
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ROSARL: REWARD-ONLY SAFE REINFORCEMENT
LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

An important problem in reinforcement learning is designing agents that learn
to solve tasks safely in an environment. A common solution is to define either a
penalty in the reward function or a cost to be minimised when reaching unsafe states.
However, designing reward or cost functions is non-trivial and can increase with the
complexity of the problem. To address this, we investigate the concept of a Minmax
penalty, the smallest penalty for unsafe states that leads to safe optimal policies,
regardless of task rewards. We derive an upper and lower bound on this penalty by
considering both environment diameter and solvability. Additionally, we propose
a simple algorithm for agents to estimate this penalty while learning task policies.
Our experiments demonstrate the effectiveness of this approach in enabling agents
to learn safe policies in high-dimensional continuous control environments.

1 INTRODUCTION

Reinforcement learning (RL) has recently achieved success across a variety of domains, such as video
games (Shao et al., 2019), robotics (Kalashnikov et al., 2018; Kahn et al., 2018) and autonomous
driving (Kiran et al., 2021). However, if we hope to deploy RL in the real world, agents must be
capable of completing tasks while avoiding unsafe or costly behaviour. For example, a navigating
robot must avoid colliding with objects and actors around it, while simultaneously learning to solve
the required task. Figure 1 shows an example.

Many approaches in RL deal with this problem by allocating arbitrary penalties to unsafe states
when hand-crafting the reward function. However, the problem of specifying a reward function for
desirable, safe behaviour is notoriously difficult (Amodei et al., 2016). Importantly, penalties that are
too small may result in unsafe behaviour, while penalties that are too large may result in increased
learning times. Furthermore, these rewards must be specified by an expert for each new task an agent
faces. If our aim is to design truly autonomous, general agents, it is then simply impractical to require
that a human designer specify penalties to guarantee optimal but safe behaviours for every task.

TRPO TRPO Lagrangian CPO TRPO Minmax (Ours)

Figure 1: Sample trajectories of representative prior works—TRPO (Schulman et al., 2015) (left-
most), TRPO-Lagrangian (Ray et al., 2019) (middle-left), CPO (Achiam et al., 2017) (middle-right)—
compared to ours (right-most) in the Safety Gym domain (Ray et al., 2019). For each, a point mass
agent learns to reach a goal location (green cylinder) while avoiding unsafe regions (blue circles).
The cyan block is a randomly placed movable obstacle. Our approach learns safer policies than the
baselines, and works by simply changing the rewards received for entering unsafe regions to a learned
penalty (keeping the rewards received for all other transitions unchanged).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

When safety is an explicit goal, a common approach is to constrain policy learning according to
some threshold on cumulative cost (Schulman et al., 2015; Ray et al., 2019; Achiam et al., 2017).
While effective, these approaches require the design of a cost function whose specification can
be as challenging as designing a reward function. Additionally, these methods may still result in
unacceptably frequent constraint violations in practice, due to the large cost threshold typically used.

Rather than attempting to both maximise a reward function and minimise a cost function, which
requires specifying both rewards and costs and a new learning objective, we should simply aim to have
a better reward function—since we then do not have to specify yet another scalar signal nor change
the learning objective. This approach is consistent with the reward hypothesis (Sutton & Barto, 2018)
which states: “ All of what we mean by goals and purposes can be well thought of as maximisation
of the expected value of the cumulative sum of a received scalar signal (reward). ” Therefore, the
question we examine in this work is how to determine the Minmax penalty—the smallest penalty
assigned to unsafe states such that the probability of reaching safe goals is maximised by an optimal
policy. Rather than requiring an expert’s input, we show that this penalty can be bounded by taking
into account the diameter and solvability of an environment, and a practical estimate of it can be
learned by an agent using its current value estimates. We make the following contributions:

(i) Bounding the Minmax penalty: We provide analytical upper and lower bounds on the
Minmax penalty for unsafe transitions, and prove that using the upper bound results in
policies that minimise the probability of reaching unsafe transitions (Theorem 2).

(ii) Learning safety bounds: We show that these bounds can be accurately estimated using
policy evaluation (Sutton & Barto, 2018) (Theorem 1). Additionally, we show that
estimating the Minmax penalty or bounds is NP-hard since it requires solving a longest
path problem (Theorem 3).

(iii) Learning safe policies: Building on our theoretical analysis, we present a practical,
model-free algorithm that allows agents to learn a sufficient penalty for unsafe transitions
while simultaneously learning task policies (Algorithm 1). Since this approach only
modifies the reward received for unsafe transitions, it is easily integrated into any existing
RL pipeline that uses value-based methods.

2 BACKGROUND

We consider the typical RL setting where the task faced by an agent is modelled by a Markov Decision
Process (MDP). An MDP is defined as a tuple ⟨S,A, P,R⟩, where S is a finite set of states, A is a
finite set of actions, P : S×A×S → [0 1] is the transition probability function, and R : S×A×S →
[RMIN RMAX] is the reward function. Our focus is on undiscounted MDPs that model stochastic
shortest path problems (Bertsekas & Tsitsiklis, 1991) in which an agent must reach some goals in
the non-empty set of absorbing states G ⊂ S . The set of non-absorbing states S \ G are referred to as
internal states. We will also refer to the tuple ⟨S,A, P ⟩ as the environment, and the MDP ⟨S,A, P,R⟩
as a task to be solved. The agent is then associated with a policy π : S → A which it uses to take
actions in the environment. The quality of a policy is usually defined by its value function V π(s) =
Eπ[

∑∞
t=0 R(st, at, st+1)], which specifies the expected return under that policy starting from state s.

Standard RL: The standard goal of an agent is to learn an optimal policy π∗ that maximises the
value function V π∗

(s) = maxπ V
π(s) for all s ∈ S . Since tasks are undiscounted, π∗ is guaranteed

to exist by assuming that the value function of improper policies is unbounded from below—where
proper policies are those that are guaranteed to reach an absorbing state (Van Niekerk et al., 2019).
Since there always exists a deterministic π∗ (Sutton & Barto, 1998), and π∗ is proper, we will focus
our attention on the set of all deterministic proper policies Π.

Safe RL: This setting is typically modelled in prior works by a constrained Markov Decision Process
(CMDP) ⟨S,A, P,R,K, l⟩, which augments an MDP with a cost function K : S ×A× S → R and
a cost threshold l ∈ R (Altman, 1999). Here, a given policy π can also be characterised by its cost
value function V π

K(s) = Eπ[
∑∞

t=0 K(st, at, st+1)], and the policy is feasible if V π
K(s) ≤ l for all

s ∈ S . Where Π̂ is the set of all feasible policies, the goal of an agent here is now to learn an optimal
safe policy π̂∗ that maximises the value function V π̂∗

(s) = maxπ̂∈Π̂ V π̂(s) for all s ∈ S (Ray et al.,
2019). To ensure that π̂∗ exists and is well defined, Π̂ must not be empty, which means that K and l
must be chosen carefully such that there exists a policy π that satisfies V π

K(s) ≤ l for all s ∈ S.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

ROSARL (Ours): In contrast to most prior works, in this work we are interested in learning safe
policies without the need to specify cost functions and cost thresholds. In particular, we are interested
in learning policies that can maximise rewards while avoiding unsafe transitions, where any unsafe
transition immediately leads to termination in a set of unsafe absorbing states G! ⊂ G. Since some
environments may have no policy that avoids unsafe transitions with probability 1, we formally define
a safe policy as a proper policy that minimises the probability of unsafe transitions (Definition 1).
Hence, where Π̂ is the set of all safe policies, the goal of an agent in this work is to learn an optimal
safe policy π̂∗ that maximises the value function V π̂∗

(s) = maxπ̂∈Π̂ V π̂(s) for all s ∈ S.

Definition 1 Consider an environment ⟨S,A, P ⟩ with unsafe states G! ⊂ G. Where sT is the final
state of a trajectory starting from state s, let Pπ

s (sT ∈ G!) be the probability of reaching G! from s

under a proper policy π ∈ Π. Then π is called safe if π ∈ argmin
π′∈Π

Pπ′

s (sT ∈ G!) for all s ∈ S.

3 AVOIDING UNSAFE ABSORBING STATES

Given an environment, we aim to bound the smallest penalty (hence the largest reward) to use for
unsafe transitions to guarantee optimal safe policies. We define this penalty as the Minmax penalty
RMinmax, which is the largest reward for unsafe transitions that lead to optimal safe policies:

Definition 2 Consider an environment ⟨S,A, P ⟩ where task rewards R(s, a, s′) are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Let π∗ be an optimal policy for one such task ⟨S,A, P,R⟩. We define
the Minmax penalty of this environment as the scalar RMinmax ∈ R that satisfies the following:

(i) If R(s, a, s′) < RMinmax for all s′ ∈ G!, then π∗ is safe for all R;

(ii) If R(s, a, s′) > RMinmax for some s′ ∈ G! reachable from S \ G, then there exists an R s.t.
π∗ is unsafe.

Hence, the Minmax penalty represents the boundary where on one side no reward function has an
optimal policy that is unsafe, and on the other there exist a reward function with an optimal policy
that is unsafe. Interestingly, when R(s, a, s′) = RMinmax, there may exist optimal safe and unsafe
policies simultaneously—hence no RL algorithm with such rewards can be guaranteed to converge to
optimal safe policies. We next demonstrate this using the Chain-walk running example.

3.1 A MOTIVATING EXAMPLE: THE CHAIN-WALK ENVIRONMENT

To illustrate the difficulty in designing reward functions for safe behaviour, consider the simple
chain-walk environment in Figure 2a. It consists of four states s0, s1, s2, s3 where G = {s1, s3}
and G! = {s1}. The agent has two actions a1, a2, the initial state is s0, and the diagram denotes the
transition probabilities. Task rewards for safe transitions are bounded by [RMIN RMAX] = [−1 0].
The absorbing transitions have a reward of 0 while all other transitions have a reward of Rstep = −1,
and the agent must reach the goal state s3, but not the unsafe state s1. Hence, the question here is
what penalty to give for transitions from s0 into s1 such that the optimal policies are safe. Figures
2b-2d exemplify how too large penalties result in longer convergence times, while too small ones
result in unsafe policies, demonstrating the need to find the Minmax penalty.

Since the transitions per action can be stochastic, controlled by p1, p2 ∈ [0 1], and s3 is further
from the start state s0 than s1, the agent may not always be able to avoid s1. Consider for example
the deterministic case when p1 = p2 = 0. For any penalty less than −2 for transitions into s1, the
optimal policy in s0 is to always pick a2 which always reaches s1. For a sufficiently high penalty for
reaching s1 (any penalty higher than −2), the optimal policy in s0 is to always pick action a1, which
always reaches s3. Interestingly, if the penalty is exactly −2, then both action a1 (safe transition
to s2) and action a2 (unsafe transition to s1) are optimal—hence an RL algorithm here will not
necessarily converge to the optimal safe action a1. Additionally, for p1 = p2 = 0.4 (Figure 2c),
a higher penalty is required for a1 to stay optimal in state s0.

To capture this relationship between the stochasticity of an environment and the required penalty
to obtain safe policies, we introduce a notion of solvability, which measures the ability of an agent
to reach safe goals. Additionally, observe that as p2 increases, the probability that the agent can

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

s3 s2

s0s1

a1/a2
a1/a2

w.p. (1− p2)

a1/a2
w.p. p2

a1 w.p. (1− p1)
a2

w.p. p1
a1

w.p. p1

a2

w.p. (1− p1)

a1/a2

(a) Chain-walk

p1 = p2 [0 1]

Pe
na

lty

[
10

0]

0.0

0.2

0.4

0.6

0.8

1.0

(b) Failure rates with
Rstep = −1

Rstep [1 0]

Pe
na

lty

[
10

0]

0.0

0.2

0.4

0.6

0.8

1.0

(c) Failure rates
with p1=p2=0.4

Rstep [1 0]

Pe
na

lty

[
10

0]

40

60

80

100

120

140

(d) Total timesteps
with p1=p2=0.4

Figure 2: The effect of different choices of penalty for unsafe transitions (s0 to s1) on optimal policies
in the chain-walk environment. (a) The transition probabilities of the chain-walk environment (where
p1, p2 ∈ [0 1]); (b) The failure rate for each penalty in [−10 0] and each transition probabilities
(p1 = p2 ∈ [0 1]), with a task reward of Rstep = −1; (c) The failure rate for each penalty in [−10 0]
and each task reward in [−1 0], with transition probabilities given by p1 = p2 = 0.4; (d) The total
timesteps needed to learn optimal policies to convergence (using value iteration (Sutton & Barto,
1998)) for each penalty in [−10 0] and each task reward in [−1 0], with transition probabilities given
by p1 = p2 = 0.4. The black dashed lines in (b) and (c) show the Minmax penalty.

transition from s2 to s3 decreases—thereby increasing the number of timesteps spent to reach the
goal. Therefore, the penalty for s1 must also consider the environment’s diameter to ensure an optimal
policy will not simply reach s1 to avoid self-transitions in s2.

3.2 ON THE DIAMETER AND SOLVABILITY OF ENVIRONMENTS

Clearly, the size of the penalty that needs to be given for unsafe states depends on the size of the
environment. We define this size as the diameter of the environment, which is the highest expected
timesteps to reach an absorbing state from an internal state when following a proper policy:

Definition 3 Define the diameter of an environment as D := max
s∈S\G

max
π∈Π

E [T (sT ∈ G|π)] , where

T (sT ∈ G|π) is the timesteps taken to reach G from s when following a proper policy π.

This definition of diameter is similar to the one used in Auer et al. (2008), except that here we are
maximising over deterministic proper policies instead of minimising over all deterministic policies.
Given this diameter, a possible natural choice for the reward for unsafe states is to give a penalty that is
as large as receiving the smallest task reward for the longest path to safe goal states: R̄MAX := RMIND

′,
where D′ is the diameter for safe policies D′ := max

s∈S\G
max
π∈Π

E
[
T (sT ∈ G \ G!|π)

]
. However, while

R̄MAX aims to make reaching unsafe states worse than reaching safe goals, it does not consider the
solvability of an environment, nor the possibility that an unsafe policy receives RMAX everywhere in
its trajectory. We can formally define the solvability of an environment as follows:

Definition 4 Define the degree of solvability as C := min
s∈S\G

min
π∈Π

Pπ
s (sT ̸∈G!)̸=0

Pπ
s (sT ̸∈ G!).

C measures the degree of solvability of the environment by simply taking the smallest non-zero
probability of reaching safe goal states by following a proper policy. For example, if the dynamics
are deterministic, then any deterministic policy π will either reach a safe goal or not. That is,
Pπ
s (sT ̸∈ G!) will either be 0 or 1. Since we require Pπ

s (sT ̸∈ G!) ̸= 0, it must be that C = 1.
Consider, for example, the chain-walk environment with different choices for p. Since actions in
s2 do not affect the transition probability, there are only 2 relevant deterministic policies π1(s) = a1
and π2(s) = a2. This gives Pπ1

s1 (sT ̸∈ G
!) = (1− p1)1(p2 = 1) and Pπ2

s1 (sT ̸∈ G
!) = p11(p2 = 1).

Here, C = 1 when p1 = p2 = 0 because the task is deterministic and s3 is reachable. C then
tends to 0.5 as p1 and p2 gets closer to 0.5, making the environment uniformly random. Finally,
the environment is not solvable when p = 1 since s3 is unreachable from s2. Hence we can also
think of C = 0 as the limit of C when safe goals are unreachable. Interestingly, this means that in
deterministic environments our definition of solvability is similar to reachability in temporal-logic
tasks—where there may or may not exist a policy that satisfies a task specification (Tasse et al., 2022).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

p1 = p2 [0 1]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(a) Rstep = −1

p1 = 0, p2 [0 1]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(b) Rstep = −1

p2 = 0, p1 [0 1]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(c) Rstep = −1

Rstep [1 0]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(d) p1=p2=0.4

Rstep [1 0]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(e) p1=0, p2=0.4

Rstep [1 0]

Pe
na

lty

[
10

0]

RMinmax

RMIN

RMAX

0.0

0.2

0.4

0.6

0.8

1.0

(f) p1=0.4, p2=0

Figure 3: Failure rates of optimal policies in the chain-walk environment. We show the effect of
stochasticity (p1 and p2) and task rewards (Rstep) on the bounds (R̄MIN and R̄MAX) of the Minmax
penalty (RMinmax). The solvability and diameter for the bounds are estimated using Algorithm 2.

Given the diameter and solvability of an environment, we can now define a choice for the Minmax
penalty that takes into account both D, C, and RMAX: R̄MIN := (RMIN −RMAX)

D
C . This choice of

penalty says that since stochastic shortest path tasks require an agent to learn to achieve desired termi-
nal states, if the agent enters an unsafe terminal state, it should receive the largest penalty possible by
a proper policy. We now investigate the effect of these penalties on the failure rate of optimal policies.

3.3 ON THE FAILURE RATE OF OPTIMAL POLICIES

We begin by proposing a simple model-based algorithm for estimating the diameter and solvability,
from which the penalties are then obtained. We describe the method here and present the pseudo-code
in Algorithm 2 in Appendix B. Here, the diameter is estimated as follows: (i) For each deterministic
policy π, estimate its expected timesteps T (sT ∈ G) (or T (sT ∈ G \ G!) for D′) by using policy
evaluation (Sutton & Barto, 2018) with rewards of 1 at all internal states; (ii) Then, calculate D using
the equation in Definition 3. Similarly, the solvability is estimated by estimating the reach probability
Pπ
s (sT ̸∈ G!) of each deterministic policy π using rewards of 1 for transitions into safe goal states

and zero otherwise. This approach converges via the convergence of policy evaluation (Theorem 1).

Theorem 1 (Estimation) Algorithm 2 converges to D and C for any given solvable environment.

Figure 3 shows the result of applying this algorithm in the chain-walk MDP. Here, RMinmax is
compared to accounting for D only (R̄MAX) and accounting for both C and D (R̄MIN). Interestingly,
we can observe R̄MIN ≤ RMinmax and R̄MAX ≥ RMinmax consistently, highlighting how considering
the diameter only is insufficient to guarantee optimal safe policies. It also indicates that these
penalties may bound RMinmax in general. We show in Theorem 2 that this is indeed the case.

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Then R̄MIN ≤ RMinmax ≤ R̄MAX.

Theorem 2 says that for any MDP whose rewards for unsafe transitions are bounded above by
R̄MIN, the optimal policy both minimises the probability of reaching unsafe states and maximises the
probability of reaching safe goal states. Hence, any penalty R̄MIN − ϵ, where ϵ > 0 can be arbitrarily
small, will guarantee optimal safe policies. Similarly, the theorem shows that any reward higher
than R̄MAX may have optimal policies that do not minimise the probability of reaching unsafe states.
These can be observed in Figure 3. The figure demonstrates why considering both the diameter and
solvability of an MDP is necessary to guarantee safe policies, because the diameter alone does not
always minimise the failure rate.

4 PRACTICAL ALGORITHM FOR LEARNING SAFE POLICIES

While the Minmax penalty of an MDP can be accurately estimated using policy evaluation (Algorithm
2), it requires knowledge of the environment dynamics (or an estimate of it). These are difficult
quantities to estimate from an agent’s experience, which is further complicated by the need to
also learn the true optimal policy for the estimated Minmax penalty. Hence, obtaining an accurate
estimate of the Minmax penalty is impractical in model-free and function approximation settings
where the state and action spaces are large. In fact, it is NP-hard since it depends on the diameter,
which requires solving a longest-path problem.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Theorem 3 (Complexity) Estimating the Minmax penalty RMinmax accurately is NP-hard.

Given the above challenges, we require a practical method for learning the Minmax
penalty. Ideally, this method should require no knowledge of the environment dynamics
and should easily integrate with existing RL approaches. To achieve this, we first note that
(RMIN − RMAX)

D
C = (DRMIN − DRMAX)

1
C = (VMIN − VMAX)

1
C , where VMIN and VMAX are the

value function bounds. Hence, a practical estimate of the Minmax penalty can be efficiently learned
by estimating the value gap VMIN−VMAX using observations of the reward and the agent’s estimate of
the value function. Algorithm 1 shows the full pseudo-code. The agent here receives a reward rt after
each environment interaction and updates its estimate of the reward bounds RMIN ← min(RMIN, rt)
and RMAX ← max(RMAX, rt), the value bounds VMIN ← min(VMIN, RMIN, V (st)) and
VMAX ← max(VMAX, RMAX, V (st)), and the Minmax penalty R̄MIN ← VMIN − VMAX, where V (st)
is the learned value function at time step t. We note how the solvability C is also not explicitly
considered in this estimate of R̄MIN, since it is also expensive to estimate. Instead, given that the main
purpose of C is to make R̄MIN more negative the more stochastic the environment is, we notice that
this is already achieved in practice by the reward and value estimates. Since RMIN is estimated using
RMIN ← min(RMIN, rt), then every time the agent enters an unsafe state, we have that: rt ← R̄MIN,
RMIN ← R̄MIN, and then R̄MIN ← R̄MIN−VMAX. This means that when the estimated VMAX is greater
than zero, the penalty estimate R̄MIN become more negative every time the agent enters an unsafe state.

Finally, whenever an agent encounters an unsafe state, the reward can be replaced by R̄MIN to
disincentivise unsafe behaviour. Since VMAX is estimated using VMAX ← max(VMAX, RMAX, V (st)),
it leads to an optimistic estimation of R̄MIN. Hence, we observe no need to add an ϵ > 0 to R̄MIN.

Algorithm 1: RL while learning Minmax penalty
Input :RL algorithm A, max timesteps T
Initialise : RMIN = 0, RMAX = 0, VMIN = RMIN, VMAX = RMAX, π and V as per A

for t in T do
observe a state st, take an action at using π as per A, and observe st+1, rt
RMIN, RMAX ← min(RMIN, rt), max(RMAX, rt)
VMIN, VMAX ← min(VMIN, RMIN, V (st)), max(VMAX, RMAX, V (st))
R̄MIN ← VMIN − VMAX
rt ← R̄MIN if st+1 ∈ G! else rt
update π and V with (st, at, st+1, rt) as per A

end for

5 EXPERIMENTS

While the theoretical Minmax penalty is guaranteed to lead to optimal safe policies, it is unclear
whether this also holds for the practical estimate proposed in Section 4. Hence, this section aims to
investigate three main natural questions regarding the proposed practical algorithm (see the Appendix
for more experiments): (i) How does Algorithm 1 behave when the theoretical assumptions are
satisfied? (ii) How does Algorithm 1 behave when the theoretical assumptions are not satisfied?
(iii) How does Algorithm 1 compare to prior approaches towards Safe RL? For each result, we report
the mean (solid line) and one standard deviation around it (shaded region).

5.1 BEHAVIOUR WHEN THEORY HOLDS

For this experiment, we consider the Russell & Norvig (2016) gridworld described below. It satisfies
the setting we assumed in Section 2 since it is a stochastic shortest path with finite states and actions.

Domain (LAVA GRIDWORLD) This is a gridworld with 11 positions (|S| = 11) and 4 cardinal
actions (|A| = 4). The agent here must reach a goal location G while avoiding a lava location L
(hence G = {L,G} and G! = {L}). A wall is also present in the environment and, while not unsafe,
must be navigated around. The environment has a slip probability (sp), so that with probability sp the
agent’s action is overridden with a random action. The agent receives RMAX = +1 reward for reaching
the goal, as well as Rstep = −0.1 reward at each timestep to incentivise taking the shortest path to the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

goal. To test our approach, we modify Q-learning (Watkins, 1989) with ϵ-greedy exploration such that
the agent updates its estimate of the Minmax penalty as learning progresses and uses it as the reward
whenever the lava state is reached, following the procedure outlined in Section 4. The action-value
function is initialised to 0 for all states and actions, ϵ = 0.1 and the learning rate α = 0.1.

Setup and Results We examine the performance of our modified Q-learning approach across three
values of the slip probability of the LAVA GRIDWORLD. A slip probability of 0 represents a fully
deterministic environment, while a slip probability of 0.5 represents a more stochastic environment.
Results are plotted in Figure 4. In the case of the fully deterministic environment, the Minmax penalty
bound obtained via Algorithm 2 is R̄MIN = −9.9, since C = 1 and D = 9. However, the agent is
able to learn a relatively smaller penalty (−1.1 in Figure 4b) to consistently minimise failure rate and
maximise returns (Figures 4c and 4d). The resulting optimal policy then chooses the shorter path that
passes near the lava location (sp = 0 in Figure 4a). As the stochasticity of the environment increases, a
larger penalty is learned to incentivise longer, safer policies (sp = 0.25 and sp = 0.5 in Figure 4a). We
can, therefore, conclude that while there is a gap between the true Minmax penalty and the one learned
via Algorithm 1, this algorithm can still learn optimal safe policies when the theoretical setting holds.

sp
=
0

sp
=
0.
5

sp
=
0.
25

(a) Trajectories

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

2.4

2.2

2.0

1.8

1.6

1.4

1.2

pe
na

lti
es sp=0

sp=0.25
sp=0.5

(b) Learned penalty

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

0.0

0.2

0.4

0.6

0.8

fa
ilu

re
s

sp=0
sp=0.25
sp=0.5

(c) Failure rate (↓)

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

3

2

1

0

1

re
tu

rn
s

sp=0
sp=0.25
sp=0.5

(d) Average returns (↑)

Figure 4: Effect of increase in the slip probability (sp) of the LAVA GRIDWORLD on the learned
Minmax penalty and corresponding failure rate and returns. The black circle in (a) represents the agent.
The results are averaged over 20 random seeds—shaded regions represent one standard deviation.

5.2 BEHAVIOUR WHEN THEORY DOES NOT HOLD

For this experiment, we consider the Safety Gym (Ray et al., 2019) domain described below. It does
not satisfy the setting we assumed in Section 2 since it is continuous and not a shortest path task1.

Domain (Safety Gym PILLAR) This is a custom Safety Gym domain in which the simple point
robot must navigate to a goal location around a large pillar (hence G = { , } and G! = { }).
All details of the environment are the same as in Ray et al. (2019) except when stated otherwise.
Just as in Ray et al. (2019), the agent uses pseudo-lidar to observe the distance to objects around
it (|S| = R60), and the action space is continuous over two actuators controlling the direction and
forward velocity (|A| = [−1, 1]2). This direction and forward velocity can be noisy, determined by
a noise scalar as follows: anew = a+ (noise)anoise where anew is the new direction and forward
velocity, a ∈ A is the agent’s action, and anoise ∈ A is a uniformly sampled random vector. The
goal, pillar, and agent locations remain unchanged for all episodes. Each episode terminates once the
agent reaches the goal or collides with the pillar (with a reward of−1). Otherwise, episodes terminate
after 1000 timesteps. To test our approach in this setting, we modify TRPO (Schulman et al., 2015)
(denoted TRPO-Minmax) to use the estimate of the Minmax penalty as described in Algorithm 1.

Setup and Results We examine the performance of TRPO-Minmax for five levels of noise in
the PILLAR environment, similarly to the experiments in Section 5.1. Results are plotted in Figure
5. We observe similar results to Section 5.1, where the agent uses its learned Minmax penalty (Figure
5b) to successfully learn safe policies (Figure 5c) while solving the task (Figure 5d), using safer
paths for more noisy dynamics (Figure 5a). Interestingly, it also correctly prioritises low failure rates
when the dynamics are too noisy to safely reach the goal (noise ≥ 5). We can, therefore, conclude
that Algorithm 1 can learn safe policies even in discounted high-dimensional continuous-control
domains requiring function approximation.

1The PILLAR domain does not satisfy the formal shortest shortest path setting we assume since: it is
discounted and policies that do not reach G are not guaranteed to have value functions that are unbounded from
below (due to the default dense rewards in Safety Gym which positively rewards moving towards the goal).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

noise = 0.0 noise = 2.5 noise = 5.0 noise = 7.5 noise = 10.0

noise=0

noise=2.5

noise=5

(a) Trajectories

2 4 6 8
TotalEnvInteracts 1e6

500

400

300

200

100

0

Av
er

ag
eP

en
al

ty

(b) Learned penalty

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

2

1

0

1

2

3

4

Av
er

ag
eE

pR
et

(d) Average returns (↑)

Figure 5: Performance of TRPO-Minmax in the PILLAR environment with varying noise levels. Each
training run is over 10 million steps and the results are averaged over 10 random seeds—shaded
regions represent one standard deviation.

5.3 COMPARISON TO REPRESENTATIVE BASELINES

For this experiment, we consider representative baselines in the Safety Gym PILLAR domain.

Baselines As a baseline representative of typical RL approaches, we use Trust Region Policy
Optimisation (TRPO) (Schulman et al., 2015). To represent constraint-based approaches, we compare
against Constrained Policy Optimisation (CPO) (Achiam et al., 2017), TRPO with Lagrangian
constraints (TRPO-Lagrangian) (Ray et al., 2019), and Sauté RL with TRPO (Sauté-TRPO) (Sootla
et al., 2022). All baselines except Sauté-TRPO use the implementations provided by Ray et al.
(2019), and form a set of widely used baselines in safety domains (Zhang et al., 2020; Sootla et al.,
2022; Yang et al., 2023). Sauté-TRPO uses the implementation provided by Sootla et al. (2022).
As in Ray et al. (2019), all approaches use feed-forward MLPs, value networks of size (256,256),
and tanh activation functions. The cost threshold for the constrained algorithms is set to 0, the best
we found. The experiments are run over 10 million episodes and averaged over 10 runs.

Setup and Results We compare the performance of TRPO-Minmax to that of the baselines for
different levels of noise in the PILLAR domain. Figure 6 shows the results. We observe that in the
deterministic case noise = 0, all the algorithms achieve similar performance (except Sauté-TRPO),
successfully maximising returns (Figure 6d top) while minimising the failure rates (Figure 6c top).
However, for the stochastic cases noise > 0, we can observe that all the baselines except Sauté-TRPO
achieve significantly high returns (Figure 6d) at the expense of a rapidly increasing cumulative cost
(Figure 6b). These results are also consistent with the benchmarks of Ray et al. (2019) where the
cumulative cost of TRPO is greater than that of TRPO-Lagrangian, which is greater than that of CPO.
Interestingly, Sauté-TRPO is the worst-performing of all the baselines. It successfully maximises
returns while minimising cost only for the deterministic environment (noise = 0), but completely fails
for the stochastic ones (noise > 0). Finally, by examining the episode length (Figure 6a) and failure
rates (Figure 6c) for all the baselines in the stochastic cases, we can conclude that they have all learned
risky policies that maximise rewards over short trajectories that are highly likely to result in collisions.

In contrast, the results obtained show that TRPO-Minmax successfully solves the tasks while min-
imising cost for both deterministic and stochastic environments, when the noise levels are not too
high (noise ∈ [0, 2.5]). When the noise level is too high (noise = 5), TRPO-Minmax consistently
prioritises maintaining low failure rates over maximising returns. In addition, we can observe from
the episode lengths that TRPO-Minmax chooses the shortest path to the goal when there is no noise,
but chooses longer paths as the noise increases. This demonstrates its ability to trade off between
rewards maximisation and safety, with a strong bias towards safety—in contrast to the baselines
which seem strongly biased towards reward maximisation. This can also be seen from evaluating the
learned policies, as shown in Table 1 in the Appendix.

6 RELATED WORK

Guiding agents toward desirable behaviors has been explored through reward shaping, which
augments reward functions to improve learning efficiency but requires that the optimal policy is

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)

2 4 6 8
TotalEnvInteracts 1e6

0

200

400

600

800

1000

Ep
Le

n

2 4 6 8
TotalEnvInteracts 1e6

300

400

500

600

700

800

900

1000

1100

Ep
Le

n

2 4 6 8
TotalEnvInteracts 1e6

500

600

700

800

900

1000

Ep
Le

n

(a) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
eC

os
t

2 4 6 8
TotalEnvInteracts 1e6

0

2000

4000

6000

8000

10000

12000

Cu
m

ul
at

iv
eC

os
t

2 4 6 8
TotalEnvInteracts 1e6

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
eC

os
t

(b) Cummulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

Av
er

ag
eE

pC
os

t

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

4

3

2

1

0

1

2

3

4

Av
er

ag
eE

pR
et

2 4 6 8
TotalEnvInteracts 1e6

2

1

0

1

2

3

Av
er

ag
eE

pR
et

2 4 6 8
TotalEnvInteracts 1e6

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Av
er

ag
eE

pR
et

(d) Average returns (↑)

Figure 6: Performance comparison in the PILLAR environment with varying noise. (top) noise = 0,
(middle) noise = 2.5, and (bottom) noise = 5. Since the environment is noisy, higher episode
lengths are better (↑) because that means choosing safer longer paths (except for noise = 0). The
results are averaged over 10 random seeds and the shaded regions represent one standard deviation.

unaltered (Ng et al., 1999; Devidze et al., 2021). This is undesirable in safe RL where the optimal
policy may be unsafe according to some safety constraints. More popularly, works in constrained RL
usually impose safety constraints to limit cost violations while maximizing rewards (Ray et al., 2019;
Sootla et al., 2022). In contrast, our work optimizes terminal state rewards to minimize undesirable
behaviors directly. Finally, other works like Shielding complements these approaches by using model
or human interventions to prevent unsafe actions (Dalal et al., 2018; Wagener et al., 2021; Tennenholtz
et al., 2022). As shielding typically modifies transition dynamics rather than reward functions, it
aligns naturally with our reward-focused framework. See Appendix C for an expended related works.

7 DISCUSSION AND FUTURE WORK

This paper investigates a new approach towards safe RL by asking the question: Is a scalar reward
enough to solve tasks safely? To answer this question, we bound the Minmax penalty, which takes
into account the diameter and solvability of an environment in order to minimise the probability of en-
countering unsafe states. We prove that the penalty does indeed minimise this probability, and present
a method that uses an agent’s value estimates to learn an estimate of the penalty. Our results in tabular
and high-dimensional continuous settings have demonstrated that, by encoding the safe behaviour
directly in the reward function via the Minmax penalty, agents are able to solve tasks while prioritising
safety, learning safer policies than popular constraint-based approaches. Our method is also easy to
incorporate with any off-the-shelf RL algorithms that maintain value estimates, requiring no changes
to the algorithms themselves. By autonomously learning the penalty, our method also alleviates the
need for a human designer to manually tweak rewards or cost functions to elicit safe behaviour.

Finally, while we show that scalar rewards are indeed enough for safe RL, the current analysis is
only applicable to unsafe terminal states—which only covers tasks that can be naturally represented
by stochastic-shortest path MDPs. Given that other popular RL settings like discounted MDPs can
be converted to stochastic shortest path MDPs (Bertsekas, 1987; Sutton & Barto, 1998), a promising
future direction could be to find the dual of our results for other theoretically equivalent settings.
In conclusion, we see this reward-only approach as a promising direction towards truly autonomous
agents capable of independently learning to solve tasks safely.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International Conference on Machine Learning, pp. 22–31. PMLR, 2017.

Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Eitan Altman. Constrained Markov decision processes: stochastic modeling. Routledge, 1999.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint arXiv:1606.06565, 2016.

Peter Auer, Thomas Jaksch, and Ronald Ortner. Near-optimal regret bounds for reinforcement
learning. Advances in neural information processing systems, 21, 2008.

Dimitri P Bertsekas. Dynamic Programming: Determinist. and Stochast. Models. Prentice-Hall,
1987.

Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems. Mathe-
matics of Operations Research, 16(3):580–595, 1991.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A Lyapunov-
based approach to safe reinforcement learning. Advances in Neural Information Processing
Systems, 31, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757, 2018.

Rati Devidze, Goran Radanovic, Parameswaran Kamalaruban, and Adish Singla. Explicable reward
design for reinforcement learning agents. Advances in Neural Information Processing Systems, 34:
20118–20131, 2021.

Aria HasanzadeZonuzy, Archana Bura, Dileep Kalathil, and Srinivas Shakkottai. Learning with safety
constraints: Sample complexity of reinforcement learning for constrained MDPs. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7667–7674, 2021.

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. Journal of Machine Learning Research, 25(285):1–6, 2024. URL
http://jmlr.org/papers/v25/23-0681.html.

Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine. Self-supervised deep
reinforcement learning with generalized computation graphs for robot navigation. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 5129–5136. IEEE, 2018.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep reinforcement
learning for vision-based robotic manipulation. In Conference on Robot Learning, pp. 651–673.
PMLR, 2018.

B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A Al Sallab, Senthil Yoga-
mani, and Patrick Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 2021.

Zachary C Lipton, Kamyar Azizzadenesheli, Abhishek Kumar, Lihong Li, Jianfeng Gao, and
Li Deng. Combating reinforcement learning’s Sisyphean curse with intrinsic fear. arXiv preprint
arXiv:1611.01211, 2016.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations:
Theory and application to reward shaping. In International Conference on Machine Learning,
volume 99, pp. 278–287, 1999.

10

http://jmlr.org/papers/v25/23-0681.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking Safe Exploration in Deep Reinforce-
ment Learning. 2019.

Stuart J Russell and Peter Norvig. Artificial intelligence: a modern approach. Pearson, 2016.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889–1897. PMLR,
2015.

Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin Zhao. A survey of deep reinforce-
ment learning in video games. arXiv preprint arXiv:1912.10944, 2019.

Satinder Singh, Richard L Lewis, and Andrew G Barto. Where do rewards come from? In Proceedings
of the Annual Conference of the Cognitive Science Society, pp. 2601–2606. Cognitive Science
Society, 2009.

Aivar Sootla, Alexander I Cowen-Rivers, Taher Jafferjee, Ziyan Wang, David H Mguni, Jun Wang, and
Haitham Ammar. Sauté RL: Almost surely safe reinforcement learning using state augmentation.
In International Conference on Machine Learning, pp. 20423–20443. PMLR, 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by
PID Lagrangian methods. In International Conference on Machine Learning, pp. 9133–9143.
PMLR, 2020.

Richard Sutton and Andrew Barto. Introduction to reinforcement learning, volume 135. MIT press
Cambridge, 1998.

Richard Sutton and Andrew Barto. Reinforcement learning: An introduction. MIT press, 2018.

Geraud Nangue Tasse, Devon Jarvis, Steven James, and Benjamin Rosman. Skill machines: Temporal
logic skill composition in reinforcement learning. In The Twelfth International Conference on
Learning Representations, 2022.

Guy Tennenholtz, Nadav Merlis, Lior Shani, Shie Mannor, Uri Shalit, Gal Chechik, Assaf Hallak, and
Gal Dalal. Reinforcement learning with a terminator. Advances in Neural Information Processing
Systems, 35:35696–35709, 2022.

Benjamin Van Niekerk, Steven James, Adam Earle, and Benjamin Rosman. Composing value
functions in reinforcement learning. In International Conference on Machine Learning, pp.
6401–6409. PMLR, 2019.

Nolan C Wagener, Byron Boots, and Ching-An Cheng. Safe reinforcement learning using advantage-
based intervention. In International Conference on Machine Learning, pp. 10630–10640. PMLR,
2021.

C. Watkins. Learning from delayed rewards. PhD thesis, King’s College, Cambridge, 1989.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J Ramadge. Projection-based
constrained policy optimization. arXiv preprint arXiv:2010.03152, 2020.

Yujie Yang, Yuxuan Jiang, Yichen Liu, Jianyu Chen, and Shengbo Eben Li. Model-free safe
reinforcement learning through neural barrier certificate. IEEE Robotics and Automation Letters, 8
(3):1295–1302, 2023.

Yiming Zhang, Quan Vuong, and Keith Ross. First order constrained optimization in policy space.
Advances in Neural Information Processing Systems, 33:15338–15349, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

A PROOFS OF THEORETICAL RESULTS

Theorem 1 (Estimation) Algorithm 2 converges to D and C for any given solvable environment.

Proof This follows from the convergence guarantee of policy evaluation (Sutton & Barto, 1998).

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Then R̄MIN ≤ RMinmax ≤ R̄MAX.

Proof Let π∗ be an optimal policy for an arbitrary task ⟨S,A, P,R⟩ in the environment. Given the
definition of the Minmax penalty (Definition 2), we need to show the following:

(i) If R(s, a, s′) < R̄MIN for all s′ ∈ G!, then π∗ is safe for all R; and
(ii) If R(s, a, s′) > R̄MAX for some s′ ∈ G! reachable from S \ G, then there exists an R s.t. π∗

is unsafe.

(i) Since π∗ is optimal, it is also proper and hence must reach G.

Assume π∗ is unsafe. Then there exists another proper policy π that is safe, such that

Pπ
s (sT ∈ G!) < Pπ∗

s (sT ∈ G!) for some s ∈ S.

Then,

V π∗
(s) ≥ V π(s)

=⇒ Eπ∗

s

[∞∑
t=0

R(st, at, st+1)

]
≥ Eπ

s

[∞∑
t=0

R(st, at, st+1)

]
=⇒ Eπ∗

s

[
GT−1 +R(sT , aT , sT+1)

]
≥ Eπ

s

[
GT−1 +R(sT , aT , sT+1)

]
,

where GT−1 =

T−1∑
t=0

R(st, at, st+1) and T is a random variable denoting when sT+1 ∈ G.

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ∗

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)
,

where R̄unsafe denotes the rewards for transitions into G! and aT = π∗(sT).

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)R(sT , aT , sT+1) + R̄unsafe(sT , aT , sT+1)
)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)
,

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
R̄unsafe(sT , aT , sT+1)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
R̄MIN

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1),

since R̄unsafe(sT , aT , sT+1) < R̄MIN.

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
(RMIN −RMAX)

D

C

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ∗

s

[
GT−1

]
+ (RMIN −RMAX)D

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1), using definition of C.

=⇒ Eπ∗

s

[
GT−1

]
−RMAXD

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)−RMIND

=⇒ Eπ∗

s

[
GT−1

]
−RMAXD > 0,

since Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1) ≥ RMIND

=⇒ Eπ∗

s

[
GT−1

]
> RMAXD.

But this is a contradiction since the expected return of following an optimal policy up to a terminal
state without the reward for entering the terminal state must be less than receiving RMAX for every
step of the longest possible trajectory to G. Hence we must have π∗ ∈ argmin

π
Pπ
s (sT ∈ G!).

(ii) Assume π∗ is safe. Then, Pπ∗

s (sT ̸∈ G!) ≥ Pπ′

s (sT ̸∈ G!) for all s ∈ S, π′ ∈ Π.

Let π be the policy that maximises the probability of reaching s′ ∈ G! from some state s ∈ G. Then,
similarly to (i), we have

V π∗
(s) ≥ V π(s)

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ∈ G!)− Pπ
s (sT ∈ G!)

)
R̄unsafe(sT , aT , sT+1)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
R̄unsafe(sT , aT , sT+1)

≤ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
R̄MAX

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1), since R̄unsafe > R̄MAX.

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
RMIND

′

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1), by definition of R̄MAX.

=⇒ Eπ
s

[
GT−1

]
+RMIND

′

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+RMIND

′ < 0

But this is a contradiction when R is such that the agent receives a reward of RMAX ≥ |RMIN|D′ at
least once in its trajectory when following π and zero everywhere else.

Theorem 3 (Complexity) Estimating the Minmax penalty RMinmax accurately is NP-hard.

Proof This follows from the NP-hardness of longest-path problems. Since the Minmax penalty
is bounded by R̄MIN and R̄MAX, both are defined by the diameter, which is in turn defined as the
expected total timesteps of the longest path.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ALGORITHMS

Algorithm 2: Estimating the Diameter and Solvability

Input :⟨S,A, P ⟩, RD(s′) := 1(s′ ̸∈ G), RC(s, a, s
′) := 1(s ̸∈ G and s′ ∈ G \ G!)

Initialise :Diameter D = 0, Solvability C = 1, Value functions V π
D(s) = 0, V π

C (s) = 0, Error
∆ = 1

for π ∈ Π do
/* Policy evaluation for D */
while ∆ > 0 do
∆← 0
for s ∈ S do
v′←

∑
s′

P (s′|s, π(s))(RD(s′)+V π
D(s′))

∆ = max{∆, |V π
D(s)− v′|}

V π
D(s)← v′

end for
end while
for s ∈ S do
D = max{D,V π

D(s)}
end for

end for

for π ∈ Π do
/* Policy evaluation for C */
while ∆ > 0 do

∆← 0
for s ∈ S do
v′←

∑
s′

P (s′|s, π(s))(RC(s, π(s), s
′)+V π

C (s′))

∆ = max{∆, |V π
C (s)− v′|}

V π
C (s)← v′

end for
end while
for s ∈ S do
C = min{C, V π

C (s)} if V π
C (s) ̸= 0 else

C
end for

end for

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

C EXTENDED RELATED WORK

C.1 REWARD SHAPING

The problem of designing reward functions to produce desired policies in RL settings is well-studied
(Singh et al., 2009). Particular focus has been placed on the practice of reward shaping, in which
an initial reward function provided by an MDP is augmented in order to improve the rate at which
an agent learns the same optimal policy (Ng et al., 1999; Devidze et al., 2021). While sacrificing
some optimality, other approaches like Lipton et al. (2016) propose shaping rewards using an idea of
intrinsic fear. Here, the agent trains a supervised fear model representing the probability of reaching
unsafe states in a fixed horizon, scales said probabilities by a fear factor, and then subtracts the scaled
probabilities from Q-learning targets.

These approaches differ from ours in that they seek to find reward functions that improve convergence
while preserving the optimality from an initial reward function. In contrast, we seek to determine the
optimal rewards for terminal states in order to minimise undesirable behaviours irrespective of the
original reward function and optimal policy.

C.2 CONSTRAINED RL

Disincentivising or preventing undesirable behaviours is core to the field of safe RL. A popular
approach is to define constraints on the behaviour of an agent using CMDPs, tasking the agent with
limiting the accumulation of costs associated with violating safety constraints while simultaneously
maximising reward (Altman, 1999; Achiam et al., 2017; Chow et al., 2018; Ray et al., 2019; Hasan-
zadeZonuzy et al., 2021). Widely used examples of these approaches include constrained policy
optimisation (CPO) (Achiam et al., 2017), which augments TRPO (Schulman et al., 2015) with
constraints to satisfy a constrained MDP, and TRPO-Lagrangian (Ray et al., 2019), which combines
Lagrangian methods with TRPO. Another example is Sauté RL (Sootla et al., 2022), which incor-
porates the cost function into the rewards and augments the state with the remaining ”cost budget”
spent by violating safety constraints. Other constraint-based approaches include Projection-based
CPO (Yang et al., 2020), which projects a TRPO policy onto a space defined by constraints, and PID
Lagrangian methods (Stooke et al., 2020), which augment Lagrangian methods with PID control.

In deterministic environments with a cost threshold of 0, the set of safe policies for these approaches
are the same as ours. However, in stochastic environments, these approaches require the correct
choice of inequality constraints to even be well defined. If the cost threshold is not carefully chosen,
there may exist no policy that satisfies the CMDP constraints, implying there would exist no optimal
safe policy to converge to. For example, in the LAVA GRIDWORLD or the PILLAR domains with
noise > 0, a cost threshold of 0 can never be satisfied by any policy for all states, making these
approaches theoretically ill-defined in these environments with that cost threshold. That said, we found
in practice that a cost threshold of 0 gave them the best performance in the safety-gym experiments
(compared to 1 and the default of 25). In contrast, we showed the existence of a Minmax penalty
irrespective of the stochasticity of the environment. Additionally, while these approaches in general
theoretically define or learn safety parameters—like Lagrange coefficients—for each reward function
even when the cost function and cost threshold remain unchanged, our minmax penalty approach is
theoretically defined and learned for all reward functions.

C.3 SHIELDING

Finally, another important line of work involves relying on interventions from a model (Dalal et al.,
2018; Wagener et al., 2021) or human (Tennenholtz et al., 2022) to prevent unsafe actions from being
considered by the agent (shielding the agent) or prevent the environment from executing those unsafe
actions by correcting them (shielding the environment). Other approaches here also look at using
temporal logics to define or enforce safety constraints on the actions considered or selected by the
agent (Alshiekh et al., 2018).

These approaches fit seamlessly into our proposed reward-only framework since they are primarily
about modifications on the transition dynamics and not the reward function—for example, unsafe
actions here can simply lead to unsafe goal states.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH RAY ET AL.
(2019) BASELINES

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)

2 4 6 8
TotalEnvInteracts 1e6

0

1000

2000

3000

4000

5000

6000

7000

Cu
m

ul
at

iv
eC

os
t

(a) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0

200

400

600

800

1000

Ep
Le

n

(b) Episode length (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

4

3

2

1

0

1

2

3

4

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 7: Training curves in the PILLAR environment with noise = 0.

2 4 6 8
TotalEnvInteracts 1e6

0

2000

4000

6000

8000

10000

12000

Cu
m

ul
at

iv
eC

os
t

(a) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

300

400

500

600

700

800

900

1000

1100

Ep
Le

n

(b) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

2

1

0

1

2

3

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 8: Training curves in the PILLAR environment with noise = 2.5.

2 4 6 8
TotalEnvInteracts 1e6

0

2000

4000

6000

8000

10000

Cu
m

ul
at

iv
eC

os
t

(a) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

500

600

700

800

900

1000

Ep
Le

n

(b) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5
Av

er
ag

eE
pR

et

(d) Average returns (↑)
Figure 9: Training curves in the PILLAR environment with noise = 5.

2 4 6 8
TotalEnvInteracts 1e6

0

1000

2000

3000

4000

5000

6000

7000

8000

Cu
m

ul
at

iv
eC

os
t

(a) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

600

700

800

900

1000

Ep
Le

n

(b) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 10: Training curves in the PILLAR environment with noise = 7.5.

2 4 6 8
TotalEnvInteracts 1e6

0

2000

4000

6000

8000

Cu
m

ul
at

iv
eC

os
t

(a) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

500

600

700

800

900

1000

Ep
Le

n

(b) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 11: Training curves in the PILLAR environment with noise = 10.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Noise Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↓
0.0 TRPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 130.30 ± 14.94

TRPO-Lagrangian 0.00 ± 0.01 1.00 ± 0.01 3.20 ± 0.02 132.16 ± 14.43
CPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.01 128.06 ± 14.40
Sauté-TRPO 0.04 ± 0.19 0.95 ± 0.21 3.09 ± 0.55 176.51 ± 117.93
TRPO-Minmax 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.01 131.53 ± 15.15

Total Steps ↑
2.5 TRPO 0.18 ± 0.03 0.82 ± 0.03 2.58 ± 0.12 351.33 ± 40.17

TRPO-Lagrangian 0.13 ± 0.03 0.86 ± 0.02 2.73 ± 0.09 364.41 ± 32.24
CPO 0.08 ± 0.03 0.92 ± 0.03 2.91 ± 0.10 393.36 ± 29.50
Sauté-TRPO 0.62 ± 0.49 0.16 ± 0.37 0.59 ± 1.27 484.24 ± 340.57
TRPO-Minmax 0.02 ± 0.02 0.47 ± 0.38 2.00 ± 1.02 799.41 ± 181.46

5.0 TRPO 0.32 ± 0.07 0.41 ± 0.16 1.66 ± 0.43 665.62 ± 38.34
TRPO-Lagrangian 0.20 ± 0.07 0.39 ± 0.16 1.78 ± 0.47 760.66 ± 43.54
CPO 0.18 ± 0.04 0.27 ± 0.21 1.53 ± 0.54 807.28 ± 51.38
Sauté-TRPO 0.62 ± 0.49 0.01 ± 0.07 -0.09 ± 0.54 594.09 ± 363.81
TRPO-Minmax 0.05 ± 0.03 0.00 ± 0.00 -0.00 ± 0.19 975.59 ± 17.81

7.5 TRPO 0.43 ± 0.06 0.02 ± 0.03 0.45 ± 0.21 726.97 ± 31.42
TRPO-Lagrangian 0.30 ± 0.06 0.01 ± 0.01 0.55 ± 0.18 806.91 ± 41.44
CPO 0.28 ± 0.04 0.00 ± 0.01 0.38 ± 0.13 830.78 ± 25.03
Sauté-TRPO 0.54 ± 0.50 0.00 ± 0.03 -0.15 ± 0.48 650.94 ± 364.90
TRPO-Minmax 0.02 ± 0.02 0.00 ± 0.00 -0.46 ± 0.20 989.69 ± 7.78

10.0 TRPO 0.46 ± 0.08 0.00 ± 0.00 0.13 ± 0.11 725.03 ± 49.64
TRPO-Lagrangian 0.36 ± 0.09 0.00 ± 0.00 0.17 ± 0.09 789.52 ± 42.68
CPO 0.27 ± 0.06 0.00 ± 0.00 0.10 ± 0.10 859.58 ± 30.94
Sauté-TRPO 0.46 ± 0.50 0.00 ± 0.00 -0.18 ± 0.48 701.60 ± 355.32
TRPO-Minmax 0.07 ± 0.05 0.00 ± 0.00 -0.48 ± 0.20 960.96 ± 28.39

Table 1: Evaluation of trained models with Ray et al. (2019) baselines in the PILLAR environment
with varying noise levels. For each algorithm in each noise level, we train using 10 random seeds
for 10 million steps and evaluate the learned policies over 100 random seeds, for a total of 1000
evaluation episodes. We report the mean and standard errors of various performance metrics, bolding
the ones with the best mean. Figures 7-11 shows the training curves. Here, higher episode lengths are
better for noise > 0 because that means the policy is taking longer safer paths. We observe that only
TPRO-Minmax prioritises minimising the probability of unsafe transitions, consistently achieving the
lowest cost while trading off the rewards. It achieves the same highest success rate as the baselines
only in the deterministic case, since the pure maximisation of rewards here doesn’t come at the cost
of higher unsafe transitions. It also does not completely ignore the rewards when the noise is not too
large (noise = 2.5). We can also observe from the training curves of noise = 2.5 (Figure 8) that
TPRO-Minmax has not converged in its rewards performance and is still increasing.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

noise = 0.0 noise = 2.5 noise = 5.0 noise = 7.5 noise = 10.0

(a) TRPO. Failures per noise left to right: 0, 0, 1
3
, 1
3
, 1
3

(b) TRPO-Lagrangian. Failures per noise left to right: 0, 1
3
, 1
3
, 1
3
, 1
3

(c) CPO. Failures per noise left to right: 0, 0, 1
3
, 1
3
, 1
3

(d) Sauté-TRPO. Failures per noise left to right: 0, 1
3
, 1
3
, 1
3
, 1
3

(e) TRPO-Minmax. Failures per noise left to right: 0, 0, 0, 1
3
, 0

Figure 12: Sample trajectories of policies learned by each baseline and our TRPO-Minmax approach
in the Safety Gym PILLAR environment with varying noise levels. To sample the trajectories for
each noise level, we use the same three environment random seeds across all the algorithms. We can
observe that noise ≥ 5 is too noisy to learn safe policies, at least after 10 million training steps.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

E ABLATIONS IN SAFETY-GYM DEFAULT ENVIRONMENTS WITH RAY ET AL.
(2019) BASELINES

(a) POINTGOAL1 (b) POINTPUSH1

(c) POINTBUTTON1 (d) CARBUTTON1

Figure 13: Sample default task’s from OpenAI’s Safety Gym environments (Ray et al., 2019). We
use these to investigate the effect of termination in complex, high-dimensional, continuous control
tasks. In all of the default tasks, G = ∅ by default. (a) Here, a simple robot must navigate to a
goal location across a 2D plane while avoiding several hazards . The agent’s sensors, actions,
and rewards are identical to the PILLAR domain. Unlike the PILLAR domain, the goal location is
randomly reset when the agent reaches it, but does not terminate the episode. (b) This task is similar
to POINTGOAL1, but with the addition of a pillar obstacle and a large box the agent must push
to the goal location to receive the goal reward. (c-d) These tasks are also similar to POINTGOAL1,
but with the more complex car robot for CARBUTTON1 and the addition of: (i) Gremlins , which
are dynamic obstacles that move around the environment and must be avoided; and (ii) Buttons ,
where the agent must reach the goal button with a cylinder to receive the goal reward.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)

2 4 6 8
TotalEnvInteracts 1e6

200

300

400

500

600

700

800

900

1000

Ep
Le

n

(a) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0

2500

5000

7500

10000

12500

15000

17500

Cu
m

ul
at

iv
eC

os
t

(b) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓) (d) Average returns (↑)
Figure 14: Comparison with baselines in POINTGOAL1, modified to terminate in G = G! = { }.
Here, higher episode lengths are better because episodes only terminate when the agent reaches G!
or after 1000 timesteps. Similar to Figure 6, all the baselines except Sauté-RL achieve significantly
high returns at the expense of a rapidly increasing cumulative cost. By comparison, TRPO-Minmax
dramatically reduces the failure rate while still being able to solve the task, as observed by average
returns achieved as well as the trajectories observed. However, returns are lower since TRPO-Minmax
learns safer longer paths to the goals (see sample trajectories in Figure 18).

2 4 6 8
TotalEnvInteracts 1e6

600

700

800

900

1000

Ep
Le

n

(a) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0

1000

2000

3000

4000

5000

6000

Cu
m

ul
at

iv
eC

os
t

(b) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

6

4

2

0

2

4

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 15: Comparison with baselines in POINTPUSH1, modified to terminate in G = G! = { , }.
Here, higher episode lengths are better because episodes only terminate when the agent reaches G!
or after 1000 timesteps. Similar to Figure 6, the baselines achieve higher returns at the expense of
a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises maintaining low
failure rates by sacrificing rewards.

2 4 6 8
TotalEnvInteracts 1e6

200

400

600

800

1000

Ep
Le

n

(a) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0

10000

20000

30000

40000

50000

Cu
m

ul
at

iv
eC

os
t

(b) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

4

2

0

2

4

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 16: Comparison with baselines in POINTBUTTON1, modified to terminate in G = G! =
{ , , }. Here, higher episode lengths are better since epsiodes only terminate when the agent
reaches G! or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns
at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.

2 4 6 8
TotalEnvInteracts 1e6

200

400

600

800

1000

Ep
Le

n

(a) Episode length (↑)

2 4 6 8
TotalEnvInteracts 1e6

0

10000

20000

30000

40000

50000

60000

70000

Cu
m

ul
at

iv
eC

os
t

(b) Cumulative cost (↓)

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

(c) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

3

2

1

0

1

2

Av
er

ag
eE

pR
et

(d) Average returns (↑)
Figure 17: Comparison with baselines in CARBUTTON1, modified to terminate in G = G! =
{ , , }). Here, higher episode lengths are better since epsiodes only terminate when the agent
reaches G! or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns
at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 18: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 14. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)

2 4 6 8
TotalEnvInteracts 1e6

0

2500

5000

7500

10000

12500

15000

17500

Cu
m

ul
at

iv
eC

os
t

(a) The cumulative cost.

2 4 6 8
TotalEnvInteracts 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
eE

pC
os

t

(b) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

300

400

500

600

700

800

900

1000

Ep
Le

n

(c) Average episode length

2 4 6 8
TotalEnvInteracts 1e6

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Av
er

ag
eE

pR
et

(d) Average returns (↑)

Figure 19: Comparison with baselines in POINTGOAL1, modified to terminate in G = G! = { }.
Here, higher episode lengths are better since episodes only terminate when the agent reaches a hazard
or after 1000 timesteps. This experiment is similar to Figure 14, but instead of a cost threshold of
0, it uses a cost threshold of 25 for the baselines (as in Ray et al. (2019)) to check its effect on the
performance of the baselines when episodes immediately terminate at unsafe states. We can observe
drastically worse failure rates and cumulative costs for the baselines compared to their performance in
Figure 14. Similar results where obtained when using a cost threshold of 1. These show how sensitive
such approaches are to the cost threshold, while a reward only approach like TRPO-Minmax does not
depend on such hyperparameters.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 20: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 19. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)

2 4 6 8
TotalEnvInteracts 1e6

0

100000

200000

300000

400000

500000

600000

Cu
m

ul
at

iv
eC

os
t

(a) The cumulative cost.

2 4 6 8
TotalEnvInteracts 1e6

0

20

40

60

80

100

120

Av
er

ag
eE

pC
os

t

(b) Failure rate (↓)

2 4 6 8
TotalEnvInteracts 1e6

960

980

1000

1020

1040

Ep
Le

n

(c) Average episode length

2 4 6 8
TotalEnvInteracts 1e6

10

5

0

5

10

15

20

25

Av
er

ag
eE

pR
et

(d) Average returns (↑)

Figure 21: Comparison with baselines in the original Safety Gym POINTGOAL1 environment. Here,
episodes do not terminate when a hazard is hit (G = G! = ∅). Hence every episode only terminates
after 1000 steps. We set the cost threshold for the baselines to 25 as in Ray et al. (2019). For TRPO-
Minmax, we replace the reward with the Minmax penalty every time the agent is in an unsafe state
(that is every time the cost is greater than zero), as in previous experiments and as per Algorithm 1.
While TRPO-Minmax still beats the baselines in safe exploration (a-b), unlike the previous results
with termination (Figure 19), it struggles to maximise rewards while avoiding unsafe states (d).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 22: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 21. Trajectories that hit hazards (the
hits are highlighted by the red spheres) or take more than 1000 timesteps to reach the goal location
are considered failures.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH JI ET AL.
(2024) OMNISAFE BASELINES

Noise Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↓
0.0 TRPO-Minmax (Ours) 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 136.60 ± 12.32

TRPO-Lagrangian 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 137.52 ± 14.50
Sauté-TRPO 0.00 ± 0.00 0.99 ± 0.02 3.20 ± 0.03 142.88 ± 12.37
TRPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 138.92 ± 14.47
CPO* 0.10 ± 0.29 0.18 ± 0.36 -0.51 ± 3.42 818.85 ± 289.68
P3O 0.10 ± 0.30 0.83 ± 0.35 2.74 ± 1.01 205.50 ± 220.31

Total Steps ↑
1.5 TRPO-Minmax (Ours) 0.06 ± 0.02 0.94 ± 0.02 3.01 ± 0.08 262.19 ± 28.06

TRPO-Lagrangian 0.09 ± 0.04 0.91 ± 0.04 2.90 ± 0.12 255.55 ± 26.62
Sauté-TRPO 0.11 ± 0.04 0.89 ± 0.04 2.81 ± 0.14 232.26 ± 10.55
TRPO 0.13 ± 0.08 0.87 ± 0.08 2.74 ± 0.29 262.91 ± 32.70
CPO* 0.08 ± 0.12 0.00 ± 0.00 -0.44 ± 0.45 952.51 ± 74.45
P3O 0.11 ± 0.13 0.76 ± 0.33 2.43 ± 1.04 391.09 ± 221.08

2.5 TRPO-Minmax (Ours) 0.14 ± 0.05 0.80 ± 0.11 2.61 ± 0.27 503.49 ± 98.67
TRPO-Lagrangian 0.20 ± 0.05 0.72 ± 0.24 2.38 ± 0.46 461.89 ± 132.78
Sauté-TRPO 0.19 ± 0.09 0.76 ± 0.24 2.45 ± 0.54 435.18 ± 104.06
TRPO 0.28 ± 0.10 0.63 ± 0.22 2.05 ± 0.52 446.21 ± 143.94
CPO* 0.09 ± 0.10 0.00 ± 0.01 -0.50 ± 0.40 962.74 ± 41.12
P3O 0.17 ± 0.07 0.71 ± 0.16 2.42 ± 0.34 552.42 ± 139.28

Table 2: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in the PILLAR
environment with varying noise levels. For valid comparison, TRPO-Minmax here is implemented by
using Algorithm 1 with OmniSafe’s implementation of TRPO. For each algorithm in each noise level,
we train using 10 random seeds for 10 million steps and evaluate the learned policies over 100 random
seeds, for a total of 1000 evaluation episodes. We report the mean and standard errors of various
performance metrics, bolding the ones with the best mean. Figures 23-28 shows the training curves,
including other noise levels for only TRPO-Minmax, TRPO-Lagrangian, and P3O. Here, higher
episode lengths are better because that means the policy is taking longer safer paths. We observe CPO
in general struggles to learn to solve the tasks irrespective of noise level, even in the simplest case
with noise = 0. We suspect this could be due to an implemention issue with Omnisafe’s codebase,
since Ray et al. (2019) codebase did not have this issue. Hence we exclude CPO from our analysis
(denoted by a *) since its results are not consistent with those of Ray et al. (2019) and Achiam et al.
(2017). All the other results are consistent with Ji et al. (2024). Given that, we observe that only
TPRO-Minmax prioritises minimising the probability of unsafe transitions, consistently achieving
the lowest cost while trading off the rewards. Interestingly, by using Algorithm 1 with OmniSafe’s
implementation of TRPO, TPRO-Minmax achieves the lowest cost, highest success rate, and highest
returns across all noise levels.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0

200

400

600

800

1000

1200
Metrics/EpLen

10000

5000

0

5000

10000

15000

20000

25000

Metrics/CumulativeCost

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

6

4

2

0

2

4

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

3.0

2.5

2.0

1.5

1.0
Misc/MinmaxPenalty

PointPillar, Action Noise 0.0

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours)

Figure 23: Training curves using OmniSafe in the PILLAR environment with noise = 0

200

400

600

800

1000

Metrics/EpLen

0

1000

2000

3000

4000

5000

6000

7000

Metrics/CumulativeCost

0.0

0.2

0.4

0.6

0.8

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

3

2

1

0

1

2

3

4
Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Misc/MinmaxPenalty

PointPillar, Action Noise 1.5

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours)

Figure 24: Training curves using OmniSafe in the PILLAR environment with noise = 1.5

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

300

400

500

600

700

800

900

1000

Metrics/EpLen

0

2000

4000

6000

8000

10000

Metrics/CumulativeCost

0.0

0.2

0.4

0.6

0.8

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1

0

1

2

3

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.2

0.0

0.2

0.4

0.6

0.8

1.0
Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

3.0

2.5

2.0

1.5

1.0

Misc/MinmaxPenalty

PointPillar, Action Noise 2.5

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours)

Figure 25: Training curves using OmniSafe in the PILLAR environment with noise = 2.5

500

600

700

800

900

1000
Metrics/EpLen

0

2000

4000

6000

8000

10000

Metrics/CumulativeCost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2.75

2.50

2.25

2.00

1.75

1.50

1.25

1.00

Misc/MinmaxPenalty

PointPillar, Action Noise 5.0

TRPOLag P3O TRPOMinmax (Ours)

Figure 26: Training curves using OmniSafe in the PILLAR environment with noise = 5

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

500

600

700

800

900

Metrics/EpLen

0

2000

4000

6000

8000

10000

Metrics/CumulativeCost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.4

0.2

0.0

0.2

0.4
Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.010

0.005

0.000

0.005

0.010

0.015

0.020

0.025

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

4.0

3.5

3.0

2.5

2.0

1.5

1.0

Misc/MinmaxPenalty

PointPillar, Action Noise 7.5

TRPOLag P3O TRPOMinmax (Ours)

Figure 27: Training curves using OmniSafe in the PILLAR environment with noise = 7.5

600

700

800

900

1000
Metrics/EpLen

0

1000

2000

3000

4000

5000

6000

7000

Metrics/CumulativeCost

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.1

0.2

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.005

0.000

0.005

0.010

0.015

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2.2

2.0

1.8

1.6

1.4

1.2

1.0

Misc/MinmaxPenalty

PointPillar, Action Noise 10.0

TRPOLag P3O TRPOMinmax (Ours)

Figure 28: Training curves using OmniSafe in the PILLAR environment with noise = 10

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

G ABLATIONS IN SAFETY-GYMNASIUM DEFAULT ENVIRONMENTS WITH JI
ET AL. (2024) OMNISAFE BASELINES

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps
TRPO-Minmax (Ours) 0.04 ± 0.03 0.50 ± 0.17 0.84 ± 0.45 532.08 ± 148.18
PPO-Minmax (Ours) 0.04 ± 0.02 0.84 ± 0.06 1.64 ± 0.18 253.69 ± 49.72
TRPO-Lagrangian 0.09 ± 0.03 0.86 ± 0.03 1.76 ± 0.08 119.18 ± 19.82
Sauté-TRPO 0.12 ± 0.03 0.87 ± 0.03 1.77 ± 0.09 77.97 ± 10.33
TRPO 0.10 ± 0.02 0.90 ± 0.02 1.84 ± 0.04 73.86 ± 4.37
CPO* 0.04 ± 0.04 0.06 ± 0.02 -0.48 ± 0.51 940.59 ± 23.63
P3O 0.08 ± 0.02 0.91 ± 0.02 1.86 ± 0.06 101.98 ± 13.03

Table 3: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTGOAL1, modified to terminate in G = { , } where G! = { }. Episodes terminate when
the agent reaches G or after 1000 timesteps, but due to the large number of hazards, shorter or longer
timesteps are better depending on the random positions of hazards. Similarly to Table 2, we exclude
CPO from our analysis (denoted by a *) since its results are not consistent with those of Ray et al.
(2019) and Achiam et al. (2017). Given that, we observe that our approach consistently achieves the
lowest cost while trading off the rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↑
TRPO-Minmax (Ours) 0.08 ± 0.05 0.45 ± 0.16 1.87 ± 1.60 950.31 ± 31.45
PPO-Minmax (Ours) 0.13 ± 0.05 0.63 ± 0.13 4.45 ± 2.45 927.75 ± 28.89
TRPO-Lagrangian 0.62 ± 0.07 0.34 ± 0.06 10.17 ± 0.77 607.44 ± 56.15
Sauté-TRPO 0.79 ± 0.03 0.21 ± 0.03 11.01 ± 0.55 493.01 ± 24.51
TRPO 0.78 ± 0.05 0.22 ± 0.05 10.68 ± 0.74 483.42 ± 33.07
CPO* 0.02 ± 0.02 0.15 ± 0.06 -0.03 ± 0.23 988.25 ± 8.46
P3O 0.56 ± 0.07 0.42 ± 0.07 10.63 ± 0.74 667.08 ± 49.14

Table 4: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTGOAL1, modified to terminate in G = G! = { }. Here, higher episode lengths are better
because episodes terminate only when the agent reaches G! or after 1000 timesteps. Similarly to
Table 2, we exclude CPO from our analysis (denoted by a *) since its results are not consistent with
those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe that despite the absence
of terminal safe goals, our approach still prioritises minimising the probability of unsafe transitions,
consistently achieving the lowest cost while trading off the rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps
TRPO-Minmax (Ours) 4.11 ± 4.34 0.10 ± 0.04 -2.21 ± 1.52 1000.00 ± 0.00
PPO-Minmax (Ours) 3.38 ± 3.08 0.13 ± 0.05 -3.18 ± 2.71 1000.00 ± 0.00
TRPO-Lagrangian 18.18 ± 5.03 0.48 ± 0.05 9.24 ± 2.21 1000.00 ± 0.00
Sauté-TRPO 4.49 ± 3.12 0.17 ± 0.12 0.03 ± 0.63 1000.00 ± 0.00
TRPO 52.90 ± 3.27 0.07 ± 0.02 27.16 ± 0.07 1000.00 ± 0.00
CPO* 5.26 ± 7.90 0.10 ± 0.05 -1.34 ± 0.52 1000.00 ± 0.00
P3O 30.72 ± 56.92 0.05 ± 0.03 -1.18 ± 0.79 1000.00 ± 0.00

Table 5: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines the Safety-Gymnasium
POINTGOAL1, modified to terminate in G = G! = ∅. Here, every episode terminates only after 1000
timesteps. Similarly to Table 2, we exclude CPO from our analysis (denoted by a *) since its results
are not consistent with those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe
that despite no termination in the environment, our approach still achieves the lowest cost.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Algorithm Costs ↓ Success Rate ↓ Returns ↑ Total Steps
TRPO-Minmax (Ours) 0.08 ± 0.03 0.01 ± 0.01 0.47 ± 0.11 940.58 ± 20.33
PPO-Minmax (Ours) 0.12 ± 0.07 0.09 ± 0.14 1.12 ± 1.30 927.77 ± 31.18
TRPO-Lagrangian 0.12 ± 0.05 0.03 ± 0.03 0.62 ± 0.21 914.53 ± 29.49
Sauté-TRPO 0.13 ± 0.05 0.08 ± 0.14 0.92 ± 0.73 905.51 ± 33.87
TRPO 0.14 ± 0.06 0.05 ± 0.06 0.72 ± 0.37 903.23 ± 37.82
CPO* 0.02 ± 0.02 0.01 ± 0.01 0.11 ± 0.12 989.71 ± 8.27
P3O 0.13 ± 0.04 0.06 ± 0.05 0.76 ± 0.33 921.17 ± 26.78

Table 6: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTPUSH1, modified to terminate in G = { , , } where G! = { , }. Episodes terminate
when the agent reaches G or after 1000 timesteps, but due to the large object the agent needs to
push to the goal while avoiding both hazards and the pillar, shorter or longer timesteps are better
depending on the random positions of the hazards and pillar. Similarly to Table 2, we exclude CPO
from our analysis (denoted by a *) since its results are not consistent with those of Ray et al. (2019)
and Achiam et al. (2017). Given that, we observe that our approach consistently achieves the lowest
cost while obtaining the highest success rate and rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↑
TRPO-Minmax (Ours) 0.09 ± 0.03 0.05 ± 0.04 0.53 ± 0.15 905.26 ± 20.12
PPO-Minmax (Ours) 0.10 ± 0.02 0.03 ± 0.02 0.52 ± 0.07 914.64 ± 16.92
TRPO-Lagrangian 0.11 ± 0.03 0.13 ± 0.18 0.83 ± 0.49 844.21 ± 110.39
Sauté-TRPO 0.12 ± 0.05 0.10 ± 0.12 0.68 ± 0.30 838.98 ± 106.42
TRPO 0.15 ± 0.07 0.16 ± 0.21 0.86 ± 0.56 795.70 ± 157.18
CPO* 0.02 ± 0.01 0.01 ± 0.01 0.16 ± 0.25 983.25 ± 11.54
P3O 0.13 ± 0.06 0.11 ± 0.12 0.78 ± 0.36 859.75 ± 74.76

Table 7: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTPUSH1, modified to terminate in G = G! = { , }. Here, higher episode lengths are better
because episodes terminate only when the agent reaches G! or after 1000 timesteps. Similarly to
Table 2, we exclude CPO from our analysis (denoted by a *) since its results are not consistent with
those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe that despite the absence
of terminal safe goals, our approach still prioritises minimising the probability of unsafe transitions,
consistently achieving the lowest cost while trading off the rewards.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

200

400

600

800

1000

Metrics/EpLen

0

2500

5000

7500

10000

12500

15000

17500

20000

Metrics/CumulativeCost

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2

1

0

1

2
Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.2

0.4

0.6

0.8

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

120

100

80

60

40

20

0

Misc/MinmaxPenalty

PointGoal1 (goal-unsafe-terminal)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 29: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = { , } where G! = { }.

400

500

600

700

800

900

1000

Metrics/EpLen

0

2500

5000

7500

10000

12500

15000

17500

Metrics/CumulativeCost

0.0

0.2

0.4

0.6

0.8

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2.5

0.0

2.5

5.0

7.5

10.0

12.5

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.2

0.4

0.6

0.8

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

300

200

100

0

Misc/MinmaxPenalty

PointGoal1 (unsafe-terminal)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 30: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = G! = { }.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

960

980

1000

1020

1040

Metrics/EpLen

0

100000

200000

300000

400000

500000

Metrics/CumulativeCost

50

25

0

25

50

75

100

125

150
Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

10

5

0

5

10

15

20

25

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

140000

120000

100000

80000

60000

40000

20000

0

Misc/MinmaxPenalty

PointGoal1 (default)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 31: Training curves for trained models with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = G! = ∅.

600

700

800

900

1000

Metrics/EpLen

0

500

1000

1500

2000

2500

3000

Metrics/CumulativeCost

0.0

0.1

0.2

0.3

0.4
Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1.0

0.5

0.0

0.5

1.0

1.5

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.1

0.0

0.1

0.2

0.3

0.4

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2.4

2.2

2.0

1.8

1.6

1.4

Misc/MinmaxPenalty

PointPush1 (goal-unsafe-terminal)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 32: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTPUSH1 environment, modified to terminate in G = { , , } where G! =

{ , }.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

750

800

850

900

950

1000

Metrics/EpLen

0

500

1000

1500

2000

Metrics/CumulativeCost

0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1

0

1

2

3

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.1

0.0

0.1

0.2

0.3

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Misc/MinmaxPenalty

PointPush1 (unsafe-terminal)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 33: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTPUSH1 environment, modified to terminate in G = G! = { , }.

34

	Introduction
	Background
	Avoiding Unsafe Absorbing States
	A Motivating Example: The Chain-Walk Environment
	On the Diameter and Solvability of Environments
	On the Failure Rate of Optimal Policies

	Practical Algorithm for Learning Safe Policies
	Experiments
	Behaviour when theory holds
	Behaviour when theory does not hold
	Comparison to representative baselines

	Related Work
	Discussion and Future Work
	Proofs of Theoretical Results
	Algorithms
	Extended Related Work
	Reward shaping
	Constrained RL
	Shielding

	Safety-Gym Pillar Training and Testing results with Ray2019 baselines
	Ablations in Safety-Gym default environments with Ray2019 baselines
	Safety-Gym Pillar Training and Testing results with JMLR:v25:23-0681 OmniSafe baselines
	Ablations in Safety-Gymnasium default environments with JMLR:v25:23-0681 OmniSafe baselines

