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Abstract

We demonstrate the potential of hybrid regularization methods to automatically and effi-
ciently regularize the training of random feature models to generalize well on unseen data.
Hybrid methods automatically combine the strengths of early stopping and weight decay
while avoiding their respective weaknesses. By iteratively projecting the original learning
problem onto a lower-dimensional subspace, they provide an efficient way to choose the
weight decay hyperparameter. In our work, the weight decay hyperparameter is automat-
ically selected by generalized cross-validation (GCV), which performs leave-one-out cross-
validation simultaneously in a single training run and without the need for a dedicated
validation dataset. As a demonstration, we use the random feature model to generate well-
and ill-posed training problems arising from image classification

::::
four

:::::
image

::::::::::::
classification

::::
and

:::::::::
regression

:::::::
datasets. Our results show that hybrid regularization leads to near-optimal reg-

ularization in all problems. In particular, it is competitive with optimally tuned classical
regularization methods. While hybrid regularization methods are popular in many large-
scale inverse problems, their potential in machine learning is under-appreciated, and our
findings motivate their wider use. We provide our MATLAB codes for implementing the
numerical experiments in this paper at Github-link-made-anonymous-for-reviewing.

1 Introduction

We examine the ability of hybrid regularization methods to automatically and efficiently train machine
learning models that generalize, that is, to perform well on data that have not been used in training. Hy-
brid regularization methods are a class of efficient regularization methods to tackle ill-posed linear inverse
problems. They synergistically combine the two most common and successful regularization schemes: early
stopping (Yao et al., 2007),

::::::
which

::
is
:::::

also
::::::
known

:::
as

::::::::
iterative

:::::::::::::
regularization

:::::::::::::::::::::::::::
(Engl et al., 1996, Chapter 6)

::
in

:::::::
inverse

::::::::::
problems,

::
and weight decay (Goodfellow et al., 2016, Chapter 7)(also called iterative

regularization (Engl et al., 1996, Chapter 6) and ,
::::::
which

::
is
::::
also

::::::
called

:::::
ridge

::::::::
penalty

::
in

:::::::::::::::::
statistics/machine

:::::::
learning

:::::::::::::::::::
(Kobak et al., 2020)

::
or Tikhonov regularization (Engl et al., 1996, Chapter 5) in inverse problems

, respectively). In particular, hybrid regularization combines the respective strengths of the two classical
regularization schemes while circumventing their drawbacks. Developing hybrid methods has been a fruitful
and important direction in inverse problems recently (Chung & Palmer, 2015; Gazzola et al., 2015; Chung
& Saibaba, 2017; Chung & Gazzola, 2024). Their effectiveness has also been documented in other fields,
including various imaging problems (Chung et al., 2008; Chung & Palmer, 2015; Chung & Saibaba, 2017).

In this paper, we consider a computationally efficient hybrid method (Chung et al., 2008) that automatically
tunes its hyperparameters and leads to trained models that generalize well on different problems. To be
specific, we use the hybrid method implemented in Gazzola et al. (2018), which performs a few iterations of
the numerically stable Krylov subspace method LSQR (Paige & Saunders, 1982a;b) and adaptively selects
the weight decay hyperparameter at each iteration using generalized cross-validation (GCV) (Golub et al.,
1979). Notably, the scheme does not require a dedicated validation dataset.

To test the effectiveness of hybrid regularization, we consider the training of random feature models
(RFM). RFM are machine learning models that express the relationship between given input and output
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features as the concatenation of a random feature extractor and a linear model whose weights are
optimized. It has been observed that the RFM’s generalization gap decreases as the number of random
features grows, sharply spikes when it reaches the number of training data, and decays as the number
of random features is increased further. This is called the double descent phenomenon in existing litera-
ture (Belkin et al., 2019; 2020; Hastie et al., 2022; Advani et al., 2020; Ma et al., 2020; Mei & Montanari, 2022)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Belkin et al., 2019; 2020; Hastie et al., 2022; Advani et al., 2020; Ma et al., 2020; Mei & Montanari, 2022; Li et al., 2020; Kausik et al., 2023)
.

To understand why hybrid regularization is adequate for RFMs, we provide an inverse problems perspective
and relate the spike in the generalization gap to the ill-posedness of the training problem. Specifically,
the training problem is the most ill-posed when the number of random features is equal to the num-
ber of training data. This allows us to create training problems with different levels of ill-posedness
by simply varying the number of random features in the experiments. Moreover, one can tackle the
ill-posedness

:::
and

::::::::
improve

:::::::::::::
generalization

:
by early stopping and weight decay regularization - provided

an effective choice of parameters; we therefore extend similar arguments made
:::::::::::::::
hyperparameters.

::::::::
Indeed,

::::
these

:::::::
effects

:::::
have

:::::
been

:::::::
studied

::
in

:::::::::
extensive

::::::::::
literature;

:::
see, e.g.,by Advani et al. (2020); Ma et al. (2020).

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Raskutti et al. (2014); Ali et al. (2019); Advani et al. (2020); Shen et al. (2022); Sonthalia et al. (2024)

::
for

::::
early

:::::::::
stopping,

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Hastie et al. (2022); Wu & Xu (2020); Kobak et al. (2020); Nakkiran et al. (2021); Sonthalia et al. (2023)

::
for

:::::::
weight

:::::
decay,

::::
and

::::::::::::::::::::::::::::::::::
Bishop (1995); Dhifallah & Lu (2021)

:::
for

::::::
general

:::::::::
Tikhonov

:::::::::::::
regularization.

::::::
While

:::::
these

:::::::
existing

::::::
works

:::::::
provide

:::::::
insights

::::
into

::::
and

:::::
have

::::::::::
similarities

:::::
with

::::
the

::::::
hybrid

:::::::::
approach

:::::
here,

:::
the

::::::::::::
combination

::
of

::::::::
low-rank

::::::::::
projections

::::
and

:::::::::::
generalized

::::::::::::::
cross-validation

::
to

:::::::
achieve

::::::::::
automatic

::::
and

:::::::
efficient

:::::::::::::::
hyperparameter

::::::
tuning

::::
sets

:::
the

::::::::
present

:::::
work

::::::
apart.

:::::::
Unlike

:::::
most

::::::::
existing

::::::
works,

::::
the

::::::
hybrid

:::::::::
approach

:::::::
neither

::::::::
requires

::
a

::::::::
dedicated

::::::::::
validation

:::
set

::::
nor

::
a
::::

full
:::::::

matrix
::::::::::::

factorization
::::::::

because
::::
the

:::::::::::::
regularization

:::::::::::::::
hyperparameter

::::
and

:::::::
stopping

::::::::
iteration

::::
can

:::
be

:::::::
selected

:::::
using

:::
the

::::::::::
generalized

::::::::::::::
cross-validation

:::::::
(GCV)

::::::::
function

::
in

:
a
:::::::::::::::
low-dimensional

::::::::
subspace.

::::
In

::::::::
addition,

::::::
while

:::::
some

:::::::
existing

::::::
works

:::::::
assume

:::::::
certain

:::::
data

::::::::::::
distributions,

:::::::
hybrid

::::::::
methods

::::
can

::::::
flexibly

::::
pair

:::::
with

::::::::
agnostic

::::::::::::::
hyperparameter

::::::::
selection

:::::::::
schemes,

::::
e.g.,

::::::
GCV.

While the success of hybrid regularization in inverse problems has been documented, their application to ma-
chine learning has not been extensively studied. Our work is also motivated by Newman et al. (2022), which
shows the benefits of hybrid regularization to adaptively choose learning rate and weight decay parameters
for the weights associated with the last layer of deep networks. To gain more insight into the potential of
hybrid methods to improve generalization, we perform extensive experiments using RFM, and the MNIST
and CIFAR-10

::::
two

:::::::
different

::::::::
variants

::
of

::::::
RFM

::::
and

::::
four

:::::::::
commonly

:::::
used

:
datasets. We compare the effective-

ness of early stopping, weight decay, and hybrid regularization for training problems with different levels
of ill-posedness. In our experiments, hybrid regularization leads to trained models whose generalization is
comparable with classical regularization approaches even when their hyperparameters are tuned to minimize
the test loss, a procedure that is to be avoided in realistic applications. This suggests the potential of hybrid
methods as a generic algorithm to train machine learning models reliably. To enable reproducibility, we
provide our codes used to perform the experiments at Github-link-made-anonymous-for-reviewing.

The remainder of the paper is organized as follows. In Section 2, we set up the problem and review the
classical early stopping and weight decay regularization methods. In Section 3, we describe a hybrid regu-
larization scheme and outline its advantages. In Section 4, we describe the setup of RFM training and relate
the deterioration in its generalization gap to its ill-posedness. In Section 5, we demonstrate that hybrid
regularization can effectively and automatically train RFM that generalize well with extensive experiments.
Finally, we

:::
We conclude the paper in Section 6.

:::::::::
Additional

::::::::::::
experimental

:::::::
results

:::
are

::::::
shown

::
in

::::::::::::
Appendix A.

:

2 Regularization by Early Stopping and Weight Decay

In this section, we layout the setup of the training problem and review the definition of ill-posed problems.
We then study the regularizing effects of two classical schemes: early stopping and weight decay.

::::::
Weight

:::::
decay

::
is

::::
also

:::::
called

:::::
ridge

::::::::
penalty

::
in

::::::::::::::::
statistics/machine

:::::::::
learning. In the inverse problems literature, they are

better known as iterative regularization and Tikhonov regularization, respectively.
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Problem Setup Given a matrix of input features A ∈ Rm×n and the corresponding output b ∈ Rm,
where the m examples are stored row-wise, and n is the dimension of the input features. We seek to identify
a linear transformation x ∈ Rm such that Ax ≈ b. To this end, the solution to an unregularized problem
can be obtained by solving a linear least squares problem

x∗
LS ∈ arg min

x∈Rn

1
2m

∥Ax − b∥2
2. (1)

In machine learning, the actual goal in the training problem (1) is not necessarily to solve (1) optimally but
to obtain a linear transformation that generalizes beyond the training data. To gauge the generalization
of the model defined by x∗

LS, consider the test data set given by Atest ∈ Rmtest×n and btest ∈ Rmtest .
Then, the model defined by x∗

LS generalizes well if the generalization gap
::::::::::::::::::::::::::::
(Bengio et al., 2017, Figure 5.3)

:
,

:::::::::::::::::::::::::::::::
(He et al., 2022; Yang et al., 2023)

1
2mtest

∥Atestx∗
LS − btest∥2

2 − 1
2m

∥Ax∗
LS − b∥2

2

is sufficiently small.

Ill-posedness and Regularization Regularization techniques are commonly used to improve the gener-
alization of machine learning (see, e.g., (Goodfellow et al., 2016, Chapter 7)) and to enhance the solution of
ill-posed inverse problems (see, e.g., Engl et al. (1996); Hansen (1998; 2010)). Despite differences in notation
and naming, the fundamental ideas in both domains are similar.

To illustrate ill-posedness and the effects of regularization, we consider the singular value decomposition
(SVD) of A = UΣV⊤ in (1). Here, U = [u1, u2, ..., un] and V = [v1, v2, ..., vm] are orthogonal matrices,
and Σ ∈ Rn×m contains the singular values {σj}min(m,n)

j=1 in descending order on its diagonal and is zero
otherwise. Let r be the rank of A, that is, the last index such that σr > 0.

When the singular values decay to zero smoothly, it is common to call problem (1) ill-posed and a large
generalization gap is expected for some test data. To see this, consider the minimum norm solution of (1),
which using the SVD can be written explicitly as

x∗
LS =

r∑
j=1

u⊤
j b
σj

vj . (2)

This formulation shows that the contribution of vj to x∗
LS is scaled by the ratio between u⊤

j b and σj . If
this ratio is large in magnitude then the solution is highly sensitive to perturbations of the data b along
the direction uj and the corresponding singular vector vj gets amplified in the solution. Also, σj quantifies
the importance of the feature uj in the data matrix A. Therefore, intuitively one wishes

:::
that

::::
the

:::::
ratio

:::::::
between

:
|u⊤

j b| to decay and σj to plunge to 0 sharply
::::
stays

::::::::
bounded

:
as j grows. Otherwise, the weakly

present features in A will be amplified and dominate the solution. If the resulting model is dominated by
less relevant features, it is expected to have a large generalization gap for some test data Atest and btest.
In other words, this observation suggests that for ill-posed problems,

:
the generalization gap depends on the

decay of σj and |u⊤
j b|. See Figure 3(c)-(e) for an example of how the quantities in (2) behave for well- and

ill-posed problems.

Using the SVD of the data matrix A = UΣV⊤, we can write and analyze most regularization schemes
for (1) using their corresponding filter factors ϕj that control the influence of the jth term in (2). To be
precise, the regularized solutions can be written as

xreg =
r∑

j=1
ϕj

u⊤
j b
σj

vj . (3)

::::
Here

:::
ϕj :::::::

depends
:::

on
::::
the

::::::::::::
regularization

:::::::::::::::
hyperparameter,

::::::
which

:::
we

::::
will

::::::
specify

:::
in

:::
the

:::::::::
following

::::::::::
discussion. A

simple example is the truncated SVD, in which terms associated with small singular values are ignored by
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using the filter factors

ϕTSVD,j(τ) =
{

1, σj > τ,

0, σj ≤ τ,
(4)

where the choice of τ ≥ 0 is crucial to trade off the reduction of the training loss and the regularity of the
solution, which is needed to generalize.

Early Stopping A common observation when (1) is solved using iterative methods is an initially sharp
decay of both the training and test losses followed by a widening of the generalization gap in later iterations.
This behavior, also known as semiconvergence, typically arises when the iterative method converges quicker
on the subspace spanned by the singular vectors associated with large singular values than on those associated
with small singular values. A straightforward and popular way to regularize the problem then is to stop the
iteration early.

As a simple example to show the regularizing effect of early stopping, we consider the gradient flow (GF)
applied to (1), which reads

∂txGF(t) = − 1
n

A⊤(AxGF(t) − b), xGF(0) = 0. (5)

When the SVD of the feature matrix is available, xGF(t) can be computed via (3) using the filter factors (Ma
et al., 2020)

ϕGF,j(t) = 1 − e−σ2
j t/(mn). (6)

From this observation, we can see that as t grows, the filter factors converge to one, and xGF(t) converges to
the solution of the unregularized problem (1). Furthermore, we see that for any fixed time, the filter factors
decay as j grows, which reduces the sensitivity to perturbations of the data b along the directions associated
with small singular values.

In the top row of Figure 1, we show numerical results for the early stopping applied to two
:::
four

:
test problems.

The qualitative behavior is comparable for both
::
all

:
datasets: Initially, both training and test losses decay

with no noticeable gap but at later times, the test losses increase dramatically. A difference between the two
:::::
across

::::
the

:
datasets is that the optimal stopping time (i.e., the time with the smallest test loss) differs by

about two
:::
can

:::::
differ

:::
by

:::::
about

:::::
three

:
orders of magnitude. Hence, the stopping time is the key hyperparameter

that needs to be chosen judiciously and depends on the problem. Determining an effective stopping time is
even more difficult in realistic applications, when this decision must not be based on the test dataset. This
is in stark contrast with the hybrid scheme, where neither semiconvergence nor sensitivity to stopping time
is observed; see Figure 2.

The cross-validation of early stopping is straightforward to perform, for example, one can use a part of the
training data for validation and stop the training process when the validation error is minimized. However,
such an approach reduces the number of training data. The regularization properties and their analysis
also depend heavily on the underlying iterative method. Moreover, early stopping generally prefers slowly
converging schemes to have a broader range of optimal stopping points.

Weight Decay The idea in weight decay is to incorporate an extra term α2

2 ∥x∥2
2 into the objective in (1),

which results in

min
x∈Rn

1
2m

∥Ax − b∥2
2 + α2

2 ∥x∥2
2. (7)

Here the hyperparameter α ≥ 0 trades off the minimization of the loss and the regularity of the solution. It
is noteworthy that there are other options for choosing the regularization term (Hansen, 1998, Section 4.3).
In this work, we focus on the squared Euclidean norm for simplicity of illustration. An advantage compared
to early stopping is that any iterative or direct method used to solve (7) will ultimately provide the same
solution.
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(a) Test Error for Gradient Flow on MNIST Data
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(b) Test Error for Gradient Flow on CIFAR10 Data
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(c) Test Error for Gradient Flow on Dry Bean Data
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(d) Test Error for Gradient Flow on Bike Share Data
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(e) Test Error for Weight Decay on MNIST Data
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(f) Test Error for Weight Decay on CIFAR10 Data
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(g) Test Error for Weight Decay on Dry Bean Data
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(h) Test Error for Weight Decay on Bike Share Data
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Figure 1: (a)-(b
:
d): The results of applying gradient flow (GF) (5) to two

::::
four training problems at different

time t. (c
:
e)-(d

:
h): The results obtained from weight decay (7) with different hyperparameter α. The optimal

stopping time/regularization hyperparameter is highlighted. We can see that both methods exhibit a semi-
convergence behavior. In particular, their generalizability depends on the choice of hyperparameters, which
varies from problem to problem and has to be made judiciously. Determining the optimal hyperparameters
requires access to the test data. Yet, the access to test data is prohibited during training.

Using the SVD of A we can see that the weight decay solution xWD(α) can be computed using (3) and the
filter factors are given by

ϕWD,j(α) =
σ2

j

σ2
j + mα2 , (8)

which are called the Tikhonov filter factors (Hansen, 1998). We can see that when α is chosen relatively small,
the filter factors associated with large singular values remain almost unaffected while those corresponding
to small singular values may be close to zero. Thus, similar to TSVD and early stopping, weight decay can
reduce the sensitivity of xWD to perturbations of the data along the directions associated with small singular
values. The Tikhonov filter gives a simple representation of the solution of weight decay. This renders its
analysis straightforward. Moreover, the same solution is obtained regardless of the choice of solvers. Thus,
in contrast to early stopping, the most efficient scheme can be used.

We investigate the impact of choosing α on the generalization in a numerical experiment for the MNIST
and CIFAR10 example; see Figure 1(c)-(d)

:::
four

:::::::::
datasets;

:::
see

:::
the

:::::::
bottom

::::
row

:::
of

::::::::
Figure 1. The qualitative

behavior is comparable for both
::
all

:
datasets: as α increases the training error increases monotonically, while

the test error first decays and then finally grows. Due to this semiconvergence, a careful choice of α can
improve generalization; we visualize the hyperparameter α that yields the lowest test loss with red dots. A
key difference between

::::::
across the examples is that the optimal values of α

:::
can

:
differ by about one order of

magnitude, which highlights its problem-dependence. As in early stopping, we re-iterate that the test data
must not be used to select the optimal value of α. The optimal choice of the hyperparameter α requires
cross-validation (Kohavi et al., 1995) in which the problem has to be solved many times.

3 Hybrid Regularization: The Best of Both Worlds

In this section, we describe a hybrid regularization scheme. We then highlight its advantages over classical
regularization methods to motivate its usage for training machine learning models.

Hybrid Regularization Hybrid regularization methods belong to the most effective solvers for ill-posed
inverse problems. The key idea in hybrid methods is that they synergistically combine the respective ad-
vantages of early stopping and weight decay while avoiding their disadvantages. In this work, we consider

5
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the technique IRhybrid_lsqr from the open source MATLAB package (Gazzola et al., 2018). This hybrid
method employs LSQR (Paige & Saunders, 1982a;b) that at each iteration projects the regularized least-
squares problem (7) onto a small-dimensional subspace and adaptively selects the weight decay parameter
using generalized cross-validation (GCV) (Golub et al., 1979). Notably, the resulting hybrid method does
not require any hyperparameter tuning or a dedicated validation dataset.

LSQR Algorithm LSQR (Paige & Saunders, 1982a;b) is an iterative method for solving (regular-
ized) least squares problems. With comparable computational costs per iteration, the numerical stabil-
ity and convergence of LSQR generally are superior to gradient descent, particularly for ill-posed prob-
lems.

:::::::::
Moreover,

::::::
LSQR

:::
is

::::::::
suitable

:::
for

:::::
both

::::::
dense

::::
and

::::::
sparse

::::::::::
large-scale

:::::::::
problems

::::::::
because

::
it
:::::

does
::::
not

::::::
require

::::::::
building

::::
the

:::::
data

:::::::
matrix

:::::::::
explicitly,

::::
but

:::::
only

::::
the

::::::::
function

:::::::
handle

:::
to

::::::::
perform

:::
its

:::::::::::::
matrix-vector

::::::::
products

::::::::::::::::::::::::::::::::::::::::
Chung et al. (2008); Chung & Gazzola (2024)

:
.
::

The kth iteration of LSQR solves the projection
of (7) onto the k-dimensional Krylov subspace Kk = span{A⊤b, (A⊤A)A⊤b, . . . , (A⊤A)k−1A⊤b}. This
projection is obtained using Golub-Kahan bidiagonalization (Golub & Kahan, 1965) of the data matrix A
with the initial vector b, which reads

A⊤Qk = PkL⊤
k + γk+1pk+1e⊤

k+1, (9)
APk = QkLk, (10)

where Qk ∈ Rn×(k+1) and Pk ∈ Rm×k have orthonormal columns, Lk ∈ R(k+1)×k is a lower bidiagonal
matrix, ek+1 ∈ Rk+1 is the (k +1)th standard basis vector, and γk+1 and pk+1 will be the (k +1)th diagonal
entry of Lk+1 and the (k + 1)th column of Pk+1, respectively.

Using the bidiagonalization, we derive the projection of the regularized problem (7) as follows

min
x∈Kk

1
2m

∥Ax − b∥2
2 + α2

2 ∥x∥2
2 = min

f∈Rk

1
2m

∥APkf − b∥2
2 + α2

2 ∥f∥2
2, (11)

where we used that the columns of Pk form an orthonormal basis of Kk, which also implies that ∥Pkf∥2 =
∥f∥2. Next, using (10) gives

= min
f∈Rk

1
2m

∥QkLkf − b∥2
2 + α2

2 ∥f∥2
2. (12)

Using the orthonormality of the columns of Qk and the fact that Qk contains b
∥b∥2

in its first column, we
obtain the projected problem

= min
f∈Rk

1
2m

∥Lkf − βe1∥2
2 + α2

2 ∥f∥2, (13)

where β = ∥b∥2 and e1 ∈ Rk+1 is the first standard basis vector. Here, the k-dimensional projected
problem (13) is greatly reduced in size compared to the original n-dimensional problem (7). The kth
iteration of LSQR is obtained from the solution to the projected problem and can be computed using the
regularized pseudoinverse L†

k,α via

Pkfα = βPkL†
k,αe1 with L†

k,α = 1
n

(
1
n

L⊤
k Lk + α2I

)−1
L⊤

k . (14)

Automatic Weight Decay In weight decay, the choice of the hyperparameter α is crucial in order to
obtain an effective regularizing effect. One straightforward way to adaptively choose it is to perform cross-
validation. Having the small-dimensional projected problem (13) allows us to test multiple candidate α’s
for cross-validation efficiently. Here, the parameter selection can be done even more effectively by using
statistical criteria such as generalized cross-validation (GCV) (Golub et al., 1979; Engl et al., 1996; Hansen,
1998; Vogel, 2002), weighted GCV (Chung et al., 2008), L-Curve (Calvetti et al., 1999) and discrepancy
principle (Vogel, 2002). In this paper, we use GCV for simplicity.

6
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The idea of GCV is to pick a weight decay hyperparameter that gives good generalization power. Specifically,
it performs m-fold (leave-one-out) cross-validation (Kohavi et al., 1995) without solving the problem m times
by minimizing a loss function on the training data. Thus, it does not require validation data and is done
highly efficiently using the low-rank projected solution (14).

In particular, in each iteration of the hybrid scheme, we minimize the GCV function for the projected
problem (13) given by

GLk,βe1(α) =
k∥(I − LkL†

k,α)βe1∥2
2

(trace(I − LkL†
k,α))2

. (15)

Here, the SVD of Lk is performed quickly because it is small in size ((k+1)-by-k). We can then plug the SVD
into (15). The minimization will become a simple one-dimensional problem and can be done by standard
algorithms. This renders the GCV minimization effective, which needs to be done in each iteration.

In principle, we can compute the GCV also for the full problem (7) to obtain an estimation for α. This is a
classical approach to implement LSQR, as a generic implementation of LSQR requires α to be pre-specified
and fixed throughout the iterations. However, this would be computationally very expensive because the
full SVD of A is required. For more details, see Chung et al. (2008); Chung & Gazzola (2024).

Advantages of the Hybrid Method The regularization imposed by the hybrid method provides impor-
tant distinct advantages over weight decay and early stopping. First, in (15), the hybrid method performs
an adaptive weight decay by dynamically selecting α efficiently using information from the small (but in-
creasing) dimension Krylov subspace. Specifically, the hybrid method chooses α in (8) based on the singular
values of the projected problem (15) and these singular values are increasingly better approximations of the
full dimension problem (7). Moreover, this hyperparameter selection does not require a dedicated validation
dataset. Secondly, one can also use the GCV function value as a criteria for early stopping, see Chung et al.
(2008); Björck et al. (1994). This effectively employs a safeguard regularization. Moreover, the automatic
weight decay imposed by the hybrid method ensures that the computed solutions are much less sensitive to
the precise stopping iteration; see the comparison between Figure 2 and Figure 1(a)-(b). The insensitivity
allows the usage of fast converging iterative methods. This combination of automatic tuning of weight decay
hyperparameters, safeguarded regularization, and automatic iteration stopping criteria is very powerful; see
experimental results in Section 5

::::
and

:::::::::::
Appendix A.

4 Ill-posedness of Random Feature Model Training

In this section, we describe the experimental setup for random feature models (RFM). Using an inverse
problems perspective, we then draw a connection between the model width, its generalizability, and the
ill-posedness of its training problem. This connection motivates the use of regularization and will then be
used to set up the numerical experiments in Section 5

:::
and

:::::::::::
Appendix A.

Experimental Setup We consider a supervised learning problem arising in the training of RFM. Given
the matrix of input features Y ∈ Rm×nf and the matrix of corresponding outputs B ∈ Rm×nc . Here, nf is
the number of input features, nc is the number of output features (e.g., the number of classes), and the m
examples are stored row-wise. The idea in RFM is to transform the input features by applying a random
nonlinear transformation f : Rnf → Rn to each row in Y and then train a linear model to approximate
the relationship between f(Y) and C. Here, the transformation f(Y) is applied row-wise and yields a new
representation of the features in Rm×n. The dimension n controls the expressiveness of the RFM and can
be chosen arbitrarily; generally, larger values of n increase the expressiveness of the RFM.

Similar to Ma et al. (2020) we define our RFM using a randomly generated matrix K ∈ Rnf×(n−1), a bias
vector d ∈ Rn−1, and an activation function a : R → R, as

:::
The

:::::::
general

:::::::::::
formulation

::
of

:::
an

:::::
RFM

::
is
:::::
given

:::
by

:

A = f(Y) =
[

a(YK + 1md⊤) 1m

]
, (16)

where the activation function
:
a
:

is applied element-wise, and 1m ∈ Rm is a vector of all ones used
to model a bias term. In our experiments, we use the ReLU activation function a(x) = max(x, 0) and

7
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Test Error for Hybrid Method on MNIST Data
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Figure 2: The results obtained by the hybrid method with different numbers of iterations on MNIST and
CIFAR10 data

:::
four

::::::::
datasets. The results when the iteration number is greater than n are not shown as the

algorithm converges after n iterations. This is because the Krylov subspace is Rn, and the projected problem
becomes the original problem.

:::
The

::::::
curves

:::::::::
represent

:::
the

::::::
mean

::::
over

:
5
::::::::
random

:::::
trials,

:::::
while

::::
the

::::::
shaded

:::::::
regions

:::::::
indicate

:::
the

::::::
range

::::::::
spanning

:::
±1

:::::::::
standard

::::::::
deviation

:::::
from

:::
the

::::::
mean.

:
We see that the hybrid method does not

exhibit semiconvergence, and the resulting test errors are not sensitive to the stopping criteria.

generate K and d
:::
We

:::::::::::
experiment

::::
with

::::
two

::::::
setups

:::
for

::::::
RFM.

:::
In

:::
the

::::
first

::::::
setup,

:::
we

::::::::
generate

::::::::::::::
K ∈ Rnf×(n−1)

:::
and

::::::::::
d ∈ Rn−1

:
using a uniformly random distribution drawn from a unit sphere

::::
and

::::
use

::::
the

::::::
ReLU

:::::::::
activation

::::::::
function

::::::::::::::::
a(x) = max(x, 0); see also Ma et al. (2020).

::
In

::::
the

:::::::
second

:::::::
setup,

:::
we

:::::::::
generate

:::::::::::::::
K ∈ Rnf×(n−1)/2

:::::
using

:
a
:::::::::
standard

::::::::
Gaussian

::::::::::::
distribution,

:::
set

:
d
:::
to

:::
be

:
a
::::
zero

:::::::
vector,

::::
and

:::::
define

::::
the

:::::::::
activation

::::::::::
a : R → R2

::
as

:::::::::::::::::::::
a(x) = [cos(x) sin(x)].

:::::
This

::::::
setup

::
is

::::
the

:::::::
random

:::::::
Fourier

::::::::
features

:::::
with

::
a
:::::::::
Gaussian

::::::
kernel

::
in

:::::::::::::::::::::
Rahimi & Recht (2007).

:::::
Due

:::
to

:::::
space

:::::::::::
constraints,

:::
we

:::::::
present

:::
the

:::::::
figures

:::
for

:::
the

:::::
first

:::::
setup

::
in

::::
the

:::::
main

::::::
context

::::
and

::::
the

::::::
figures

:::
for

:::
the

:::::::
second

:::::
setup

::
in

::::::::::::
Appendix A.

::::
We

::::
note

:::::
that

:::
our

::::::::
findings

:::
are

:::::::::
consistent

::::::
across

:::
the

::::
two

:::::::
different

::::::::::::
experimental

:::::::
setups.

:

The RFM training consists of finding the linear transformation X ∈ Rn×nc such that AX ≈ B. As in Ma
et al. (2020), we measure the quality of the model using the least squares loss function and consider the
unregularized regression problem, i.e.,

min
X∈Rm×nc

1
2m

∥AX − B∥2
F, (17)

8
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where ∥ · ∥F is the Frobenius norm. Problem (17) is separable, which means that it can be decoupled into
nc least-squares problems each of which determines one column of the solution. Therefore, without loss of
generality, we focus our discussion on the case nc = 1. In this case, the training problem (17) becomes (1),
with b ∈ Rn being the output labels. For example, when one chooses b as the ith column of B, (1) gives
the ith column of the solution to (17).

Double Descent and Ill-posedness The key hyperparameter of an RFM is the dimensionality of the
feature space, n. For a given number of training data m, it has been observed (Belkin et al., 2019) that
the RFM’s generalization gap has three stages of behavior when n < m, n = m, and n > m, respectively,
see Figure 3(a)-(b)

::
d)

::::
and

::::::::
Figure 7

::::::
(a)-(d). This behavior is called the double descent phenomenon in the

literature and can be explained using a data-fitting viewpoint (Belkin et al., 2019).

• When n < m, the learning problem (1) is overdetermined. That is, there are more equations than
variables in Ax = b. There is no solution to perfectly describe the input-output relation in general.
Hence as n increases, we can fit both the training and test data better and the generalization gap
decreases.

• When n = m, A is square and, in our experience, invertible. Thus the optimal solution to (1) is
unique and satisfies Ax = b. In order words, the training data can be fitted perfectly, and the
training loss is essentially zero. However, the uniqueness of the optimal x also implies that we have
no choice but to perfectly fit to the weakly present features in A, which are not relevant to the
classification. The perfect loss on the training data combined with an increase in test loss then
causes a spike in the generalization gap.

• When we further increase n such that n > m, the problem is underdetermined, and there are
infinitely many optimal x to achieve an objective function value of zero. It has been observed that
selecting the solution with the minimal norm reduces the risk of fitting weakly present features; see,
e.g., Belkin et al. (2019). Therefore, generally, the generalization gap decreases as n grows.

In this work, we use an inverse problems perspective to relate this behavior in the generalization gap to the
ill-posedness of the training problem. We illustrate the quantities in (2) for the three stages of the double
descent in Figures 3(c

:
e)-(e)

:
g)

::::
and

:::::::::
7(e)-(g)

:
using the CIFAR10 example. Here, we plot σj , |u⊤

j b| and
|u⊤

j b|/σj in Figures 3(c)-(e); the resulting plot is known as a Picard plot (Hansen, 2010). From the decay of
the singular values (see the blue line), we see that n = m leads to an ill-posed problem as the σj decays to
zero with no significant gap. Also, for n = m, the magnitude of u⊤

j b (see red line) remains approximately
constant. This combination causes a surge of |u⊤

j b|/σj (see yellow line), which causes an increase of the
norm of w; see the red dashed line in Figure 3(a)-(b)

::
d)

::::
and

:::::::::
Figure 7

::::::
(a)-(d). When n ̸= m the problem

is not ill-posed as the decay of the singular values is less pronounced. This relationship between RFM’s
deteriorated generalizability, its model width, and its ill-posedness allows us to create training problems of
different levels of ill-posedness in our experiments by simply varying the model width.

5 Numerical Experiments

In this section, we compare and discuss the numerical results achieved with different regularization schemes
on problems of different levels of ill-posedness.

Examples from Image Classification
:::::::::
Datasets In our experiments, we use two common image

classification
:
a

:::::
total

::
of

::::
four

::::::::
common

:
benchmarks to illustrate the techniques. Specifically, we use

::
We

::::
use

:::
two

::::::
widely

:::::
used

::::::
image

::::::::::::
classification

::::::::
datasets:

:::
1.

:
the MNIST datasetconsisting

:
,
::::::
which

:::::::
consists

:
of 28 × 28

gray-scale images of hand-written digits (LeCun et al., 1990) and
::
2.

:
the CIFAR 10 dataset (Krizhevsky et al.,

2009)consisting
:
,
::::::
which

:::::::
consists

:
of 32 × 32 RGB images of objects divided into one of ten categories.

:::
We

:::
also

::::
use

::::
two

::::::::
common

:::::::
dataset

::::
from

::::
the

:::
UC

::::::
Irvine

::::::::
Machine

:::::::::
Learning

::::::::::
Repository:

:::
3.

::::
Dry

:::::
Bean

::::::::::::
classification

:::::::
dataset,

::::::
which

:::::::
contains

:::
16

:::::::::::::
morphological

:::::::
features

::::
and

:
7
:::::::
classes

:::::::::::
representing

::::::::
different

:::::
types

::
of

::::
dry

:::::
beans

::::
and

::
4.

::::
Bike

:::::::
sharing

::::::::::
regression

:::::::
dataset,

::::::
which

::::::::
provides

::
10

::::::
input

:::::::
features

::::::::::
(including

:::::::
weather

::::::::::
conditions

::::
and

::::
date

9
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(a) MNIST Data, m = 210
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(b) CIFAR10 Data, m = 210
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(c) Dry Bean Data, m = 210
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(d) Bike Share Data, m = 210
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(f) Picard Plot for n = 210
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(g) Picard Plot for n = 211
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Figure 3: (a)-(b
:
d): The deterioration of generalization observed in random feature model on MNISTand

:
,

CIFAR10
:
,
::::
Dry

:::::
Bean

::::
and

::::
Bike

::::::
Share

:
data when n = m. This is also called the double descent phenomenon

in the literature. (c
:
e)-(e

:
g): The Picard plot for A and b on CIFAR10 data with m = 1024 and n = 512

(overdetermined), 1024 (unique) and 2048 (underdetermined). All the values are averaged over 5 random
trials. The top, middle and bottom curves are σj , |u⊤

j c| and |u⊤
j c|/σj defined in (2), respectively. When

n = m, there is a smooth plummet in σj at the end, and it renders |u⊤
j c|/σj large and the training problem

ill-posed. These large values dominate the optimal solution X. Thus, there is a spike in the norm of X and
hence the testing loss.

:::::::::::
information)

::::
and

::
2

::::::
target

:::::::
outputs

::::
(the

::::::
count

::
of

::::::
casual

::::
and

:::::::::
registered

::::::
rental

::::::
bikes).

:
From each dataset, we

randomly sample m = 1, 024 training images and their labels. Each dataset also contains mtest = 10, 000
labeled test images, which we use to compute the generalization gap of the trained model.

Baseline We compare the hybrid scheme with early stopping and weight decay regularization. We also
include the unregularized model (the solution to (17)) as a basic result. To obtain competitive baseline
results, we optimize the weights for the two classical regularizers using the test data. It is important to
emphasize that this is neither practical nor advised in realistic applications. However, our goal is to obtain
competitive baselines to compare with the hybrid scheme in which neither the test data nor some validation
data is used. In contrast, our hybrid method does not have access to any test data.

We optimize the weights for each of the datasets and different widths of the RFM. To this end, we compute
the (economic) SVD of the feature matrix A and use the filter factors in (6) and (8), respectively, to
efficiently compute the optimal weights for different choices of t and α. Then, we minimize the test error
over the hyperparameters using the one-dimensional optimization method fminsearch in MATLAB. To
reduce the risk of being trapped in a suboptimal local minimum, we first evaluate the test loss at 100 points
spaced equally on the logarithmic axes shown in Figure 1 and initialize the optimization method at the
hyperparameter with the lowest test loss.

It is important to emphasize that, in contrast to early stopping and weight decay regularization, the hyper-
parameter α of the hybrid method is automatically and efficiently chosen in each iteration. Moreover, it does
not require a dedicated validation dataset. We

:::::
Since

:::
the

::::::
hybrid

:::::::
scheme

::
is

:::::::::
insensitive

:::
to

:::
the

::::::::
stopping

::::::::
iteration

:::
(see

:::::::::
Figure 2

:::
and

::::::::
Figure 6

::
),

:::
we recommend choosing the number of iterations to match the computational

budget.
:::::::::::
Alternatively,

:::::
since

::::
the

:::::
GCV

::::::::
function

:::::
value

:::::
(15)

::::::::
indicates

::::::::::::
performance

::::::
during

:::::::::::::::
cross-validation,

::
it

:::
can

::::
also

:::::
serve

::
as

::
a
::::::::
stopping

:::::::::
criterion.

:

10
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Experimental Setup Using the correlation between the ill-posedness and the dimension of the random
feature n, we generate training problems with different levels of ill-posedness by varying n, the width of the
RFM. We then use the training problems to test the performance of the hybrid and classical regularization
schemes. The training problem is ill-posed when n is close to m and is the most ill-posed when n = m. In
this case, the unregularized model leads to a large generalization gap, and we can investigate the methods’
ability to improve generalizability. When n is far away from m, the problems are relatively well-posed, and
the models obtained from the unregularized problem (1) have a small generalization gap. In this situation,
a desirable regularization scheme should improve or obtain a similar generalization to the unregularized
solution.

Results and Discussion We apply the hybrid method to the training problems arising from image
classification. We

:::
four

::::::::
training

:::::::::
problems.

:::::
The

::::::
results

::::
are

::::::::
reported

::::::
based

:::
on

::::
five

:::::::
random

::::::
trials.

:::
In

:::::
each

::::
trial,

:::
we

::::::::
generate

::
a

:::::::
different

::::::::
random

::::::
feature

:::::::
matrix

::::
and

::::::::
randomly

:::::::
sample

:::
the

::::::::
training

:::::
data.

::::
We

::::::::::
experiment

::::
with

::::
two

::::::::
different

:::::
RFM

:::::::
setups;

:::
see

:::::::::
Section 4

:::
for

:::::
more

::::::
details.

:::::
Due

::
to

::::::
space

:::::
limit,

::::
the

::::::
figures

:::
for

::::
one

:::::
RFM

:::::
setup

:::
are

::::::
shown

:::
in

:::::::::::
Appendix A.

::::
We

:
show the test error for an increasing number of iterations in Figure 2

. For all n andfor both datasets
:::
and

::::::::
Figure 6

:
.
:::::::::
Generally, the test error of the hybrid scheme decreases with

the number of iterations until it reaches n when the bidiagonalization is exact.
:::
The

:::::
only

:::::::::
exception

::
is

:::
for

:::
the

:::
dry

::::::
beans

::::::::
dataset,

:::::
where

::::
the

:::::::::::::
generalization

:::
gap

:::
for

::::::
k = n

::
is

::::::
larger

::::
than

:::::
that

:::
for

::::
n/2,

:::::::::
especially

:::::::
around

:::
the

::::::::::::
interpolation

:::::::::
threshold.

::
A

::::::::
possible

:::::::
remedy

::
to

:::::
avoid

::::
this

::::::::::
overfitting

::
is

::::::::
adjusting

::::
the

::::::::
weighting

::::::::::
parameter

::
in

:::
the

:::::::
wGCV.

:
This is in stark contrast to the gradient flow scheme (see Figure 1

:::
and

::::::::
Figure 5) for which

semiconvergence is observed, and an adequate stopping rule is needed to avoid large generalization gaps.

We compare the results of different regularization schemes in Figure 4
:::
and

::::::::
Figure 8. For the hybrid reg-

ularization scheme, we set the number of iterations to min(n, 210); see also Figure 2
:::
and

::::::::
Figure 6. The

hybrid scheme achieves competitive test errors even though it does not use the test data set. Remarkably,
the hybrid method’s solution is

:::::
nearly

:
on par with the optimally tuned classical schemes when the problem

is the most ill-posed (n = m). For well-posed problems (when n is far away from m), hybrid regularization
achieves near-optimal regularizing effects. It also has similar performance as the unregularized solutions
for well-posed problems, and it improves the unregularized solution for the CIFAR10 experiments when
n > 27. These results demonstrate the potential of the hybrid method as a generic algorithm to reliably
train machine learning models. It can automatically and efficiently solve training problems of different levels
of ill-posedness. It is important to note that the ill-posedness of a training problem is not known a priori,
and our results show that hybrid methods can be employed for problems of different levels of ill-posedness.
Specifically, for ill-posed problems, it can effectively serve as a safeguard to prevent the deterioration in the
generalization gap. It can also be used for well-posed problems, as it obtains performance comparable to
optimally tuned classical regularization methods and similar to the unregularized problem.

6 Conclusion

We demonstrated the potential of hybrid regularization in training random feature models that generalize
well. Hybrid regularization is a class of effective regularization methods commonly used to tackle ill-posed
linear inverse problems. It synergistically combines early stopping and weight decay. Hybrid regularization
avoids the drawbacks of the two classical regularization schemes, where it does not require cumbersome
hyperparameter tuning, solution of multiple instances of the learning problem, and a dedicated validation set.
Hybrid regularization is computationally efficient thanks to early stopping and performing hyperparameter
selection on a low-dimensional subspace.

In our numerical experiments, we considered problems arising from training random feature models. By
varying the width of the models, we created training problems of different levels of ill-posedness. Our em-
pirical findings showed that the hybrid regularization obtained competitive test errors with optimally tuned
classical regularization methods in all well- and ill-posed problem instances. This suggested the prospect of
hybrid regularization methods as a generic optimization algorithm to train different machine learning models
that generalize well. In future works, we plan to extend hybrid methods to more general learning problems,
particularly with other loss functions, machine learning models, or stochastic optimization. We provide our
MATLAB codes for the numerical experiments at Github-link-made-anonymous-for-reviewing.
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Test Error for MNIST Data
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Figure 4: The results obtained by gradient flow, weight decay, and the hybrid method. For gradient flow and
weight decay, the optimal testing losses over time and α, respectively, are reported. Specifically, we minimize
the testing losses with respect to the hyperparameters. For the hybrid method, we determine the weight
decay hyperparameters using the training data only and report the test loss with min(n, 1024) iterations.
:::
The

:::::::
curves

::::::::
represent

::::
the

:::::
mean

:::::
over

:
5
::::::::
random

:::::
trials,

::::::
while

:::
the

:::::::
shaded

:::::::
regions

:::::::
indicate

::::
the

:::::
range

:::::::::
spanning

:::
±1

::::::::
standard

:::::::::
deviation

:::::
from

:::
the

::::::
mean.

::::
In

:::
the

::::
top

::::
row,

::::
the

:::::::
shaded

:::::::
regions

:::
are

::::::
barely

:::::::
visible

:::::::
because

::::
the

::::::::
standard

:::::::::
deviations

::::
are

:::
too

::::::
small.

:
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A
::::::::::::
Additional

:::::::::::::::
Experimental

:::::::::
Results

:::
We

:::::
show

:::
the

::::::
figures

:::
for

::::
the

:::::::::
additional

::::::::::::
experimental

::::::
results

:::
for

::::
the

:::::::
random

:::::::
Fourier

:::::::
features

:::::
with

:
a
:::::::::
Gaussian

:::::
kernel

::::::::::::::::::::::
(Rahimi & Recht, 2007)

:
.
:::
We

:::::::
remark

::::
that

::::
the

::::::::::::
experimental

::::::
results

:::
are

::::::::::
consistent

::::
with

::::::::
another

:::::
RFM

:::::
setup

::::::::
reported

::
in

::::
the

:::::
main

::::::::
context,

::::
and

::::
the

::::::
hybrid

::::::::
method

::
is

::::::::
effective

:::
for

:::::
both

:::::::
setups.

:::::::
Recall

::::
that

::::
the

::::::::::::
corresponding

:::::
RFM

::
is
::::::

given
::
by

:

A = f(Y) =
[

a(YK + 1md⊤) 1m

]
.

::::::::::::::::::::::::::::::::::

:::::
Here,

:::
we

::::::::
generate

:::::::::::::::
K ∈ Rnf×(n−1)/2

:::::
using

::
a
:::::::::
standard

::::::::
Gaussian

::::::::::::
distribution,

:::
set

::
d

::
to

:::
be

::
a
::::
zero

:::::::
vector,

::::
and

:::::
define

::::
the

:::::::::
activation

::::::::::
a : R → R2

:::
as

::::::::::::::::::::
a(x) = [cos(x) sin(x)].

(a) Test Error for Gradient Flow on MNIST Data
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(b) Test Error for Gradient Flow on CIFAR10 Data

10−2 10−1 100 101 102 103 104 105 106 107 108
10−2

10−1

100

101

Time

(c) Test Error for Gradient Flow on Dry Bean Data
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(d) Test Error for Gradient Flow on Bike Share Data
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(e) Test Error for Weight Decay on MNIST Data
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(f) Test Error for Weight Decay on CIFAR10 Data
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(g) Test Error for Weight Decay on Dry Bean Data
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(h) Test Error for Weight Decay on Bike Share Data
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Figure 5:
::::::
(a)-(d):

::::
The

::::::
results

:::
of

::::::::
applying

:::::::
gradient

::::
flow

:::::
(GF)

:::
(5)

:::
to

::::
four

:::::::
training

:::::::::
problems

::
at

::::::::
different

::::
time

::
t.

::::::
(e)-(h):

:::::
The

::::::
results

::::::::
obtained

:::::
from

::::::
weight

::::::
decay

:::
(7)

::::
with

::::::::
different

:::::::::::::::
hyperparameter

::
α.

:::::
The

:::::::
optimal

::::::::
stopping

:::::::::::::::::
time/regularization

::::::::::::::
hyperparameter

::
is
:::::::::::
highlighted.

::::
We

:::
can

:::
see

::::
that

:::::
both

::::::::
methods

:::::::
exhibit

:
a
:::::::::::::::
semiconvergence

::::::::
behavior.

:::
In

::::::::::
particular,

:::::
their

:::::::::::::
generalizability

::::::::
depends

:::
on

::::
the

::::::
choice

::
of

::::::::::::::::
hyperparameters,

::::::
which

:::::
varies

:::::
from

:::::::
problem

:::
to

::::::::
problem

::::
and

::::
has

::
to

:::
be

::::::
made

::::::::::
judiciously.

:::::::::::::
Determining

:::
the

::::::::
optimal

:::::::::::::::
hyperparameters

::::::::
requires

:::::
access

:::
to

:::
the

::::
test

::::::
data.

:::::
Yet,

:::
the

::::::
access

:::
to

::::
test

:::::
data

::
is

::::::::::
prohibited

::::::
during

::::::::
training.

::::::
Here,

::::
the

:::::::
features

::::
are

:::::
given

::
by

::::
the

:::::::
random

:::::::
Fourier

::::::::
features

::::
with

::
a

::::::::
Gaussian

::::::
kernel

::::::::::::::::::::::
(Rahimi & Recht, 2007)

:
.
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Test Error for Hybrid Method on MNIST Data
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Figure 6:
:::
The

:::::::
results

::::::::
obtained

:::
by

:::
the

::::::
hybrid

::::::::
method

::::
with

::::::::
different

::::::::
numbers

:::
of

:::::::::
iterations

::
on

:::::
four

::::::::
datasets.

:::
The

:::::::
results

:::::
when

::::
the

::::::::
iteration

:::::::
number

::
is
:::::::
greater

:::::
than

::
n

:::
are

::::
not

::::::
shown

::
as

::::
the

:::::::::
algorithm

:::::::::
converges

:::::
after

::
n

:::::::::
iterations.

:::::
This

:::
is

:::::::
because

::::
the

:::::::
Krylov

::::::::
subspace

:::
is

::::
Rn,

::::
and

::::
the

:::::::::
projected

::::::::
problem

::::::::
becomes

:::
the

::::::::
original

::::::::
problem.

:::::
The

:::::::
curves

:::::::::
represent

:::
the

::::::
mean

:::::
over

::
5

:::::::
random

:::::::
trials,

:::::
while

::::
the

:::::::
shaded

:::::::
regions

::::::::
indicate

::::
the

:::::
range

::::::::
spanning

::::
±1

::::::::
standard

:::::::::
deviation

:::::
from

::::
the

::::::
mean.

::::
We

:::
see

:::::
that

::::
the

::::::
hybrid

::::::::
method

::::
does

::::
not

:::::::
exhibit

:::::::::::::::
semiconvergence,

::::
and

:::
the

:::::::::
resulting

::::
test

:::::
errors

::::
are

:::
not

::::::::
sensitive

:::
to

:::
the

:::::::::
stopping

:::::::
criteria.

::::::
Here,

:::
the

::::::::
features

:::
are

:::::
given

:::
by

:::
the

:::::::
random

:::::::
Fourier

::::::::
features

::::
with

::
a
:::::::::
Gaussian

::::::
kernel

:::::::::::::::::::::
(Rahimi & Recht, 2007)

:
.
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(a) MNIST Data, m = 210
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(b) CIFAR10 Data, m = 210
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(c) Dry Bean Data, m = 210
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(d) Bike Share Data, m = 210
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(e) Picard Plot for n = 29
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(f) Picard Plot for n = 210
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(g) Picard Plot for n = 211
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Figure 7:
::::::
(a)-(d):

::::::
The

::::::::::::
deterioration

:::
of

:::::::::::::
generalization

::::::::
observed

:::
in

::::::::
random

:::::::
feature

:::::::
model

:::
on

::::::::
MNIST,

:::::::::
CIFAR10,

::::
Dry

:::::
Bean

::::
and

::::
Bike

::::::
Share

:::::
data

:::::
when

:::::::
n = m.

:::::
This

::
is

::::
also

:::::
called

::::
the

::::::
double

:::::::
descent

::::::::::::
phenomenon

::
in

:::
the

::::::::::
literature.

::::::::
(e)-(g):

:::::
The

::::::
Picard

:::::
plot

:::
for

:::
A

::::
and

::
b

:::
on

:::::::::
CIFAR10

:::::
data

:::::
with

:::::::::
m = 1024

::::
and

::::::::
n = 512

::::::::::::::::
(overdetermined),

::::
1024

::::::::
(unique)

:::::
and

::::
2048

::::::::::::::::::
(underdetermined).

::::
All

:::
the

::::::
values

::::
are

::::::::
averaged

:::::
over

:
5
::::::::

random
:::::
trials.

:::::
The

::::
top,

:::::::
middle

::::
and

:::::::
bottom

::::::
curves

:::
are

::::
σj ,

:::::
|u⊤

j c|
::::
and

:::::::::
|u⊤

j c|/σj :::::::
defined

::
in

::::
(2),

::::::::::::
respectively.

::::::
When

::::::
n = m,

:::::
there

::
is
::
a
:::::::
smooth

::::::::
plummet

:::
in

::
σj:::

at
:::
the

::::
end,

::::
and

::
it
:::::::
renders

:::::::::
|u⊤

j c|/σj ::::
large

::::
and

::::
the

:::::::
training

::::::::
problem

::::::::
ill-posed.

::::::
These

:::::
large

:::::::
values

:::::::::
dominate

:::
the

::::::::
optimal

:::::::
solution

::::
X.

::::::
Thus,

:::::
there

::
is
::

a
:::::
spike

:::
in

::::
the

:::::
norm

::
of

:::
X

:::
and

::::::
hence

::::
the

::::::
testing

:::::
loss.

::::::
Here,

:::
the

::::::::
features

::::
are

:::::
given

:::
by

:::
the

::::::::
random

:::::::
Fourier

::::::::
features

::::
with

::
a
:::::::::
Gaussian

:::::
kernel

::::::::::::::::::::::
(Rahimi & Recht, 2007)

:
.
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Test Error for MNIST Data
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Figure 8:
::::
The

::::::
results

::::::::
obtained

:::
by

::::::::
gradient

:::::
flow,

:::::::
weight

::::::
decay,

::::
and

:::
the

:::::::
hybrid

::::::::
method.

::::
For

::::::::
gradient

::::
flow

:::
and

:::::::
weight

::::::
decay,

::::
the

:::::::
optimal

:::::::
testing

:::::
losses

:::::
over

:::::
time

::::
and

::
α,

::::::::::::
respectively,

:::
are

:::::::::
reported.

::::::::::::
Specifically,

:::
we

::::::::
minimize

::::
the

::::::
testing

::::::
losses

:::::
with

:::::::
respect

:::
to

:::
the

::::::::::::::::
hyperparameters.

:::::
For

::::
the

::::::
hybrid

::::::::
method,

:::
we

::::::::::
determine

:::
the

::::::
weight

::::::
decay

:::::::::::::::
hyperparameters

::::::
using

:::
the

::::::::
training

::::
data

:::::
only

::::
and

::::::
report

::::
the

::::
test

::::
loss

::::
with

::::::::::::
min(n, 1024)

:::::::::
iterations.

::::
The

::::::
curves

:::::::::
represent

:::
the

::::::
mean

::::
over

::
5

:::::::
random

:::::
trials,

::::::
while

:::
the

:::::::
shaded

:::::::
regions

:::::::
indicate

::::
the

:::::
range

::::::::
spanning

:::
±1

::::::::
standard

:::::::::
deviation

::::
from

::::
the

:::::
mean.

:::
In

:::
the

::::
top

::::
row,

:::
the

:::::::
shaded

:::::::
regions

:::
are

::::::
barely

::::::
visible

:::::::
because

:::
the

::::::::
standard

::::::::::
deviations

:::
are

::::
too

::::::
small.

:::::
Here,

::::
the

:::::::
features

::::
are

:::::
given

:::
by

::::
the

:::::::
random

:::::::
Fourier

::::::::
features

::::
with

::
a

::::::::
Gaussian

::::::
kernel

::::::::::::::::::::::
(Rahimi & Recht, 2007).

:
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