA Multilingual (Imb.m) (Gao et al., 2023),
XCOPA (Ponti et al., 2020), XNLI (Conneau et al., 2018),XStoryCloze (xsClz) (Lin et al., 2022),
xWinogrande (xwin) (Tikhonov & Ryabinin, 2021). All 0-shot.

Additional Evaluations Please see Appendices J, K, L, and M for extended evaluations, multi-
modal experiments, and ablations.

8 Conclusions

We introduced RWKV-7, a novel RNN architecture that achieves state-of-the-art performance for its
size across a wide range of benchmarks, rivaling even highly optimized models such as Qwen2.5
despite being trained on many fewer tokens. As an RNN, RWKV-7 maintains high parameter

https://huggingface.co/HuggingFaceTB/SmolLM2-135M
https://huggingface.co/HuggingFaceTB/SmolLM2-360M
https://huggingface.co/Qwen/Qwen2.5-0.5B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B
https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/HuggingFaceTB/SmolLM2-135M
https://huggingface.co/HuggingFaceTB/SmolLM2-360M
https://huggingface.co/Qwen/Qwen2.5-0.5B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B
https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/Qwen/Qwen2.5-3B

Published as a conference paper at COLM 2025

Model Compress Fuzzy In-Context Memorize Noisy Selective Avg
Recall Recall Recall Copy
RWKV-7 44.5 43.2 100 89.1 100 98.8 79.3
Transformer 51.6 29.8 94.1 85.2 86.8 99.6 74.5
Multihead Hyena 44.8 14.4 99.0 89.4 98.6 93.0 73.2
DeltaNet 42.2 35.7 100 52.8 100 100 71.8
Mamba 52.7 6.7 90.4 89.5 90.1 86.3 69.3
Hyena 45.2 7.9 81.7 89.5 78.8 93.1 66.0
GLA 38.8 6.9 80.8 63.3 81.6 88.6 60.0

Results for comparison models from Yang et al. (2024c)

Table 4: Results on the MAD benchmark

arXiv arXiv Github Github AO3 BBC Wiki

Model CS| Phys.| Python| C++| Eng| news| Eng| average]

Qwen2.5-1.5B 8.12 8.65 4.42 440 11.76 9.58 9.49 8.06
RWKV-7 1.5B 8.25 8.77 5.57 5.29 10.93 9.34 8.97 8.16
Llama-3.2-1B 8.37 8.76 5.18 5.16 11.69 9.34 9.07 8.23
SmolLM2-1.7B 8.38 9.04 5.17 494 11.20 9.40 9.46 8.23

Table 5: Compression rate of LLMs on post January 2025 data sources

efficiency, linear time complexity, and constant memory usage, offering a compelling alternative
to transformers.

Limitations Despite its strengths, the architecture and models have some limitations, including
prompt sensitivity, kernel precision limits, and a lack of full instruct and alignment tuning. We also
believe that downstream performance has been restricted by our access to less training compute
than other top models. See Appendix Q for a detailed discussion.

Future Work We plan to train larger models, investigate training speed improvements, and
train reasoning models that can take advantage of increased inference time compute. Please see
Appendix R for details.

Acknowledgments

We extend our gratitude to Shenzhen Yuanshi Intelligent Co. Ltd. and Shanghai Yuanwo Intelligent
Co. Ltd. for providing computational resources and their dedication to promoting and com-
mercializing RWKV. We thank Featherless Al for their extensive experimentation with the RWKV
architecture and their contributions to this paper. We are grateful to the members of the RWKV
and EleutherAlI Discord communities for their collaborative efforts in extending the applicability
of RWKV to diverse domains. We extend a special thank you to Stella Biderman, Songlin Yang and
Yu Zhang. Eric Alcaide acknowledges support for this work from the Swiss State Secretariat for
Education, Research and Innovation (SERI) under contract number 23.00421.

10

https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B

Published as a conference paper at COLM 2025

References

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martin Bldzquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek, Agustin Piqueres Lajarin, Vaibhav Srivastay,
Joshua Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clémentine Fourrier, Ben Burtenshaw,
Hugo Larcher, Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin Raffel, Leandro von Werra, and
Thomas Wolf. Smollm2: When smol goes big — data-centric training of a small language model,
2025. URLhttps://arxiv.org/abs/2502.02737.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri Rudra,
and Christopher Re. Zoology: Measuring and improving recall in efficient language models,
2023.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model
for mathematics. In The Twelfth International Conference on Learning Representations, 2024.
URLhttps://openreview.net/forum?id=4WngRR9157.

David A. Barrington. Bounded-width polynomial-size branching programs recognize exactly those
languages in ncl. Journal of Computer and System Sciences, 38(1):150-164, 1989. URL https:
//www.sciencedirect.com/science/article/pii/0022000089900378.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time, 2024.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, February 2024a. URL https://huggingface.co/datasets/HuggingF
aceTB/cosmopedia.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Smollm-corpus, July 2024b. URL https://huggingface.co/datasets/HuggingFac
eTB/smollm-corpus.

Sumithra Bhakthavatsalam, Daniel Khashabi, Tushar Khot, Bhavana Dalvi Mishra, Kyle Richardson,
Ashish Sabharwal, Carissa Schoenick, Oyvind Tafjord, and Peter Clark. Think you have solved
direct-answer question answering? try arc-da, the direct-answer ai2 reasoning challenge. arXiv
preprint arXiv:2102.03315, 2021.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Sidney Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, Usvsn Sai Prashanth,
Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, and Samuel Weinbach. GPT-
NeoX-20B: An open-source autoregressive language model. In Angela Fan, Suzana Ilic, Thomas
Wolf, and Matthias Gallé (eds.), Proceedings of BigScience Episode #5 — Workshop on Chal-
lenges & Perspectives in Creating Large Language Models, pp. 95-136, virtual+Dublin, May 2022.
Association for Computational Linguistics. doi: 10.18653/v1/2022.bigscience-1.9. URL
https://aclanthology.org/2022.bigscience-1.09.

Ke Chen, Xingjian Du, Bilei Zhu, Zejun Ma, Taylor Berg-Kirkpatrick, and Shlomo Dubnov. Hts-at:
A hierarchical token-semantic audio transformer for sound classification and detection. In
ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 646-650. IEEE, 2022.

Yingfa Chen, Xinrong Zhang, Shengding Hu, Xu Han, Zhiyuan Liu, and Maosong Sun. Stuffed
mamba: State collapse and state capacity of rnn-based long-context modeling, 2024a. URL
https://arxiv.org/abs/2410.07145.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:

Efficient fine-tuning of long-context large language models, 2024b. URL https://arxiv.
org/abs/2309.12307.

11

https://arxiv.org/abs/2502.02737
https://openreview.net/forum?id=4WnqRR915j
https://www.sciencedirect.com/science/article/pii/0022000089900378
https://www.sciencedirect.com/science/article/pii/0022000089900378
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus
https://aclanthology.org/2022.bigscience-1.9
https://arxiv.org/abs/2410.07145
https://arxiv.org/abs/2309.12307
https://arxiv.org/abs/2309.12307

Published as a conference paper at COLM 2025

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp.
2475-2485, 2018.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. In The
Twelfth International Conference on Learning Representations, 2023.

Dao Al Lab. Causal convld. https://github.com/Dao-AILab/causal-convld, 2023.
Accessed: 2025-02-26.

DeepSeek-Al, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian Yang, Deli
Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen,
Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Jiaqi Ni, Jiashi Li,
Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, Junxiao Song,
Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu Chen, Qiushi Du, R.]J. Chen, R. L. Jin, Ruiqi
Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye,
Shirong Ma, Shiyu Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao
Yun, Tian Pei, Tianyu Sun, W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi,
Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai
Yu, Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin,
Y. K. Li, Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang, Yifan
Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan
Liu, Yonggiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxiang You, Yuxuan Liu,
Yuyang Zhou, Z. E Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhen Huang, Zhen
Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhigang Yan,
Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun
Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and Zizheng Pan. Deepseek-v3 technical report,
2025. URLhttps://arxiv.org/abs/2412.19437.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise Duquenne, Elliot Catt, Tim Genewein, Christopher
Mattern, Jordi Grau-Moya, Li Kevin Wenliang, Matthew Aitchison, Laurent Orseau, Marcus
Hutter, and Joel Veness. Language modeling is compression, 2024. URL https://arxiv.or
g/abs/2309.10668.

Yuchen Duan, Weiyun Wang, Zhe Chen, Xizhou Zhu, Lewei Lu, Tong Lu, Yu Qiao, Hongsheng
Li, Jifeng Dai, and Wenhai Wang. Vision-rwkv: Efficient and scalable visual perception with
rwkv-like architectures. arXiv preprint arXiv:2403.02308, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. https://transformer-circuits.pub/2021/framework/index.html.

Qihang Fan, Huaibo Huang, and Ran He. Breaking the low-rank dilemma of linear attention, 2025.
URLhttps://arxiv.org/abs/2411.07635.

Logan Ford, Hao Tang, Francois Grondin, and James R Glass. A deep residual network for large-
scale acoustic scene analysis. In InterSpeech, pp. 2568-2572, 2019.

12

https://github.com/Dao-AILab/causal-conv1d
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2309.10668
https://arxiv.org/abs/2411.07635

Published as a conference paper at COLM 2025

Daniel Y. Fu, Tri Dao, Khaled K. Saab, Armin W. Thomas, Atri Rudra, and Christopher Re. Hungry
hungry hippos: Towards language modeling with state space models, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The pile: An 800gb
dataset of diverse text for language modeling, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset for
audio events. In 2017 IEEE international conference on acoustics, speech and signal processing
(ICASSP), pp. 776-780. IEEE, 2017.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
renev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab Al-
Badawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzman,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme
Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov,
Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kar-
tikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika
Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens
van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo
Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti,
Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu
Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan,
Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning
Zhang, Olivier Duchenne, Onur Celebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar
Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin
Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Sil-
veira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel,
Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui
Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim,
Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan,
Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler,
Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vin-
cent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan
Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiao-
qing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur,
Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha
Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay
Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit

13

https://zenodo.org/records/10256836

Published as a conference paper at COLM 2025

Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,
Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco,
Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf
Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth
Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram
Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton,
Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang
Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa
Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik
Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filip-
pos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina
Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou,
Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren,
Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet
Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein,
Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard,
Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan
Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly
Michelena, Kegian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen,
Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron
Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus,
Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi,
Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel,
Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha
Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta,
Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar
Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip
Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj,
Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani,
Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta,
Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh
Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng,
Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shugiang Zhang, Shugiang
Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen
Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,
Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,
Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,
Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mi-
hailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable,
Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun
Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang,
Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick,
Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024.
URLhttps://arxiv.org/abs/2407.21783.

Riccardo Grazzi, Julien Siems, Jorg K. H. Franke, Arber Zela, Frank Hutter, and Massimiliano
Pontil. Unlocking state-tracking in linear rnns through negative eigenvalues, 2024. URLhttps:
//arxiv.org/abs/2411.12537.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023.
Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured

state spaces, 2022.

14

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2411.12537
https://arxiv.org/abs/2411.12537

Published as a conference paper at COLM 2025

Frank R Hampel. The influence curve and its role in robust estimation. Journal of the american
statistical association, 69(346):383-393, 1974.

Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and
Gao Huang. Bridging the divide: Reconsidering softmax and linear attention, 2024. URL
https://arxiv.org/abs/2412.06590.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding, 2021. URLhttps://ar
xiv.org/abs/2009.03300.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Haowen Hou, Peigen Zeng, Fei Ma, and Fei Richard Yu. Visualrwkv: Exploring recurrent neural
networks for visual language models. ArXiv, abs/2406.13362,2024. URL https://api.se
manticscholar.org/CorpusID:270620870.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 6693-6702, 2019. URLhttps://api.semanticscholar.
org/CorpusID:152282269.

Jean Kaddour. The minipile challenge for data-efficient language models, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Francois Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on
machine learning, pp. 5156-5165. PMLR, 2020a.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and Fran cois Fleuret. Transformers
are rnns: Fast autoregressive transformers with linear attention. Proceedings of the 37 th
International Conference on Machine Learning, 2020b.

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Gadre, Hritik Bansal, Etash
Guha, Sedrick Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff, Reinhard Heckel,
Jean Mercat, Mayee Chen, Suchin Gururangan, Mitchell Wortsman, Alon Albalak, Yonatan
Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh, Josh Gardner,
Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah Pratt, Sunny Sanyal, Gabriel Ilharco, Giannis
Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Chandu, Thao Nguyen, Igor
Vasiljevic, Sham Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri, Sewoong Oh, Luke
Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander Toshev, Stephanie Wang,
Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas Kollar, Alexandros G.
Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar. Datacomp-Im: In
search of the next generation of training sets for language models, 2024a.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, Jodo Monteiro,
Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee, Logesh Kumar
Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang, Rudra Murthy,
Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan
Zhang, Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer
Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer
Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish Contractor, Siva Reddy, Daniel
Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis, Sean Hughes, Thomas Wolf,
Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder: may the source be with you!,
2023a.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji rong Wen. Evaluating object
hallucination in large vision-language models. In Conference on Empirical Methods in Natural
Language Processing, 2023b. URLhttps://api.semanticscholar.org/CorpusID:
258740697.

15

https://arxiv.org/abs/2412.06590
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://api.semanticscholar.org/CorpusID:270620870
https://api.semanticscholar.org/CorpusID:270620870
https://api.semanticscholar.org/CorpusID:152282269
https://api.semanticscholar.org/CorpusID:152282269
https://api.semanticscholar.org/CorpusID:258740697
https://api.semanticscholar.org/CorpusID:258740697

Published as a conference paper at COLM 2025

Yucheng Li, Yunhao Guo, Frank Guerin, and Chenghua Lin. Evaluating large language models for
generalization and robustness via data compression, 2024b. URLhttps://arxiv.org/ab
s/2402.00861.

Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott,
Naman Goyal, Shruti Bhosale, Jingfei Du, et al. Few-shot learning with multilingual generative
language models. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 9019-9052, 2022.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
models are amortized online learners, 2024. URL https://arxiv.org/abs/2407.142
07.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/Hu
ggingFaceFW/fineweb-edu.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and A. Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. ArXiv, abs/2209.09513, 2022. URLhttps://api.semantic
scholar.org/CorpusID:252383606.

Shahar Lutati, Itamar Zimerman, and Lior Wolf. Focus your attention (with adaptive iir filters),
2023.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model of
large-batch training. ArXiv, abs/1812.06162, 2018. URLhttps://api.semanticschola
r.org/CorpusID:56262183.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought,
2024. URL https://arxiv.org/abs/2310.07923.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
ArXiv, abs/2404.08819, 2024. URL https://api.semanticscholar.org/CorpusID:
269149086.

Igor Molybog, Peter Albert, Moya Chen, Zachary DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva, Binh Tang, Diana Liskovich, Puxin Xu,
Yuchen Zhang, Melanie Kambadur, Stephen Roller, and Susan Zhang. A theory on adam
instability in large-scale machine learning, 2023. URLhttps://arxiv.org/abs/2304.0
9871.

Catherine Olsson, Nelson Flhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads, 2022.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev, and Jimmy Ba. Openwebmath: An open
dataset of high-quality mathematical web text, 2023.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman, Huanqi
Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian Du, Matteo Grella, Kranthi Gy,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming Kong, Barttomiej Koptyra,
Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song,
Xiangru Tang, Johan Wind, Stanistaw WoZniak, Zhenyuan Zhang, Qinghua Zhou, Jian Zhu, and
Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023,
pp- 14048-14077, Singapore, December 2023. Association for Computational Linguistics. doi:

16

https://arxiv.org/abs/2402.00861
https://arxiv.org/abs/2402.00861
https://arxiv.org/abs/2407.14207
https://arxiv.org/abs/2407.14207
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:252383606
https://api.semanticscholar.org/CorpusID:56262183
https://api.semanticscholar.org/CorpusID:56262183
https://arxiv.org/abs/2310.07923
https://api.semanticscholar.org/CorpusID:269149086
https://api.semanticscholar.org/CorpusID:269149086
https://arxiv.org/abs/2304.09871
https://arxiv.org/abs/2304.09871

Published as a conference paper at COLM 2025

10.18653/v1/2023.findings-emnlp.936. URL https://aclanthology.org/2023.find
ings—-emnlp.936.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, Przemystaw Kazienko, Kranthi Kiran GV,
Jan Kocon, Barttomiej Koptyra, Satyapriya Krishna, Ronald McClelland Jr., Jiaju Lin, Niklas
Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin Tu, Cahya Wirawan, Stanistaw
Wozniak, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Peng Zhou, Jian Zhu, and Rui-Jie
Zhu. Eagle and finch: Rwkv with matrix-valued states and dynamic recurrence, 2024a. URL
https://arxiv.org/abs/2404.05892.

Bo Peng, Daniel Goldstein, Quentin Gregory Anthony, Alon Albalak, Eric Alcaide, Stella Bider-
man, Eugene Cheah, Teddy Ferdinan, Kranthi Kiran GV, Haowen Hou, Satyapriya Krishna,
Ronald McClelland Jr., Niklas Muennighoff, Fares Obeid, Atsushi Saito, Guangyu Song, Haoqin
Tu, Ruichong Zhang, Bingchen Zhao, Qihang Zhao, Jian Zhu, and Rui-Jie Zhu. Eagle and finch:
RWKYV with matrix-valued states and dynamic recurrence. In First Conference on Language
Modeling, 2024b. URL https://openreview.net/forum?id=soz1SEiPeq.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio,
Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language
models. In International Conference on Machine Learning, pp. 28043-28078. PMLR, 2023.

Michael Poli, Armin W Thomas, Eric Nguyen, Pragaash Ponnusamy, Bjorn Deiseroth, Kris-
tian Kersting, Taiji Suzuki, Brian Hie, Stefano Ermon, Christopher Ré, Ce Zhang, and Ste-
fano Massaroli. Mechanistic design and scaling of hybrid architectures, 2024. URL https:
//arxiv.org/abs/2403.17844.

Edoardo Maria Ponti, Goran Glavas, Olga Majewska, Qianchu Liu, Ivan Vuli¢, and Anna Korhonen.
XCOPA: A multilingual dataset for causal commonsense reasoning. In Bonnie Webber, Trevor
Cohn, Yulan He, and Yang Liu (eds.), Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 2362-2376, Online, November 2020. Association
for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.185. URL https:
//aclanthology.org/2020.emnlp-main.185.

Qwen, :;, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tianyi
Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan,
Yuqgiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025. URL
https://arxiv.org/abs/2412.151165.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019. URLhttps://arxiv.org/abs/
1911.05507.

Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. J. ACM, 54(4):21-es, July 2007. ISSN 0004-5411. doi: 10.1145/12
55443.1255449. URLhttps://doi.org/10.1145/1255443.12554409.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99-106,
2021.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber. Linear transformers are secretly fast weight
programmers, 2021. URLhttps://arxiv.org/abs/2102.11174.

Jirgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic
recurrent networks. Neural Computation, 4(1):131-139, 1992. doi: 10.1162/neco.1992.4.1.131.

John Schultz, Jakub Adamek, Matej Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin, Daniel
Hennes, Jeremy Shar, Cannada Lewis, Anian Ruoss, Tom Zahavy, Petar Velickovi¢, Laurel Prince,

17

https://aclanthology.org/2023.findings-emnlp.936
https://aclanthology.org/2023.findings-emnlp.936
https://arxiv.org/abs/2404.05892
https://openreview.net/forum?id=soz1SEiPeq
https://arxiv.org/abs/2403.17844
https://arxiv.org/abs/2403.17844
https://aclanthology.org/2020.emnlp-main.185
https://aclanthology.org/2020.emnlp-main.185
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://doi.org/10.1145/1255443.1255449
https://arxiv.org/abs/2102.11174

Published as a conference paper at COLM 2025

Satinder Singh, Eric Malmi, and Nenad TomasSev. Mastering board games by external and
internal planning with language models, 2024. URLhttps://arxiv.org/abs/2412.1
2119.

Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao. Flash-
attention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 10, 2024.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read, 2019.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bl1Yy1BxCZ.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan
Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPajama. https:
//www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-ded
uplicated-version—-of-redpajama, June 2023. URLhttps://huggingface.co
/datasets/cerebras/SlimPajama-627B.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson, Russell Authur,
Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, Valentin Hofmann, Ananya Harsh
Jha, Sachin Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ilan Magnusson, Jacob Morrison, Niklas
Muennighoff, Aakanksha Naik, Crystal Nam, Matthew E. Peters, Abhilasha Ravichander, Kyle
Richardson, Zejiang Shen, Emma Strubell, Nishant Subramani, Oyvind Tafjord, Pete Walsh, Luke
Zettlemoyer, Noah A. Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge,
and Kyle Lo. Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining
Research. arXiv preprint, 2024.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, Tatsunori Hashimoto, and Carlos Guestrin. Learning to
(learn at test time): Rnns with expressive hidden states, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models, 2023.

Alexey Tikhonov and Max Ryabinin. It’s all in the heads: Using attention heads as a baseline for
cross-lingual transfer in commonsense reasoning. In Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021, pp. 3534-3546, 2021.

Oguzhan Topsakal, Colby Jacob Edell, and Jackson Bailey Harper. Evaluating large language
models with grid-based game competitions: An extensible llm benchmark and leaderboard,
2024. URLhttps://arxiv.org/abs/2407.07796.

Various. Archive of our own, 2025. URL https://archiveofourown.org.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, t. ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc., 2017. URLhttps://proceedings.
neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053clc
4a845aa—-Paper.pdf.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel Bowman. Glue: A
multi-task benchmark and analysis platform for natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP, pp. 353-355, 2018.

Jason Wei, Maarten Bosma, Vincent Y. Zhao abd Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners, 2021.

18

https://arxiv.org/abs/2412.12119
https://arxiv.org/abs/2412.12119
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://arxiv.org/abs/2407.07796
https://archiveofourown.org
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Published as a conference paper at COLM 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances
in Neural Information Processing Systems, 2022. URL https://openreview.net/forum
?id=_VjQlMeSB_J.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94-106, 2017.

Bernard Widrow, Marcian E Hoff, et al. Adaptive switching circuits. In IRE WESCON convention
record, volume 4, pp. 96-104. New York, 1960.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned llms with
nothing, 2024. URLhttps://arxiv.org/abs/2406.08464.

Takuto Yamana. Egaroucid, January 2025. URL https://www.egaroucid.nyanyan.dev/.

Songlin Yang and Yu Zhang. Fla: A triton-based library for hardware-efficient implementations of
linear attention mechanism, January 2024. URL https://github.com/fla-org/fla
sh—-linear—-attention.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training, 2023a.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule, 2024a.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar Panda, and Yoon Kim. Gated linear attention
transformers with hardware-efficient training, 2024b. URL https://arxiv.org/abs/23
12.06635.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transformers
with the delta rule over sequence length, 2024c. URLhttps://arxiv.org/abs/2406.0
6484.

Xiaocong Yang, James Y. Huang, Wenxuan Zhou, and Muhao Chen. Parameter-efficient tuning
with special token adaptation, 2023b. URLhttps://arxiv.org/abs/2210.04382.

Weihao Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? arXiv preprint
arXiv:2405.07992, 2024.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees, 2024.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. Advances in Neural Information Processing Systems, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence?, 2019. URL https://arxiv.org/abs/1905.07830.

Yifan Zhang, Yifan Luo, Yang Yuan, and Andrew Chi-Chih Yao. Training and evaluating language
models with template-based data generation. arXiv preprint arXiv:2411.18104, 2024.

Zhanchao Zhou, Tianyi Wu, Zhiyun Jiang, and Zhenzhong Lan. Value residual learning for alleviat-
ing attention concentration in transformers, 2024. URL https://arxiv.org/abs/2410
.17897.

Alex Zhuang, Ge Zhang, Tianyu Zheng, Xinrun Du, Junjie Wang, Weiming Ren, Stephen W. Huang,
Jie Fu, Xiang Yue, and Wenhu Chen. Structlm: Towards building generalist models for structured
knowledge grounding, 2024.

Nicolas Zucchet and Antonio Orvieto. Recurrent neural networks: vanishing and exploding
gradients are not the end of the story, 2024. URLhttps://arxiv.org/abs/2405.21064.

19

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2406.08464
https://www.egaroucid.nyanyan.dev/
https://github.com/fla-org/flash-linear-attention
https://github.com/fla-org/flash-linear-attention
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2312.06635
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2406.06484
https://arxiv.org/abs/2210.04382
https://arxiv.org/abs/1905.07830
https://arxiv.org/abs/2410.17897
https://arxiv.org/abs/2410.17897
https://arxiv.org/abs/2405.21064

Published as a conference paper at COLM 2025

A Author Contributions

BoPeng Original RWKV-7 ideas, original code, performance optimizations, original experiments,
dataset composition, and trained models from 0.1B to 2.9B.

Ruichong Zhang Personnel organization, wrote Sections 3, 4, 7, J.2, 8 and Appendices C, E, H, N,
M.1, P, Figures 1, 2, 5, 6, 15, 16 and Tables 1, 2, 3, 14, 9, 11, 12, 13, 19, 21. Additional contributions on
implementing RWKV-7 for Flash-linear-attention and converting RWKV-7 models on HuggingFace.

Daniel Goldstein Manuscript organization, initial draft sections 1, 2, 3, 4, 5, FLOPS portion of 7,
figures 4 and 7, and appendices B, F, G. Proofreading and revisions of full manuscript. Oversaw
and chose experiments for Appendix M.2 and for pass-key in subsection J.4. Assistance with
Appendix D revisions and ideas. Developed and tested initial RWKV-7 Hugging Face model code.

Eric Alcaide Section 3, validation of CUDA kernels for scalable training, and manuscript proof-
reading.

Xingjian Du Experiments and writing of audio modeling in Appendix K.2

Haowen Hou Wrote Section K.1, covering architectural design, coding, model training, experi-
mental evaluation, as well as figure (Figure 12), table (Table 17), and text writing.

JiajuLin Experiments and writing audio modeling in Appendix K.2
Jiaxing Liu Experiments and writing audio modeling in Appendix K.2

JannaLu Needle-in-haystack evaluations for Section J.4, experiments for figure 4, figure 7, figure
10, table 2, and table 19. Edits to Section 1, G and abstract.

William Merrill Developmental discussion, proofreading and revisions for Appendix D.
Guangyu Song Section 7. Experiments for 7

Kaifeng Tan Section 7, Figures 8, 9. Appendix L on board game modeling with Othello/Reversi,
including training data design, model implementation, experiments, and result analysis.

Saiteja Utpala Section J.5 and state tracking experiments for Figure 11.

Nathan Wilce Extended context-length dataset development and extended-length model train-
ing. Description of extended context-length dataset in J.4

Johan S. Wind Main author of RWKV-7 CUDA kernel implementations. Experiments for Figure 3.
Section 7 and Appendices I, D. Contributions to Appendix C.

TianyiWu Appendix D and Appendix O. Contributions to section 4 and Appendix C (proofreading
and revisions).

Daniel Wuttke Constructed an itemized table of v2-v3 world datasets. Proofreading and revision
of the manuscript. Contributed to Abstract, Sections 1 and B. Contributed to Tables 6, 7, 8, and 12
Performed evaluations of RWKV-7 world models and reference base models (Table 2 and 3).

Christian Zhou-Zheng Experiments and writing for Appendix M.2 and Table 20. Contributions
to Sections 1 and 2. Proofreading and revisions of full manuscript.

20

Published as a conference paper at COLM 2025

B Training Dataset Details

The RWKV World v3 corpus builds upon the RWKV World v2 corpus (Peng et al., 2024b) in two
steps that we describe separately here for the purposes of reproducibility for the Goose training
runs: World v2.1 adds the entries listed in Table 6 to sum to a total of approximately 1.4 trillion
RWKYV World Tokenizer tokens. World v3 adds more entries, listed in Table 7, to sum to a total of
approximately 3.1 trillion tokens. In the combined corpora, all tokens are given equal weighting

unless otherwise noted.

Dataset Domain Dataset Domain
slimpajama C4 Web Llama-3-Magpie-Pro-1M-v0.1 Align
dolma v1.6 (reddit only)# Forums Magpie-Pro-MT-300K-v0.1 Align
glaive-code-assistant-v3 Code Magpie-Air-MT-300K-v0.1 Align
m-a-p_Code-Feedback Code Magpie-Qwen2-Pro-1M-v0.1 Align
cosmopedia-v0.1 Synthetic Magpie-Phi3-Pro-300K-Filtered- Align
SystemChat-2.0 Instruct vl

Tess-v1.5 Instruct Magpie-Gemma2-Pro-200K- Align
Ultralnteract_sft Instruct Filtered-v0.1

Table 6: Components added into the RWKV World v2.1 dataset, their source links, and their

domains.
%We added only the reddit datasets from dolma v1.6

b DM_math as part of The Pile was in World v2 but missed being mentioned explicitly in (Peng et al., 2024b)

Dataset Domain Dataset Domain
REMOVED slimpajama parts® Web StarCoder® Code
dclm-baseline-10-of-10? Web python-edu Code
ccnews Web cosmopedia-v0.2 Synthetic
fineweb-edu Web Edu WeblnstructSub Forums
TemplateGSM Math Buzz-vl.2 Instruct
open-web-math Math SKGInstruct Instruct
algebraic-stack Math FLAN Instruct

Table 7: Components added into the RWKV World v3 dataset, their source links, and their domains.
“We removed the CC and C4 components of SlimPajama from the corpus for World v3

bFor DCLM-baseline, we include only global-shard_10_of_10

“For StarCoder, we now include all datasets, instead of just those datasets with at least 10 stars

SlimPajama
StarCoder
Cosmopedia
Dolma
Ultralnteract
Magpie
FineWeb
DataComp LM (DCLM)
WeblInstructSub
StructLM
TemplateGSM
SmolLM Corpus
FLAN
OpenWebMath
Algebraic-Stack

Soboleva et al. (2023)
Lietal. (2023a)
Ben Allal et al. (2024a)
Soldaini et al. (2024)
Yuan et al. (2024)
Xu et al. (2024)
Lozhkov et al. (2024)
Lietal. (2024a)
Yue et al. (2024)
Zhuang et al. (2024)
Zhang et al. (2024)
Ben Allal et al. (2024b)
Wei et al. (2021)
Paster et al. (2023)
Azerbayev et al. (2024)

Table 8: RWKV World v3 dataset component citations

Most of the component data sources for the RWKV World v3 dataset are used intact, with no up- or
down-sampling done so that all tokens are given equal weighting. Some sub-sampling is done for

21

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/allenai/dolma/blob/main/urls/v1_6.txt
https://huggingface.co/datasets/glaiveai/glaive-code-assistant-v3
https://huggingface.co/datasets/m-a-p/Code-Feedback
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/cognitivecomputations/SystemChat-2.0
https://huggingface.co/datasets/migtissera/Tess-v1.5
https://huggingface.co/datasets/openbmb/UltraInteract_sft
https://huggingface.co/datasets/Magpie-Align/Llama-3-Magpie-Pro-1M-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Pro-MT-300K-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Air-MT-300K-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Qwen2-Pro-1M-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Phi3-Pro-300K-Filtered-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Phi3-Pro-300K-Filtered-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Gemma2-Pro-200K-Filtered-v0.1
https://huggingface.co/datasets/Magpie-Align/Magpie-Gemma2-Pro-200K-Filtered-v0.1
https://huggingface.co/datasets/timaeus/pile-dm_mathematics
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0/tree/main/global-shard_10_of_10
https://huggingface.co/datasets/stanford-oval/ccnews
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/math-ai/TemplateGSM
https://huggingface.co/datasets/EleutherAI/proof-pile-2/tree/main/open-web-math
https://huggingface.co/datasets/EleutherAI/proof-pile-2/tree/main/algebraic-stack
https://huggingface.co/datasets/bigcode/starcoderdata
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus/tree/main/python-edu
https://huggingface.co/datasets/HuggingFaceTB/smollm-corpus/tree/main/cosmopedia-v2
https://huggingface.co/datasets/TIGER-Lab/WebInstructSub
https://huggingface.co/datasets/H-D-T/Buzz-V1.2
https://huggingface.co/datasets/TIGER-Lab/SKGInstruct
https://huggingface.co/datasets/Muennighoff/flan

Published as a conference paper at COLM 2025

Category Tokens (B)
Web 1945.2
Books 337.2
Code 258.4
Science & Wiki 222.7
Fiction 192.6
Chat & QA & Instruction 110.0
Math 32.3
Law & Government 19.0
Poetry & Lyrics 1.7
Total 3119.2

Table 9: RWKV World v3 dataset categories

over-represented languages within a few data sources in the original World v2 corpus. All newly
added tokens in v2.1 and v3 are given equal weighting.

C Transition Matrix Eigenvalues and Stability

We are interested in all the eigenvalues of the transition matrix A; = diag(w,) — ktT(at OKy), and
when it can be stable. We drop the subscript ¢ for statements which hold at all timesteps, to avoid
clutter.

Theorem 3. Let A = diag(w) — ck” (a© k) € M,,(R) be a matrix, where all entries of w belong to
(u,1), where u = exp(—e~'/2) = 0.5452-- is the clamping lower bound. Also, all entries of a are
located in (0,1), and K is a unit row vector. When c € (0,1 + u), the following holds:

. The matrix A is similar to a symmetric matrix, hence similar to a diagonal matrix.

. All eigenvalues of A lie in the interval (—1,1).

. The matrix A admits at most one negative eigenvalue.

. If further assumed that a; is time-independent, then the update formula is guaranteed to
be stable, i.e. there exists a time-independent constant K such that

T
[TA:
t=1

BN W N~

=<K,
2

where ||- ||, denotes the spectral norm.

This hyperparameter c in the formula can be regarded as a "Global ICLR Multiplier". This hyperpa-
rameter c is set to 1 in the current implementations of RWKV-7 language modeling.

Proof.

1. We notice that
A = diag(w) — ck T (a @ &) = diag(w) — ck ! kdiag(a).

The matrix A itself is not necessarily a symmetric matrix. However, we can use the fact
that diag(a) is positive definite, so we can compute its square root. This allows us to
rewrite

diag(a)”zA diag(a)_”2 = diag(a)1/2diag(1,u)diag(a)_1/2 - cdiag(a)“szﬁ diag(a)diag(a)_“2

1/2)T(1/2),

= diag(w) — ¢ (kdiag(a) ®diag(a)

which is a symmetric matrix. We denote this matrix by B. It has exactly the same eigen-
values as A, since it is formed by a similarity transformation of A.

22

Published as a conference paper at COLM 2025

2. Since B = diag(a)'/? Adiag(a)~'/? is symmetric, all eigenvalues of B (and hence A) are
real and located on the interval of

min$BsT, maxsBsT|.
|8]=1 |81=1

It suffices to show that §B3” € (—1,1). This can be proved via direct expansion of B by

$B3T = sdiag(w)$T - cs(kdiag(a)''H)T (kdiag(a)''?)sT
> u3s’ - c|(kdiag(a)'’*)s" 2
=U—c
> —1.

Similarly,

$B3T = sdiag(w)$T - cs(kdiag(a)''*) T (kdiag(a)''?)sT

< 33T - c| (kdiag(@)"2)s7 |
T

IN
—)

which completes this part.
3. Recall B = diag(w) - ¢ (& diag(a)'/?) T (% diag(@)/?). Then B is congruent with

B = diag(w) " Y?Bdiag(w) 2 =1-u"u,

where u = /ck diag(a)'/?diag(w) /2.

Clearly, B has at most one negative eigenvalue with value 1 — || u||%, and all other eigenval-

ues equal to 1. By Sylvester’s law of inertia (Horn & Johnson, 2012), congruency preserves

the number of negative eigenvalues. Hence, B also has at most one negative eigenvalue.
4. We drop the subscript in the time-invariant a;.

Since B; = diag(a)” 2Atdiag(a)’1/ 2is symmetric, the spectral norm of B; is equal to the

largest absolute value for eigenvalues of B;. We proved previously that the eigenvalues lie

in (—=1,1), so ||B¢ll, < 1. That is, B; is a contraction matrix.

Furthermore, we have

T T
H A= H diag(a)_llthdiag(az)1/2
=1 i=t

13
= diag(a) '/ (]‘[B,) diag(a)'’?.
i=1

Then
-1/2 ”2

T
[]A
=1

< ||diag(a)
2

T
[1B:
t=1

|diag(@)''?,

2

smin(a)_”2~l~l.

We can set K = min(a)~"/? < oo, which is time-independent.
O

While our stability proof only holds for time-independent a;, we do not observe any problems
with time-varying a; in practice. We therefore put greater emphasis on the expressivity of RWKV-7,
and include time-varying a;.

D Expressivity of RWKV-7

Transformers aggregate history through commutative sums, which limits their ability to solve se-
quential state tracking problems where the precise order of actions matters for the result (formally,
these problems are outside TC? under standard conjectures). A key example of state tracking

23

Published as a conference paper at COLM 2025

is computing the state of a chess board given a sequence of moves, each specified in notation
like ‘e2e4’, indicating the source and target square. Transformers, S4 and Mamba cannot solve
this chess state tracking problem beyond short input lengths if no extra 'thinking’ tokens are
given(Merrill et al., 2024; Merrill & Sabharwal, 2024). In contrast, our result shows that RWKV-7
can solve the chess state tracking task for any sequence length as long as the model has at least
four layers with sufficient width, and a head size that is linear with respect to the number of board
positions.

We show that the RWKV-7 architecture can express NC!-complete state tracking problems that
cannot be expressed by transformers or other recurrent architectures such as S4 and Mamba,
under standard complexity conjectures. We first show a particular NC!-complete problem that
can be expressed by RWKV-7 in Section D and then generalize the argument to show that any
regular language can be recognized by RWKV-7 in Section D.2. As regular language recognition can
be understood to formalize finite state tracking problems, this suggests an expressivity advantage
of RWKV-7 on state-tracking problems.

D.1 Warmup: Expressivity Beyond TC®

Recall that the RWKV-7 wkv state is updated, at each token, by multiplication with A, =
diag(w;) — cktT(at ©K;), where ¢ = 1. In the following, we will consider ¢ = 2, and show that

this yields expressivity beyond TC? (unless TC? = NC!). TC? is the complexity class which in-
cludes transformers as well as all non-gated or diagonal SSMs (Merrill et al., 2024; Barrington,
1989).

Proof of Theorem 1

Proof. RWKV-7 can, by Lemma 2, solve the problem of tracking swaps on five elements. This
problem is NC! -complete under ACP reductions (Merrill et al., 2024). O
Lemma 1. The RWKV-7 transition matrix can represent an arbitrary swap matrix, where a swap

matrix is an identity matrix with two of its rows swapped.

Proof. Given indices x and y, let
w;=1, ¢=2, ®;= (ex—ey)/\/z, and a; = 1.
Here e; denotes the vector with 1 at position i and 0 elsewhere.

Then the transition matrix becomes A, = I —ele, — e§ ey+ele,+ e; ex, which is the permutation

matrix that swaps indices x and y. O

Lemma 2 (RWKV-7 can track swaps on 5 elements). Let a sequence of swaps on 5 elements be
encoded in the format
#[x1 < yllx2 < yal...,

where # is a special beginning-of-sequence token, and [x; < y;] is a token that denotes a swap
between elements x; and y;. Then there exists a one-layer RWKV-7 model which outputs 1 if the
sequence of swaps encode the identity permutation, and outputs 0 otherwise.

Proof. Let the RWKV-7 model have 5 wkv heads of head dimension 5. The embedding weights and
"weight preparation" part of the time mixing layer are set such that the following two properties
hold:

Firstly, when the model sees the special beginning-of-sequence token, the ith wkv head receives
w=1c¢c=2,kK=e;, a=0, andv=l~c=e,’.

Here e; denotes the vector with 1 at position i and 0 elsewhere. This sets the state of the ith wkv
head to wkv = el.T e;, which represents state i.

Secondly, when token represents a swap between tokens 1 < x < y < 5. In this case, using Lemma
1, all wkv heads receive

w=1,c=2k=(ex—e))/v2,a=1andv=k=0.

24

Published as a conference paper at COLM 2025

This changes the state to y if it was x, or x if it was y, or keeps it unchanged otherwise.

To calculate the output, the ith wkv head checks whether it represents state 7, by applying recep-
tance r = e;. Finally, the MLP layer combines these outputs to check if all 5 heads agree with the
identity permutation, and the output head outputs 1 if this is true, and 0 otherwise. O

D.2 Main Result: RWKV-7 Can Recognize Any Regular Language

Moreover, we are able to demonstrate that RWKV-7 has the capability to recognize any regular
language. The regular languages are precisely those which can be recognized by a deterministic
finite automaton (DFA). Therefore, it is sufficient to show that RWKV-7 can simulate any DFA. We
define DFAs in the usual way:

Definition 1. Classically, a DFA is a tuple of = (Q,Z,0, qo, F) where Q is a finite set of states, X is a
finite vocabulary of tokens, 84 : Q — Q is a transition function for each token o € Z, gy € Q is the
initial state, and F < Q is a set of accepting states.

Equivalently, the DFA’s computation on w € X* can be represented by matrix computations. Each
85 can be represented by a boolean matrix Mg € {0,111 where My, (i, j) = 1 iff 6 w(q}) = qi. The
initial state gy can be represented as a one-hot vector a € {0,1}', and the set of accepting states F
can be represented as a multi-hot vector w € {0, 13l

For a given string w, --- wr, the DFA computes
a-My, - My, 0" (25)
We say that w € L if and only if this expression evaluates to 1.

Having defined regular languages, we are in a position to show our main result:

Proof of Theorem 2

Proof. We demonstrate that the RWKV-7 architecture can recognize strings in an arbitrary regular
language L. Consider a string w € X* and its membership in L. There exists a DFA (Definition 1)
which recognizes L by evaluating (25). To prove that RWKV-7 can recognize any regular language,
it is therefore sufficient to construct a RWKV-7 that evaluates (25).

Construction overview. A standard way to recognize a regular language would be to construct the
transition matrices for each token and then multiply them to compute the final state. However,
this does not work for RWKV-7 because because an arbitrary DFA transition can have rank n =
|QI (i.e., the number of states), whereas a wkv head can only implement a simple elementary
transition matrix per input token. A natural idea is to factor each DFA transition into n elementary
transition matrices (Lemma 3), each of which can be directly implemented by wkv heads (Lemma
4). However, expanding DFA transitions in this way gives more elementary transition matrices
than tokens, which means it cannot be directly implemented by RWKV-7.

Fortunately, a simple modification of this idea will allow us to implement regular language recog-
nition in RWKV-7. Rather than expanding each transition matrix to n elementary matrices, we use
the first three layers to convert blocks of n DFA transitions to products of n elementary matrices
with the same product. The final layer then multiplies these elementary matrices to obtain the
final state.

Details: information routing via residual stream and Layernorm. The output of each layer is
stored in the residual stream of the architecture, in independent subspaces, which makes them all
available to deeper layers. Since the outputs come from a finite set, they may be represented by
one-hot encoding.

The input to each time mixing block therefore contains the outputs of all previous layers. First, a
Layernorm is applied. Note that one-hot encodings have constant norm, which ensures that the
Layernorm preserves the encoded information.

Next is the "weight preparation” part of the time mixing block, which takes input x; encoding the
output from previous layers, and constructs r;, wy, k¢, vs, K and a; for the wkv heads. The weight
preparation is sufficiently expressive to allow each of the 6 output variables to be an arbitrary

25

Published as a conference paper at COLM 2025

linear transform of x;. This allows selecting r¢, wy, k;, vs, % and a; based on arbitrary outputs
from previous layers. Therefore, the wkv heads are the main part of the construction.

WKV head construction. For any 1 < ¢ < T, the current position ¢ can be split into ¢ = [n + i, for
integers 0 < [and 1 < 7 < n. We view the input sequence as blocks of length r, indexed by .

First, we describe [> 1. Consider the product of DFA transitions M; = My,,_,Myw,_,,,.,- This
product is also a DFA transition matrix (i.e., it has a single 1 per column). Hence, Lemma 3 allows
us to factor M; = G;1Gy5...G, ,, where Gy 1, ..., G} ,, are elementary transition matrices. Fix one
such factorization for each possible DFA transition matrix. At position ¢ = In + f, the wkv state in
the fourth (final) layer is right-multiplied by the elementary transition matrix G; ;. Since G, ; is
uniquely defined by the last 27 tokens and position modulo 2#, it can be computed in the third

layer by Lemma 7, and fed to the fourth layer.

The first block I = 0 is handled as a special case. Again, we consider the fourth layer. At the first
token, set v; = e; and k; = a. All subsequent transitions ¢ = 2 set v; = k; = 0, and implement
identity transition matrices from Lemma 4. Then wkv; = elT aforl<st<n.

With this construction, for all 1 < ¢ < T, the fourth layer’s wkv state becomes
wkv; = ele[, where &; = a My, My, .. My, G11Gi2.-- Gy g,
where as usual, empty products (such as for [< 1) evaluate to identity matrices.

Duplicate this construction into n wkv heads, where the ith applies receptance e;. In combination,
the wkv heads read out the whole vector &;.

Final tokens. Consider ¢t = T. To match the DFA evaluation formula from (25), &1 can be multi-
plied by

T

T
W7 =Gpiyy---Gr M M, My,

Win+1 Win+2 **

Fortunately, this expression is a fixed function of the current position modulo 27 and the last 2n
tokens, and can hence be found by a lookup in the third layer by Lemma 7. The final MLP on the
final token can thus output the scalar product dﬂb?, which is equal to (25), thus completing the
construction. O

Our construction uses MLPs to implement lookup tables with sizes on the order of |=|2", which
may require MLP layers that are exponentially wide in the number of states of the original DFA.

D.3 Lemmas for Theorem 2

The proof for Theorem 2 requires many different lemmas, which are stated and proved in the
following.

A single RWKV-7 wkv state transition cannot directly implement an arbitrary DFA transition.
However, DFA transition matrices can be decomposed into a product of elementary transition
matrices that can be directly simulated by wkv state transitions (cf. Lemma: 1):

Lemma 3. Let M be a DFA transition matrix. Le., M has shape n x n, and contains a single 1 in
each column. Then M can be factored into a product of n elementary transition matrices Gy, ..., Gy,.
Specifically,

M =G1G;...Gy,

where each of Gy,..., Gy, has one of the following forms:

1. Identity matrix.
2. Swap matrix x — y; an identity matrix with rows x and y swapped.
3. Copy matrix x — y; an identity matrix with column y replaced by a copy of column x.

Proof. We will greedily build M from the identity matrix by right-multiplying elementary transition
matrices. Right-multiplying by the identity matrix does nothing, right-multiplying with a swap
matrix x < y swaps columns x and y, and right-multiplying with a copy matrix x — y replaces
column x by a copy of column y.

26

Published as a conference paper at COLM 2025

We use X to denote the current partial product of elementary transition matrices. Initially, X is
the identity matrix, and the goal is to apply n transitions to make X = M. We proceed greedily in
three stages.

1. Find a column ¢ of X that differs from column ¢ of M, but which matches a different
column ¢’ of M. If no such position exists, proceed to the next stage. Otherwise, right-
multiply X by a swap matrix that swaps columns ¢ and ¢'.

Note that M and X differed in columns ¢ and ¢’ before the swap, but match in column ¢
after the swap.

2. Find a column ¢ where M and X differ. If no such column exists, proceed to the next stage.
Otherwise, the previous stage has ensured that there exists a column ¢’ of X, necessarily
different from c, which contains a column identical to column ¢ of M.

Right-multiply by a copy matrix that replaces column ¢ of X with column ¢’ of X. Note
that M and X differed in column ¢ before the move, while they agree afterwards.

3. Right-multiply by identity matrices until X is the product of n elementary transition
matrices.

Initially, M and X differed in at most n columns. Each subsequent right-multiplication
by an elementary transition matrix reduced the number of differing columns by at least
one. Thus, stages 1 and 2 required at most n multiplications.

Recall that the RWKV-7 wkv state is at token index ¢ updated by multiplication with

Ay = diag(wy) — cktT(at OKy),
with ¢ = 1. To simplify the presentation of the core idea, we will instead present a construction
with ¢ =2, and then show how to remove this assumption in Section D.3.

Lemma 4. For any elementary transition matrix G (in the sense of Lemma 3), there exist n-
dimensional vectors ® and ad, where |K|| = 1, a has elements in {0, 1}, and

G = diag(w) — ck T (@o®),

wherec=2 and w =1.
Proof. We use e; to denote the n-dimensional vector with 1 at position i and 0 elsewhere.

1. Identity matrix: Select any length one vector &, for example € = e;, and d =0.

2. Swap matrix; an identity matrix with rows x and y swapped: Select k = (ey — ey)/\/i and
a=1.

3. Copy matrix; an identity matrix with column y replaced by a copy of column x: Select
K= (ex—ey)/\/iand a=ey.

We now move on to the explicit construction of the first three layers.

Lemma 5. There is a 1-layer RWKV-7 which outputs whether the current position is first, and
whether the current position is even or odd.

Proof. RWKV-7 performs a token-shift operation before the wkv heads are reached. This token
shift takes as input the last token, and can therefore detect whether a previous token exists.

The first layer’s wkv state can track position parity by selecting k; = vy = e; for the first position
t =1, and subsequently letting c =2, w; = a; =1, k; = e; and k; = v; = 0 for ¢ = 2. This leads to
wkv; = el e; and subsequently wkv, = wkv,_; (I —2e] e;) for ¢ = 2. Then wkv, = el e; for odd ¢
and wkv; = —e] e, for even r.

Receptance r = e} can then be used to read out the sign of the wkv state, which encodes the
current position’s parity.

The subsequent MLP can transform these two boolean outputs to an arbitrary format. O

27

Published as a conference paper at COLM 2025

Lemma 6. For any positive integer n, there is a 2-layer RWKV-7 that outputs the position modulo
2n.

Proof. We use Lemma 5 for the first layer, which tells the second layer whether the current position
is first, and the parity of the current position.

At the first position, set k1 = v1 = €1, such that wkv; = elT e1. For all subsequent positions t = 2,
set c=2, w; = a; =1 and k; = v; = 0. Furthermore, set %; = e; for even t and &, = cos(/n)e; +
sin(zr/n)e, at odd t. Then wkvy = e] ey (I - 2&1&,)...(I - 2& L& 7). Note that for even ¢ = 2, the
matrix (I — Zk[Tf(O - ZktTHf(Hl) rotates the first two coordinates by an angle 27/ n. Thus,

v = elT (cos(m(t—1)/n)e; +sin(@(t—1)/n)ey), if ¢ is odd
W=\ el (= cos(r(t—2)/m)ey +sin(r(t—2)/mey), if tiseven”
The wkv heads are immediately followed by group normalization, which discards information
about magnitudes. We therefore use 2n wkv heads of the type above, where the kth head applies
receptance r = cos(rwk/n)e; +sin(wk/n)ez. The signs of these readouts, along with the parity from
the first layer, can then be combined in the subsequent MLP layer to deduce the current position
modulo 2n. O

Lemma 7. Let =t modulo2n be the current position modulo 2n, and let wy, W;—1, ..., Wi-@n-1)
be the last 2n tokens. Define w; = |Z| + 1 for before-sequence tokens t < 0. Let
E[f, ws, we_1,..., wWr—n-1)] be a lookup table that takes as key the current position modulo 2n
and the 2n most recent tokens.

Given inputs t and wy, We_1,..., We_n-1, there is a layer of RWKV-7 that simulates =.

Moreover, there is a 3-layer RWKV-7 that simulates =.

Proof. Recall that the wkv state is initialized to all zeros. We apply the wkv state update
wkv; =wkv,_{(I— eZTe;) + e,f,[e;.
This can be achieved by selectingc= 1, w; =1,a; = %1, ko=k,= ezand v =ey,.

In words, the state update replaces the fth column of the wkv state with eyw,. Hence, the wkv state
stores the last 27 tokens.

We make 7 such wkv heads, where the ith wkv head applies receptance r = e;. This reads out the
full state, which contains the last 2n tokens. The state and 7 are fed into the subsequent MLP layer,
which performs the lookup into =.

Note that by Lemma 6, the first two layers can compute current position modulo 27 and the 2n
most recent tokens. Hence, a 3-layer RWKV can compute =. O

Removing the assumption c =2 Some of our constructions use ¢ = 2, while the actual model
uses ¢ = 1. However, since the transition matrix is A; = diag(w;) — cktT(a, ©K¢), halving both ¢
and w; simply causes A; to be halved. This causes the wkv state to halve in magnitude at each
token. However, since the wkv heads are immediately followed by group normalizations, the
magnitude of the wkv state does not affect subsequent calculations. Additionally, since floating
point numbers store a separate exponent, this rescaling only requires log-precision. The shrinking
state could in principle be mismatched with the scales of v; and k;, but our constructions always
satisfy v; = k; = 0 whenever ¢ # 1 is required.

E Additional Architectural and Training Details

Training Method and Model Data Amounts The RWKV-7 Pile models all use the GPT-NeoX-20B
tokenizer (Black et al., 2022), and were all trained from scratch on the Pile dataset, which has 332
billion tokens.

All RWKV World dataset models use the RWKV World Tokenizer. Due to compute budget con-
straints, the Goose World 3 0.1B and 0.4B models were trained from pre-existing RWKV-5 World v1

28

Published as a conference paper at COLM 2025

and v2 checkpoints, and the Goose World 3 1.5B and 2.9B models were trained from pre-existing
RWKV-6 World v2.1 checkpoints. These checkpoints’ parameters were then converted to the
RWKV-7 format via a process described below. Once in the new format, the models are trained
on either the additional full 3.1 trillion tokens of the World v3 corpus, or an equally weighted
sub-sampling of it. Under this methodology, some documents were seen two or even three times.

The World v1, v2, v2.1, and v3 corpora contain 0.6, 1.1, 1.4, and 3.1 trillion tokens, respectively.
The amounts of training in each stage at with each successive model architecture and corpus are
shown in Table 10.

Model World v1 World v2 World v2.1 Worldv3 Total
RWKV7-World3-0.1B 0.6 (RWKV-5) 1.0 RWKV-7) 1.6
RWKV7-World3-0.4B 1.1 (RWKV-5) 2.0 (RWKV-7) 3.1
RWKV7-World3-1.5B 1.1 (RWKV-6) 1.4 (RWKV-6) 3.1 (RWKV-7) 5.6
RWKV7-World3-2.9B 1.1 RWKV-6) 1.4 (RWKV-6) 3.1 (RWKV-7) 5.6

Table 10: Total trillions of tokens trained for all RWKV-7 World 3 models

Our model format conversion process involves removing the token-shift low-rank MLPs, rescal-
ing by half the embeddings, wkv receptance, wkv output matrix weights, and Layernorm and
Groupnorm bias values. Layernorm and Groupnorm weights are clamped above zero and square
rooted. We widen the FFN MLP from 3.5x (in RWKV-6) to 4x and add new small (1 x 10~3) uniform
initalizations in the new regions, removing the RWKV-6 FEN receptance weights. We widen the
time decay Low-rank MLP and add new small (1 x 10~*) uniform initializations in the new regions.
We replace the gate weights with a LoRA obtained through singular value decomposition and
rescaling by half.

Architecture Diagram We provide a comprehensive architecture diagram (Figure 5) in order to
help readers thoroughly understand our architecture design.

Parameters and Dimensions Throughout this section, we denote by D the model dimension, L
the number of layers, & = D/ Dy, the number of heads, and V the vocabulary size. All models are
trained with head size Dy, = 64, i.e., each time-mixing has h = D/64 heads with dimension 64 x 64.

Pile models are trained with V = 50304 with the GPT-NeoX 20B tokenizer. World models are
trained with V = 65536 with RWKV World tokenizer.

Model Name L D State Size (WKV + Shift) Parameters
RWKV7-World3-0.1B 12 768 589824 + 18432 191034624
RWKV7-World3-0.4B 24 1024 1572864 + 49152 450767872
RWKV7-World3-1.5B 24 2048 3145728 + 98304 1527404544

RWKV7-World3-2.9B 32 2560 5242880 + 163840 2947735040

Table 11: Released Goose models with parameters and state size.

RWKV-7 uses four low-rank MLPs for decay w, value residual v, in-context learning rate a and
gate g respectively. The intermediate dimensions are listed in Table 12. These values are based on
our mere speculation of how much information can be passed through.

The number of parameters for all RWKV-7 models can be computed by the formula:

#(Params) = 2DV +4D + LD (12D +2(dy + da + dyy + dg) +19) — (2Dd,, + D). (26)

Where:

» The weights of the embeddings and head, and the Layernorms beside them, yield 2DV +
4D parameters;

29

Published as a conference paper at COLM 2025

w)[b]

Dimension V

@ () - Circles: operators
0" Arrows and rounded rectangles:
< . vectors (unless bolded,
dimension D if outside WKV

Output
Embeddin

head else 64)

A‘X‘BD - Double arrows, squares and
rectangles: matrices (dimensions

are marked)

Layer Norm

D [j - Purple: trainable parameters

[z] - Red: internal states

Channel Mix

!

My

e
e
~

7
K!
\\ Square ReLU -

(4x model dimension)

~
@ V' :
d //

whv,,

[x't

) [\B Layer Norm

4 |

Time Mix ~
O, 0
SO O S
A
Group Normj
wkv,

Layer Norm

X

RWKYV Block x L/

(w](2]

Layer Norm

= b+ (a-b)x

Input
Embeddin

In RWKV-7 langhage modeling, =1

@ Operator means einsum('ij,j->i3")

F(x) = exp(-0.606531 Sigmoid(x))

Figure 5: The architecture of RWKV-7, drawn in detail.

30

Published as a conference paper at COLM 2025

Dimension (D) dy d, dy dg

768 64 64 32 128
1024 64 64 32 128
2048 96 96 64 256
2560 96 96 64 320
4096 128 128 96 480
6144 128 128 96 640

Table 12: Suggested intermediate dimensions for the low-rank MLPs for RWKV-7 models

* The weights of each layer yield D (12D +2(d, + dq + d, + dg) + 19) parameters, except
for the first layer;

* The low-rank MLP for the value residual is not present in the first layer, subtracting
(2Dd, + D) parameters.

Parameter Initializations Proper parameter initialization is crucial for ensuring training stability
and achieving optimal performance for language models. RWKV-7 employs a carefully designed
initialization strategy tailored to its architecture. The detailed initialization scheme is beyond
the scope here but can be found in the official code repository. We emphasize that using the
recommended initialization is essential for replicating the results in this paper. Deviations from
the prescribed initialization may lead to performance degradation.

Dataset Loading The dataset used for pretraining consists of 3119194079123 tokens stored on
disk, which are memory-mapped using the mmap mechanism. To ensure a diverse and pseudo-
random sampling of training sequences, we employ a custom data loading strategy based on a
mathematical function with desirable properties. Specifically, we utilize a pseudo-random number
generator defined by the function f(x) = ax® over the finite field Z/ pZ, where p is a prime number
of the form 37 + 2. This function is chosen because it is a bijection (full map) in Z/pZ, ensuring
that all possible indices are eventually accessed exactly once within one epoch.

For pretraining with a sequence length of 4096, the relative address of the k-th sample is deter-
mined as:

start_address = 4096 (ak> mod p), end_address = start_address +4097.

Here, p is chosen as the largest prime of the form 37 + 2 smaller than |dataset_size/4096], yielding
p =761521949. The parameter a is set to an integer close to 0.618p that ensures good mixing
properties of the generated addresses.

This approach guarantees both simple calculation and uniform access to the dataset while main-
taining pseudo-randomness. By leveraging the properties of modular arithmetic and cubic
mappings, we achieve a balance between computational efficiency and data diversity during
pretraining.

Training Details All RWKV-7 models were trained under bf1oat16 format on nodes of 8x
Nvidia H800. The AdamW optimizer was configured with 8; = 0.9, 8> =0.99,e =1x 107! and a
weight decay of 0.1 applied exclusively to linear layers and embedding weights. The choice of such
a small € value is motivated by the theory proposed by Molybog et al. (2023), which suggests that
reducing e can help stabilize training in large-scale models by ensuring that intermediate layers
remain in a regime of active updates, thus mitigating sudden loss spikes and promoting smoother
convergence.

The context length for pretraining was 4096 tokens. The base decay rate w, parameters are placed
into a special 2x learning rate multiplier grouping.

Besides the traditional cosine learning rate decay schedule, we used a phased dynamic batch size
scaling strategy inspired by the concept of critical batch size proposed by McCandlish et al. (2018)
and similar to the approaches in Smith et al. (2018). Our strategy involves progressively increasing
the batch size during training, accompanied by corresponding adjustments to the learning rate.

31

Published as a conference paper at COLM 2025

Model Phase Nodes Batchsize ProposedInitial LR Final Loss
RWKV7-World3-0.1B 1 1 240 x 4096 6x107* 2.5290
RWKV7-World3-0.4B 1 1 240 x 4096 5x1074

2 2 480 x 4096 6x107* 2.2580
RWKV7-World3-1.5B 1 3 480 x 4096 4x1074

2 4 672 x 4096 45%x1074

3 6 1152 x 4096 6.1 x1074 1.9970
RWKV7-World3-2.9B 1 4 640 x 4096 4%x1074

2 6 1008 x 4096 5x1074

3 7 1120 x 4096 5.4x 1074

4 12 2016 x 4096 8x107* 1.8745

Table 13: Training schedules and batch sizes

The detailed training schedules for different model sizes are listed in Table 13.

The learning rate undergoes a cosine decay schedule from the proposed initial learning rate at the
beginning of the entire training run to the expected final learning rate of 1 x 10~° at the end of the
entire run, but the implied initial rate varies across phases.

This approach not only enhances training efficiency but also utilizes GPU resources economically.
After smaller models complete their training, additional GPU resources become available for the
later stages of training larger models. This cascading resource allocation ensures that compu-
tational power is dynamically reallocated, maximizing hardware utilization and reducing idle
time.

We observe extremely stable training without any loss spikes in all four runs, indicating that
the likelihood of encountering such spikes during the training of a very large RWKV-7 model is
minimal.

See Figure 6 for the resulting learning rates and observed loss curves.

Despite the general stability of our loss curves, we did sometimes observe NaN loss across a single
training step, which we theorize may be due to our use of such an extremely low AdamW e. When
this occurs, we rewind the training to the prior checkpoint, clear optimizer states, and continue
from that point.

F Additional Architecture Discussion

The following is a general overview of the RWKV-7 architecture and selected rationale for its design
choices:

The RWKV-7 Time Mixer begins with a feature that has been in RWKV since its inception: token
shift. Token shift is a variety of 1D short convolution that is intended to allow the model to create
induction heads within a single layer. At its core, token shift is just a linear interpolation between
the current and prior tokens on a per channel basis, where the amount per channel is a learned
parameter. Many other modern models (e.g. Mamba) have begun including short convolutions
before attention replacements (See also Dao Al Lab (2023)). RWKV-6 introduced an advanced new
form of token shift that was data dependent. While we found that this was beneficial in terms of
loss decrease per step, we made the judgement call that the improvement in training and inference
efficiency was not worthwhile. Therefore, RWKV-7 includes only the simple token shift found in
RWKV-4 and RWKV-5.

RWKV-7 time mixing follows the overall form of delta rule, applying an SGD-like mechanism to
train the state at test time, such that when presented with a key it will respond with an appropriately
matching value, like those it has been shown previously. This can be conceptualized as a simple
order of operations: 1) decay the state 2) remove part of the old value located at the current key 3)
add part of the new value into the current key. Then, a query (we call it receptance) is applied to

32

Published as a conference paper at COLM 2025

2.8 1.E-03 2.52 1.E-03

2.7 1.E-04 2.42 1.E-04

26 1.E-05 2.32 1.E-05

25 1.E-06 2.22 1.E-06
1 101 201 301 401 501 601 701 801 901 1001 1 201 401 601 801 1001 1201 1401 1601 1801 2001

(a) 0.1B (b) 0.4b

1.E-03 1.E-03

1.E-04

1.E-04

1.E-05 1.E-05

1.96 1.E-06 1.E-06

1 501 1001 1501 2001 2501 3001 1 501 1001 1501 2001 2501 3001

(c) 1.5B (d) 2.9B

Figure 6: Training loss curve for RWKV-7 World models. Blue line: loss; Red line: smoothed loss;
Green line: actual learning rate; Dotted red line: learning rate schedule.

the state in order to request the value located at a specific key. After that, the remaining operations
normalize the returned values to keep numerical sizing consistent, apply gating, and recombine
the heads to obtain the output.

In SGD terms, the decay found in models like RWKV-7 and Gated DeltaNet can be thought of as
similar to weight decay. RWKV models since RWKV-4 have employed some form of vector-valued
decay on the state in place of positional encoding. We continue this tradition with RWKV-7. While
vector valued decay is harder to compute efficiently than its scalar valued equivalent, it brings a
significant improvement in loss per step. Many other models, like Mamba-2, make the choice to
maximize training efficiency and simplify their kernels by using scalar decay, purposely trading
quality for speed.

We are forced to limit the maximum decay that can occur in a given time-step both in order
to maintain training stability and to assist the creation of fast but numerically stable kernel
implementations. We have many varieties of kernel available today, and are still working on new
designs with enhanced efficiency and accuracy. Please see Parallelizing Linear Transformers with
the Delta Rule over Sequence Length (Yang et al., 2024¢) and its accompanying blog post series
for insightful details on many components of such algorithms. We hope to be able to reduce the
decay limit further in future revisions.

This lower bound on the decay multiplier is expressed by the exp(—e~%%0 (d;)) formula for decay.

It is a rearrangement of an original source formula exp(—exp(—0.5 — softplus(d;))). The outer
exp(—exp(x)) in the original is nearly a flipped version of sigmoid, but with a better gradient. The
—0.5 —softplus(d;) is a way of limiting the inputs to this sigmoid-like function to be less than -0.5,
which results in the final decay being greater than 0.545. This means that decay can remove at
most 45.5% of the pre-existing values in the wkv state from one timestep to the next. More can be
then removed by the delta rule mechanism.

33

Published as a conference paper at COLM 2025

The in-context learning rate is usually equivalent to the learning rate in SGD. Ours is a bit less
restrictive than the traditional delta rule or SGD would allow. We also make this data dependent
and extend it to be vector-valued instead of being merely a scalar. This is allows each key channel
to have its own learning rate, dependent on the current token. Note that in TTT, Gated DeltaNet,
and Titans although the in-context learning rates are data dependent, they are only scalar valued.

Some of the design of RWKV-7 with regard to the in-context learning rate is theoretically motivated
but may not be apparent from the equations. RWKV-6c, a later v6 sub-version with no trained
models but which worked well experimentally, kept its state somewhat normalized using a new
design. As mentioned early in this paper and consistent with the observations in Yang et al.
(2024b); Chen et al. (2024a), there is a fundamental issue with linear attention numerically growing
in an unbounded fashion, and the base RWKV-6 revision has this problem. RWKV-6c, however,
defeats this issue by ensuring that the amount of key added to the state is never more than the
amount removed by decay. It accomplishes this by pre-multiplying the key by one minus the
decay before adding it into the wkv state.

Early versions of RWKV-7 attempted to use similar mathematical formulations to keep everything
normalized. But experimentally we found that the model both did best and was most efficient
when we allowed it enough mathematical leeway to make these decisions on its own, rather than
enforcing them. So instead of pre-multiplying the key, we give the replacement key latitude in its
learning rate via the replacement rate booster.

Similarly, the removal key is decoupled from the replacement key. Note that the removal key is
normalized. This is important in delta rule variations, because otherwise the outer product of
removal key with itself would cause unwanted changes in the amount removed due to the implicit
squaring of its length during that process.

Another point that may not be clear upon first examination is the importance of RWKV-7 being
outside of the TC® complexity class in which transformers, linear attention, and many varieties
of SSMs lie. Consider a single layer of the Key Value Cache of a transformer. It is appended to
upon each new token processed, and can never be changed. RWKV-7, however, can and does edit
its state at each subsequent token. This can include simple operations like replacement, which
can be viewed as functioning similarly to a transformer losing a KV Cache entry via some sparsity
mechanism e.g. a sliding window. But it can also include complex operations like swapping two
entries in the state; operations a transformer cannot do within its immutable KV Cache. These
kinds of operations can be used to enact computations on the state itself, which lends greater
computational abilities to RWKV-7 when processing a fixed set of inputs. You might think of the
RWKV-7 state as being like an internal scratchpad.

There are easy problems that simply cannot be solved by transformers on fixed inputs because
they lack this ability. One example is that if you give a transformer an ordered set of items and a
list of which ones swap places, it will not be able to tell you which item ends up in which position
at the end. Both architectures gain even more power when they are allowed extra outputs (e.g.
chain of thought), becoming Turing complete. But this requires costly additional inference-time
computation, whereas the RWKV-7 state does not.

A possible way to interpret the designation of RWKV-7 is training a model to learn (how to train
an internal model). A WKV head can be viewed as a linear transformation that takes the input
(receptance) r and outputs 0. Every WKV head can be regarded as a linear model that can update
its weights as the context progresses. The entries of WKV states are exactly the parameters of these
models.

After receptance is applied to the WKV state, we normalize the result on a per head basis. This
has become common across many linear attention and post-linear-attention architectures. It is
a way of ensuring that change in the numerical size of the state over time does not impact the
model’s ability to use the state. The original formulations of RWKV-4 used a denominator in place
of normalization to achieve a similar effect, but it is costly, harder to code, and uses more memory.

The readout part of RWKV-7 differ from RWKV-6 by the addition of the per-head (r:(p ® I~ct)T)
scalar gating of v;. The trainable parameter p resembles the design of "time-first" u term existing
from RWKV-4 to RWKV-6, under the belief that the information of the current token deserves
special treatment. The "time-first" term was fused inside the WKV kernel in previous architectures

34

Published as a conference paper at COLM 2025

of RWKYV, but we decide to extract this term out of the kernel to simplify the implementation of
RWKV-7.

G Pseudocode For RWKV-7

import math
import torch as th
import torch.nn.functional as F

def rwkv_timemix (params, x, vprime_0, shift_state, wkv_state, layer_id):

B, T, C = x.shape # batch_size, sequence_length, d_model
N = wkv_state.shape[-1] # head size
H=C// N # head count

weight preparation

Xx_shifted = th.cat ([shift_state, x[:, :-1, :]1], dim=1)
shift_state = x[:, -1:, :]

x_receptance = th.lerp(x, x_shifted, params.mu_r)
x_decay = th.lerp(x, x_shifted, params.mu_d)
x_key = th.lerp(x, x_shifted, params.mu_k)
x_value = th.lerp(x, x_shifted, params.mu_v)
x_iclr = th.lerp(x, x_shifted, params.mu_a)
X_gate = th.lerp(x, x_shifted, params.mu_g)
r = x_receptance @ params.W_receptance # BIC
d = params.decay_lora (x_decay) # BTC
k = x_key @ params.W_key # BTC
vprime = x_value @ params.W_value # BTC
gate = params.gate_lora(x_gate) # BTC
iclr = params.iclr_lora(x_iclr).sigmoid() # BIC

1st layer: return value to use in later layers, no interpolation

if layer_id == 0:
v = vprime_0 = vprime

else:
value_residual_gate = th.sigmoid(params.nu_lora (x_value))
v = th.lerp(vprime, vprime_0, value_residual_gate)

decay = th.exp(-math.exp(-0.5) * d.to(th.float).sigmoid())

removal_k = k » params.removal_key_multiplier

removal_k = F.normalize (removal_k.view(B,T,H,-1), dim=-1).view(B,T,C)
replacement_k = th.lerp(k, k » iclr, params.iclr_mix_amt)

recurrence relation
out = th.empty_like(x).view(B,T,C)
for t in range(T):
single step of wkv state transition

decay_t = decayl[:, t].view(B, H, N, 1)

iclr_t = iclr[:, t].view(B, H, N, 1)
removal_k_t = removal_k[:, t].view(B, H, N, 1)
replacement_k_t = replacement_k[:, t].view(B, H, N, 1)
v_t = v[:, t].view(B, H, N, 1)

r_t = r[:, t].view(B, H, N, 1)

wkv_state = wkv_state % decay_t.mT - wkv_state @ removal_k_t @ (
iclr_t * removal_k_t).mT

wkv_state = wkv_state + v_t @ replacement_k_t.mT

y = wkv_state @ r_t # BHVK @ BHK1 = BHVI

out[:,t] = y.view(B,C) # recombine heads

normalization

35

Published as a conference paper at COLM 2025

y = F.group_norm(y.view(B % T, -1), num_groups=H, params.ln_x.weight,
params.ln_x.bias, eps = H * le-
5).view(B, T, -1)

bonus and output

bonus = ((r+kxparams.bonus_multiplier) .sum(dim=-1, keepdim=True) * V)
bonus = bonus.view (B, T,C) # recombine heads

out = out + bonus

out = (out * gate) @ params.W_output # BIC

return out, v0, shift_state, wkv_state

def rwkv_channelmix (x, shift_state):

Xx_shifted = th.cat([shift_state, x[:, :-1, :11, dim=1)
shift_state = x[:, -1:, :]

xk = th.lerp(x, x_shifted, params.mu_x)

k = params.W_k @ xk

v = params.W_v @ th.relu(k) .square()

return v, shift_state

def rwkv_model (params, input_ids, state):
X = params.embedding (input_ids)

X = params.layer_norm_pre (x)
v0 = None
layer_id = -1

for layer in params.layers:
layer_id = layer_id + 1
dx, v0, state.timemix_shiftstate, state.timemix_wkvstate =
rwkv_timemix (

layer.time_mix,
layer.layer_norm_timemix (x),
vQ,
state.timemix_shiftstate,
state.timemix_wkvstate,

layer_id
)
X = x + dx
dx, state.chanmix_shiftstate = rwkv_chanmix (

layer.channel_mix,
layer.layer_norm_chanmix (x),
state.chanmix_shiftstate

)
X = x + dx
X = params.layer_norm_out (x)

logits = params.head (x)
return logits, state

H PyTorch code For Naive WKV7 Kernel (Forward and Backward)

class WKV7_Kernel (nn.Module) :
def init_ (self):

super () .__init__ ()
def forward(self, r, w, k, v, a, b, state):
r = r.view(B, T, H, N)
k = k.view(B, T, H, N)
v = v.view (B, T, H, N)
a = a.view(B, T, H, N)

36

Published as a conference paper at COLM 2025

b = b.view(B, T, H, N)
self.state_cache = torch.zeros((B, T+1, H, N, N))

self.state_cache[:, 0, :] = state
w = torch.exp(-torch.exp(w.view(B, T, H, N)))
out = torch.zeros((B, T, H, N))
for t in range (T):

kk = k[:, t, :]

rr = r[:, t, =]

vv = vi[:, t,]

aa = al:, t, :]

bb = bl[:, t, :]

state = (

state » w[: , t, :, None, :]

+ torch.einsum('bhik,bhk,bhj->bhij', state, aa, bb)
+ torch.einsum('bhj,bhi->bhij', kk, vv)
)
self.state_cache[:, t+1, :] state
out[:, t, :] = torch.einsum('bhj,bhij->bhi', rr, state)
return out, state

def backward(self, r, w0, k, v, a, b, gout, gstate):

gout = gout.view(B, T, H, N)

gr = torch.zeros((B, T, H, N))
gw = torch.zeros((B, T, H, N))
gk = torch.zeros ((B, T, H, N))
gv = torch.zeros((B, T, H, N))
ga = torch.zeros((B, T, H, N))
gb = torch.zeros((B, T, H, N))

(

w = torch.exp(-torch.exp(w0.view(B, T, H, N)))
for t in range(T-1, -1, -1):
gr[:, t, :] = torch.matmul (
gout[:,t,:,None,:], self.state_cache[:,t+1l,:]).squeeze(-2)
gstate.add_(torch.matmul (
gout|[:,t,:,:,None], r[:,t,:,None,:]))
gkl[:, t, :] = torch.matmul (
v[:,t,:,None, :], gstate).squeeze (-2)
gvli:, t,] torch.matmul (
gstate, k[:,t,:,:,None]).squeeze(-1)
gal:, t,] torch.einsum/(
'bhik,bhj, bhij->bhk',
self.state_cachel[:, t, :], bl[:, t, :], gstate)

It I~

gb[:, t, :] = torch.einsum(

'bhik, bhk,bhij->bhj',

self.state_cachel:, t, :], al:, t, :], gstate)
gw[:, t, :] = torch.einsum(

'bhij,bhij->bhj',

self.state_cache[:, t, :], gstate)

gstate = torch.einsum/(

'bhj,bhij->bhij"', wl[:, t, :], gstate) \

+ torch.einsum(

'bhk,bhj,bhij->bhik"', al:, t, :], bl:, t, :], gstate)
gw = —torch.exp (wO-torch.exp(w0)) * gw
return gr, gw, gk, gv, ga, gb, gstate

I Speed and Memory Usage Details

We compare the training speed and memory usage of the RWKV-7 attention-like kernel with
the RWKV-6 kernel and Flash Attention v3 (Shah et al., 2024). The "RWKV-7" kernel accelerates
bfloat16 matrix multiplications with modern CUDA instructions. We also include the "RWKV-7
fp32" kernel, which is simpler and performs all its internal calculations using float32. Although
the bfloat16 kernel is faster, to maximize precision, the RWKV-7 fp32 kernel was used to train the
RWKV-7 World models.

37

Published as a conference paper at COLM 2025

Our CUDA kernels are tuned for head dimension 64, as used in the RWKV-7-World models. The
kernels still perform well for head dimension 128, but their efficiency drops off at larger head
dimensions. There exist other RWKV-7 implementations which focus on head dimensions greater
than 128. A key example is the Flash Linear Attention library (Yang & Zhang, 2024), which offers a
Triton-based implementation designed for these larger configurations.

I.1 Speed

In Figure 3, we time the forward + backward pass of each kernel for batch size 8, head dimension
64 and model dimension 4096 (64 wkv heads) on an H100 SXM GPU, for varying sequence lengths.
Although Flash Attention v3 is heavily optimized for the H100 GPU, it scales quadratically with
sequence length, while the RWKV models scale linearly. This makes the RWKV models faster than
attention for large sequence lengths. Furthermore, the optimized RWKV-7 kernel is about three
times faster than the official RWKV-6 kernel.

The forward pass of RWKV-7 is about twice as fast as the backward pass. For inference, the forward
pass does not need to store the wkv state, making it faster. For example, for sequence length 16k,
the forward pass without storing state takes 7.9 ms, while the forward pass with storing state takes
11.2 ms, the backward pass takes 22.5 ms, and the Flash Attention v3 forward pass takes 33.9 ms.

.2 Memory

The peak training memory usages of the tested models are well described by the formulas derived
below. For example, the runs in Figure 3 required peak memory within 2% of the estimates.

In the tested kernels, the memory required per stored variable (e.g. g, k, or v in attention) is
batch size x model dimension x sequence length x 2 bytes for bfloat16.

For sequence length 1024, this is 64MB per variable. To calculate memory usage, we may use Flash
Attention v3: 10 variables, RWKV-6: 10 variables, RWKV-7: 18 variables, RWKV-7 fp32: 24 variables.

Flash Attention v3 requires 4 variables q, k, v and output for the forward pass, and the correspond-
ing 4 gradients. Finally, the backward pass uses a temporary variable to accumulate the gradient
of q in float32, yielding 2 variables worth of addition memory, for a total of 4+4+2 = 10.

RWKV-6 requires 5 variables 1, w, k, v, and output for the forward pass and also the corresponding
5 gradients for the backward pass, for a total of 10.

RWKV-7 uses 7 variables in the forward pass (1, w, k, v, —k, K ®a, and output), and the corresponding
7 gradients. Additionally, it stores the wkv state every 16 timesteps. At head size 64, the state
contributes the equivalent of 4 variables, for a total of 18. "RWKV-7 fp32" has the same 14 forward
variables and gradients, but uses more memory to store the states in float32, for a total of 24
variable equivalents.

Memory usage is constant for single token inference and follows the formulas above, minus the
gradients and state storage. Pre-fill can easily be accomplished in a chunked manner, with memory
usage growing linearly with regard to chunk size. This allows an easy trade-off for fast parallelized
pre-fill, with user selectable maximum memory usage.

J Extended Evaluations

J.1 Active Parameters versus Average Benchmark Accuracy

In Figure 7 we plot active parameters versus accuracy averaged across a series of multilingual and
English benchmarks.

J.2 Associative Recall
Associative recall (AR) (Arora et al., 2023) evaluates the ability of the model to recall previously

encountered information within a given context. Research indicates that a model’s capacity for
AR can reflect its effectiveness in learning from context (Elhage et al., 2021; Olsson et al., 2022).

38

Published as a conference paper at COLM 2025

65 80
Qwen2.5 7B
RWKV7-World3 2.98 38
60 7B RWKV7-World3 2.98
— 70 1.58
g o 758
g Qwen2.5 1.58 SmolLM2 .78
=2
g SmolLM21.78 60 s60M Z s 5. 278
s 50 GaB .38
g o . # T80M
E . 360M 135M F470M
45 «T35M 50 %0198
MambaZ2-Pile 130M
40
1E+8 S5E+8 1E+9 SE+9 40
1E+8 S5E+8 1E+9 SE+9
Inference Active Parameters (log scale) Inference Active Parameters (log scale)

Figure 7: Active params vs. average benchmark accuracy for Multilingual (left) and English (right).
Multilingual benchmarks omit Pile models due to a lack of multilingual training data in the Pile.

Consequently, AR has become a standard benchmark for developing new architectural designs in
language models (Fu et al., 2023; Poli et al., 2023; Lutati et al., 2023).

In Table 14 we train two-layer RWKV-7 with MQAR, scaling the sequence length up to 2048,
with RWKV-7 specific initialization, weight decay 0.1 on weight matrices, and AdamW ¢ of
1 x 107'8 for stabilization. Interestingly, with only a WKV size of 8192, RWKV-7 is able to re-

Dim WKVstatedim (64,4) (128,8) (256,16) (512,64) (1024,128) (2048,256)

64 8192 v v v 98.43 95.01 72.93
128 16384 v v v v v 94.97
256 32768 v v v v v 98.97
512 65536 v v v v v v

Table 14: RWKV-7 MQAR test results. (a, b) denotes sequence length and KV pair count, respec-
tively. v'means over 99% accuracy. Results maxed over 3 different learning rate settings.

call 72.93% at the setting of 256 Key-value pairs. This suggests that a total of roughly 256 x 0.7293 x
log, (number of key tokens x number of value tokens) = 186.2 x 2 x log, (4096) = 4480.8 bits of in-
formation, is stored in a 8192 dimensional state, yielding an information density of 0.547 bits per
dimension.

J.3 Fresh Internet Text Evaluation (extended)

We collected new data created after January 2025, including: newly submitted computer science
and physics papers on arXiv, newly created Python/C++ open-source repositories on GitHub,
recently published Wikipedia entries, new fiction on Archive of Our Own (Various, 2025), and
recent news articles. Inspired by Delétang et al. (2024); Li et al. (2024b), we used compression rate
as our evaluation metric. See Table 15 for details.

Remarkably, despite being trained on significantly less data than other top models, RWKV-7 Goose
showed competitive performance on this temporally novel data.

J.4 Long Context Experiments
To evaluate the ability of RWKV models to retain information over long sequences, we measured

loss versus sequence position (we select tokens in range [L/2 — 16384, L/2 + 16384) for document
length L) on the PG19 test set (Rae et al., 2019) for two types of RWKV7 models and their predeces-

39

Published as a conference paper at COLM 2025

arXiv arXiv Github Github AO3 BBC Wiki

Model CS| Phys.| Python| C++| Eng| news| Eng| average]
Qwen2.5-1.5B 8.12 8.65 4.42 440 11.76 9.58 9.49 8.06
RWKV-7 1.5B 8.25 8.77 5.57 5.29 10.93 9.34 8.97 8.16
Llama-3.2-1B 8.37 8.76 5.18 5.16 11.69 9.34 9.07 8.23
SmolLM2-1.7B 8.38 9.04 5.17 494 11.20 9.40 9.46 8.23
Index-1.9B 8.34 8.59 5.65 5.29 11.49 9.51 9.23 8.30
stablelm-2-1.6b 8.58 9.08 5.54 5.45 11.42 9.24 9.06 8.34
RWKV-6 1.5B 8.62 9.00 6.06 5.80 11.09 9.57 9.30 8.49
RWKV-5 1.5B 8.77 9.11 6.20 592 11.25 9.75 9.50 8.64
mamba2-1.3b 8.74 8.74 6.32 5.71 11.63 9.74 9.86 8.68
MobileLLM-1.5B 8.82 9.29 6.79 6.29 11.59 9.15 9.22 8.73
mamba-1.4b-hf 8.88 8.86 6.43 5.81 11.70 9.83 9.97 8.78
Zamba2-1.2B 8.57 9.21 6.91 7.08 11.39 9.38 9.26 8.83
SmolLM-1.7B 8.38 9.02 5.76 6.55 12.68 9.85 9.89 8.88
MobileLLM-1B 9.03 9.57 7.03 6.53 11.86 9.35 9.43 8.97
RWKV-4 1.5B 9.34 9.80 6.54 6.16 11.33 10.00 9.82 9.00
pythia-1.4b-v0 9.12 9.20 6.79 6.15 12.19 10.20 10.43 9.15
Falcon3-1B-Base 8.60 9.20 6.92 7.16 13.04 10.45 10.75 9.45
Llama-3.2-3B 7.78 8.10 4.15 4.59 10.90 8.70 8.28 7.57
Qwen2.5-3B 7.79 8.25 4.15 412 11.23 9.15 8.96 7.66
RWKV-7 2.9B 7.90 8.34 5.16 4.88 10.48 8.92 8.47 7.74
stablelm-3b-4elt 8.15 8.50 5.28 4.85 10.89 8.82 8.51 7.86
Minitron-4B-Base 8.09 8.70 5.13 474 11.05 9.08 8.90 7.96
recurrentgemma-2b 8.24 8.52 5.22 4.80 11.30 8.94 8.88 7.99
RWKV-6 3B 8.27 8.58 5.66 5.39 10.67 9.17 8.82 8.08
gemma-2-2b 8.39 8.81 5.36 5.01 11.35 8.90 9.03 8.12
mamba2attn-2.7b 8.33 8.29 5.78 5.22 11.13 9.28 9.26 8.18
RWKV-5 3B 8.42 8.70 5.78 5.51 10.83 9.36 9.00 8.23
mamba2-2.7b 8.43 8.37 5.93 5.34 11.21 9.37 9.38 8.29
Zamba2-2.7B 8.17 8.70 6.30 6.39 10.97 8.95 8.74 8.32
mamba-2.8b-hf 8.57 8.52 6.03 5.46 11.31 9.49 9.53 8.41
RWKV-4 3B 8.90 9.27 6.07 5.67 10.90 9.57 9.30 8.53
pythia-2.8b-v0 8.72 8.73 6.29 5.71 11.66 9.74 9.82 8.67

Table 15: Compression rate (unit: %) compared across different language models on various
data sources, including arXiv papers, GitHub repositories, AO3 fiction, and news articles cre-
ated after January 2025. We define compression rate as: ({og» (e) * average loss over document *
document tokens)/(8 * document length in bytes).

sors trained on either The Pile dataset or World dataset. Despite sharing the same architecture and
being pretrained on 4k context windows, models trained on different datasets exhibited different
behaviors. The Pile-trained RWKV7 showed more significant loss reduction on long contexts
compared to its predecessors, demonstrating effective long-context extrapolation (see Figure
8). Surprisingly, for RWKV7 trained on the World dataset, when processing contexts longer than
10k, the loss began to show an increasing trend (see Figure 9). We speculate this is because the
larger dataset and model size created inductive biases that caused overfitting to specific context
lengths. Further experiments showed that fine-tuning on long contexts can restore its long context
capabilities.

To further test RWKV-7 long-context retrieval abilities, we conduct a pass-key retrieval evaluation
following the approach of (Chen et al., 2024b) and plot the results in Figure 10. In this evaluation,
a single sentence is repeated multiple times within a long context window, with a key phrase
embedded at different positions. RWKV7-World3-1.5B achieves perfect accuracy up to a context
length of 19600 tokens but exhibits degradation beyond 20600 tokens. The larger RWKV7-World3-
2.9B extends perfect retrieval up to 32000 tokens, highlighting the benefits of scaling. However,
performance begins to degrade beyond this point.

To explore potential improvements, we fine-tuned RWKV7-World3-1.5B and RWKV7-World3-2.9B
on packed training sequences of length 128k tokens from a specially constructed dataset, which
leads to further improvements in retrieval accuracy. With this fine-tuning, RWKV-7 (1.5B) reliably
retrieves key phrases up to 29k tokens, and degradation is observed only around 40k tokens.
RWKV-7 (2.9B) reliably retrieves the pass key up to 30k tokens, and degrades around 50k tokens.

40

https://huggingface.co/Qwen/Qwen2.5-1.5B
https://huggingface.co/meta-llama/Llama-3.2-1B
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B
https://huggingface.co/stabilityai/stablelm-2-1_6b
https://huggingface.co/state-spaces/mamba2-1.3b
https://huggingface.co/facebook/MobileLLM-1.5B
https://huggingface.co/state-spaces/mamba-1.4b-hf
https://huggingface.co/Zyphra/Zamba2-1.2B
https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B
https://huggingface.co/facebook/MobileLLM-1B
https://huggingface.co/EleutherAI/pythia-1.4b-v0
https://huggingface.co/tiiuae/Falcon3-1B-Base
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/Qwen/Qwen2.5-3B
https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/google/recurrentgemma-2b
https://huggingface.co/google/gemma-2-2b
https://huggingface.co/state-spaces/mamba2-2.7b
https://huggingface.co/Zyphra/Zamba2-2.7B
https://huggingface.co/state-spaces/mamba-2.8b-hf
https://huggingface.co/EleutherAI/pythia-2.8b

Published as a conference paper at COLM 2025

3.4 4
—8— RWKV7 168M Pile
—8— RWKV6 173M Pile
3.34 —o— RWKV4 169M Pile
Mamba 130M
—8— Mamba2 130M
3.2
n
§ 3.14
i
j=)]
i
L
z 3.0
2.91
2.8
2.7 T T

A A A B o S A A oF QE N A A
ST T R GT G AT 9T 9T 0T QT
Token Positions

Figure 8: PG19 loss versus sequence position for RWKV and Mamba models trained on The Pile
datasets.

2.6
—8— RWKV7-2.9B-World
—8— RWKV6-3B-World
- RWKV5-3B-World
254 —8— RWKV4-3B-World
' —8— RWKV7-2.9B-World3-128k-tuned
n 2.4
a
3
)
>
o
g
< 2.34
2.2
2.1 — T :

N O N s e N o o N e A AN
N AT AV DA A 4D AN AR D A DAY
Token Positions

N AE A B A & AE GF oF QF A% AF AF
SFAF A G & A @ oF g8 v

Figure 9: PG19 loss versus sequence position for RWKV7 models and predecessors trained on the
World dataset.

Our context length extension dataset is comprised of both public and custom sources listed in
Table 16. We employed a document length-based weighting scheme to prioritize longer contexts
during training. To approximate document lengths of 128,000 tokens, we used character counts
0f512,000. Documents of less than 32,768 characters were assigned a weight of 1.0, while longer
documents were assigned linearly increasing weights between 2.0 and 3.0, with a cap of 3.0 beyond
512,000. This method increases the inclusion of longer documents to bolster the model’s handling
of extended contexts while retaining shorter documents for diversity.

41

Published as a conference paper at COLM 2025

K K
2 =
2 50 2 50
o o
0)
C C
< <
100 100
0k 21k 42k 62k 0k 21k 42k 62k
Context Len. Context Len.
(a) 1.5B (b) 3B
0 0
e K
a =y
o 50 2 50
o o
% %
C C
< <
100 100
0k 21k 42k 62k 0k 21k 42k 62k

Context Len. Context Len.

(c) 1.5B extended (d) 3B extended

Figure 10: RWKV7-World3 pass-key retrieval evaluation

Dataset Type Amount
dclm-baseline-1.0 Public 25%
fineweb-edu Public 15%
fineweb Public 5%
codeparrot/github-code Public 10%
arXiv-CCO0-v0.5 Custom 10%
SuperWikiNEXT-32B Custom 10%
public domain books Custom 15%
the-stack (filtered) Custom 10%

Table 16: Context length extension dataset components

J.5 Evaluating State Tracking Using Group Multiplication

We adopt the experimental setting from Merrill et al. (2024) to evaluate the state-tracking capa-
bilities of RWKV7 in comparison to Transformer, Mamba, S4, and classical RNN models. Given a

42

https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/recursal/arXiv-CC0-v0.5
https://huggingface.co/datasets/recursal/SuperWikiNEXT-32B
https://huggingface.co/datasets/bigcode/the-stack

Published as a conference paper at COLM 2025

sequence go, 81,82, ---, 8n drawn from As, A4 x Zs, or Zgp, each step i is labeled with the cumulative
product of the first i elements.

We plot the minimum number of layers required to achieve over 95% validation accuracy on group
multiplication tasks, as a function of sequence length and group structure. The results are shown
in Figure 11. Our findings indicate that RWKV-7 exhibits stronger state-tracking capabilities than
Transformers, Mamba, and S4, though slightly weaker than classical RNNs. Figure 11 also aligns
with our theory from Appendix D.2, which predicts that RWKV-7 can perform state tracking and
recognize any regular language with a constant number of layers. RWKV-7 has no expressivity
advantage for state tracking compared to classical RNNs, which can recognize any regular language
in a single layer. However, classical RNNs, while being theoretically expressive, typically suffer
from gradient vanishing and memorization problems (Zucchet & Orvieto, 2024) and cannot be
parallelized efficiently, unlike RWKV-7.

--e-- (Classical) RNN S4 -m- Mamba Transformer —4— RWKV?7 |
Zso Ay X Zs As

4 4 4 m
4]
%3 3 e | 3 7]
-
G

=}
4
g2 oo O a2 * * 2 * *
s

1 .’—0—0—0/ Y ? SR — Y S o 1/ W ? SR Y SRR -

5 10 15 20 5 10 15 20 5 10 15 20
Sequence Length Sequence Length NCl Sequence Length

Figure 11: Minimum number of layers (lower is better) required to attain > 95% validation accuracy
on group multiplication problems by sequence length and group.

K Multimodal Experiments

In this section, we explore the capabilities of Goose when extended to handle multimodal tasks,
where the model processes and integrates textual inputs with inputs from a different domain.

K.1 RWKY for Image Understanding

LM Head
Input Image
RWKV-7 Blocks
Vision Encoders A
SigLIP DINOv2 SAM EEEEEEERE
Image Feature Text Embedding

| >— what is the name of this bird?

Concat

Figure 12: The architecture of VisualRWKV-7. The input image is processed by three vision
encoders, and the obtained features are concatenated. Afterward, they are projected through an
MLP with context gating to align with the dimensions of the RWKV-7 block. Finally, the image
features are concatenated with the text embeddings and fed into the RWKV-7 LLM.

43

Published as a conference paper at COLM 2025

To demonstrate the modeling capabilities of RWKV-7, we constructed VisualRWKV-7 (Figurel2), a
visual language model based on the RWKV-7 block, to evaluate the image understanding capa-
bilities of RWKV-7. VisualRWKV-6 (Hou et al., 2024) used the CLIP encoder, which focused on
processing low-resolution images and achieved good results. VisualRWKV-7 replaces the CLIP
encoder with SigLIP and DINO visual encoders, and introduced a new high-resolution SAM vision
encoder, which enhances the model’s supported resolution to 1024 x 1024.

Method | Vision Encoder LLM | VQA' SQA TQA GQA

VisualRWKV-6 | SigLIP+DINOv2+SAM RWKV6-1.6B | 73.6 57.0 48.7 58.2
VisualRWKV-6 | SigLIP+DINOv2+SAM RWKV6-3.1B | 79.1 629 52.7 61.0

VisualRWKV-7 | SigLIP+DINOv2+SAM RWKV7-0.1B | 75.2 50.6 379 59.9
VisualRWKV-7 | SigLIP+DINOv2+SAM RWKV7-04B | 77.9 55.0 41.1 623
VisualRWKV-7 | SigLIP+DINOv2+SAM RWKV7-1.5B | 79.8 59.7 495 63.2
VisualRWKV-7 | SigLIP+DINOv2+SAM RWKV7-2.9B | 80.5 63.4 58.0 63.7

Table 17: A comparison of VisualRWKV-7 to other Visual Language Models across 4 distinct
benchmarks. We evaluate these models on benchmarks: GQA(Hudson & Manning, 2019), SQA(Lu
etal., 2022), TQA(Singh et al., 2019) and VQA(Li et al., 2023b).

The experimental results of VisualRWKV-7 are shown in Table 17. The vision encoders used in
both VisualRWKV-7 and VisualRWKV-6 are identical, and the training data remains consistent,
aligned with the training data of LLaVA-1.5. The first stage consists of 558k alignment data, while
the second stage includes 665k SFT data.

VisualRWKV-7 0.1B and 0.4B outperform VisualRWKV-6 1.6B on the in-domain benchmarks VQAv2
and GQA and rapidly approach VisualRWKV-6 1.6B on two other benchmarks. The experimental
results are highly compelling. With only 1/4 of the parameters (1.6B vs. 0.4B), VisualRWKV-
7 surpasses VisualRWKV-6 on the VQAv2 and GQA benchmarks, demonstrating the powerful
modeling capabilities of RWKV-7.

On the out-of-domain benchmark SQA, VisualRWKV-7 2.9B also outperforms VisualRWKV-6
3.1B, indicating that VisualRWKV-7 possesses strong generalization ability. In the TextQA (TQA)
benchmark, which assesses a model’s associative recall, VisualRWKV-7 2.9B achieves a 5.3-point
improvement over VisualRWKV-6 3.1B, further proving its superior associative recall capabilities.

K.2 RWKY for Audio Modeling

To investigate the effectiveness of RWKV-7 for audio modeling, we introduce AudioRWKV-7, a
novel adaptation of RWKV-7 for audio embedding analysis. We use a bi-directional modification
to RWKV-7, similar to the modification used by Duan et al. (2024). We employ this approach
to interpret and process complex, high-dimensional spectrogram features. To further capture
acoustic and temporal characteristics, an mel-spectrogram is divided into patch tokens using a
Patch-Embed CNN with a kernel size of (P x P) and sequentially fed into the model. The width and
height of an audio mel-spectrogram represent the time and frequency bins, respectively. Typically,
the time dimension is significantly longer than the frequency dimension. To effectively capture
relationships among frequency bins within the same time frame, the mel-spectrogram is first
segmented into patch windows wy, wy, ..., wy, followed by further division of patches within each
window. The token sequence follows the order: time — frequency — window. This arrangement
ensures that patches corresponding to different frequency bins within the same time frame are
positioned adjacent to each other in the input sequence.

We evaluated the performance of AudioRWKV-7 across multiple model scales and architectures,
using the AudioSet dataset (Gemmeke et al., 2017). Detailed experimental outcomes are presented
in Table 18. From the results we find that our model achieves comparable performance with
a much smaller parameter count when compared with CNN, Transformer and Mamba based
architectures, and exceeds the performance of AudioRWKV-6. These findings demonstrate the
robustness and versatility of AudioRWKYV. Note that to ensure a fair comparison, we retrained
AudioRWKV-6 without ensembling models with different patch settings, which accounts for the
difference in results from (Peng et al., 2024a).

44

Published as a conference paper at COLM 2025

Model #Parameters Architecture mAP |

DeepRes (Ford et al., 2019) 26M CNN 0.392
HST-AT 88.5M Transformer 0.433*

HST-AT pretrained(Chen et al., 2022) 88.5M Transformer 0.429*
MambaOut(Yu & Wang, 2024) 101.3M Mamba 0.397
AudioRWKV-6 8.9M RWKV6 0.381
AudioRWKV-6 19.8M RWKV6 0.426
AudioRWKV-7 8.9M RWKV7 0.392
AudioRWKV-7 19.8M RWKV7 0.431

Table 18: A comparison of mean Average Precision (mAP) among AudioRWKV7 and other baselines
on AudioSet dataset. HST-AT pretrained is a variation that uses vision transformer to initialize the
weights. *Results reproduced by ourselves.

L Board Game Modeling

Previous research (Schultz et al. (2024); Topsakal et al. (2024)) has shown that board games can
serve as potentially effective tools for evaluating a model’s capabilities. As an RNN with powerful
state tracking abilities, RWKV-7 is highly suitable for board game modeling and conducting
extended searches directly within context to find better strategies. As an early exploration, we
tested RWKV-7’s board game modeling capabilities and its ability to perform in-context search on
the game of Othello (Reversi). We found an expanded formulation of RWKV-7 to be useful for this
task, which we designate as RWKV-7a: S; = S;_;diag(w,)(I - ck ! (a; %)) + v] k; This formula
allows the full range of (-1,1) eigenvalues when ¢ = 2.

Data We designed training data that guides the model to predict legal moves, evaluate these
moves, and perform Alpha-Beta pruning. Each training sample consists of three components:

 Input section: Captures the game state, including the current board position, active
player, and search parameters (tree depth and width settings).
* Reasoning section: Varies with search settings:
- Without search (depth or width = 1): Lists legal moves and their evaluations
— With search (depth and width > 1): Performs Alpha-Beta pruning to find optimal
moves
All move evaluations in the reasoning section were generated using the Egaroucid engine
(Yamana, 2025).
¢ Output section: This contains the final move decision and displays the resulting board
position after implementing the move.

An example of our training data is shown in sample 1.

Code Listing 1: Training Data Example

<input>

. 00 * * . .
¥ . 000 % % .
* x % % *x O 0 O0
* 0% 00 * 00
* x 000 * 0 .
* . 0000

. . .00
NEXT o

MAX WIDTH-2
MAX _DEPTH-2
</input>
<reasoning>

Possible moves and score: gl -19 hl -01 b2 -08 h2 -23 b7 -12 g7 -09
<stack>

45

Published as a conference paper at COLM 2025

Remaining Depth:2

Max_Node Alpha: -in Beta: +in Best: —— Current: hl -01 Unexplored: b2 -08
</stack>

=> Search next node

[Depth limit not reached]

<board>

. .00 * x .0
*x . 000 * 0 .
¥ % ¥ O *x O0O0
* x *x ¥ O 0 0O0
*x 0 * 00 * 00
x x 000 * O .
* 00O0O
... .00
</board>
NEXT =

Possible moves and score: bl +02 b2 +05 h2 +10 h6 +03 h7 +08 c8 +06 d8 +01 g8 +09
[Current player has legal moves]
[Internal node - expand]

<stack>

Remaining_Depth:1

Min_Node Alpha: -in Beta: +in Best: —— Current: d8 +01 Unexplored: bl +02
Max_Node Alpha: -in Beta: +in Best: —— Current: hl -01 Unexplored: b2 -08
</stack>

=> Search next node
[Depth limit reached - evaluate all leaves]
[Updated stack]

<stack>

Remaining Depth:1

Min_Node Alpha: -in Beta: +01 Best: d8 Current: —— —— Unexplored:
Max_Node Alpha: +01 Beta: +in Best: hl Current: b2 -08 Unexplored:
</stack>

=> Search next node
[Depth limit not reached]
<board>

0

LR . A
- ¥»x OO0 O O -
© O x * O O
© OO0 0O OO0
© O O O % % O =*
O O % % O % % %
©C O O O % -
. O .

</board>

NEXT =+

Possible moves and score: al -07 bl +13 h6 -01 b7 -08 g7 +08 h7 -02 c8 +01 d8 -03 g8 +04
[Current player has legal moves]

[Internal node - expand]

<stack>

Remaining Depth:1

Min_Node Alpha: +01 Beta: +in Best: —— Current: b7 -08 Unexplored: al -07
Max_Node Alpha: +01 Beta: +in Best: hl Current: b2 -08 Unexplored:
</stack>

=> Search next node
[Depth limit reached - evaluate all leaves]
[Updated stack]

<stack>
Remaining Depth:1
Min_Node Alpha: +01 Beta: -08 Best: b7 Current: —— ——— Unexplored:

46

Published as a conference paper at COLM 2025

Max_Node Alpha: +01 Beta: +in Best: hl Current: —- ——— Unexplored:
</stack>

[End of search]

> Playing hl

</reasoning>
<output>
h1
00 * * .0
* . 000 * O .
* ¥ ¥ O * 0O 0O
* % % ¥ O 0 0O
* 0 * 00 * 00
* ¥ 000 * O .
* . 0000
... .00
</output>

Training We trained RWKV-7 models with 9M and 26M parameters respectively on 6 million
samples. By tracking the loss across different token types during training (figure 13), we noticed
that the model first mastered output formatting, then developed board state tracking capability,
and continuously improved its evaluation accuracy throughout training.

Loss Trends During Training

—8— Avg State Tracking Loss
Avg Value Loss
—— Avg Format Loss

0.74

0.5+

0.4 4

Loss Values

0.34

0.24

0 20 40 60 80 100
Training Progress (%)

Figure 13: Reversi training loss for different token types

Evaluation We control the model’s thinking budget by setting the width and depth of Alpha-beta
pruning, and test the win rate against baseline a model (depth=1, width=1) under different budgets.
As shown in figure 14, by increasing the testing budget, RWKV-7 can effectively search for better
strategies, demonstrating a positive test-time scaling law on this task.

47

Published as a conference paper at COLM 2025

0.85

o
o
FNEN

0.80

o

o

AN

o Qo

i

v N
oo
i1
NN

oo

I

v w
o Q
]
w s

0.75 1 (@) (@)

()
o Q
i
w w
o Q
Q]
W
(@]

0.70 A

Win Rate
(@}
o Q
IR
w N
o Q
il
N W

0.65 -

0.60

oo
Il 1
NN

0.55

10°
Test-time tokens

Figure 14: Reversi token consumption and win rates under different search configurations

M Ablation Experiments

M.1 The Pile

To demonstrate the architectural advantages of RWKV-7, we conducted ablation experiments by
training models of three different sizes—168M, 421M, and 1.47B parameters—on the full Pile
dataset (Gao et al., 2020).

Model Tokens Imb.o Imb.o hella piqa arcE arcC glue WG sciq avg

(B) ppll acct acc.nt acc! acct! acc! acc! accl acc! acct
RWKV4-169M-Pile 332 29.2 33.2 322 648 471 199 476 51.2 776 46.7
Pythia-160M 300 37.3 35.4 30,3 623 436 195 46,5 51.3 754 455
Mamba-130M 300 16.0 44.3 353 645 48.0 19.7 485 52.1 782 48.8
Mamba2-130M 300 16.8 43.9 353 649 474 209 458 52.6 81.0 49.0

RWKV6-173M-Pile 332 16.0 44.5 349 644 483 197 489 519 80.6 49.2
RWKV7-168M-Pile 332 14.2 45.7 36.9 655 479 19.7 49.1 524 81.6 49.8

RWKV4-430M-Pile 332 13.1 45.1 408 67.7 528 241 494 52.0 80.7 516

Pythia-410M 300 10.8 51.6 406 66.7 519 214 441 533 815 514
Mamba-370M 300 8.1 55.6 46.5 69.5 55.0 250 46.8 555 845 54.8
Mamba2-370M 300 8.0 55.9 469 705 548 25.1 48.1 554 853 552
RWKV7-421M-Pile 332 7.2 57.9 480 693 563 235 503 56.4 859 56.0
RWKV4-1.5B-Pile 332 7.1 56.4 528 722 60.7 249 505 543 858 57.2
Pythia-1.4B 300 6.1 61.7 520 708 605 261 47.7 575 86.6 579
Mamba-1.4B 300 5.0 65.0 59.1 742 65.5 298 462 614 873 61.1
Mamba2-1.3B 300 5.0 65.6 599 732 642 299 46.1 61.0 898 61.2

RWKV7-1.47B-Pile 332 48 67.0 61.8 736 649 302 48.0 644 91.1 62.6

Table 19: English focused benchmarks, including LAMBADA (Imb.o) (Paperno et al., 2016),
Hellaswag (hella) (Zellers et al., 2019), PIQA (Bisk et al., 2020), AI2 ARC (arcE, arcC)
(Bhakthavatsalam et al., 2021), GLUE (Wang et al., 2018), Winogrande (WG) (Sakaguchi et al.,
2021), SciQ (Welbl et al., 2017).

These results highlight the consistent improvements brought by the RWKV-7 architecture over
earlier RWKV models, even when trained on the same dataset. As all RWKV models shown were
trained under identical configurations and dataset, this underscores the inherent architectural

48

Published as a conference paper at COLM 2025

advantages of RWKV-7 over its predecessors. Notably, the performance gap sustains as the model
size increases, suggesting that RWKV-7 may scale more effectively than its predecessors.

M.2 Architecture Choice Ablations

We ran a series of ablation experiments to validate the various improvements made in RWKV-7
versus some of the more restrictive choices seen in other DeltaNet and post-DeltaNet related work.
These improvements were:

* using a vector-valued decay w instead of a scalar-valued decay;

* using a vector-valued in-context learning rate a instead of a scalar-valued rate;

« using different removal x and replacement k keys, instead of the same for both; and
* adding the bonus term u;, j vy, ; to the output step (Equation 20).

We trained a small 6-layer, d,;,,q0; = 768 Goose model on the 1.6B token minipile (Kaddour, 2023)
dataset at context length 512 and obtained the loss results shown in Table 20.

Model Training Loss Validation Loss
Goose 2.834 2.541
Goose, scalar decay 2.873 2.609
Goose, scalar in-context learning rate 2.843 2.591
Goose, same removal/replacement keys 2.840 2.560
Goose, no bonus term 2.841 2.588

Table 20: Ablation results for 6 layer 768 dimension Goose model

N State Inspections

We inspected the WKV matrix states of RWKV-7 and compared them with those of RWKV-5 and
RWKV-6. We analyzed the following aspects:

1. Visualization example of WKV state matrices, to better understand the structure and
behavior of the matrices.

2. Root Mean Square (RMS) of matrix elements, to assess the numerical stability of those
WKYV matrices.

3. Stable Rank (SR) of the matrices (Rudelson & Vershynin, 2007), defined as the square of
(the Frobenius norm divided by the spectral norm):

Al)2
Al)
This serves as a rough measure to the effective amount of information of the states.

SR(A) := (

For this analysis, we selected 10 samples from the validation set of the PG19 dataset (Rae et al.,
2019), ensuring that each sample had a sequence length of at least 8192 tokens. We tested the 1.5B
parameter versions of RWKV-5, RWKV-6, and RWKV-7, plotting on the appearance, stable rank
and RMS values of their WKV matrices.

We observed that the WKV states of RWKV-7 had significantly smaller RMS values compared to
RWKV-5 and RWKV-6. The entries of the WKV matrix in RWKV-7 were consistently of order O(1)
(i.e., no outliers, and does not grow over context length), whereas RWKV-5 and RWKV-6 constantly
produced outliers on the order of thousands (see Figures 15 and 16). This indicates that RWKV-7
has better numerical stability during training and inference.

Interestingly, the stable rank of the WKV matrix in RWKV-7 has shown to be lower than that of
RWKV-5 and RWKV-6 for context longer than 32. A lower stable rank typically suggests that the
matrix contains less information or has a more compressed representation. However, this observa-
tion appears to contradict the experimental results showing that RWKV-7 performs better on tasks
requiring long-term memory. We hypothesize that this contradiction can be explained by RWKV-
7’s enhanced state evolution mechanism, which enables RWKV-7 to achieve stronger information

49

Published as a conference paper at COLM 2025

Layer 0 Head 4, SR: 2.03, RMS: 96.74 Layer 12 Head 9, SR: 1.73, RMS: 13.46 Layer 21 Head 22, SR: 1.10, RMS: 34.04
0 0 0
f 1500 Tacm . . . 300
10fmmn = - -l 10 10
. 1000 100 200
20 i 20 20
500 o = [} 100 o
3 g g
30 = 304 = 30 =
e o X o o ° 5
c c c
40 ® 404 -100 ® 40 —100 °
~500 -200
50 50 50 ~200
~300 - .
60 60 60 -300
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

(a) RWKV-5 1.5B

Layer 0 Head 4, SR: 1.73, RMS: 444.71 Layer 12 Head 9, SR: 1.95, RMS: 8.99 Layer 21 Head 22, SR: 1.07, RMS: 5.79
0 0 0
= pe——
6000 : : 200 = - 150
10 - o 10 10
4000 100
20 . e | 20 100 20
2000 = = 50 =
S £ S
30 EREY % 30 S
= 0 % 0 % 0 %
B 5 g
40 o000 ° 40 40 .
-100
' -50
50 _s000 50 50 H
-200
e —6000 60 60 1
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Layer 0 Head 4, SR: 1.47, RMS: 0.00 Layer 12 Head 9, SR: 1.82, RMS: 0.10 Layer 21 Head 22, SR: 1.01, RMS: 0.09
0 0
0.02 5
10 {me wa . - -— 10 ' = 104
1
0.01 1
20 20 204
= = =
g H H
30 =30 3 304 Es
000 % L LI
x 3 -15 g
40 ool 40 40 -1
-2
50 50 504 -2
-0.02 -3
60 60 -4 60 . -3
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

(c) RWKV-7 1.5B

Figure 15: Visualization example of RWKV’s WKV matrices.

RMS of RWKYV State Entries Average Stable Rank of WKV Matrices
—e— RWKV5-1.5B
16 RWKV6-1.6B
—e— RWKV7-1.5B
-~
1.5
101 4
~
<
S 1.4
" —e— RWKV5-1.5B 2
z RWKV6-1.68 P 134
—e— RWKV7-1.5B o
100 4 g
@
Z 1.2
1.1
1014 W
1.0
1 2 4 8 16 32 64 128 256 512 1024204840968192 1 2 4 8 16 32 64 128 256 512 1024204840968192
Context Length Context Length

Figure 16: The global RMS and average stable rank of WKV matrices, plotted over sequence length.

compression and utilization capabilities and allowing it to maintain important information in a
more compact form. This dual capability likely contributes to both the reduced stable rank and
the improved performance on memory-intensive tasks.

50

Published as a conference paper at COLM 2025

O Parameters Statistics

In Section 4, the actual ranges and statistical metrics of the parameters within the trained model
are not specified. To facilitate a better understanding of the role of these parameters in the
practical models, this appendix provides empirical statistical metrics of selected parameters from
the released RWKV-7 model.

0.9 [

] AT T
0.1 04 15 29 0.1 04 15
Parameters(B) Parameters(B)

Figure 17: Box plots of { and a across models

08| 1
§
0.6 1l —— 01B
0 10 20 30 0.4B
| 1.5B
1.2 f 1 —— 29B
Q I
1.0 i —

0 10 20 30
Layer Index

Figure 18: Mean ¢ and «a across layers for different models

P Initial Token Sensitivity

In our evaluation of LAMBADA (Paperno et al., 2016), we found that RWKV-7’s performance
varies significantly under different settings. After ruling out precision issues, we investigated the

51

Published as a conference paper at COLM 2025

75 F .
éé ;
>0t 1 — 01B
— 04B
[1.58B
I — 209B
2 7]
= [
—4r]
0 10 20 30
Layer Index
Figure 19: Maximum and minimum of ¢ across layers in different models
15 3
» E]
= 10 .
= ;]
5f 7 —— 01B
b — 0.4B
0F] 1.5B
— 29B
A= i]
S —10
_20 C . . A A 1 A A A A 1 A . . . 1 _

0 10 20 30
Layer Index

Figure 20: Maximum and minimum of a across layers in different models

consistency of the input and discovered that omitting the special token < | endoftext | > at the
beginning of the input caused substantial and statistically significant differences in perplexity
(PPL) and accuracy (ACC) for some RWKV-7 models.

Previous research highlights that Transformer models are sensitive to special tokens, and fine-
tuning these tokens can yield notable improvements (Yang et al., 2023b). However, to our knowl-
edge, no quantitative study has examined this effect systematically.

We analyzed the cases with the largest performance discrepancies, and identified a key pattern:

* The answer appears as the first word of the paragraph.
e This first word does not reappear elsewhere in the text.

This suggests that the model may struggle to retain the first token in memory.

52

Published as a conference paper at COLM 2025

Parameters(B)

Figure 21: Box plots of biases of d; across models

25 F]
—30F .
a5k _E — 0.1B
T | —— 04B
—4.0 F . 158
'] —— 209B
—4.5F .
—5.0F .
_55 L 1 1 \ \ \ \ 1

0 10 20 30
Layer Index

Figure 22: Mean biases of d; across layers for different models

In the LAMBADA test set, we identified 142 such examples out of a total of 5153 questions. One
example is:

Beth smoothed her wiry half-black, half-gray hair from her makeup-free face. In New
Mexico, the natural look was common. Standing next to Cindy Fanucci, she felt like a
disaster. She hid her ragged nails under the sleeves of her sweatshirt.

"Hi, I'm Cindy. It’s so nice to meet you, Beth."

The following table summarizes the performance of different models with and without the padding
token < |endoftext | >:

53

Published as a conference paper at COLM 2025

75 . T T T]
% 5.0]
= | :

25t | — 0.1B

I 1 N N N N 1 N N N N 1 " 1 L 1 1 l: O4B

r——— 77— 1.5B

10k I 2.9B
= i]
= —15F §
_20 L , , , , | , , , ,] , , . .] .

0 10 20 30
Layer Index

Figure 23: Maximum and minimum of biases of d; across layers in different models

Model EOS padding PPL ACC (%) Significance
RWKV7 World 0.1B 0 357 9.2 o
1 16.4 36.6
RWKV7 World 0.4B 0 42.7 28.9 e
1 7.25 48.6
SmolLM2 360M 0 21.1 39.4 *
1 9.17 49.3
Qwen2.5 0.5B 0 12.2 47.9 NS
1 7.97 54.9

Table 21: Performance comparison of different models with and without the < |endoftext | >
token in the partial set of 142 samples from LAMBADA. Significance levels: *p < 0.05, ** p < 0.01,
***p <0.001, NS = Not Significant.

The results indicate that the inclusion of the < | endoftext | > token improves the performance
of RWKV-7 very significantly, especially for small models (e.g., RWKV-7 0.1B). This finding high-
lights the importance of proper state initialization and context setting for RNN-based architectures
like RWKV. Unexpectedly, we also found that two consecutive < | endoftext | > tokens at the
beginning can further improve the performance of RWKV-7, despite that < | endoftext | > never
appears consecutively in the training corpus.

However, for Transformer-based models such as Qwen2.5-0.5B, we observe that the impact of
the <|endoftext | > token is less pronounced, suggesting that these models may have better
mechanisms for attending to the initial token.

As a result, for optimal performance when prompting RWKV-7, we recommend always including
the <|endoftext | > token at the beginning of the prompt. For example, if you plan to use
RWKV-7 as a chat assistant, consider the following structured prompt format:

54

Published as a conference paper at COLM 2025

<|endoftext |>User: <Your Question>
Assistant: <Assistant Answer>
User: <Another Question>

Assistant:

Q Limitations

Despite its strengths, the RWKV-7 architecture and models face certain limitations yet to be
mitigated in future work.

Numerical Precision. We observed that some operators, particularly the WKV7 kernel, are sen-
sitive to the numerical precision of the implementation. This highlights the need for careful
handling of numerical precision during model deployment. We also observed differences in train-
ing dynamics when using different kernels, which implies that the correct handling of precision
while calculating and applying state updates is of utmost importance in this architecture.

Lack of Instruction Tuning and Alignment. All RWKV-7 models presented in this work are
pretrained base models and have not undergone the phase of Supervised Fine-Tuning (SFT) for
instruction following nor alignment with human preferences (RLHF). Future efforts should focus
on incorporating these capabilities to enhance the model’s usability in real-world applications.

Prompt Sensitivity. We found that the absence of the special token < | endoftext | > results in
degraded performance of RWKV-7 models, e.g. inability to remember the first token of the input.
See Appendix P for details.

Compute Resources. Due to computational budget constraints, our training was limited on at
most 12 x 8 = 96 Nvidia H800 GPUs. This falls short of the resources required for recent large-scale
training efforts, such as DeepSeek-V3 (DeepSeek-Al et al., 2025). Additionally, we are forced
to continue training from pre-existing checkpoints of earlier RWKV architectures and therefore
re-use some parts of our dataset. This may limit the capabilities of our models versus pretraining
from scratch. Scaling up RWKV-7 to larger sizes and datasets will require additional computational
resources.

R Future Work

In addition to training larger RWKV-7 models with more tokens in the future, we also aim to
explore several promising directions to further enhance the architecture and its capabilities.

Speedup Techniques. A variety of speed optimization techniques were highlighted in the tech-
nical report of DeepSeek-V3 (DeepSeek-Al et al., 2025), including Dual Pipelining Mechanism,
Mixture-of-Experts, Multi-Token Prediction, and FP8 Training. We are aware that many of these
techniques are orthogonal to RWKV-7’s architectural optimizations, therefore could be integrated
to further accelerate training in later RWKV models. However, RWKV-7 has been trained com-
pletely without pipeline parallelism. We also noticed that there is room for speed optimization of
RWKV-7 kernels and operators. We will explore both kernel-level optimizations and distributed
training strategies in the future.

Incorporating Chain-of-Thought Reasoning. We believe that RWKV-7, as a linear RNN, is well-
suited for efficient Chain-of-Thought reasoning (Wei et al., 2022). However, this capability has
been barely explored due to the lack of suitable reinforcement learning pipelines. In future work,
we plan to incorporate deep thinking abilities into RWKV-7, enabling it to excel in tasks requiring
multi-step logical reasoning and complex problem-solving.

55

	Introduction
	Background
	Architecture
	Method
	Time Mixing
	MLP

	RWKV World v3 Dataset
	Pretrained Models
	Experiments
	Conclusions
	Author Contributions
	Training Dataset Details
	Transition Matrix Eigenvalues and Stability
	Expressivity of RWKV-7
	Warmup: Expressivity Beyond TC0
	Main Result: RWKV-7 Can Recognize Any Regular Language
	Lemmas for Theorem 2

	Additional Architectural and Training Details
	Additional Architecture Discussion
	Pseudocode For RWKV-7
	PyTorch code For Naive WKV7 Kernel (Forward and Backward)
	Speed and Memory Usage Details
	Speed
	Memory

	Extended Evaluations
	Active Parameters versus Average Benchmark Accuracy
	Associative Recall
	Fresh Internet Text Evaluation (extended)
	Long Context Experiments
	Evaluating State Tracking Using Group Multiplication

	Multimodal Experiments
	RWKV for Image Understanding
	RWKV for Audio Modeling

	Board Game Modeling
	Ablation Experiments
	The Pile
	Architecture Choice Ablations

	State Inspections
	Parameters Statistics
	Initial Token Sensitivity
	Limitations
	Future Work

