
Published as a conference paper at ICLR 2023

DO WE REALLY NEED COMPLICATED MODEL ARCHI-
TECTURES FOR TEMPORAL NETWORKS?

Weilin Cong
Penn State
weilin@psu.edu

Si Zhang
Meta
sizhang@meta.com

Jian Kang
University of Illinois at Urbana-Champaign
jiank2@illinois.edu

Baichuan Yuan & Hao Wu & Xin Zhou
Meta
{bcyuan,haowu1,markzhou}@meta.com

Hanghang Tong
University of Illinois at Urbana-Champaign
htong@illinois.edu

Mehrdad Mahdavi
Penn State
mzm616@psu.edu

ABSTRACT

Recurrent neural network (RNN) and self-attention mechanism (SAM) are the de
facto methods to extract spatial-temporal information for temporal graph learning.
Interestingly, we found that although both RNN and SAM could lead to a good per-
formance, in practice neither of them is always necessary. In this paper, we propose
GraphMixer, a conceptually and technically simple architecture that consists of
three components: 1 a link-encoder that is only based on multi-layer perceptrons
(MLP) to summarize the information from temporal links, 2 a node-encoder that
is only based on neighbor mean-pooling to summarize node information, and 3
an MLP-based link classifier that performs link prediction based on the outputs
of the encoders. Despite its simplicity, GraphMixer attains an outstanding perfor-
mance on temporal link prediction benchmarks with faster convergence and better
generalization performance. These results motivate us to rethink the importance of
simpler model architecture. [Code].

1 INTRODUCTION

In recent years, temporal graph learning has been recognized as an important machine learning
problem and has become the cornerstone behind a wealth of high-impact applications Yu et al. (2018);
Bui et al. (2021); Kazemi et al. (2020); Zhou et al. (2020); Cong et al. (2021b). Temporal link
prediction is one of the classic downstream tasks which focuses on predicting the future interactions
among nodes. For example, in an ads ranking system, the user-ad clicks can be modeled as a temporal
bipartite graph whose nodes represent users and ads, and links are associated with timestamps
indicating when users click ads. Link prediction between them can be used to predict whether a user
will click an ad. Designing graph learning models that can capture node evolutionary patterns and
accurately predict future links is a crucial direction for many real-world recommender systems.

In temporal graph learning, recurrent neural network (RNN) and self-attention mechanism (SAM)
have become the de facto standard for temporal graph learning Kumar et al. (2019); Sankar et al.
(2020); Xu et al. (2020); Rossi et al. (2020); Wang et al. (2020), and the majority of the existing
works focus on designing neural architectures with one of them and additional components to learn
representations from raw data. Although powerful, these methods are conceptually and technically
complicated with advanced model architectures. It is non-trivial to understand which parts of the
model design truly contribute to its success, and whether these components are indispensable. Thus,
in this paper, we aim at answering the following two questions:

Q1: Are RNN and SAM always indispensable for temporal graph learning? To answer this question,
we propose GraphMixer, a simple architecture based entirely on the multi-layer perceptrons (MLPs)
and neighbor mean-pooling, which does not utilize any RNN or SAM in its model architecture
(Section 3). Despite its simplicity, GraphMixer could obtain outstanding results when comparing it

1

https://github.com/CongWeilin/GraphMixer


Published as a conference paper at ICLR 2023

2

3

3

1

1

T
im
eg
ap

t1

t5

t4

t3

t2

vjvi
time k

Raw temporal graph inputs

xlink
i,1

xlink
i,3

xlink
j,3

xlink
j,2

Node features
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>v1

<latexit sha1_base64="c5sR+1EAF9vcQu4vGyA+Q6WAKEI=">AAACAXicbVBNS8NAEN34WetX1YvgJVgETyWRoh6LXjxWsB/QxrDZTtqlm03YnUhLqBf/ihcPinj1X3jz37j9OGjrg4HHezPMzAsSwTU6zre1tLyyurae28hvbm3v7Bb29us6ThWDGotFrJoB1SC4hBpyFNBMFNAoENAI+tdjv/EASvNY3uEwAS+iXclDzigayS8ctiOKvSDMBiPfvW8jDDCTcQdGfqHolJwJ7EXizkiRzFD1C1/tTszSCCQyQbVuuU6CXkYVciZglG+nGhLK+rQLLUMljUB72eSDkX1ilI4dxsqURHui/p7IaKT1MApM5/hePe+Nxf+8VorhpZdxmaQIkk0XhamwMbbHcdgdroChGBpCmeLmVpv1qKIMTWh5E4I7//IiqZ+V3PNS+bZcrFzN4siRI3JMTolLLkiF3JAqqRFGHskzeSVv1pP1Yr1bH9PWJWs2c0D+wPr8AXf/l48=</latexit>

xnode
1

<latexit sha1_base64="b/DKUfQyNm9yjjOSVwbaKuo7bpM=">AAACMXicbVBNS8NAEN34bf2qevSyWAQFKYmIehS9eFSwKjQ1bLaTunSTDbsTsaTpT/LiPxEvHhTx6p9wU3vwa2DZx3szzLwXplIYdN1nZ2x8YnJqema2Mje/sLhUXV65MCrTHBpcSaWvQmZAigQaKFDCVaqBxaGEy7B7XOqXt6CNUMk59lJoxayTiEhwhpYKqic+V2YTA89HEYOhfqhk2/Ri++W+iqHDiq1Bvz/wY4Y3YZTfFUHube8U1z7CHeZ2bbcox7eCas2tu8Oif4E3AjUyqtOg+ui3Fc9iSJBLZkzTc1Ns5Uyj4BKKip8ZSBnvsg40LUyYPa+VDx0XdMMybRopbV+CdMh+n8hZbEoXtrM83PzWSvI/rZlhdNDKRZJmCAn/WhRlkqKiZXy0LTRwlD0LGNfC3kr5DdOMow25YkPwflv+Cy526t5effdst3Z4NIpjhqyRdbJJPLJPDskJOSUNwsk9eSIv5NV5cJ6dN+f9q3XMGc2skh/lfHwCf4Srmg==</latexit>

cos(t1 ⇥ !) || xlink
1,2 (t1)

<latexit sha1_base64="n+DhQ4BYpbk2Fc0Vx/SXip52Zo0=">AAACMXicbVBNS8NAEN34bf2qevSyWAQFKYkW9Sh68ahgVWhq2GwndekmG3YnYonxJ3nxn4gXD4p49U+4qT34NbDs470ZZt4LUykMuu6zMzI6Nj4xOTVdmZmdm1+oLi6dGZVpDk2upNIXITMgRQJNFCjhItXA4lDCedg7LPXza9BGqOQU+ym0Y9ZNRCQ4Q0sF1SOfK7OOwbaPIgZD/VDJjunH9st9FUOXFRt3t7d3fszwKozymyLItzYbxaWPcIO5XdsryvGNoFpz6+6g6F/gDUGNDOs4qD76HcWzGBLkkhnT8twU2znTKLiEouJnBlLGe6wLLQsTZs9r5wPHBV2zTIdGStuXIB2w3ydyFpvShe0sDze/tZL8T2tlGO21c5GkGULCvxZFmaSoaBkf7QgNHGXfAsa1sLdSfsU042hDrtgQvN+W/4Kzrbq3U2+cNGr7B8M4psgKWSXrxCO7ZJ8ckWPSJJzckyfyQl6dB+fZeXPev1pHnOHMMvlRzscnitqroQ==</latexit>

cos(t3 ⇥ !) || xlink
2,4 (t3)

<latexit sha1_base64="ck25dJJvQiLZWJLJEDC+pG52Yls=">AAACMXicbVBNS8NAEN34bf2qevSyWAQFKUkp6lH04lHBqtDUsNlO6tJNNuxOxBLjT/LiPxEvHhTx6p9wU3vwa2DZx3szzLwXplIYdN1nZ2x8YnJqema2Mje/sLhUXV45MyrTHFpcSaUvQmZAigRaKFDCRaqBxaGE87B/WOrn16CNUMkpDlLoxKyXiEhwhpYKqkc+V2YTg6aPIgZD/VDJrhnE9st9FUOPFVt3t7d3fszwKozymyLIG9vN4tJHuMHcru0X5fhWUK25dXdY9C/wRqBGRnUcVB/9ruJZDAlyyYxpe26KnZxpFFxCUfEzAynjfdaDtoUJs+d18qHjgm5Ypksjpe1LkA7Z7xM5i03pwnaWh5vfWkn+p7UzjPY6uUjSDCHhX4uiTFJUtIyPdoUGjnJgAeNa2Fspv2KacbQhV2wI3m/Lf8FZo+7t1Jsnzdr+wSiOGbJG1skm8cgu2SdH5Ji0CCf35Im8kFfnwXl23pz3r9YxZzSzSn6U8/EJjiOrow==</latexit>

cos(t4 ⇥ !) || xlink
2,4 (t4)

<latexit sha1_base64="Hjhn1h3jCPbX+0ZjoIicgA6DbX0=">AAACMXicbVDLSsNAFJ34tr6qLt0MFkFBSlJ8LUU3LhWsCk0Nk+lNHTrJhJkbscT4SW78E3HjQhG3/oST2oWvC8MczrmXe88JUykMuu6zMzI6Nj4xOTVdmZmdm1+oLi6dGZVpDk2upNIXITMgRQJNFCjhItXA4lDCedg7LPXza9BGqOQU+ym0Y9ZNRCQ4Q0sF1SOfK7OOwbaPIgZD/VDJjunH9st9FUOXFRt3t7d3fszwKozymyLIvc1Gcekj3GBu1/aKcnwjqNbcujso+hd4Q1AjwzoOqo9+R/EshgS5ZMa0PDfFds40Ci6hqPiZgZTxHutCy8KE2fPa+cBxQdcs06GR0vYlSAfs94mcxaZ0YTvLw81vrST/01oZRnvtXCRphpDwr0VRJikqWsZHO0IDR9m3gHEt7K2UXzHNONqQKzYE77flv+CsUfd26lsnW7X9g2EcU2SFrJJ14pFdsk+OyDFpEk7uyRN5Ia/Og/PsvDnvX60jznBmmfwo5+MTjKirog==</latexit>

cos(t5 ⇥ !) || xlink
1,2 (t5)

<latexit sha1_base64="5w4U2nBCpzFXCfjJr7fAs5KmE0M=">AAACYHicbVFNTxsxEPUupQ0BSqA3erGIkKgqRbsRKhxRufRUUakBpGxYeZ1ZMPhjZc+mRGb/ZG899NJfUidEKg2MZOnpvTfj8XNRSeEwSX5F8cqr1ddvWmvt9Y3Nt1ud7Z1zZ2rLYcCNNPayYA6k0DBAgRIuKwtMFRIuirvTmX4xAeuE0d9xWsFIsWstSsEZBirv/MgUw5ui9PdN3r/KEO7RazOGhn6kWWkZ92njH+YmzqT/2hxM8v6Hh4ZmrlaZNlIogS73k/w2E3rZF2z/xt8+HZ93ukkvmRd9DtIF6JJFneWdn9nY8FqBRi6Zc8M0qXDkmUXBJTTtrHZQMX7HrmEYoGYK3MjPA2rofmDGtDQ2HI10zj7t8Ew5N1VFcM72dcvajHxJG9ZYHo+80FWNoPnjRWUtKRo6S5uOhQWOchoA41aEXSm/YSFWDH/SDiGky09+Ds77vfRT7/DbYffk8yKOFnlP9sgBSckROSFfyBkZEE5+RyvRRrQZ/Ylb8Va8/WiNo0XPO/Jfxbt/AYowuRo=</latexit>

xnode
2 +

1

|N (v2)|
X

vj2N (v2)
xnode

j

Global 
Linear

M
LP
-m
ix
er

<latexit sha1_base64="+dxkSr8Jvw9DKB6mlI+tnMVkJoY=">AAACAHicbVBNS8NAEN3Ur1q/oh48eAkWwVNJSlGPRS8eK9gPaGPYbDft0s0m7E7EEnLxr3jxoIhXf4Y3/42bNgdtfTDweG+GmXl+zJkC2/42Siura+sb5c3K1vbO7p65f9BRUSIJbZOIR7LnY0U5E7QNDDjtxZLi0Oe060+uc7/7QKVikbiDaUzdEI8ECxjBoCXPPBqEGMZ+kPYyr34/APoIKcQy88yqXbNnsJaJU5AqKtDyzK/BMCJJSAUQjpXqO3YMboolMMJpVhkkisaYTPCI9jUVOKTKTWcPZNapVoZWEEldAqyZ+nsixaFS09DXnfm5atHLxf+8fgLBpZsyESdABZkvChJuQWTlaVhDJikBPtUEE8n0rRYZY4kJ6MwqOgRn8eVl0qnXnPNa47ZRbV4VcZTRMTpBZ8hBF6iJblALtRFBGXpGr+jNeDJejHfjY95aMoqZQ/QHxucPn4SXFg==</latexit>

Xtpr
2

<latexit sha1_base64="yTYT7Q6hlzOMXvEBT16aFkR5Nfc=">AAACAHicbVBNS8NAEN34WetX1IMHL8EieCpJKeqx6MVjBfsBbQyb7aZdutmE3Ym0hFz8K148KOLVn+HNf+OmzUFbHww83pthZp4fc6bAtr+NldW19Y3N0lZ5e2d3b988OGyrKJGEtkjEI9n1saKcCdoCBpx2Y0lx6HPa8cc3ud95pFKxSNzDNKZuiIeCBYxg0JJnHvdDDCM/SCeZV3voA51AqmKeeWbFrtozWMvEKUgFFWh65ld/EJEkpAIIx0r1HDsGN8USGOE0K/cTRWNMxnhIe5oKHFLlprMHMutMKwMriKQuAdZM/T2R4lCpaejrzvxctejl4n9eL4Hgyk2ZiBOggswXBQm3ILLyNKwBk5QAn2qCiWT6VouMsMQEdGZlHYKz+PIyadeqzkW1flevNK6LOEroBJ2ic+SgS9RAt6iJWoigDD2jV/RmPBkvxrvxMW9dMYqZI/QHxucPxx+XLw==</latexit>

xspl
2

Zero-padding
LN+Linear
Transpose
Linear

Mean-pooling

<latexit sha1_base64="HEKeveZVrlSrkTYZKO2jk9iG1rA=">AAADenicpZLfb9MwEMfdlB+j/OrgESFZqxit2Kqmy4AXpAleeBzSuk2qS+Q4l9Sq40TxBa3Ksr+Bv403/hJeeMBpiwYtL2gnWf7qzv747nxBpqTBweB7w2neun3n7ta91v0HDx89bm8/OTVpkQsYiVSl+XnADSipYYQSFZxnOfAkUHAWzD7U8bMvkBuZ6hOcZzBJeKxlJAVH6/K3G19ZwnEaROVJ5Q+7s16LvqMM4QJLg1zMKqYgwi4LIJa65ErGGsKqtTtmIjVd9F2GMgFDWZCq0MwTu5UsTSDmVe/q8vLqN/2i8kt3b1h9XrJturOqO9u3gN6EMnYNPPgP4HDP2wQerAG9mwK9NeDhTUs+XAIZ6PC6oyyX8RR7tOW3O4P+YGF0U7gr0SErO/bb31iYiiIBjUJxY8buIMNJyXOUQoElFwYy+5U8hrGVmtvkJ+VidCr6wnpCGqW5XRrpwvvnjZInpq7RnqzLMuux2vmv2LjA6O2klDorELRYPhQVimJK6zmkocxBoJpbwUUuba5UTHnOBdpprZvgrpe8KU6Hffd13/vkdY7er9qxRZ6RHdIlLnlDjshHckxGRDR+OM+dXeel87O50+w1Xy2POo3VnafkL2t6vwBo6CEH</latexit>

T2(k) = stack

0
BBBB@

[cos(t1 ⇥ !) || xlink
1,2 (k � t1)]

[cos(t3 ⇥ !) || xlink
2,4 (k � t3)]

[cos(t4 ⇥ !) || xlink
2,4 (k � t4)]

[cos(t5 ⇥ !) || xlink
1,2 (k � t5)]

1
CCCCA

<latexit sha1_base64="fa76Vjfd/ZShd0U3/F8csNEblao=">AAACe3icbVFbSxtBFJ5d23rpLeqjUIYGMbYl7AZvL4LYlz4VC0aFbFxmJ7M6Zi7LzNlgGPdP+NN885/4InQ2ppCqBwY+vvOdy3wnKwS3EEX3QTj35u27+YXFpfcfPn763FheObG6NJR1qRbanGXEMsEV6wIHwc4Kw4jMBDvNhj/r/OmIGcu1OoZxwfqSXCiec0rAU2njNpEELrPc2SrttIabeB//Y649c54Auwan9IBV+DtOckOoiyt3MxFRItzvKh2eH7dGaWfzpsKJLWWitOCSg03dKL1KuHpNW82OuZods5Q2mlE7mgR+CeIpaKJpHKWNu2SgaSmZAiqItb04KqDviAFOhW+YlJYVhA7JBet5qIhktu8m3lV43TMDnGvjnwI8YWcrHJHWjmXmlfXC9nmuJl/L9UrI9/qOq6IEpujToLwUGDSuD4EH3DAKYuwBoYb7XTG9JN5f8OeqTYiff/klOOm045321p+t5sHh1I4FtIa+ohaK0S46QL/QEeoiih6CL8FG0Aoew2b4LfzxJA2Dac0q+i/C7b8gjsMt</latexit>

s2(k) = xnode
2 +

1

|N T
k (v2)|

X
vj2N T

k (v2)
xnode

j

<latexit sha1_base64="Q8d2qGkWRhhPvnVvqGjD54CkP/s=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4kDAjcTkGvXiMYBZIhqGn05M06VnsrhHCkJ/w4kERr/6ON//GTjIHTXxQ8Hiviqp6fiKFRtv+tgorq2vrG8XN0tb2zu5eef+gpeNUMd5ksYxVx6eaSxHxJgqUvJMoTkNf8rY/up367SeutIijBxwn3A3pIBKBYBSN1EHPOSPoXXjlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPy/uPKw==</latexit>

t1, t5

<latexit sha1_base64="/fBkRLvL0GW70fe4G8+OxYC36FI=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPgQcKuBvUY9OIxgnlAsiyzk9lkyOzDmV4hLPkJLx4U8ervePNvnCR70MSChqKqm+4uP5FCo21/W4WV1bX1jeJmaWt7Z3evvH/Q0nGqGG+yWMaq41PNpYh4EwVK3kkUp6Evedsf3U799hNXWsTRA44T7oZ0EIlAMIpG6qB3cUbQq3nlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPzYmPLA==</latexit>

t3, t4

<latexit sha1_base64="VfQlbjz14oEvJ+wNqJlCEmczKxA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY9FLx4r2lpoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHjUNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/DEY38z8xyeujYjVA04S7kd0qEQoGEUr3WO/1i9X3Ko7B1klXk4qkKPZL3/1BjFLI66QSWpM13MT9DOqUTDJp6VeanhC2ZgOeddSRSNu/Gx+6pScWWVAwljbUkjm6u+JjEbGTKLAdkYUR2bZm4n/ed0Uwys/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lbRrVe+iWr+rVxrXeRxFOIFTOAcPLqEBt9CEFjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AEKCo2m</latexit>

t2
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>v1

<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>v2
<latexit sha1_base64="b2tEeKlWWv/DNO1wXN9nzf05O4M=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF48Y5ZHAhswOvTBhdnYzM0tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCooeNUMayzWMSqFVCNgkusG24EthKFNAoENoPh3cxvjlBpHssnM07Qj2hf8pAzaqz0OOpedoslt+zOQVaJl5ESZKh1i1+dXszSCKVhgmrd9tzE+BOqDGcCp4VOqjGhbEj72LZU0gi1P5mfOiVnVumRMFa2pCFz9ffEhEZaj6PAdkbUDPSyNxP/89qpCW/8CZdJalCyxaIwFcTEZPY36XGFzIixJZQpbm8lbEAVZcamU7AheMsvr5LGRdm7KlceKqXqbRZHHk7gFM7Bg2uowj3UoA4M+vAMr/DmCOfFeXc+Fq05J5s5hj9wPn8ADpqNqQ==</latexit>v3

<latexit sha1_base64="hO320iBa8sEmbXNNilQxEqLdr0Y=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vj04rGi/YA2lM120y7dbMLupFBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR03TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWju5nfGnNtRKyecJJwP6IDJULBKFrpcdyr9kplt+LOQVaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzyabGbGp5QNqID3rFU0YgbP5ufOiXnVumTMNa2FJK5+nsio5ExkyiwnRHFoVn2ZuJ/XifF8MbPhEpS5IotFoWpJBiT2d+kLzRnKCeWUKaFvZWwIdWUoU2naEPwll9eJc3LindVqT5Uy7XbPI4CnMIZXIAH11CDe6hDAxgM4Ble4c2Rzovz7nwsWtecfOYE/sD5/AEQHo2q</latexit>v4
<latexit sha1_base64="Vx17vpUuOe1Mymv9gb2X5BrXIdI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYNPo5ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRQ8epYlhnsYhVK6AaBZdYN9wIbCUKaRQIbAbDu5nfHKHSPJZPZpygH9G+5CFn1FjpcdS97BZLbtmdg6wSLyMlyFDrFr86vZilEUrDBNW67bmJ8SdUGc4ETgudVGNC2ZD2sW2ppBFqfzI/dUrOrNIjYaxsSUPm6u+JCY20HkeB7YyoGehlbyb+57VTE974Ey6T1KBki0VhKoiJyexv0uMKmRFjSyhT3N5K2IAqyoxNp2BD8JZfXiWNi7J3Va48VErV2yyOPJzAKZyDB9dQhXuoQR0Y9OEZXuHNEc6L8+58LFpzTjZzDH/gfP4AEaKNqw==</latexit>v5Temporal graph

(now) (past)

<latexit sha1_base64="Q8d2qGkWRhhPvnVvqGjD54CkP/s=">AAAB73icbVDJSgNBEK2JW4xb1KOXxiB4kDAjcTkGvXiMYBZIhqGn05M06VnsrhHCkJ/w4kERr/6ON//GTjIHTXxQ8Hiviqp6fiKFRtv+tgorq2vrG8XN0tb2zu5eef+gpeNUMd5ksYxVx6eaSxHxJgqUvJMoTkNf8rY/up367SeutIijBxwn3A3pIBKBYBSN1EHPOSPoXXjlil21ZyDLxMlJBXI0vPJXrx+zNOQRMkm17jp2gm5GFQom+aTUSzVPKBvRAe8aGtGQazeb3TshJ0bpkyBWpiIkM/X3REZDrcehbzpDikO96E3F/7xuisG1m4koSZFHbL4oSCXBmEyfJ32hOEM5NoQyJcythA2pogxNRCUTgrP48jJpnVedy2rtvlap3+RxFOEIjuEUHLiCOtxBA5rAQMIzvMKb9Wi9WO/Wx7y1YOUzh/AH1ucPy/uPKw==</latexit>

t1, t5
<latexit sha1_base64="xRFvcCAHe3sdZK6o49MLG0zyJbM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndVvXy4rNRu8ziKcAKncA4eXEMN7qEODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QMLko2n</latexit>v1

<latexit sha1_base64="pd6CG+fgXjPa9TrI/+SvifD5VxY=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY9ELx4xyiOBDZkdemHC7OxmZpaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWju7nfGqPSPJZPZpKgH9GB5CFn1Fjpcdyr9Iolt+wuQNaJl5ESZKj3il/dfszSCKVhgmrd8dzE+FOqDGcCZ4VuqjGhbEQH2LFU0gi1P12cOiMXVumTMFa2pCEL9ffElEZaT6LAdkbUDPWqNxf/8zqpCW/8KZdJalCy5aIwFcTEZP436XOFzIiJJZQpbm8lbEgVZcamU7AheKsvr5NmpexdlasP1VLtNosjD2dwDpfgwTXU4B7q0AAGA3iGV3hzhPPivDsfy9ack82cwh84nz8NFo2o</latexit>v2Link features

t1 t2 t3 t4 t5

<latexit sha1_base64="zwv9/bOlmoJktBdHYC6VZVWyUXg=">AAACLXichVDJSgNBEO2JW4zbqEcvg0FIIISZEJdjUA8eI5gFkjj0dHqSJj0L3TWSMIwf5MVfEcFDRLz6G3aWgyaCDxoer15VVz0n5EyCaY611Mrq2vpGejOztb2zu6fvH9RlEAlCayTggWg6WFLOfFoDBpw2Q0Gx53DacAZXk3rjgQrJAv8ORiHteLjnM5cRDEqy9eu2h6HvuPEwsWOrUEru20CHEKt5gyQHtpUvPP5jOc3betYsmlMYy8Sakyyao2rrr+1uQCKP+kA4lrJlmSF0YiyAEU6TTDuSNMRkgHu0paiPPSo78fTaxDhRStdwA6GeD8ZU/dkRY0/Kkeco52RxuVibiH/VWhG4F52Y+WEE1Cezj9yIGxAYk+iMLhOUAB8pgolgaleD9LHABFTAGRWCtXjyMqmXitZZsXxbzlYu53Gk0RE6RjlkoXNUQTeoimqIoCf0gsboXXvW3rQP7XNmTWnznkP0C9rXNyXkqUY=</latexit>

xlink
1,2 (t1), xlink

1,2 (t5)

<latexit sha1_base64="N1bQF1eqDfmDxCplzsJmDBdgCjc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+y7/XLFrbpzkFXi5aQCORr98ldvELM04gqZpMZ0PTdBP6MaBZN8WuqlhieUjemQdy1VNOLGz+anTsmZVQYkjLUthWSu/p7IaGTMJApsZ0RxZJa9mfif100xvPYzoZIUuWKLRWEqCcZk9jcZCM0ZyokllGlhbyVsRDVlaNMp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifPwcCjaQ=</latexit>

t0

<latexit sha1_base64="z81ix6QeHP3t69NC0TOp7j1UnKc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVL+8vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAQGo2q</latexit>

t6

<latexit sha1_base64="z81ix6QeHP3t69NC0TOp7j1UnKc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB+zX+uWKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atVL+8vK/WbPI4inMApnIMHV1CHO2hAExgM4Rle4c2Rzovz7nwsWgtOPnMMf+B8/gAQGo2q</latexit>

t6

Figure 1: (Left) Temporal graph with nodes v1, . . . , v5, per-link timestamps t1, . . . , t6 indicate when
two nodes interact. For example, v1, v2 interact at t1, t5. (Right) Each node has its node features (e.g.,
xnode
1 for v1) and each temporal link has its link features (e.g., xlink

1,2(t1),x
link
1,2(t5) are link features

between v1, v2 at t1, t5). For scenarios without node or link features, we use all-zero vectors instead.

against baselines that are equipped with the RNNs and SAM. In practice, it achieves state-of-the-art
performance in terms of different evaluation metrics (e.g., average precision, AUC, Recall@K, and
MRR) on real-world temporal graph datasets, with the even smaller number of model parameters and
hyper-parameters, and a conceptually simpler input structure and model architecture (Section 4).

Q2: What are the key factors that lead to the success of GraphMixer? We identify three key factors
that contribute to the success of GraphMixer: 1 The simplicity of GraphMixer’s input data and
neural architecture. Different from most deep learning methods that focus on designing conceptually
complicated data preparation techniques and technically complicated neural architectures, we choose
to simplifying the neural architecture and utilize a conceptually simpler data as input. Both of which
could lead to a better model performance and better generalization (Section 4.4). 2 A time-encoding
function that encodes any timestamp as an easily distinguishable input vector for GraphMixer.
Different from most of the existing methods that propose to learn the time-encoding function from
the raw input data, our time-encoding function utilizes conceptually simple features and is fixed
during training. Interestingly, we show that our fixed time-encoding function is more preferred than
the trainable version (used by most previous studies), and could lead to a smoother optimization
landscape, a faster convergence speed, and a better generalization (Section 4.2); 3 A link-encoder that
could better distinguish temporal sequences. Different from most existing methods that summarize
sequences using SAM, our encoder module is entirely based on MLPs. Interestingly, our encoder can
distinguish temporal sequences that cannot be distinguished by SAM, and it could generalize better
due to its simpler neural architecture and lower model complexity (Section 4.3).

To this end, we summarize our contributions as follows: 1 We propose a conceptually and technically
simple architecture GraphMixer; 2 Even without RNN and SAM, GraphMixer not only outperforms
all baselines but also enjoys a faster convergence and better generalization ability; 3 Extensive study
identifies three factors that contribute to the success of GraphMixer. 4 Our results could motivate
future research to rethink the importance of the conceptually and technically simpler method.

2 PRELIMINARY AND EXISTING WORKS

Preliminary. Figure 1 is an illustration on the temporal graph. Our goal is to predict whether two
nodes are connected at a specific timestamp t0 based on all the available temporal graph information
happened before that timestamp. For example, to predict whether v1, v2 are connected at t0, we only
have access to the graph structure, node features, and link features with timestamps from t1 to t6.

Related works. Most of the temporal graph learning methods are conceptually and technically
complicated with advanced neural architectures. It is non-trivial to fully understand the algorithm
details without looking into their implementations. Therefore, we select the four most representative
and most closely-related methods to introduce and compare them in more details.

• JODIE Kumar et al. (2019) is a RNN-based method. Let us denote xi(t) as the embedding of
node vi at time t, xlink

ij (t) as the link feature between vi, vj at time t, and mi as the timestamp
that vi latest interact with other node. JODIE pre-processes and updates the representation
of each node via RNNs (is it just one RNN or multiple RNNs). More specifically, when an
interaction between vi, vj happens at time t, JODIE updates the temporal embedding using RNN
by xi(t) = RNN

(
xi(mi),xj(mj),x

link
ij (t), t−mi

)
. Then, the dynamic embedding of node vi at

time t0 is computed by hi(t0) = (1 + (t0 −mi)w) · xi(mi). Finally, the prediction on any node
pair at time t0 is computed by MLP([hi(t0) || hj(t0)]), where [·||·] is the concatenate operation
and MLP(x) is applying 2-layer MLP on x.

2



Published as a conference paper at ICLR 2023

• DySAT Sankar et al. (2020) is a SAM-based method. DySAT requires pre-processing the temporal
graph into multiple snapshot graphs by first splitting all timestamps into multiple time-slots, then
merging all edges in each time-slot. Let Gt(V, Et) denote the t-th snapshot graph. To capture
spatial information, DySAT first applies Graph Attention Network (GAT) Veličković et al. (2018)
on each snapshot graph Gt independently by X(t) = GAT(Gt). Then, to capture of temporal
information for each node, Transformer is applied to xi(t) = [X(t)]i at different timestamps to
capture the temporal information by hi(tk), . . .hi(t0) = Transformer

(
xi(tk), . . . ,xi(t0)

)
.

Finally, the prediction on any node pair at time t0 is computed by MLP([hi(t0) || hj(t0)]).
• TGAT Xu et al. (2020) is a SAM-based method that could capture the spatial and temporal

information simultaneously. TGAT first generates the time augmented feature of node i at
time t by concatenating the raw feature xi with a trainable time encoding z(t) of time t, i.e.,
xi(t) = [xi || z(t)] and z(t) = cos(tw+b). Then, SAM is applied to the time augmented features
and produces node representation hi(t0) = SAM (xi(t0), {xu(hu) | u ∈ Nt0(i)}), where Nt0(i)
denotes the neighbors of node i at time t0 and hu denotes the timestamp of the latest interaction of
node u. Finally, the prediction on any node pair at time t0 is computed by MLP([hi(t0) || hj(t0)]).

• TGN Rossi et al. (2020) is a mixture of RNN- and SAM-based method. In practice, TGN first
captures the temporal information using RNN (similarly to JODIE), and then applies graph
attention convolution to capture the spatial and temporal information jointly (similarly to TGAT).

Besides, we also consider the following temporal graph learning methods as baselines. These methods
could be thought of as an extension on top of the above four most representative methods, but with
the underlying idea behind the model design much more conceptually complicated. CAWs Wang et al.
(2020) is a mixer of RNN- and SAM- based method that proposes to represent network dynamics by
extracting temporal network motifs using temporal random walks. CAWs replaces node identities
with the hitting counts of the nodes based on a set of sampled walks to establish the correlation
between motifs. Then, the extracted motifs are fed into RNNs to encode each walk as a representation,
and use SAM to aggregate the representations of multi-walks into a single vector for downstream
tasks. TGSRec Fan et al. (2021) is a SAM-based method that proposes to unify sequential patterns
and temporal collaborative signals to improve the quality of recommendation. To achieve this goal,
they propose to advance the SAM by adopting novel collaborative attention, such that SAM can
simultaneously capture collaborative signals from both users and items, as well as consider temporal
dynamics inside sequential patterns. APAN Wang et al. (2021b) is a RNN-based method that proposes
to decouple model inference and graph computation to alleviate the damage of the heavy graph query
operation to the speed of model inference. More related works are deferred to Appendix B.

3 GRAPHMIXER: A CONCEPTUALLY AND TECHNICALLY SIMPLE METHOD

In this section, we first introduce the neural architecture of GraphMixer in Section 3.1 then explicitly
highlight its difference to baseline methods in Section 3.2.

3.1 DETAILS ON GRAPHMIXER: NEURAL ARCHITECTURE AND INPUT DATA

GraphMixer has three modules: 1 link-encoder is designed to summarize the information from
temporal links (e.g., link timestamps and link features); 2 node-encoder is designed to summarize
the information from nodes (e.g., node features and node identity); 3 link classifier predicts whether
a link exists based on the output of the aforementioned two encoders.

Link-encoder. The link-encoder is designed to summarize the temporal link information asso-
ciated with each node sorted by timestamps, where temporal link information is referring to
the timestamp and features of each link. For example in Figure 1, the temporal link informa-
tion for node v2 is {(t1,xlink

1,2(t1)), (t3,x
link
2,4(t3)), (t4,x

link
2,4(t4)), (t5,x

link
1,2(t5))} and for node v5 is

{(t2,xlink
3,5(t2)), (t6,x

link
4,5(t6))}. In practice, we only keep the top K most recent temporal link infor-

mation, where K is a dataset dependent hyper-parameter. If multiple links have the same timestamps,
we simply keep them the same order as the input raw data. To summarize temporal link informa-
tion, our link-encoder should have the ability to distinguish different timestamps (achieved by our
time-encoding function) and different temporal link information (achieved by the Mixer module).

• Time-encoding function. To distinguish different timestamps, we introduce our time-encoding
function cos(tω), which utilizes features ω = {α−(i−1)/β}di=1 to encode each timestamps into

3



Published as a conference paper at ICLR 2023

ti(k) Xtime
i (k) =




cos(t1ω)
...

cos(t4ω)




xidentity(i), where [xidentity(i)]j =





1 if j = i

1/N (i) if j ∈ N (i)

0 otherwise

z(i) = [xnode(i) || xidentity(i) || xtemporal(i)]

zij = ReLU
(
Wsrcz(i) + Wdstz(j) + b

)

ŷij = Sigmoid(w!zij + b)

Xmixer
i =[

Xtime
i Xlink

i

0 0

]
xtemporal

i (k)

Token-mixer

Channel-mixer

Mean-pooling

MLP-Mixer

xtemporal(i)

Xlink
i (k)

<latexit sha1_base64="r35mnhe9SYilnfI/p+c5xK7HpxY=">AAAC0nicfZJNbxMxEIa9y1cJH03hyMUiApVLtJtGwLGCCzeK1LSV4iia9U42Vr32yp4FpatQVVz5ddz4CfwLnG2EoA0dyfKrd/zIM2NnlVaekuRnFN+6fefuva37nQcPHz3e7u48OfK2dhJH0mrrTjLwqJXBESnSeFI5hDLTeJydvl/ljz+j88qaQ1pUOCmhMGqmJFCwpt1fIsNCmQa0Kgzmy85LTtOUC6eKOYFz9gsX0vrd1syszv2iDFsjbIkFLF9xIVpksAkZ3IjsbUL2bkSGm5DhfxGBJv/T2bTbS/pJG/y6SNeix9ZxMO3+ELmVdYmGpAbvx2lS0aQBR0pqXHZE7bECeQoFjoM0UKKfNO2TLPmL4OR8Zl1Yhnjr/k00UPpVxeFkCTT3V3Mrc1NuXNPs7aRRpqoJjby8aFZrTpav3pfnyqEkvQgCpFOhVi7n4EBS+AWdMIT0asvXxdGgn77uDz8Ne/vv1uPYYs/Yc7bLUvaG7bMP7ICNmIw+RnX0NTqPD+Oz+CL+dnk0jtbMU/ZPxN9/AwKf4NU=</latexit>

t1 ! cos(t1!)

t2 ! cos(t2!)

t3 ! cos(t3!)

t4 ! cos(t4!)

<latexit sha1_base64="r35mnhe9SYilnfI/p+c5xK7HpxY=">AAAC0nicfZJNbxMxEIa9y1cJH03hyMUiApVLtJtGwLGCCzeK1LSV4iia9U42Vr32yp4FpatQVVz5ddz4CfwLnG2EoA0dyfKrd/zIM2NnlVaekuRnFN+6fefuva37nQcPHz3e7u48OfK2dhJH0mrrTjLwqJXBESnSeFI5hDLTeJydvl/ljz+j88qaQ1pUOCmhMGqmJFCwpt1fIsNCmQa0Kgzmy85LTtOUC6eKOYFz9gsX0vrd1syszv2iDFsjbIkFLF9xIVpksAkZ3IjsbUL2bkSGm5DhfxGBJv/T2bTbS/pJG/y6SNeix9ZxMO3+ELmVdYmGpAbvx2lS0aQBR0pqXHZE7bECeQoFjoM0UKKfNO2TLPmL4OR8Zl1Yhnjr/k00UPpVxeFkCTT3V3Mrc1NuXNPs7aRRpqoJjby8aFZrTpav3pfnyqEkvQgCpFOhVi7n4EBS+AWdMIT0asvXxdGgn77uDz8Ne/vv1uPYYs/Yc7bLUvaG7bMP7ICNmIw+RnX0NTqPD+Oz+CL+dnk0jtbMU/ZPxN9/AwKf4NU=</latexit>

t1 ! cos(t1!)

t2 ! cos(t2!)

t3 ! cos(t3!)

t4 ! cos(t4!)

<latexit sha1_base64="wDNeVYaoNqi9UkgrM1troqRKxM4=">AAADgHicpVJbb9MwFHYTLqPcuvHIi0UFSqWuS7qMIZ4meOFxSHSbVIfIcZzUquNE8QlalWU/gx/GGz8GCaetBLR9QTuS5U/f8fnOxScqpNDguj87ln3v/oOHe4+6j588ffa8t39wofOqZHzCcpmXVxHVXArFJyBA8qui5DSLJL+M5h9b/+U3XmqRqy+wKHiQ0VSJRDAKhgr3O98xAX4NtQbK5g2RPAGHRDwVqqZSpIrHTffNlLBcOw6ELj7EEHoDAiLjGpMol7FeZOaqSZ7xlDaD25ubW5JRmEVJfd2EtTccN19XOUyR88Zp4wNMyJbs8f/Ijof+puzxbln/jrL+btmTOw7hZCVLuIr/TJqUIp3BAHfDXt8duUvD28Bbgz5a23nY+0HinFUZV8Ak1XrquQUENS1BMMmNcqV5Yb6YpnxqoKKm9KBeLlCDXxsmxklemqMAL9m/I2qa6bZD87JtSm/6WnKXb1pB8i6ohSoq4IqtEiWVxJDjdhtxLErOQC4MoKwUplbMZrSkDMzOtkPwNlveBhfjkfd25H/2+2cf1uPYQy/RK+QgD52iM/QJnaMJYp1fVt8aWoe2ZTv2ke2tnlqddcwL9I/Z738DTqQfGg==</latexit>

stack

0
BBBB@

[cos((t0 � t1) ⇥ !) || xlink
1,2 (t1)]

[cos((t0 � t3) ⇥ !) || xlink
2,4 (t3)]

[cos((t0 � t4) ⇥ !) || xlink
2,4 (t4)]

[cos((t0 � t5) ⇥ !) || xlink
1,2 (t5)]

1
CCCCA

Token-mixer

Channel-mixer

Mean-pooling

1-layer MLP-Mixer

Ze
ro

-p
ad

di
ng

(a) (b)

<latexit sha1_base64="+ujstVMefRZdmv+UsCS0LrqJoAo=">AAAB+nicbVBNT8JAFNziF+JX0aOXjcQEL6QlRD0SvXjERMAEmma7bGHDdtvsvmpI5ad48aAxXv0l3vw3LtCDgpNsMpl5L292gkRwDY7zbRXW1jc2t4rbpZ3dvf0Du3zY0XGqKGvTWMTqPiCaCS5ZGzgIdp8oRqJAsG4wvp753QemNI/lHUwS5kVkKHnIKQEj+Xa5HxEYBWEGU79eBd858+2KU3PmwKvEzUkF5Wj59ld/ENM0YhKoIFr3XCcBLyMKOBVsWuqnmiWEjsmQ9QyVJGLay+bRp/jUKAMcxso8CXiu/t7ISKT1JArM5CyoXvZm4n9eL4Xw0su4TFJgki4OhanAEONZD3jAFaMgJoYQqrjJiumIKELBtFUyJbjLX14lnXrNPa81bhuV5lVeRxEdoxNURS66QE10g1qojSh6RM/oFb1ZT9aL9W59LEYLVr5zhP7A+vwBd/2TfQ==</latexit>

t2(t0)

Figure 2: (a) Time-encoding function that pre-process timestamp t into a vector cos(tω). The x-axis
is the vector dimension and the y-axis is the cosine value. (b) link-encoder takes the temporal link
information of node v2 as inputs and outputs a vector t2(t0) that will be used for link prediction.

a d-dimensional vector. More specifically, we first map each t to a vector with monotonically
exponentially decreasing values tω ∈ (0, t] among the feature dimension, then use cosine function
to project all values to cos(tω) ∈ [−1,+1]. The selection of α, β is depending on the scale of
the maximum timestamp tmax we wish to encode. In order to distinguish all timestamps, we
have to make sure tmax × α−(i−1)/β → 0 as i → d to distinguish all timestamps. In practice, we
found d = 100 and α = β =

√
d works well for all datasets. Notice that ω is fixed and will not

be updated during training. As shown in Figure 2a, the output of this time-encoding function
has two main properties that could help GraphMixer distinguish different timestamps: similar
timestamps have similar time-encodings (e.g., the plot of t1, t2) and the larger the timestamp the
later the values in time-encodings converge to +1 (e.g., the plot of t1, t3 or t1, t4).

• Mixer for information summarizing. We use a 1-layer MLP-mixer Tolstikhin et al. (2021)
to summarize the temporal link information. Figure 2b is an example on summarizing the
temporal link information of node v2. Recall that the temporal link information of node v2 is
{(t1,xlink

1,2(t1)), (t3,x
link
2,4(t3)), (t4,x

link
2,4(t4)), (t5,x

link
1,2(t5))}. We first encode timestamps by our

time-encoding function then concatenate it with its corresponding link features. For example, we
encode (t1,x

link
1,2(t1)) as [cos((t0 − t1)ω) || xlink

1,2(t1))] where t0 is the timestamp that we want to
predict whether the link exists. Then, we stack all the outputs into a big matrix and zero-pad to the
fixed length K denoted as T2(t0). Finally, we use an 1-layer MLP-mixer with mean-pooling to
compress T2(t0) into a single vector t2(t0). Specifically, the MLP-mixer takes T2(t0) as input

T2(t0) → Hinput, Htoken = Hinput +W
(2)
tokenGeLU(W

(1)
tokenLayerNorm(Hinput)),

Hchannel = Htoken + GeLU(LayerNorm(Htoken)W
(1)
channel)W

(2)
channel,

and output the temporal encoding t2(t0) = Mean(Hchannel). Please notice that zero-padding
operator is important to capture how often a node interacts with other nodes. The node with more
zero-padded dimensions has less temporal linked neighbors. This information is very important
in practice according to our experimental observation.

Node-encoder. The node-encoder is designed to capture the node identity and node feature in-
formation via neighbor mean-pooling. Let us define the 1-hop neighbor of node vi with link
timestamps from t to t0 as N (vi; t, t0). For example in Figure 1, we have N (v2; t4, t0) = {v1, v4}
and N (v5; t4, t0) = {v3}. Then, the node-info feature is computed based on the 1-hop neighbor
by si(t0) = xnode

i + Mean{xnode
j | vj ∈ N (vi; t0 − T, t0)}, where T is a dataset-dependent hyper-

parameter. In practice, we found 1-hop neighbors are enough to achieve good performance, and we
use one-hot node representations for datasets without node features.

Link classifier. Link classifier is designed to classify whether a link exists at time t0 using the
output of link-encoder ti(t0) and the output of node-encoder si(t0). Let us denote the node vi’s
representation at time t0 as the concatenation of the above two encodings hi(t0) = [si(t0) || ti(t0)].
Then, the prediction on whether an interaction between node vi, vj happens at time t0 is computed
by applying a 2-layer MLP model on [hi(t0) || hj(t0)], i.e., pij = MLP([hi(t0) || hj(t0)]).

3.2 COMPARISON TO EXISTING METHODS

In the following, we highlight some differences between GraphMixer and other methods, which will
be explicitly ablation studied in the experiment section (Section 4.4).

Temporal graph as undirected graph. Most of the existing works consider temporal graphs as
directed graphs with information only flows from the source node (e.g., users in the recommender
system) to the destination nodes (e.g., ads in the recommender system). However, we consider the

4



Published as a conference paper at ICLR 2023

Table 1: Comparison on the average precision score for link prediction. GraphMixer uses one-hot
node encoding for datasets without node features (marked by ♮). For each dataset, we indicate whether
we have the corresponding feature (“L” link features, “N” node features, and “T” link timestamps).
Red is the best score, Blue is the best score excluding GraphMixer and its variants.

Reddit Wiki MOOC LastFM GDELT GDELT-ne GDELT-e
L, T L, T T T L, N, T T N, T

JODIE 99.30± 0.01 98.81± 0.01 99.16± 0.01 67.51± 0.87 98.27± 0.02 97.13± 0.02 96.96± 0.02
DySAT 98.52± 0.01 96.71± 0.02 98.82± 0.02 76.40± 0.77 98.52± 0.02 82.47± 0.13 97.25± 0.02
TGAT 99.66± 0.01 97.75± 0.02 98.43± 0.01 54.77± 1.01 98.25± 0.02 84.30± 0.10 96.96± 0.02
TGN 99.80± 0.01 99.55± 0.01 99.62± 0.01 82.23± 0.50 98.15± 0.02 97.13± 0.02 96.04± 0.02
CAWs-mean 98.43± 0.02 97.72± 0.03 62.99± 0.87 76.35± 0.08 95.11± 0.12 69.20± 0.10 91.72± 0.19
CAWs-attn 98.51± 0.02 97.95± 0.03 63.07± 0.82 76.31± 0.10 95.06± 0.11 69.54± 0.19 91.54± 0.22
TGSRec 95.21± 0.08 91.64± 0.12 83.62± 0.34 76.91± 0.87 97.03± 0.61 97.03± 0.61 97.03± 0.61
APAN 99.24± 0.02 98.14± 0.01 98.70± 0.98 69.39± 0.81 95.96± 0.10 97.38± 0.23 96.77± 0.18
GraphMixer-L 99.84± 0.01 99.70± 0.01 99.81± 0.01 95.50± 0.03 98.99± 0.02 96.14± 0.02 98.99± 0.02
GraphMixer-N 99.24± 0.01♮ 90.33± 0.01♮ 97.35± 0.02♮ 63.80± 0.03♮ 94.44± 0.02 96.00± 0.02♮ 98.81± 0.02♮

GraphMixer 99.93± 0.01♮ 99.85± 0.01♮ 99.91± 0.01♮ 96.31± 0.02♮ 98.89± 0.02 98.39± 0.02♮ 98.22± 0.02♮

temporal graph as an undirected graph. By doing so, if two nodes are frequently connected in the last
few timestamps, the “most recent 1-hop neighbors” sampled for the two nodes on the “undirected”
temporal graph would be similar. In other words, the similarity between the sampled neighbors
provides information on whether two nodes are frequently connected in the last few timestamps,
which is essential for temporal graph link prediction. Intuitively, if two nodes are frequently connected
in the last few timestamps, they are also likely to be connected in the recent future.

Selection on neighbors. Existing methods consider either “multi-hop recent neighbors” or “multi-
hop uniform sampled neighbors”, whereas we only consider the “1-hop most recent neighbors”. For
example, TGAT Xu et al. (2020), DySAT Sankar et al. (2020), and TGSRe Fan et al. (2021) consider
multi-hop uniform sampled neighbors; JODIE Kumar et al. (2019), TGN Rossi et al. (2020), and
APAN Wang et al. (2021b) maintain the historical node interactions via RNN, which can be think of
as multi-hop recent neighbors; CAWs Wang et al. (2020) samples neighbors by random walks, which
can also be think of as multi-hop recent neighbors. Although sampling more neighbors could provide
a sufficient amount of information for models to reason about, it could also carry much spurious
or noisy information. As a result, more complicated model architectures (e.g., RNN or SAM) are
required to extract useful information from the raw data, which could lead to a poor model trainability
and potentially weaker generalization ability. Instead, we only take the “most recent 1-hop neighbors”
into consideration, which is conceptually simpler and enjoys better performance.

4 EXPERIMENTS

Dataset. We conduct experiments on five real-world datasets, including the Reddit, Wiki, MOOC,
LastFM datasets that are used in Kumar et al. (2019) and the GDELT dataset1 which is introduced
in Zhou et al. (2022). Besides, since GDELT is the only dataset with both node and link features,
we create its two variants to understand the effect of training data on model performance: GDELT-e
removes the link feature from GDELT and keep the node feature and link timestamps, GDELT-ne
removes both the link and edge features from GDELT and only keep the link timestamps. For each
dataset, we use the same 70%/15%/15% chronological splits for the train/validation/test sets as
existing works. The detailed dataset statistics are summarized in Appendix A.2.

Baselines. We compare baselines that are introduced in Section 2. Besides, we create two variants to
better understand how node- and link-information contribute to our results, where GraphMixer-L is
only using link-encoder and GraphMixer-N is only using node-encoder. We conduct experiments
under the transductive learning setting and use average precision for evaluation. The detailed
model configuration, training and evaluation process are summarized in Appendix A.3. Due to the
space limit, more experiment results on using Recall@K, MRR, and AUC as the evaluation metrics,
comparison on wall-clock time and number of parameters are deferred to Appendix C

Outline. We first compare GraphMixer with baselines in Section 4.1 then highlight the three key
factors that contribute to the success of GraphMixer in Section 4.2, Section 4.3, and Section 4.4.

1The GDELT dataset used in our paper is a sub-sampled version because the original dataset is too big to fit
into memory for single-machine training. In practice, we keep 1 temporal link per 100 continuous temporal link.

5



Published as a conference paper at ICLR 2023

4.1 MAIN EMPIRICAL RESULTS.

GraphMixer achieves outstanding performance. We compare the average precision score with
baselines in Table 1. We have the following observations: 1 GraphMixer outperforms all baselines
on all datasets. The experiment results provide sufficient support on our argument that neither RNN
nor SAM is necessary for temporal graph link prediction. 2 According to the performance of
GraphMixer-L on datasets only have link timestamp information (MOOC, LastFM, and GDELT-ne),
we know that our time-encoding function could successfully pre-process each timestamp into a
meaningful vector. In fact, we will show later in Section 4.2 that our time-encoding function is
more preferred than baselines’ trainable version. 3 By comparing the performance GraphMixer-N
and GraphMixer on Wiki, MOOC, and LastFM datasets, we know that node-encoder alone is not
enough to achieve a good performance. However, it provides useful information that could benefit the
link-encoder. 4 By comparing the performance of GraphMixer-N on GDELT and GDELT-ne, we
observe that using one-hot encoding outperforms using node features. This also shows the importance
of node identity information because one-hot encoding only captures such information. 5 More
complicated methods (e.g., CAWs, TGSRec, and DDGCL) do not perform well when using the
default hyper-parameters2, which is understandable because these methods have more components
with an excessive amount of hyper-parameters to tune.

Figure 3: Comparison on the training set average precision and generalization gap for the first 100
training epochs. Results on other datasets can be found in Figure 8.

GraphMixer enjoys better convergence and generalization ability. To better understand the model
performance, we take a closer look at the dynamic of training accuracy and the generalization gap
(the absolute difference between training and evaluation score). The results are reported in Figure 3
and Figure 8: 1 The slope of training curves reflects the expressive power and convergence speed of
an algorithm. From the first row figures, we can observe that GraphMixer always converge to a high
average precision score in just a few epochs, and the training curve is very smooth when compared to
baselines. Interestingly, we can observe that the baseline methods cannot always fit the training data,
and their training curves fluctuate a lot throughout the training process. 2 The generalization gap
reflects how well the model could generalize and how stable the model could perform on unseen data
(the smaller the better). From the second row figures, the generalization gap curve of GraphMixer is
lesser and smoother than baselines, which indicates the generalization power of GraphMixer.

GraphMixer enjoys a smoother loss landscape. To understand why “GraphMixer converges faster
and generalizes better, while baselines suffer training unstable issue and generalize poorly”, we
explore the loss landscape by using the visualization tools introduced in Li et al. (2018a). We illustrate
the loss landscape in Figure 4 by calculating and visualizing the loss surface along two random
directions near the pre-trained optimal parameters. The x- and y-axis indicate how much the optimal
solution is stretched along the two random directions, and the optimal point is when x- and y-axis are
zero. 1 From Figure 4a, 4d, we know GraphMixer enjoys a smoother landscape with a flatter surface
at the optimal point, the slope becomes steeper when stretching along the two random directions. The
steeper slope on the periphery explains why GraphMixer could converge fast, the flatter surface at
the optimal point explains why it could generalize well. 2 Surprisingly, we find that baselines have a
non-smooth landscape with many spikes on its surface from Figure 4b, 4c, 4e, 4f. This observation
provides sufficient explanation on the training instability and poor generalization issue of baselines as
shown in Figure 3, 8. Interestingly, as we will show later in Section 4.2, the trainable time-encoding
function in baselines is the key to this non-smooth landscape issue. Replacing it with our fixed
time-encoding function could flatten the landscape and boost their model performance.

2In fact, we tried different hyper-parameters based on their default values, but the results are similar.

6



Published as a conference paper at ICLR 2023

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(a) GraphMixer on Wiki

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

2
4
6
8

Train loss 3d surface

2

4

6

8

(b) TGAT on Wiki

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1

2

3

Train loss 3d surface

1.0

1.5

2.0

2.5

3.0

3.5

(c) TGN on Wiki

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

2

4

6

Train loss 3d surface

2

4

6

(d) GraphMixer on GDELT-e

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.5
1.0
1.5
2.0
2.5

Train loss 3d surface

0.5

1.0

1.5

2.0

2.5

(e) TGAT on GDELT-e

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1.0

1.5

2.0

2.5

Train loss 3d surface

0.6

0.8

1.0

1.2

1.4

(f) TGN on GDELT-e
Figure 4: Comparison on the training loss landscape. Results on other datasets and other baselines
can be found in Appendix E.

4.2 ON THE IMPORTANCE OF OUR FIXED TIME-ENCODING FUNCTION.

Existing works (i.e., JODIE, TGAT, and TGN) leverage a trainable time-encoding function z(t) =
cos(tw⊤ + b) to represent timestamps3. However, we argue that using trainable time-encoding
function could cause instability during training because its gradient ∂ cos(tw+b)

∂w = t× sin(tw + b)
scales proportional to the timestamps, which could lead to training instability issue and cause the
baselines’ the non-smooth landscape issue as shown in Figure 4. As an alternative, we utilize the
fixed time-encoding function z(t) = cos(tω) with fixed features ω that could capture the relative
difference between two timestamps (introduced in Section 3.1). To verify this, we introduce a
simple experiment to test whether the time-encoding functions (both our fixed version and baselines’
trainable version) are expressive enough, such that a simple linear classifier can distinguish the
time-encodings of two different timestamps produced by the time-encoding functions. Specially,
our goal is to classify if t1 > t2 by learning a linear classifier on [z(t1) || z(t2)]. During training,
we randomly generate two timestamps t1, t2 ∈ [0, 106] and ask a fully connected layer to classify
whether a timestamp is greater than another. As shown in Figure 5a, using the trainable time-encoding
function (orange curve) will suffer from the unstable exploding gradient issue (left upper figure) and
its performance remains almost the same during the training process (left lower figure). However,
using our fixed time-encoding function (blue curve) does not have the unstable exploding gradient
issue and can quickly achieve high accuracy within several iterations. Meanwhile, we compare the
parameter trajectories of the two models in Figure 5b. We observe that the change of parameters
on the trainable time-encoding function is drastically larger than our fixed version. A huge change
in weight parameters could deteriorate the model’s performance. Most importantly, by replacing
baselines’ trainable time-encoding function with our fixed version, most baselines have a smoother
optimization landscape (Figure 6) and a better model performance (in Table 2), which further verifies
our argument that our fixed time-encoding function is more preferred than the trainable version.

Table 2: Comparison on average precision score with fixed/trainable time encoding function (TEF).
The results before “→” is for trainable TEF (same as Table 1) and after “→” is for fixed TEF.

Reddit Wiki MOOC LastFM GDELT-ne GDELT-e
JODIE 99.30 → 99.76 98.81 → 99.00 99.16 → 99.17 67.51 → 79.89 97.13 → 98.23 96.96 → 96.96
TGAT 98.66 → 99.48 96.71 → 98.55 98.43 → 99.33 54.77 → 76.26 84.30 → 92.31 96.96 → 96.28
TGN 99.80 → 99.83 99.55 → 99.54 99.62 → 99.62 82.23 → 87.58 98.15 → 98.25 96.04 → 97.34

4.3 ON THE IMPORTANCE OF MLP-MIXER IN GRAPHMIXER’S LINK-ENCODER

In this section, we aim to achieve a deeper understanding on the expressive power of the link-encoder
by answering the following two questions: “Can we replace the MLP-mixer in link-encoder with self-
attention?” and “Why MLP-mixer is a good alternative of self-attention?” To answer these questions,

3In fact, other baselines (e.g., CAWs, TGSRec, APAN) also utilize this trainable time-encoding function.
However, we focus our discussion on the selected methods for the ease of presentation.

7



Published as a conference paper at ICLR 2023

(b)(a)(a) (b)(a) (b)
Figure 5: (a) Comparison on the gradient / parameters norm and accuracy at each iteration. (b)
Comparison on the trajectories of parameter change, where the radius is rt = ∥δt∥/∥δ0∥, the angle is
θt = arccos⟨δt/∥δt∥2, δ0/∥δ0∥2⟩, and δt = wt −w⋆ is the difference between wt to optimal point
w⋆. The more the model parameters change during training, the larger the semicircle.

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(a) TGAT on GDELT-e

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.6

0.8

1.0

1.2

Train loss 3d surface

0.6

0.8

1.0

1.2

(b) TGN on GDELT-e

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

2

4

6

8

Train loss 3d surface

2

4

6

(c) TGAT on Wiki

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(d) TGN on Wiki
Figure 6: Comparison on the training loss landscape fixed time-encoding function. Results on other
datasets and baselines can be found in Appendix F.

let us first conduct experiments by replacing the MLP-mixer in link-encoder with full/1-hop self-
attention and sum/mean-pooling, where full self-attention is widely used in Transformers and 1-hop
self-attention is widely used in graph attention networks. As shown in Table 3, GraphMixer suffers
from performance degradation when using self-attention: the best performance is achieved when
using MLP-mixer with zero-padding, while the model performance drop slightly when using self-
attention with sum-pooling (row 2 and 4), and the performance drop significantly when using
self-attention with mean-pooling (row 3 and 5). Self-attention with mean-pooling has a weaker model
performance because it cannot distinguish “temporal sequences with identical link timestamps and
features” (e.g., cannot distinguish [a1, a1] and [a1] and it cannot explicitly capture “the length of
temporal sequences” (e.g., cannot distinguish if [a1, a2] is longer than [a3]), which are both very
important for GraphMixer understand how frequent a node interacts with other nodes. We explicitly
verify this in Figure 7 by first generating two temporal sequences (with timestamps but without link
features), then encoding the timestamps into vectors via time-encoding function, and asking full
self-attention and MLP-mixer to distinguish. As shown in Figure 7, self-attention with mean-pooling
cannot distinguish two temporal sequences with identical timestamps (because all the self-attention
weights are equivalent if the features of the node on the two sides of a link are identical) and cannot
capture the sequence length (because of mean-pooling simply averages the inputs and does not take
the input size into consideration). However, MLP-mixer in GraphMixer can distinguish the above
two sequences because of zero-padding. Fortunately, the aforementioned two weaknesses could be
alleviated by replacing the mean-pooling in temporal self-attention with the sum-pooling, which
explains why using sum-pooling brings better model performance than mean-pooling. However,
since self-attention modules have more parameters and are harder to train, they could generalize poor
when the downstream task is not too complicated.

4.4 KEY FACTORS TO THE BETTER PERFORMANCE

One of the major factors that contributes to GraphMixer’s success is the simplicity of GraphMixer’s
neural architecture and input data. Using conceptually simple input data that better aligned with their
labels allows a simple neural network model to capture the underlying mapping between the input to
their labels, which could lead to a better generalization ability. In the following, we explicitly verify
this by comparing the performance of GraphMixer with different input data in Table 4: 1 Recall
from Section 3.2 that the “most recent 1-hop neighbors” sampled for the two nodes on the “undirected”
temporal graph could provide information on whether two nodes are frequently connected in the last
few timestamps, which is essential for temporal graph link prediction. To verify this, we conduct

8



Published as a conference paper at ICLR 2023

Table 3: Comparison on the average precision score. ♮ use 20 neighbors due to out of GPU memory.
Link-info encoder with Reddit Wiki MOOC LastFM GDELT-ne
(Default) MLP-mixer + Zero-padding 99.93 99.85 99.91 96.31 98.39

Full self-attention + Sum pooling 99.81 98.19 99.55 93.97 98.28♮

+ Mean pooling 99.00 98.05 99.31 89.15 97.13♮

1-hop self-attention + Sum pooling 99.81 98.01 99.30 93.69 98.16
+ Mean pooling 98.94 97.29 98.96 72.32 97.09

0 20 40 60 80 100
Number of epochs

0.6

0.8

1.0

Ac
cu

ra
cy

Distinguish repeated sequence with diff length

GAT mean pool
GAT sum pool
MLP-mixer

(a) e.g., classify if [a1, a1] = [a1]

0 20 40 60 80 100
Number of epochs

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

Distinguish random sequence with diff length

GAT mean pool
GAT sum pool
MLP-mixer

(b) e.g., classify if size[a1, a2] > size[a3]

Figure 7: (a) We generate identical timestamp sequences with different length, then ask MLP-mixer
and GAT to distinguish whether the generated sequence are identical (b) We generate random
sequence with different length, then ask MLP-mixer and GAT to classify which sequence is longer.

ablation study by comparing the model performance on direct and undirected temporal graphs. As
shown in the 1st and 2nd row of Table 4, changing from undirected to direct graph results in a
significant performance drop because such information is missing. 2 Recall from Section 3.1 that
instead of feeding the raw timestamp to GraphMixer and encoding each timestamp with a trainable
time-encoding function, GraphMixer encodes the timestamps via our fixed time-encoding function
and feed the encoded representation to GraphMixer, which reduces the model complexity of learning
a time-encoding function from data. This could be verified by the 3rd and 4th rows of Table 4, where
using the pre-encoded time information could give us a better performance. 3 Selecting the input
data that has similar distribution in training and evaluation set could also potentially improve the
evaluation error. For example, using relative timestamps (i.e., each neighbor’s timestamp is subtracted
by its root node’s timestamp) is better than absolute timestamps (e.g., using Unix timestamp)because
the absolute timestamps in the evaluation set and training set are from different range when using
chronological splits, but they are very likely to overlap if using relative timestamps. As shown in the
3rd to 6th rows of Table 4, using relative time information always gives a better model performance
than using absolute time information. 4 Selecting the most representative neighbors for each node.
For example, we found 1-hop most recent interacted neighbors are the most representative for link
prediction. Switching to either 2-hop neighbors or uniform sampled neighbors will hurt the model
performance according to the 7th to the 10th row of Table 4.

Table 4: Comparison on the average precision score of GraphMixer with different input data. The
highlighted rows are identical to our default setting.

Reddit Wiki MOOC LastFM
Direct vs undirect
temporal graph

Directed temporal graph 99.69 88.37 97.87 78.34
Undirected temporal graph 99.93 99.85 99.91 96.31

Time
information

Relative timestamp (ti − t0) 99.79 99.80 99.81 95.32
Relative time-encoding cos((ti − t0)ω) 99.93 99.85 99.91 96.31

Absolute timestamp ti 98.90 98.23 98.73 92.25
Absolute time-encoding cos(tiω) 99.52 99.13 99.74 95.28

Neighbor
selection

2-hop Most recent neighbors 99.39 98.05 99.11 89.36
1-hop Most recent neighbors 99.93 99.85 99.91 96.31
2-hop Uniform sample neighbors 97.66 92.57 98.87 65.72
1-hop Uniform sample neighbors 98.19 94.74 98.40 60.02

5 CONCLUSION

In this paper, we propose a conceptually and technically simple architecture GraphMixer for temporal
link prediction. GraphMixer not only outperforms all baselines but also enjoys a faster convergence
speed and better generalization ability. An extensive study identifies three key factors that contribute
to the success of GraphMixer and highlights the importance of simpler neural architecture and input
data structure. An interesting future direction, not limited to temporal graph learning, is designing
algorithms that could automatically select the best input data and data pre-processing strategies for
different downstream tasks.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant 2008398. Majority of this work was completed during
Weilin Cong’s internship at Meta AI under the mentorship of Si Zhang. We also extend our gratitude
to Long Jin for his co-mentorship and for his contribution to the idea of using MLP-Mixer on graphs.

REFERENCES

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205, 2020.

Khac-Hoai Nam Bui, Jiho Cho, and Hongsuk Yi. Spatial-temporal graph neural network for traffic
forecasting: An overview and open research issues. Applied Intelligence, pp. 1–12, 2021.

Huixuan Chi, Hao Xu, Hao Fu, Mengya Liu, Mengdi Zhang, Yuji Yang, Qinfen Hao, and Wei Wu.
Long short-term preference modeling for continuous-time sequential recommendation. arXiv
preprint arXiv:2208.00593, 2022.

Weilin Cong, Morteza Ramezani, and Mehrdad Mahdavi. On provable benefits of depth in training
graph convolutional networks. Advances in Neural Information Processing Systems, 34:9936–9949,
2021a.

Weilin Cong, Yanhong Wu, Yuandong Tian, Mengting Gu, Yinglong Xia, Chun cheng Jason Chen,
and Mehrdad Mahdavi. Dyformer: A scalable dynamic graph transformer with provable benefits
on generalization ability. 2021b.

Ziwei Fan, Zhiwei Liu, Jiawei Zhang, Yun Xiong, Lei Zheng, and Philip S Yu. Continuous-time
sequential recommendation with temporal graph collaborative transformer. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pp. 433–442,
2021.

Jianfei Gao and Bruno Ribeiro. On the equivalence between temporal and static equivariant graph
representations. In Proceedings of the 39th International Conference on Machine Learning, 2022.

Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. arXiv preprint arXiv:1809.02657, 2018.

Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou,
and Xiaoning Qian. Variational graph recurrent neural networks. Advances in neural information
processing systems, 32, 2019.

Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi, Peter Forsyth, and
Pascal Poupart. Representation learning for dynamic graphs: A survey. J. Mach. Learn. Res., 21
(70):1–73, 2020.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2019.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In Neural Information Processing Systems, 2018a.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence, 2018b.

Yuhong Luo and Pan Li. Neighborhood-aware scalable temporal network representation learning.
arXiv preprint arXiv:2209.01084, 2022.

10



Published as a conference paper at ICLR 2023

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki Kanezashi,
Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving graph convolutional networks
for dynamic graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pp. 5363–5370, 2020.

Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico Monti, and Michael
Bronstein. Temporal graph networks for deep learning on dynamic graphs. In ICML 2020 Workshop
on Graph Representation Learning, 2020.

Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dysat: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings of the 13th
International Conference on Web Search and Data Mining, pp. 519–527, 2020.

Amauri H Souza, Diego Mesquita, Samuel Kaski, and Vikas Garg. Provably expressive temporal
graph networks. arXiv preprint arXiv:2209.15059, 2022.

Sheng Tian, Ruofan Wu, Leilei Shi, Liang Zhu, and Tao Xiong. Self-supervised representation
learning on dynamic graphs. CIKM ’21, 2021. doi: 10.1145/3459637.3482389.

Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al. Mlp-mixer:
An all-mlp architecture for vision. Advances in Neural Information Processing Systems, 34:
24261–24272, 2021.

Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep: Learning
representations over dynamic graphs. In International conference on learning representations,
2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng He, Le Song, Jingren
Zhou, and Hongxia Yang. Tcl: Transformer-based dynamic graph modelling via contrastive
learning. arXiv preprint arXiv:2105.07944, 2021a.

Minjie Wang, Da Zheng, Zihao Ye, Quan Gan, Mufei Li, Xiang Song, Jinjing Zhou, Chao Ma,
Lingfan Yu, Yu Gai, Tianjun Xiao, Tong He, George Karypis, Jinyang Li, and Zheng Zhang.
Deep graph library: A graph-centric, highly-performant package for graph neural networks. arXiv
preprint arXiv:1909.01315, 2019.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping Cui,
Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 International Conference on Management
of Data, pp. 2628–2638, 2021b.

Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. Inductive representation
learning in temporal networks via causal anonymous walks. In International Conference on
Learning Representations, 2020.

Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, Siddharth Bhatia, and Bryan
Hooi. Adaptive data augmentation on temporal graphs. Advances in Neural Information Processing
Systems, 34:1440–1452, 2021c.

Yiwei Wang, Yujun Cai, Yuxuan Liang, Henghui Ding, Changhu Wang, and Bryan Hooi. Time-aware
neighbor sampling for temporal graph networks. arXiv preprint arXiv:2112.09845, 2021d.

Da Xu, Chuanwei Ruan, Evren Korpeoglu, Sushant Kumar, and Kannan Achan. Inductive representa-
tion learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In IJCAI, 2018.

11



Published as a conference paper at ICLR 2023

Hongkuan Zhou, Da Zheng, Israt Nisa, Vasileios Ioannidis, Xiang Song, and George Karypis.
Tgl: A general framework for temporal gnn training on billion-scale graphs. arXiv preprint
arXiv:2203.14883, 2022.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI Open, 1:57–81, 2020.

12



Published as a conference paper at ICLR 2023

A EXPERIMENT SETUP DETAILS

A.1 HARDWARE SPECIFICATION AND ENVIRONMENT

We run our experiments on a single machine with Intel i9-10850K, Nvidia RTX 3090 GPU, and
64GB RAM memory. The code is written in Python 3.8 and we use PyTorch 1.12.1 on CUDA 11.6
to train the model on the GPU. Implementation details could be found at

https://github.com/CongWeilin/GraphMixer.

A.2 DETAILS ON DATASET

The dataset used in this paper could be automatically downloaded by this script. Reddit dataset4

consists of one month of posts made by users on subreddits. The link feature is extracted by converting
the text of each post into a feature vector. Wikipedia dataset5 consists of one month of edits made
by edits on Wikipedia pages. The link feature is extracted by converting the edit test into an LIWC-
feature vector. LastFM dataset6: consists of one month of who listens-to-which song information.
MOOC dataset7 consists of actions done by students on a MOOC online course. GDELT dataset8

is a temporal knowledge graph dataset originated from the Event Database which records events
happening in the world from news and articles.

Table 5: Dataset statistic.
|V| |E| (tmax − tmin)/|E| dim(xnode

i ) dim(xlink
ij ) Node features Link features Timestamps

Reddit 10,984 672,447 4 0 172 No Yes Yes
Wiki 9,227 157,474 17 0 172 No Yes Yes
MOOC 7,144 411,749 3.6 0 0 No No Yes
LastFM 1,980 1,293,103 106 0 0 No No Yes
GDELT 8,831 1,912,909 0.1 413 186 Yes Yes Yes
GDELT-ne 8,831 1,912,909 0.1 0 0 No No Yes
GDELT-n 8,831 1,912,909 0.1 0 186 No Yes Yes

A.3 MODEL CONFIGURATIONS, TRAINING AND EVALUATION PROCESS

Baseline implementations. The implementation on JODIE, DySAT, TGAT, TGN, and APPN
follows the temporal graph learning framework Zhou et al. (2022)9. Compared to the original
baselines’ implementation, this framework’s implementation could achieve a better overall score than
its original implementation. The implementation of CAWs-mean and CAWs-attn follows their official
implementation10, we choose the number of random walk steps from 8, 16, 32 to balance the training
time. The implementation of TGSRec follows their official implementation11. The implementation of
DDGCL follows their official implementation12. We directly test using their official implementation
by changing our data structure to their required structure and using their default hyper-parameters.

GraphMixer implementation. We implement GraphMixer under the TGL framework Zhou et al.
(2022) and use their default hyper-parameters (e.g., learning rate 0.0001, weight decay 10−6, batch
size 600, hidden dimension 100, etc) to achieve a fair comparison. In GraphMixer, there are only
two hyper-parameters as introduced in Section 3: The number of 1-hop most recent neighbors K and
the time-slot size T . In practice, hyper-parameter T is set the time-gap of the last 2, 000 interactions,
which is fixed for all datasets; hyper-parameter K = 10 for Reddit and LastFM, K = 20 for MOOC,
and K = 30 for GDELT and Wiki.

4Download from http://snap.stanford.edu/jodie/reddit.csv
5Download from http://snap.stanford.edu/jodie/wikipedia.csv
6Download from http://snap.stanford.edu/jodie/lastfm.csv
7Download from http://snap.stanford.edu/jodie/mooc.csv
8Download from https://github.com/amazon-research/tgl/blob/main/down.sh
9The TGL framework can be found at https://github.com/amazon-research/tgl

10CAW’s official implementation can be found at https://github.com/snap-stanford/CAW
11TGSRec’s official implementation can be found at https://github.com/DyGRec/TGSRec
12DDGCL’s official implementation can be found at https://github.com/ckldan520/DDGCL

13

https://github.com/CongWeilin/GraphMixer
https://github.com/CongWeilin/GraphMixer/blob/main/DATA/down.sh
http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/wikipedia.csv
http://snap.stanford.edu/jodie/lastfm.csv
http://snap.stanford.edu/jodie/mooc.csv
https://github.com/amazon-research/tgl/blob/main/down.sh
https://github.com/amazon-research/tgl
https://github.com/snap-stanford/CAW
https://github.com/DyGRec/TGSRec
https://github.com/ckldan520/DDGCL


Published as a conference paper at ICLR 2023

Training and evaluation. A unified training and evaluation process (e.g., mini-batch and data
preparation) is used for GraphMixer and baselines. Specifically, each mini-batch is constructed by
first sampling a set of positive node pairs and an equal amount of negative node pairs. Then, an
algorithm-dependent node sampler is used to sample the neighboring of each mini-batch node and
computed their node representation based on the sampled neighborhood. Finally, we concatenate each
node pair and use the link prediction classifier (introduced in Section 3.1) for binary classification. We
conduct experiments under the transduction learning setting and use average precision for evaluation.

B MORE DISCUSSION ON EXISTING TEMPORAL GRAPH METHODS

B.1 RECENT METHODS THAT WE DO NOT COMPARE WITH

There are other temporal graph learning algorithms that are related to the temporal link prediction task
but we did not compare GraphMixer with them because (1) the official implementation of some of
the above works are not released by the authors and we could not reproduce their results as reported
in the paper, and (2) we already compare many recent baselines that we believe it is enough to verify
the success of GraphMixer.

For example, MeTA Wang et al. (2021c) proposes data augmentation to overcome the over-fitting
issue in temporal graph learning. More specifically, they generate a few graphs with different
data augmentation magnitudes and perform the message passing between these graphs to provide
adaptively augmented inputs for every prediction. TCL Wang et al. (2021a) proposes to use a
transformer to separately extract the temporal neighborhoods representations associated with the
two interaction nodes and then utilizes a co-attentional transformer to model inter-dependencies at
a semantic level. To boost model performance, contrastive learning is used to maximize mutual
information between the predictive representations of two future interaction nodes. TNS Wang et al.
(2021d) proposes a temporal-aware neighbor sampling strategy that can provide an adaptive receptive
neighborhood for every node at any time. LSTSR Chi et al. (2022) propose Long Short-Term
Preference Modeling for Continuous-Time Sequential Recommendation to capture the evolution of
short-term preference under dynamic graph. DyRep Trivedi et al. (2019) uses RNNs to propagate
messages in interactions to update node representations. DynAERNN Goyal et al. (2018) uses a fully
connected layer to first encode the network representation, then pass the encoded features to the RNN,
and use the fully connected network to decode the future network structure. VRGNN Hajiramezanali
et al. (2019) generalizes variational GAE Kipf & Welling (2016) to temporal graphs, which makes
priors dependent on historical dynamics and captures these dynamics using RNN. EvolveGCN Pareja
et al. (2020) uses RNN to estimate GCN parameters for future snapshots. DDGCL Tian et al. (2021)
is a SAM-based method that propose a debiased GAN-type contrastive loss as the learning objective
to correct the sampling bias that occurred in the negative sample construction process of temporal
graph learning. NAT Luo & Li (2022) maintain two sets of representations for each node, i.e., node
representations and link representations. For each node, NAT not only preserve a node representation,
but also keep node pair representations for a subset of neighbors of the node. PINT Souza et al.
(2022) using 1-WL test and proposes temporal encoding to boost the expressive power.

B.2 WHY EXISTING METHODS ARE CONCEPTUALLY AND TECHNICALLY COMPLICATED?

Please notice that we are not claiming conceptually and technically complicated is bad. Instead, we
are simply suggesting that the conceptually and technically complicated simpler methods might be
more preferred than the complicated one if they could achieve similar performance.

• We say a method is conceptually complicated if the underlying idea behind the method is non-trivial.
For example, CAWs represents network dynamics by “motifs extracted using temporal random
walks”, represents node identity by “hitting counts of the nodes based on a set of sampled walks”;
TGSRec takes “temporal collaborative signals” into consideration. These concepts are non-trivial
to understand in the first place and could potentially require much domain knowledge from other
fields to understand the behavior of the method.

• We say a method is technically complicated if the method is non-trivial to implement due to many
hyper-parameters and many details that need to be taken care of, which could potentially make the
application to a real-world scenario challenge. For example, JODIE and TGN require maintaining
a “memory” for each node by using RNN, and this “memory” needs to be reset every time after

14



Published as a conference paper at ICLR 2023

evaluation because then it might carry information about the evaluation data. CAWs extracts features
by using multiple temporal random walks, which makes implementing and hyper-parameter fine-
tuning more challenging. MeTA and TCL consider many data augmentation strategies, each of
which is not trivial to implement and could affect the model’s performance in different ways.

B.3 THEORETICAL WORKS ON TEMPORAL GRAPH LEARNING

Recently, researchers have investigated the expressive power of temporal graph neural networks
using graph isomorphism tests. For instance, Gao & Ribeiro (2022) have categorized temporal graph
learning methods into "time-and-graph" and "time-then-graph" and compared their expressiveness.
They have demonstrated that "time-then-graph" outperforms "time-and-graph" in terms of 1-WL
test expressive power. This partially explains why GraphMixer has shown good performance, as it
can be thought of as a "time-then-graph" algorithm. Additionally, Souza et al. (2022) have shown
that incorporating temporal encoding and using the 1-WL test can enhance the expressive power of
temporal graph neural networks.

C MORE EXPERIMENT RESULTS

C.1 COMPARISON ON CONVERGENCE SPEED AND GENERALIZATION

We include the missing figures of Section 4. Results on other datasets and the discussion on the
experiment results could be found next to Figure 3.

Figure 8: Comparison of the link prediction training average precision and generalization gap for the
first 100 training epochs. Results on other datasets can be found in Figure 3.

C.2 TRANSDUCTIVE LEARNING WITH RECALL@K AND MRR AS EVALUATION METRIC

Recall@K and MRR (mean reciprocal rank) are popular evaluation metrics used in the real-world
recommendation system. The larger the numbers, the better the model performance. Our Recall@K
and MRR is implemented based on the Open Graph Benchmark’s link prediction evaluation metrics’
implementation13. More specifically, we first sample 100 negative destination nodes for the source
node of each temporal link node pair, then our goal is to rank the positive temporal link node pairs
higher than 100 negative destination nodes. In the following, we compare the Recall@5 and MRR
score of GraphMixer with the selected four most representative baselines. Please notice that since
these methods are implemented under the same framework, the model performance is evaluated by
using the same model used in Table 1, the comparison is guaranteed to be fair.

Table 6: Comparison on the Recall@K and MRR.
Reddit Wiki MOOC LastFM GDELT

R@5 MRR R@5 MRR R@5 MRR R@5 MRR R@5 MRR
JODIE 0.9181 0.6271 0.9098 0.7752 0.9818 0.7551 0.2034 0.1206 0.8554 0.6048
DySAT 0.9189 0.7774 0.8889 0.7561 0.9989 0.7906 0.4159 0.3322 0.8302 0.4236
TGAT 0.9774 0.8709 0.8508 0.6132 0.9736 0.7425 0.1040 0.0769 0.3513 0.2366
TGN 0.9787 0.9093 0.8878 0.8016 0.9904 0.9904 0.1649 0.1153 0.9297 0.7295
GraphMixer 1.0 0.9965 0.9972 0.9876 0.9999 0.9910 0.9998 0.9649 0.9930 0.8934

13https://github.com/snap-stanford/ogb/blob/master/ogb/linkproppred/
evaluate.py

15

https://github.com/snap-stanford/ogb/blob/master/ogb/linkproppred/evaluate.py
https://github.com/snap-stanford/ogb/blob/master/ogb/linkproppred/evaluate.py


Published as a conference paper at ICLR 2023

We have the following observations on Table 1:

• According to the results in Table 6, GraphMixer could achieve outstanding performance across all
datasets. Especially on the LastFM and GDELT datasets (denser graphs than other datasets). This
might implies GraphMixer is more suitable for denser graphs than other baseline methods.

• The results of some baseline methods behave less better with Recall@K and MRR evaluation
metrics. For example, TGN on LastFM dataset, TGAT on LastFM and GDELT, etc. The above
results also imply the limitation of only considering average precision and AUC score for temporal
link evaluation.

C.3 COMPARISON ON WALL-CLOCK TIME

In the following, we compare the wall-clock time it takes for GraphMixer and baselines to finish a
single epoch of training.

Table 7: Comparison on the wall-clock computation time for single-epoch of training.
Reddit Wiki MOOC LastFM GDELT

JODIE 5 sec 2 sec 4 sec 11 sec 16 sec
DySAT 33 sec 6 sec 16 sec 41 sec 83 sec
TGAT 15 sec 4 sec 8 sec 28 sec 41 sec
TGN 8 sec 2 sec 5 sec 15 sec 32 sec
CAWs-mean 1, 893 sec 277 sec 641 sec 1, 797 sec 4, 544 sec
CAWs-attn 1, 930 sec 282 sec 653 sec 1, 832 sec 4, 634 sec
TGSRec 538 sec 157 sec 656 sec 1, 810 sec 3, 707 sec
APAN 13 sec 4 sec 9 sec 28 sec 25 sec
GraphMixer 12 sec 3 sec 7 sec 21 sec 32 sec

When comparing the computation time of GraphMixer with CAWs, TGSRec, and DDGCL, we found
that GraphMixer takes significantly lesser time than these baselines, which indicates the effectiveness
of GraphMixer. When comparing the computation time of GraphMixer with JODIE, DySAT, TGAT,
APAN, and TGN, we found that GraphMixer is very close to or even slightly faster than some baseline
methods. Our computation time is slightly slower than other baseline methods (e.g., JODIE and TGN)
mainly because these baselines are using well-optimized computation functions from DGL Wang et al.
(2019), while GraphMixer is just using a composition of basic PyTorch functions. In fact, according
to the Table 8, GraphMixer has a similar/smaller amount of parameters with these baselines.

Table 8: Comparison on the number of model parameters.
GraphMixer GraphMixer-T GraphMixer-S Jodie DySAT TGAT TGN

# Parameters (×105) 2.25 1.42 2.07 1.21 9.38 3.80 3.54

Besides, our current implementation also need to preprocess the input data for each epoch of training,
e.g., sorting nodes in subgraph according to temporal order and removing duplicated edges. For
example, the data preparation at each epoch takes 41 sec on Reddit, 9 sec on Wiki, 20 sec on MOOC,
48 sec on LastFM, and 71 sec on GDELT. However, by caching the pre-processed data in the memory,
we only need to pre-process the input data at the first epoch of the training process because our
neighbor selection is deterministic and the input data does not change at each epoch.

C.4 TRANSDUCTIVE LEARNING WITH AUC AS EVALUATION METRIC

AUC (Under the ROC Curve) is one of the most widely accepted evaluation metric for link prediction,
which has been used in many existing works Xu et al. (2020); Rossi et al. (2020). In the following,
we compare the AUC score of GraphMixer with baselines. We have the following observations: 1
GraphMixer outperforms all baselines on all datasets. In particular, GraphMixer attains more than
1% gain over all baselines on the LastFM, GDELT-ne, and GDELT-e datasets, attains around 2% gain
over non-RNN methods DySAT and TGAT on the Wiki dataset, and attains around 11% gain over
non-RNN methods DySAT and TGAT on the GDELT-ne dataset. The experiment results provide
sufficient support on our argument that neither RNN nor SAM is necessary for temporal graph link
prediction. 2 According to the performance of GraphMixer-L on datasets only have link timestamp
information (MOOC, LastFM, and GDELT-ne), we know that our time-encoding function could
successfully pre-process each timestamp into a meaningful vector. 3 By comparing the performance
GraphMixer-N and GraphMixer on Wiki, MOOC, and LastFM datasets, we know that node-info

16



Published as a conference paper at ICLR 2023

encoder alone is not enough to achieve a good performance. However, it provides useful information
that could benefit the link-info encoder. 4 By comparing the performance of GraphMixer-N on
GDELT and GDELT-ne, we observe that using one-hot encoding outperforms using node features.
This also shows the importance of node identity information because one-hot encoding only captures
such information.

Table 9: Comparison on the AUC score for link prediction. GraphMixer uses one-hot node encoding
for datasets without node features (marked by ♮). For each dataset we indicate whether we have the
corresponding feature (“L” link features, “N” node features, and “T” link timestamps).

Reddit Wiki MOOC LastFM GDELT GDELT-ne GDELT-e
L, T L, T T T L, N, T T N, T

JODIE 99.30± 0.01 98.81± 0.01 99.16± 0.01 67.51± 1.99 98.55± 0.01 97.13± 0.02 96.96± 0.02
DySAT 98.52± 0.01 96.71± 0.02 98.82± 0.01 76.40± 0.81 98.52± 0.01 82.47± 0.04 97.25± 0.02
TGAT 99.66± 0.01 97.75± 0.02 98.43± 0.01 54.77± 1.02 98.25± 0.01 84.30± 0.03 96.96± 0.02
TGN 99.80± 0.01 99.55± 0.01 99.62± 0.01 82.23± 0.50 98.15± 0.01 97.13± 0.02 96.04± 0.02
CAWs-mean 98.18± 0.01 97.25± 0.03 63.88± 0.92 72.92± 0.33 95.19± 0.09 71.82± 0.08 91.40± 0.19
CAWs-attn 98.30± 0.01 97.89± 0.02 63.95± 0.81 72.93± 0.54 95.13± 0.11 71.82± 0.08 91.64± 0.24
TGSRec 94.74± 0.20 91.32± 0.19 80.70± 2.31 76.66± 1.54 96.72± 0.42 96.72± 0.42 96.72± 0.42
APAN 99.24± 0.01 97.25± 0.01 98.58± 0.01 62.73± 0.64 96.46± 0.11 98.39± 0.17 97.85± 0.19
GraphMixer-L 99.84± 0.01 99.70± 0.01 99.87± 0.01 97.04± 0.02 98.99 ± 0.02 96.54± 0.02 98.99 ± 0.02
GraphMixer-N 99.53± 0.01♮ 91.49± 0.01♮ 98.66± 0.02♮ 71.51± 0.03♮ 94.44± 0.02 96.00± 0.02♮ 98.81± 0.02♮

GraphMixer 99.94± 0.01♮ 99.82 ± 0.01♮ 99.93 ± 0.01♮ 97.38 ± 0.02♮ 98.89± 0.02 98.50 ± 0.02♮ 98.48± 0.02♮

C.5 BASELINES WITH UNDIRECTED TEMPORAL GRAPH

GraphMixer utilizes undirected temporal graph to capture whether two nodes are frequently connected
in the last few timestamps. In the following, we test whether using undirected temporal graph could
improve the performance of baseline methods. As we can see from Table 10, using undirected
temporal graph cannot improve the performance of baseline methods much because such information
are already implicitly captured via their neural architecture design or sampling methods.

Table 10: Comparison on baselines with undirected temporal graph (Average precision | AUC score).
Reddit Wiki MOOC LastFM

JODIE 99.24 | 99.40 98.91 | 99.07 99.18 | 99.53 73.25 | 80.24
DySAT 98.53 | 98.42 96.61 | 96.88 98.80 | 99.26 76.23 | 73.90
TGAT 99.70 | 99.73 97.35 | 97.68 98.41 | 98.85 54.58 | 57.03
TGN 99.84 | 99.87 99.59 | 99.61 99.44 | 99.66 91.96 | 93.20

D DISCUSSION ABOUT MODEL PERFORMANCE ON LASTFM

Our results show that GraphMixer could outperform baselines on LastFM dataset with a large margin,
which is due to a composite effect of multiple factors. In the following, we summarize several
potential factors that lead to our observation on the model performance.

• Larger average time-gap. LastFM has a larger average time-gap (tmax − tmin)/|E| than other
datasets. As shown in the dataset statistic (Table 5), LastFM has an average time gap of 106,
which is significantly larger than other datasets. For example, Reddit’s average time gap is 4,
Wiki’s average time gap is 17, MOOC’s average time gap is 3.6, and GDELT’s average time gap
is 0.1. Since baseline methods are relying on RNN and SAM to process the historical temporal
information, they implicitly assumes the temporal information is “smooth” and with smaller
average time gap. Therefore, baseline methods could potentially work better on the dataset with
a smaller average time gap but are less ideal on LastFM. GraphMixer is not relying on RNN or
SAM, therefore could be less affected by the aforementioned issue.

• Larger average node degree. LastFM has a larger average node degree |E|/|V| than other
datasets, which potentially prone to over-smoothing (aggregating features from many neighbors
make output representation less distinguishable Li et al. (2018b)), over-squashing (aggregating
much information into a limited memory might compress too much useful information Alon &
Yahav (2020)) and over-fitting Cong et al. (2021a) effect. For example, according to the dataset
statistic in Table 5, LastFM has an average node degree of 653, which is larger than the Reddit’s
average node degree 61, Wiki’s average node degree 17, MOOC’s average node degree 57, and
GDELT’s average node degree 216. Existing methods either use the memory cell in RNN to
store temporal information or use SAM to aggregate temporal information from multi-hops,

17



Published as a conference paper at ICLR 2023

which could be less ideal on a dense graph due to over-smoothing and over-squashing. However,
GraphMixer is less relying on the aggregation schema, therefore its performance is better than
the baseline methods.

• Larger maximum timestamp. GraphMixer is using fixed time encoder but baselines are using
trainable time-encoders. Since the largest timestamp tmax in LastFM is larger than other datasets,
the trainable time-encoder is more affected by the unbounded gradient issue as discussed in
Table 2 and Section 4.2. For example, the tmax in LastFM is 137 millon, while tmax in GDELT
0.2 millon, tmax in Reddit 2.6 millon, tmax in Wiki 2.6 millon, and tmax in MOOC 2.6 millon.

18



Published as a conference paper at ICLR 2023

E MISSING FIGURES ON LOSS LANDSCAPE

E.1 LOSS LANDSCAPE ON WIKI

1.5 1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

1.0

1.5

1.5
2.0

2.0

2.5

2.5 2.53.0
3.03.5

(a) TGN
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

0.5

1.0

1.
5

2.0

2.5

2.5

3.0

3.0

3.0

3.5

3.5

4.0

4.5

5.0

5.5

5.5

6.0

6.0

6.5

7.0

7.5

8.0
8.5
9.0

(b) TGAT
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

1.51.5

2.0

(c) DySAT

1.5 1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

1.0

1.5

1.5

2.0
2.0

2.5

3.0
3.

0

3.5

3.
5

4.0

4.0

4.5

5.05.56.0

(d) JODIE
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

0.5

1.0

1.5

2.0

2.0

2.0

2.5

2.5

3.0

3.0

3.5

3.5

4.0

4.0 4.5 5.0

(e) GraphMixer

Figure 9: Comparison on the training loss landscape (Contour) on Wiki Dataset.

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1

2

3

Train loss 3d surface

1.0

1.5

2.0

2.5

3.0

3.5

(a) TGN

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

2
4
6
8

Train loss 3d surface

2

4

6

8

(b) TGAT

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1.25
1.50
1.75
2.00
2.25
2.50

Train loss 3d surface

1.6

1.8

2.0

2.2

2.4

(c) DySAT

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

2

4

6

Train loss 3d surface

1

2

3

4

5

6

(d) JODIE

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(e) GraphMixer

Figure 10: Comparison on the training loss landscape (Surface) on Wiki Dataset.

19



Published as a conference paper at ICLR 2023

E.2 LOSS LANDSCAPE ON REDDIT

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.
0

1.
5

2.0

2.
5

2.5

3.0

3.0

3.
0

3.5

3.5

3.
5

3.
54.0

4.0

4.5

4.
5

4.5

5.
0

5.0

5.
5

5.
5

6.
0

6.
5

(a) TGN
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0

1.5

2.
0

2.5

3.0
3.5

4.0

4.0

4.5

4.
5

5.0

5.
0

5.0

5.5

5.
5

5.5

6.0

6.
0

6.0

6.5 6.
5

6.5

7.0

7.
0

7.5

7.
5

8.0
8.59.0

(b) TGAT
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.
5

2.0

2.0

2.
0

2.5

(c) DySAT

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.
5

1.01.
5

2.0

2.
5

3.0

3.5

3.5

4.0

4.0

4.
0

4.5

4.
5

4.5

4.
5

4.5

5.0 5.0

5.0

5.0

5.
0

5.5 5.5
6.0

6.
0

6.5

6.
57.0 7.
0

7.
5

8.
0

(d) JODIE
1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0
1.5

2.0

2.5

3.0

3.5
4.0 4.5

5.0

5.0

5.5

5.
5

6.0

6.06.5

6.5

7.0

7.07.5 7.5

7.5

8.0

8.0

8.
0

8.5 8.5

8.5

9.0

9.0

9.0

9.5 9.5

9.5

(e) GraphMixer

Figure 11: Comparison on the training loss landscape (Contour) on Reddit Dataset.

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

2

4

6

Train loss 3d surface

2

4

6

(a) TGN

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

2
4
6
8
10

Train loss 3d surface

2

4

6

8

(b) TGAT

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

1.0

1.5

2.0

2.5

Train loss 3d surface

1.5

2.0

2.5

(c) DySAT

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

2
4
6

8

Train loss 3d surface

2

4

6

8

(d) JODIE

1

0

1

1.51.00.50.00.51.0

5

10

15

Train loss 3d surface

5

10

15

(e) GraphMixer

Figure 12: Comparison on the training loss landscape (Surface) on Reddit Dataset.

20



Published as a conference paper at ICLR 2023

E.3 LOSS LANDSCAPE ON MOOC

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

0.5

1.0

1.0

1.5

1.
5

1.
5

1.
5

2.0

2.0

2.
0

2.5 2.5

(a) TGN
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5
1.0

1.5

2.0

2.0

2.52.
5

2.5

3.03.5

4.0

4.5

5.0
5.0

(b) TGAT
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.
5

0.5

1.0

1.5

(c) DySAT

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5 0.5 0.5

0.5

0.5

0.5 0.5

0.
5

1.0

1.0

1.0
1.0 1.0

1.0

1.5

1.5

1.5

1.5

1.5

2.0

2.0

2.0

2.0

2.0

2.5 2.5

3.0

3.03.5
3.5

4.0

4.55.0

(d) JODIE
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0 1.5

2.
0

2.5 3.0

3.0

3.5

3.5

4.0

4.0

4.5

4.5

5.0

5.0

5.5

5.5

6.0

6.0

6.5

6.5

7.0

7.0

7.5
8.0

8.5
8.5

9.0
9.0

9.5
9.5

(e) GraphMixer

Figure 13: Comparison on the training loss landscape (Contour) on MOOC Dataset.

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

0.5
1.0
1.5
2.0
2.5

Train loss 3d surface

0.5

1.0

1.5

2.0

2.5

(a) TGN

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(b) TGAT

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

0.5

1.0

1.5

Train loss 3d surface

0.25

0.50

0.75

1.00

1.25

1.50

(c) DySAT

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1
2
3
4
5
6

Train loss 3d surface

1

2

3

4

5

(d) JODIE

1.5
1.0

0.5
0.0

0.5
1.0

1.5
1.0

0.5
0.0

0.5
1.0

2.5
5.0
7.5

10.0
12.5

Train loss 3d surface

2.5

5.0

7.5

10.0

12.5

(e) GraphMixer

Figure 14: Comparison on the training loss landscape (Surface) on MOOC Dataset.

21



Published as a conference paper at ICLR 2023

E.4 LOSS LANDSCAPE ON LASTFM

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

2.
0

2.0
2.02.5

(a) TGN
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.5

2.0

2.5

2.
5

2.5

3.0

3.5

3.5

4.0

4.0

4.5

4.
5

5.0

5.0

5.5

5.5

(b) TGAT
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.5

1.5

1.5

2.0

2.0

2.5

2.5

3.0

(c) DySAT

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.52.0

2.53.0

3.
0

3.0

3.0 3.0

3.5

3.5

3.5
3.5

4.0

4.04.5

4.5

4.5

4.5

5.0

5.05.0

5.5

5.5

5.5

5.5

6.0
6.0

6.5
6.5

7.0

7.
0

7.0

7.
5

7.5

7.
5

8.
0

8.
0

8.0

8.5

9.0

(d) JODIE
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0

1.5

2.0
2.5

3.0

3.5
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.0

7.5

7.5

8.0

8.0

8.5

8.5

9.0

9.0

9.5

9.5

(e) GraphMixer

Figure 15: Comparison on the training loss landscape (Contour) on LastFM Dataset.

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1.6
1.8
2.0
2.2
2.4
2.6

Train loss 3d surface

1.8

2.0

2.2

2.4

(a) TGN

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

2
3
4
5
6

Train loss 3d surface

2

3

4

5

6

(b) TGAT

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

2

3

4

5

Train loss 3d surface

1.5

2.0

2.5

3.0

(c) DySAT

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

2
4
6
8
10
12

Train loss 3d surface

2

4

6

8

(d) JODIE

1.5
1.0

0.5
0.0

0.5
1.0

1.5
1.0

0.5
0.0

0.5
1.0

10
20
30
40
50

Train loss 3d surface

10

20

30

40

(e) GraphMixer

Figure 16: Comparison on the training loss landscape (Surface) on LastFM Dataset.

22



Published as a conference paper at ICLR 2023

E.5 LOSS LANDSCAPE ON GDELT-NE

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

1.
0

1.
0

1.5

(a) TGN
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.
0

1.
5

1.5 1.5

1.5

2.0

2.0

2.5

3.0

3.5

4.0

4.
5

(b) TGAT
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

1.0

1.0

1.
5

1.5
(c) DySAT

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

1.0

1.5

1.5

2.0

2.0

2.5

2.
5

2.5

3.0

3.0

3.0
3.5

3.5

3.5

3.5

4.0

4.0

4.
0

4.5
4.5

(d) JODIE
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

0.
5

1.
0

1.
5

2.0

2.0

2.
5

2.5

3.
0

3.5

4.0

4.
0 4.0

4.5

4.
5

4.5

5.0

5.
0

5.0

5.5

5.
5

5.5

6.0

6.0

6.0

6.5

6.
5

6.5

7.0

7.
0

7.0

7.
5

7.5

8.
0

8.08.
5 8.5

9.
0

9.0

9.
5

9.5

(e) GraphMixer

Figure 17: Comparison on the training loss landscape (Contour) on GDELT-ne Dataset.

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1.0

1.5

2.0

Train loss 3d surface

0.75

1.00

1.25

1.50

1.75

(a) TGN

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1

2

3

4

Train loss 3d surface

1

2

3

4

(b) TGAT

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.75
1.00
1.25
1.50
1.75
2.00

Train loss 3d surface

0.75

1.00

1.25

1.50

1.75

(c) DySAT

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1
2
3
4
5

Train loss 3d surface

1

2

3

4

(d) JODIE

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

5

10

15

Train loss 3d surface

5

10

15

(e) GraphMixer

Figure 18: Comparison on the training loss landscape (Surface) on GDELT-ne Dataset.

23



Published as a conference paper at ICLR 2023

E.6 LOSS LANDSCAPE ON GDELT-E

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.
0

1.
0

1.0 1.5

(a) TGN
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

0.5

1.0

1.5

2.0

2.0

2.0

2.0

2.0

2.5
2.5

2.5

2.5

(b) TGAT
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

0.5

1.0

1.5

1.5

1.5

(c) DySAT

1.0 0.5 0.0 0.5 1.0
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

1.0

1.0

1.5

1.5

1.5

1.5

1.5

2.0

2.0

2.
5

2.5
3.0

(d) JODIE
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

0.5

1.0

1.5

1.5

2.0

2.0

2.5
2.

5

3.0
3.0

3.
5

3.5
4.0

4.0

4.5

5.05.56.0

(e) GraphMixer

Figure 19: Comparison on the training loss landscape (Contour) on GDELT-e Dataset.

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1.0

1.5

2.0

2.5

Train loss 3d surface

0.6

0.8

1.0

1.2

1.4

(a) TGN

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.5
1.0
1.5
2.0
2.5

Train loss 3d surface

0.5

1.0

1.5

2.0

2.5

(b) TGAT

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.5

1.0

1.5

2.0

Train loss 3d surface

0.5

1.0

1.5

2.0

(c) DySAT

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1

2

3

4

Train loss 3d surface

1

2

3

(d) JODIE

1.0
0.5

0.0
0.5

1.0

1.0
0.5

0.0
0.5

1.0

2

4

6

Train loss 3d surface

2

4

6

(e) GraphMixer

Figure 20: Comparison on the training loss landscape (Surface) on GDELT-e Dataset.

24



Published as a conference paper at ICLR 2023

F MISSING FIGURES ON LOSS LANDSCAPE WITH OUR TIME-ENCODING
FUNCTION

F.1 TGAT WITH FIXED TIME-ENCODING FUNCTION

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0 1.5

2.02.5

3.0

3.5

4.0

4.5

4.5

4.5

5.0

5.
0

5.0

5.5

5.5

5.5

6.0

6.
0

6.0

6.5

6.5

6.5

7.0 7.
0

7.0

7.5

7.5

(a) Reddit
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

0.5

1.01.
5

2.0

2.5

2.
5

2.53.
0

3.0

3.5 3.5

4.0 4.0
4.5

5.0

5.56.0
6.5

7.0
(b) Wiki

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.
5 1.

0

1.5

1.5

2.0

2.0

2.5
3.0

3.5

4.0

4.5

5.0

5.5
6.0

6.5
7.0

(c) MOOC

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.0

1.5

2.0

2.5

3.0 3.5

4.0

4.5

5.
0

5.5

6.0

6.5
7.0

7.58.0

8.59.0
9.5

(d) LastFM
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

0.5

1.0

1.
0

1.5

1.5

1.5

2.0

2.0

2.5

2.5

3.0

3.5

4.0

4.5

5.0
5.5

(e) GDELT-e

Figure 21: Training loss landscape (Contour) of TGAT with fixed time-encoding function.

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

2

4

6

8

Train loss 3d surface

2

4

6

8

(a) Reddit

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

2

4

6

8

Train loss 3d surface

2

4

6

(b) Wiki

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

2

4

6

Train loss 3d surface

2

4

6

(c) MOOC

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

2
4
6
8
10
12

Train loss 3d surface

2

4

6

8

10

12

(d) LastFM

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(e) GDELT-e

Figure 22: Training loss landscape (Surface) of TGAT with fixed time-encoding function.

25



Published as a conference paper at ICLR 2023

F.2 TGN WITH FIXED TIME-ENCODING FUNCTION

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0

1.5

2.0

2.0

2.5

2.5

3.0

3.
0

3.0

3.5

3.5

3.5

4.0

4.0

4.0

4.5

4.
5

4.
5

4.5
5.0

5.0

5.5

5.5

6.0

6.0

6.5
6.5

7.0

7.5

8.0 8.59.0

(a) Reddit
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

1.
01.

5

2.0

2.5

3.0

3.0

3.5

3.5 4.0

4.5

5.0

5.5

(b) Wiki
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

0.5

1.0 1.0

1.0

1.
0

1.5

2.
0

2.
5

3.
0

(c) MOOC

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.
5

2.0

2.02.
5

3.
0

(d) LastFM
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

(e) GDELT-e

Figure 23: Training loss landscape (Contour) of TGN with fixed time-encoding function.

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

2
4
6

8

Train loss 3d surface

2

4

6

8

(a) Reddit

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(b) Wiki

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1

2

3

Train loss 3d surface

1

2

3

(c) MOOC

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1.5

2.0

2.5

3.0

3.5

Train loss 3d surface

1.5

2.0

2.5

3.0

(d) LastFM

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

0.6

0.8

1.0

1.2

Train loss 3d surface

0.6

0.8

1.0

1.2

(e) GDELT-e

Figure 24: Training loss landscape (Surface) of TGN with fixed time-encoding function.

26



Published as a conference paper at ICLR 2023

F.3 JODIE WITH FIXED TIME-ENCODING FUNCTION

1.5 1.0 0.5 0.0 0.5 1.0 1.5
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.0

1.5

2.0

2.5

3.0

3.5

3.5

4.
0

4.
0

4.5

4.5

5.0

5.0

5.
5 5.5

6.0

6.
0

6.
0

6.5

6.5

6.5

7.0

7.0

7.
0

7.5

7.5

8.
0

8.
0

8.
5

8.5

9.0

9.
0

9.5 9.5

(a) Reddit
1.5 1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

1.5
Train loss 2d contours

1.
0

1.5

2.0

2.5

3.0

3.0

3.5

3.
5

4.0

4.0

4.5

4.5

4.5

5.0

5.0

5.5

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.09.5

(b) Wiki
1.5 1.0 0.5 0.0 0.5 1.0

1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

0.5

1.0

1.0

1.5

1.5

2.0

2.0

2.5

2.
5

3.0 3.0

3.
0

3.5 3.5

3.
5

4.0

4.
5

(c) MOOC

1.5 1.0 0.5 0.0 0.5 1.0
1.5

1.0

0.5

0.0

0.5

1.0
Train loss 2d contours

1.5

2.0

2.5
3.0

3.5

3.5

4.0

4.0

4.5

4.5

5.0

5.5

5.5

6.0

6.0

6.5

6.5

7.0

7.5

8.0
8.5

9.0

9.5

(d) LastFM
1.0 0.5 0.0 0.5 1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Train loss 2d contours

1.0

1.0

1.5

1.
5

1.
5

1.5

2.0

2.
0

2.0

2.5

3.0
3.5

(e) GDELT-e

Figure 25: Training loss landscape (Contour) of JODIE with fixed time-encoding function.

1
0

1 1.5
1.0

0.5
0.0

0.5
1.0

5

10

15

Train loss 3d surface

5

10

15

(a) Reddit

1.5 1.0 0.50.0 0.5 1.0 1.0
0.5

0.0
0.5

1.0
1.5

5

10

15

Train loss 3d surface

5

10

15

(b) Wiki

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

1
2
3
4
5

Train loss 3d surface

1

2

3

4

5

(c) MOOC

1.5 1.0 0.50.0 0.5 1.0 1.5
1.0

0.5
0.0

0.5
1.0

5

10

15

Train loss 3d surface

2.5

5.0

7.5

10.0

12.5

15.0

(d) LastFM

1.0
0.5

0.0
0.5

1.0 1.0
0.5

0.0
0.5

1.0

1

2

3

4

Train loss 3d surface

1

2

3

(e) GDELT-e

Figure 26: Training loss landscape (Surface) of JODIE with fixed time-encoding function.

27


	Introduction
	Preliminary and existing works
	GraphMixer: A conceptually and technically simple method 
	Details on GraphMixer: neural architecture and input data
	Comparison to existing methods

	Experiments
	Main empirical results.
	On the importance of our fixed time-encoding function.
	On the importance of MLP-mixer in GraphMixer's link-encoder
	Key factors to the better performance

	Conclusion
	Experiment setup details
	Hardware specification and environment
	Details on dataset
	Model configurations, training and evaluation process

	More discussion on existing temporal graph methods
	Recent methods that we do not compare with
	Why existing methods are conceptually and technically complicated?
	Theoretical works on temporal graph learning

	More experiment results
	Comparison on convergence speed and generalization
	Transductive learning with Recall@K and MRR as evaluation metric
	Comparison on wall-clock time
	Transductive learning with AUC as evaluation metric
	Baselines with undirected temporal graph

	Discussion about model performance on LastFM
	Missing figures on Loss landscape
	Loss landscape on Wiki
	Loss landscape on Reddit
	Loss landscape on MOOC
	Loss landscape on LastFM
	Loss landscape on GDELT-ne
	Loss landscape on GDELT-e

	Missing figures on loss landscape with our time-encoding function
	TGAT with fixed time-encoding function
	TGN with fixed time-encoding function
	JODIE with fixed time-encoding function


