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ABSTRACT

An important problem in reinforcement learning is designing agents that learn
to solve tasks safely in an environment. A common solution is to define either a
penalty in the reward function or a cost to be minimised when reaching unsafe states.
However, designing reward or cost functions is non-trivial and can increase with the
complexity of the problem. To address this, we investigate the concept of a Minmax
penalty, the smallest penalty for unsafe states that leads to safe optimal policies,
regardless of task rewards. We derive an upper and lower bound on this penalty by
considering both environment diameter and solvability. Additionally, we propose
a simple algorithm for agents to estimate this penalty while learning task policies.
Our experiments demonstrate the effectiveness of this approach in enabling agents
to learn safe policies in high-dimensional continuous control environments.

1 INTRODUCTION

Reinforcement learning (RL) has recently achieved success across a variety of domains, such as video
games (Shao et al., 2019), robotics (Kalashnikov et al., 2018; Kahn et al., 2018) and autonomous
driving (Kiran et al., 2021). However, if we hope to deploy RL in the real world, agents must be
capable of completing tasks while avoiding unsafe or costly behaviour. For example, a navigating
robot must avoid colliding with objects and actors around it, while simultaneously learning to solve
the required task. Figure 1 shows an example.

Many approaches in RL deal with this problem by allocating arbitrary penalties to unsafe states
when hand-crafting the reward function. However, the problem of specifying a reward function for
desirable, safe behaviour is notoriously difficult (Amodei et al., 2016). Importantly, penalties that are
too small may result in unsafe behaviour, while penalties that are too large may result in increased
learning times. Furthermore, these rewards must be specified by an expert for each new task an agent
faces. If our aim is to design truly autonomous, general agents, it is then simply impractical to require
that a human designer specify penalties to guarantee optimal but safe behaviours for every task.

TRPO TRPO Lagrangian CPO TRPO Minmax (Ours)

Figure 1: Sample trajectories of representative prior works—TRPO (Schulman et al., 2015) (left-
most), TRPO-Lagrangian (Ray et al., 2019) (middle-left), CPO (Achiam et al., 2017) (middle-right)—
compared to ours (right-most) in the Safety Gym domain (Ray et al., 2019). For each, a point mass
agent learns to reach a goal location (green cylinder) while avoiding unsafe regions (blue circles).
The cyan block is a randomly placed movable obstacle. Our approach learns safer policies than the
baselines, and works by simply changing the rewards received for entering unsafe regions to a learned
penalty (keeping the rewards received for all other transitions unchanged).
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When safety is an explicit goal, a common approach is to constrain policy learning according to
some threshold on cumulative cost (Schulman et al., 2015; Ray et al., 2019; Achiam et al., 2017).
While effective, these approaches require the design of a cost function whose specification can
be as challenging as designing a reward function. Additionally, these methods may still result in
unacceptably frequent constraint violations in practice, due to the large cost threshold typically used.

Rather than attempting to both maximise a reward function and minimise a cost function, which
requires specifying both rewards and costs and a new learning objective, we should simply aim to have
a better reward function—since we then do not have to specify yet another scalar signal nor change
the learning objective. This approach is consistent with the reward hypothesis (Sutton & Barto, 2018)
which states: “ All of what we mean by goals and purposes can be well thought of as maximisation
of the expected value of the cumulative sum of a received scalar signal (reward). ” Therefore, the
question we examine in this work is how to determine the Minmax penalty—the smallest penalty
assigned to unsafe states such that the probability of reaching safe goals is maximised by an optimal
policy. Rather than requiring an expert’s input, we show that this penalty can be bounded by taking
into account the diameter and solvability of an environment, and a practical estimate of it can be
learned by an agent using its current value estimates. We make the following contributions:

(i) Bounding the Minmax penalty: We provide analytical upper and lower bounds on the
Minmax penalty for unsafe transitions, and prove that using the upper bound results in
policies that minimise the probability of reaching unsafe transitions (Theorem 2).

(ii) Learning safety bounds: We show that these bounds can be accurately estimated using
policy evaluation (Sutton & Barto, 2018) (Theorem 1). Additionally, we show that
estimating the Minmax penalty or bounds is NP-hard since it requires solving a longest
path problem (Theorem 3).

(iii) Learning safe policies: Building on our theoretical analysis, we present a practical,
model-free algorithm that allows agents to learn a sufficient penalty for unsafe transitions
while simultaneously learning task policies (Algorithm 1). Since this approach only
modifies the reward received for unsafe transitions, it is easily integrated into any existing
RL pipeline that uses value-based methods.

2 BACKGROUND

We consider the typical RL setting where the task faced by an agent is modelled by a Markov Decision
Process (MDP). An MDP is defined as a tuple ⟨S,A, P,R⟩, where S is a finite set of states, A is a
finite set of actions, P : S×A×S → [0 1] is the transition probability function, and R : S×A×S →
[RMIN RMAX] is the reward function. Our focus is on undiscounted MDPs that model stochastic
shortest path problems (Bertsekas & Tsitsiklis, 1991) in which an agent must reach some goals in
the non-empty set of absorbing states G ⊂ S . The set of non-absorbing states S \ G are referred to as
internal states. We will also refer to the tuple ⟨S,A, P ⟩ as the environment, and the MDP ⟨S,A, P,R⟩
as a task to be solved. The agent is then associated with a policy π : S → A which it uses to take
actions in the environment. The quality of a policy is usually defined by its value function V π(s) =
Eπ[

∑∞
t=0 R(st, at, st+1)], which specifies the expected return under that policy starting from state s.

Standard RL: The standard goal of an agent is to learn an optimal policy π∗ that maximises the
value function V π∗

(s) = maxπ V
π(s) for all s ∈ S . Since tasks are undiscounted, π∗ is guaranteed

to exist by assuming that the value function of improper policies is unbounded from below—where
proper policies are those that are guaranteed to reach an absorbing state (Van Niekerk et al., 2019).
Since there always exists a deterministic π∗ (Sutton & Barto, 1998), and π∗ is proper, we will focus
our attention on the set of all deterministic proper policies Π.

Safe RL: This setting is typically modelled in prior works by a constrained Markov Decision Process
(CMDP) ⟨S,A, P,R,K, l⟩, which augments an MDP with a cost function K : S ×A× S → R and
a cost threshold l ∈ R (Altman, 1999). Here, a given policy π can also be characterised by its cost
value function V π

K(s) = Eπ[
∑∞

t=0 K(st, at, st+1)], and the policy is feasible if V π
K(s) ≤ l for all

s ∈ S . Where Π̂ is the set of all feasible policies, the goal of an agent here is now to learn an optimal
safe policy π̂∗ that maximises the value function V π̂∗

(s) = maxπ̂∈Π̂ V π̂(s) for all s ∈ S (Ray et al.,
2019). To ensure that π̂∗ exists and is well defined, Π̂ must not be empty, which means that K and l
must be chosen carefully such that there exists a policy π that satisfies V π

K(s) ≤ l for all s ∈ S.
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ROSARL (Ours): In contrast to most prior works, in this work we are interested in learning safe
policies without the need to specify cost functions and cost thresholds. In particular, we are interested
in learning policies that can maximise rewards while avoiding unsafe transitions, where any unsafe
transition immediately leads to termination in a set of unsafe absorbing states G! ⊂ G. Since some
environments may have no policy that avoids unsafe transitions with probability 1, we formally define
a safe policy as a proper policy that minimises the probability of unsafe transitions (Definition 1).
Hence, where Π̂ is the set of all safe policies, the goal of an agent in this work is to learn an optimal
safe policy π̂∗ that maximises the value function V π̂∗

(s) = maxπ̂∈Π̂ V π̂(s) for all s ∈ S.

Definition 1 Consider an environment ⟨S,A, P ⟩ with unsafe states G! ⊂ G. Where sT is the final
state of a trajectory starting from state s, let Pπ

s (sT ∈ G!) be the probability of reaching G! from s

under a proper policy π ∈ Π. Then π is called safe if π ∈ argmin
π′∈Π

Pπ′

s (sT ∈ G!) for all s ∈ S.

3 AVOIDING UNSAFE ABSORBING STATES

Given an environment, we aim to bound the smallest penalty (hence the largest reward) to use for
unsafe transitions to guarantee optimal safe policies. We define this penalty as the Minmax penalty
RMinmax, which is the largest reward for unsafe transitions that lead to optimal safe policies:

Definition 2 Consider an environment ⟨S,A, P ⟩ where task rewards R(s, a, s′) are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Let π∗ be an optimal policy for one such task ⟨S,A, P,R⟩. We define
the Minmax penalty of this environment as the scalar RMinmax ∈ R that satisfies the following:

(i) If R(s, a, s′) < RMinmax for all s′ ∈ G!, then π∗ is safe for all R;

(ii) If R(s, a, s′) > RMinmax for some s′ ∈ G! reachable from S \ G, then there exists an R s.t.
π∗ is unsafe.

Hence, the Minmax penalty represents the boundary where on one side no reward function has an
optimal policy that is unsafe, and on the other there exist a reward function with an optimal policy
that is unsafe. Interestingly, when R(s, a, s′) = RMinmax, there may exist optimal safe and unsafe
policies simultaneously—hence no RL algorithm with such rewards can be guaranteed to converge to
optimal safe policies. We next demonstrate this using the Chain-walk running example.

3.1 A MOTIVATING EXAMPLE: THE CHAIN-WALK ENVIRONMENT

To illustrate the difficulty in designing reward functions for safe behaviour, consider the simple
chain-walk environment in Figure 2a. It consists of four states s0, s1, s2, s3 where G = {s1, s3}
and G! = {s1}. The agent has two actions a1, a2, the initial state is s0, and the diagram denotes the
transition probabilities. Task rewards for safe transitions are bounded by [RMIN RMAX] = [−1 0].
The absorbing transitions have a reward of 0 while all other transitions have a reward of Rstep = −1,
and the agent must reach the goal state s3, but not the unsafe state s1. Hence, the question here is
what penalty to give for transitions from s0 into s1 such that the optimal policies are safe. Figures
2b-2d exemplify how too large penalties result in longer convergence times, while too small ones
result in unsafe policies, demonstrating the need to find the Minmax penalty.

Since the transitions per action can be stochastic, controlled by p1, p2 ∈ [0 1], and s3 is further
from the start state s0 than s1, the agent may not always be able to avoid s1. Consider for example
the deterministic case when p1 = p2 = 0. For any penalty less than −2 for transitions into s1, the
optimal policy in s0 is to always pick a2 which always reaches s1. For a sufficiently high penalty for
reaching s1 (any penalty higher than −2), the optimal policy in s0 is to always pick action a1, which
always reaches s3. Interestingly, if the penalty is exactly −2, then both action a1 (safe transition
to s2) and action a2 (unsafe transition to s1) are optimal—hence an RL algorithm here will not
necessarily converge to the optimal safe action a1. Additionally, for p1 = p2 = 0.4 (Figure 2c),
a higher penalty is required for a1 to stay optimal in state s0.

To capture this relationship between the stochasticity of an environment and the required penalty
to obtain safe policies, we introduce a notion of solvability, which measures the ability of an agent
to reach safe goals. Additionally, observe that as p2 increases, the probability that the agent can

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

s3 s2

s0s1

a1/a2
a1/a2

w.p. (1− p2)

a1/a2
w.p. p2

a1 w.p. (1− p1)
a2

w.p. p1
a1

w.p. p1

a2

w.p. (1− p1)

a1/a2

(a) Chain-walk

p1 = p2 [0 1]

Pe
na

lty
 

[
10

0]

0.0

0.2

0.4

0.6

0.8

1.0

(b) Failure rates with
Rstep = −1

Rstep [ 1 0]

Pe
na

lty
 

[
10

0]

0.0

0.2

0.4

0.6

0.8

1.0

(c) Failure rates
with p1=p2=0.4
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Figure 2: The effect of different choices of penalty for unsafe transitions (s0 to s1) on optimal policies
in the chain-walk environment. (a) The transition probabilities of the chain-walk environment (where
p1, p2 ∈ [0 1]); (b) The failure rate for each penalty in [−10 0] and each transition probabilities
(p1 = p2 ∈ [0 1]), with a task reward of Rstep = −1; (c) The failure rate for each penalty in [−10 0]
and each task reward in [−1 0], with transition probabilities given by p1 = p2 = 0.4; (d) The total
timesteps needed to learn optimal policies to convergence (using value iteration (Sutton & Barto,
1998)) for each penalty in [−10 0] and each task reward in [−1 0], with transition probabilities given
by p1 = p2 = 0.4. The black dashed lines in (b) and (c) show the Minmax penalty.

transition from s2 to s3 decreases—thereby increasing the number of timesteps spent to reach the
goal. Therefore, the penalty for s1 must also consider the environment’s diameter to ensure an optimal
policy will not simply reach s1 to avoid self-transitions in s2.

3.2 ON THE DIAMETER AND SOLVABILITY OF ENVIRONMENTS

Clearly, the size of the penalty that needs to be given for unsafe states depends on the size of the
environment. We define this size as the diameter of the environment, which is the highest expected
timesteps to reach an absorbing state from an internal state when following a proper policy:

Definition 3 Define the diameter of an environment as D := max
s∈S\G

max
π∈Π

E [T (sT ∈ G|π)] , where

T (sT ∈ G|π) is the timesteps taken to reach G from s when following a proper policy π.

This definition of diameter is similar to the one used in Auer et al. (2008), except that here we are
maximising over deterministic proper policies instead of minimising over all deterministic policies.
Given this diameter, a possible natural choice for the reward for unsafe states is to give a penalty that is
as large as receiving the smallest task reward for the longest path to safe goal states: R̄MAX := RMIND

′,
where D′ is the diameter for safe policies D′ := max

s∈S\G
max
π∈Π

E
[
T (sT ∈ G \ G!|π)

]
. However, while

R̄MAX aims to make reaching unsafe states worse than reaching safe goals, it does not consider the
solvability of an environment, nor the possibility that an unsafe policy receives RMAX everywhere in
its trajectory. We can formally define the solvability of an environment as follows:

Definition 4 Define the degree of solvability as C := min
s∈S\G

min
π∈Π

Pπ
s (sT ̸∈G!)̸=0

Pπ
s (sT ̸∈ G!).

C measures the degree of solvability of the environment by simply taking the smallest non-zero
probability of reaching safe goal states by following a proper policy. For example, if the dynamics
are deterministic, then any deterministic policy π will either reach a safe goal or not. That is,
Pπ
s (sT ̸∈ G!) will either be 0 or 1. Since we require Pπ

s (sT ̸∈ G!) ̸= 0, it must be that C = 1.
Consider, for example, the chain-walk environment with different choices for p. Since actions in
s2 do not affect the transition probability, there are only 2 relevant deterministic policies π1(s) = a1
and π2(s) = a2. This gives Pπ1

s1 (sT ̸∈ G
!) = (1− p1)1(p2 = 1) and Pπ2

s1 (sT ̸∈ G
!) = p11(p2 = 1).

Here, C = 1 when p1 = p2 = 0 because the task is deterministic and s3 is reachable. C then
tends to 0.5 as p1 and p2 gets closer to 0.5, making the environment uniformly random. Finally,
the environment is not solvable when p = 1 since s3 is unreachable from s2. Hence we can also
think of C = 0 as the limit of C when safe goals are unreachable. Interestingly, this means that in
deterministic environments our definition of solvability is similar to reachability in temporal-logic
tasks—where there may or may not exist a policy that satisfies a task specification (Tasse et al., 2022).
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(f) p1=0.4, p2=0

Figure 3: Failure rates of optimal policies in the chain-walk environment. We show the effect of
stochasticity (p1 and p2) and task rewards (Rstep) on the bounds (R̄MIN and R̄MAX) of the Minmax
penalty (RMinmax). The solvability and diameter for the bounds are estimated using Algorithm 2.

Given the diameter and solvability of an environment, we can now define a choice for the Minmax
penalty that takes into account both D, C, and RMAX: R̄MIN := (RMIN −RMAX)

D
C . This choice of

penalty says that since stochastic shortest path tasks require an agent to learn to achieve desired termi-
nal states, if the agent enters an unsafe terminal state, it should receive the largest penalty possible by
a proper policy. We now investigate the effect of these penalties on the failure rate of optimal policies.

3.3 ON THE FAILURE RATE OF OPTIMAL POLICIES

We begin by proposing a simple model-based algorithm for estimating the diameter and solvability,
from which the penalties are then obtained. We describe the method here and present the pseudo-code
in Algorithm 2 in Appendix B. Here, the diameter is estimated as follows: (i) For each deterministic
policy π, estimate its expected timesteps T (sT ∈ G) (or T (sT ∈ G \ G!) for D′) by using policy
evaluation (Sutton & Barto, 2018) with rewards of 1 at all internal states; (ii) Then, calculate D using
the equation in Definition 3. Similarly, the solvability is estimated by estimating the reach probability
Pπ
s (sT ̸∈ G!) of each deterministic policy π using rewards of 1 for transitions into safe goal states

and zero otherwise. This approach converges via the convergence of policy evaluation (Theorem 1).

Theorem 1 (Estimation) Algorithm 2 converges to D and C for any given solvable environment.

Figure 3 shows the result of applying this algorithm in the chain-walk MDP. Here, RMinmax is
compared to accounting for D only (R̄MAX) and accounting for both C and D (R̄MIN). Interestingly,
we can observe R̄MIN ≤ RMinmax and R̄MAX ≥ RMinmax consistently, highlighting how considering
the diameter only is insufficient to guarantee optimal safe policies. It also indicates that these
penalties may bound RMinmax in general. We show in Theorem 2 that this is indeed the case.

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Then R̄MIN ≤ RMinmax ≤ R̄MAX.

Theorem 2 says that for any MDP whose rewards for unsafe transitions are bounded above by
R̄MIN, the optimal policy both minimises the probability of reaching unsafe states and maximises the
probability of reaching safe goal states. Hence, any penalty R̄MIN − ϵ, where ϵ > 0 can be arbitrarily
small, will guarantee optimal safe policies. Similarly, the theorem shows that any reward higher
than R̄MAX may have optimal policies that do not minimise the probability of reaching unsafe states.
These can be observed in Figure 3. The figure demonstrates why considering both the diameter and
solvability of an MDP is necessary to guarantee safe policies, because the diameter alone does not
always minimise the failure rate.

4 PRACTICAL ALGORITHM FOR LEARNING SAFE POLICIES

While the Minmax penalty of an MDP can be accurately estimated using policy evaluation (Algorithm
2), it requires knowledge of the environment dynamics (or an estimate of it). These are difficult
quantities to estimate from an agent’s experience, which is further complicated by the need to
also learn the true optimal policy for the estimated Minmax penalty. Hence, obtaining an accurate
estimate of the Minmax penalty is impractical in model-free and function approximation settings
where the state and action spaces are large. In fact, it is NP-hard since it depends on the diameter,
which requires solving a longest-path problem.
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Theorem 3 (Complexity) Estimating the Minmax penalty RMinmax accurately is NP-hard.

Given the above challenges, we require a practical method for learning the Minmax
penalty. Ideally, this method should require no knowledge of the environment dynamics
and should easily integrate with existing RL approaches. To achieve this, we first note that
(RMIN − RMAX)

D
C = (DRMIN − DRMAX)

1
C = (VMIN − VMAX)

1
C , where VMIN and VMAX are the

value function bounds. Hence, a practical estimate of the Minmax penalty can be efficiently learned
by estimating the value gap VMIN−VMAX using observations of the reward and the agent’s estimate of
the value function. Algorithm 1 shows the full pseudo-code. The agent here receives a reward rt after
each environment interaction and updates its estimate of the reward bounds RMIN ← min(RMIN, rt)
and RMAX ← max(RMAX, rt), the value bounds VMIN ← min(VMIN, RMIN, V (st)) and
VMAX ← max(VMAX, RMAX, V (st)), and the Minmax penalty R̄MIN ← VMIN − VMAX, where V (st)
is the learned value function at time step t. We note how the solvability C is also not explicitly
considered in this estimate of R̄MIN, since it is also expensive to estimate. Instead, given that the main
purpose of C is to make R̄MIN more negative the more stochastic the environment is, we notice that
this is already achieved in practice by the reward and value estimates. Since RMIN is estimated using
RMIN ← min(RMIN, rt), then every time the agent enters an unsafe state, we have that: rt ← R̄MIN,
RMIN ← R̄MIN, and then R̄MIN ← R̄MIN−VMAX. This means that when the estimated VMAX is greater
than zero, the penalty estimate R̄MIN become more negative every time the agent enters an unsafe state.

Finally, whenever an agent encounters an unsafe state, the reward can be replaced by R̄MIN to
disincentivise unsafe behaviour. Since VMAX is estimated using VMAX ← max(VMAX, RMAX, V (st)),
it leads to an optimistic estimation of R̄MIN. Hence, we observe no need to add an ϵ > 0 to R̄MIN.

Algorithm 1: RL while learning Minmax penalty
Input :RL algorithm A, max timesteps T
Initialise : RMIN = 0, RMAX = 0, VMIN = RMIN, VMAX = RMAX, π and V as per A

for t in T do
observe a state st, take an action at using π as per A, and observe st+1, rt
RMIN, RMAX ← min(RMIN, rt), max(RMAX, rt)
VMIN, VMAX ← min(VMIN, RMIN, V (st)), max(VMAX, RMAX, V (st))
R̄MIN ← VMIN − VMAX
rt ← R̄MIN if st+1 ∈ G! else rt
update π and V with (st, at, st+1, rt) as per A

end for

5 EXPERIMENTS

While the theoretical Minmax penalty is guaranteed to lead to optimal safe policies, it is unclear
whether this also holds for the practical estimate proposed in Section 4. Hence, this section aims to
investigate three main natural questions regarding the proposed practical algorithm (see the Appendix
for more experiments): (i) How does Algorithm 1 behave when the theoretical assumptions are
satisfied? (ii) How does Algorithm 1 behave when the theoretical assumptions are not satisfied?
(iii) How does Algorithm 1 compare to prior approaches towards Safe RL? For each result, we report
the mean (solid line) and one standard deviation around it (shaded region).

5.1 BEHAVIOUR WHEN THEORY HOLDS

For this experiment, we consider the Russell & Norvig (2016) gridworld described below. It satisfies
the setting we assumed in Section 2 since it is a stochastic shortest path with finite states and actions.

Domain (LAVA GRIDWORLD) This is a gridworld with 11 positions (|S| = 11) and 4 cardinal
actions (|A| = 4). The agent here must reach a goal location G while avoiding a lava location L
(hence G = {L,G} and G! = {L}). A wall is also present in the environment and, while not unsafe,
must be navigated around. The environment has a slip probability (sp), so that with probability sp the
agent’s action is overridden with a random action. The agent receives RMAX = +1 reward for reaching
the goal, as well as Rstep = −0.1 reward at each timestep to incentivise taking the shortest path to the
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goal. To test our approach, we modify Q-learning (Watkins, 1989) with ϵ-greedy exploration such that
the agent updates its estimate of the Minmax penalty as learning progresses and uses it as the reward
whenever the lava state is reached, following the procedure outlined in Section 4. The action-value
function is initialised to 0 for all states and actions, ϵ = 0.1 and the learning rate α = 0.1.

Setup and Results We examine the performance of our modified Q-learning approach across three
values of the slip probability of the LAVA GRIDWORLD. A slip probability of 0 represents a fully
deterministic environment, while a slip probability of 0.5 represents a more stochastic environment.
Results are plotted in Figure 4. In the case of the fully deterministic environment, the Minmax penalty
bound obtained via Algorithm 2 is R̄MIN = −9.9, since C = 1 and D = 9. However, the agent is
able to learn a relatively smaller penalty (−1.1 in Figure 4b) to consistently minimise failure rate and
maximise returns (Figures 4c and 4d). The resulting optimal policy then chooses the shorter path that
passes near the lava location (sp = 0 in Figure 4a). As the stochasticity of the environment increases, a
larger penalty is learned to incentivise longer, safer policies (sp = 0.25 and sp = 0.5 in Figure 4a). We
can, therefore, conclude that while there is a gap between the true Minmax penalty and the one learned
via Algorithm 1, this algorithm can still learn optimal safe policies when the theoretical setting holds.

sp
=
0

sp
=
0.
5

sp
=
0.
25

(a) Trajectories

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

2.4

2.2

2.0

1.8

1.6

1.4

1.2

pe
na

lti
es sp=0

sp=0.25
sp=0.5

(b) Learned penalty

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

0.0

0.2

0.4

0.6

0.8

fa
ilu

re
s

sp=0
sp=0.25
sp=0.5

(c) Failure rate (↓)

0.0 0.2 0.4 0.6 0.8 1.0
episode 1e4

3

2

1

0

1

re
tu

rn
s

sp=0
sp=0.25
sp=0.5

(d) Average returns (↑)

Figure 4: Effect of increase in the slip probability (sp) of the LAVA GRIDWORLD on the learned
Minmax penalty and corresponding failure rate and returns. The black circle in (a) represents the agent.
The results are averaged over 20 random seeds—shaded regions represent one standard deviation.

5.2 BEHAVIOUR WHEN THEORY DOES NOT HOLD

For this experiment, we consider the Safety Gym (Ray et al., 2019) domain described below. It does
not satisfy the setting we assumed in Section 2 since it is continuous and not a shortest path task1.

Domain (Safety Gym PILLAR) This is a custom Safety Gym domain in which the simple point
robot must navigate to a goal location  around a large pillar  (hence G = { , } and G! = { }).
All details of the environment are the same as in Ray et al. (2019) except when stated otherwise.
Just as in Ray et al. (2019), the agent uses pseudo-lidar to observe the distance to objects around
it (|S| = R60), and the action space is continuous over two actuators controlling the direction and
forward velocity (|A| = [−1, 1]2). This direction and forward velocity can be noisy, determined by
a noise scalar as follows: anew = a+ (noise)anoise where anew is the new direction and forward
velocity, a ∈ A is the agent’s action, and anoise ∈ A is a uniformly sampled random vector. The
goal, pillar, and agent locations remain unchanged for all episodes. Each episode terminates once the
agent reaches the goal or collides with the pillar (with a reward of−1). Otherwise, episodes terminate
after 1000 timesteps. To test our approach in this setting, we modify TRPO (Schulman et al., 2015)
(denoted TRPO-Minmax) to use the estimate of the Minmax penalty as described in Algorithm 1.

Setup and Results We examine the performance of TRPO-Minmax for five levels of noise in
the PILLAR environment, similarly to the experiments in Section 5.1. Results are plotted in Figure
5. We observe similar results to Section 5.1, where the agent uses its learned Minmax penalty (Figure
5b) to successfully learn safe policies (Figure 5c) while solving the task (Figure 5d), using safer
paths for more noisy dynamics (Figure 5a). Interestingly, it also correctly prioritises low failure rates
when the dynamics are too noisy to safely reach the goal (noise ≥ 5). We can, therefore, conclude
that Algorithm 1 can learn safe policies even in discounted high-dimensional continuous-control
domains requiring function approximation.

1The PILLAR domain does not satisfy the formal shortest shortest path setting we assume since: it is
discounted and policies that do not reach G are not guaranteed to have value functions that are unbounded from
below (due to the default dense rewards in Safety Gym which positively rewards moving towards the goal).
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Figure 5: Performance of TRPO-Minmax in the PILLAR environment with varying noise levels. Each
training run is over 10 million steps and the results are averaged over 10 random seeds—shaded
regions represent one standard deviation.

5.3 COMPARISON TO REPRESENTATIVE BASELINES

For this experiment, we consider representative baselines in the Safety Gym PILLAR domain.

Baselines As a baseline representative of typical RL approaches, we use Trust Region Policy
Optimisation (TRPO) (Schulman et al., 2015). To represent constraint-based approaches, we compare
against Constrained Policy Optimisation (CPO) (Achiam et al., 2017), TRPO with Lagrangian
constraints (TRPO-Lagrangian) (Ray et al., 2019), and Sauté RL with TRPO (Sauté-TRPO) (Sootla
et al., 2022). All baselines except Sauté-TRPO use the implementations provided by Ray et al.
(2019), and form a set of widely used baselines in safety domains (Zhang et al., 2020; Sootla et al.,
2022; Yang et al., 2023). Sauté-TRPO uses the implementation provided by Sootla et al. (2022).
As in Ray et al. (2019), all approaches use feed-forward MLPs, value networks of size (256,256),
and tanh activation functions. The cost threshold for the constrained algorithms is set to 0, the best
we found. The experiments are run over 10 million episodes and averaged over 10 runs.

Setup and Results We compare the performance of TRPO-Minmax to that of the baselines for
different levels of noise in the PILLAR domain. Figure 6 shows the results. We observe that in the
deterministic case noise = 0, all the algorithms achieve similar performance (except Sauté-TRPO),
successfully maximising returns (Figure 6d top) while minimising the failure rates (Figure 6c top).
However, for the stochastic cases noise > 0, we can observe that all the baselines except Sauté-TRPO
achieve significantly high returns (Figure 6d) at the expense of a rapidly increasing cumulative cost
(Figure 6b). These results are also consistent with the benchmarks of Ray et al. (2019) where the
cumulative cost of TRPO is greater than that of TRPO-Lagrangian, which is greater than that of CPO.
Interestingly, Sauté-TRPO is the worst-performing of all the baselines. It successfully maximises
returns while minimising cost only for the deterministic environment (noise = 0), but completely fails
for the stochastic ones (noise > 0). Finally, by examining the episode length (Figure 6a) and failure
rates (Figure 6c) for all the baselines in the stochastic cases, we can conclude that they have all learned
risky policies that maximise rewards over short trajectories that are highly likely to result in collisions.

In contrast, the results obtained show that TRPO-Minmax successfully solves the tasks while min-
imising cost for both deterministic and stochastic environments, when the noise levels are not too
high (noise ∈ [0, 2.5]). When the noise level is too high (noise = 5), TRPO-Minmax consistently
prioritises maintaining low failure rates over maximising returns. In addition, we can observe from
the episode lengths that TRPO-Minmax chooses the shortest path to the goal when there is no noise,
but chooses longer paths as the noise increases. This demonstrates its ability to trade off between
rewards maximisation and safety, with a strong bias towards safety—in contrast to the baselines
which seem strongly biased towards reward maximisation. This can also be seen from evaluating the
learned policies, as shown in Table 1 in the Appendix.

6 RELATED WORK

Guiding agents toward desirable behaviors has been explored through reward shaping, which
augments reward functions to improve learning efficiency but requires that the optimal policy is

8
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Figure 6: Performance comparison in the PILLAR environment with varying noise. (top) noise = 0,
(middle) noise = 2.5, and (bottom) noise = 5. Since the environment is noisy, higher episode
lengths are better (↑) because that means choosing safer longer paths (except for noise = 0). The
results are averaged over 10 random seeds and the shaded regions represent one standard deviation.

unaltered (Ng et al., 1999; Devidze et al., 2021). This is undesirable in safe RL where the optimal
policy may be unsafe according to some safety constraints. More popularly, works in constrained RL
usually impose safety constraints to limit cost violations while maximizing rewards (Ray et al., 2019;
Sootla et al., 2022). In contrast, our work optimizes terminal state rewards to minimize undesirable
behaviors directly. Finally, other works like Shielding complements these approaches by using model
or human interventions to prevent unsafe actions (Dalal et al., 2018; Wagener et al., 2021; Tennenholtz
et al., 2022). As shielding typically modifies transition dynamics rather than reward functions, it
aligns naturally with our reward-focused framework. See Appendix C for an expended related works.

7 DISCUSSION AND FUTURE WORK

This paper investigates a new approach towards safe RL by asking the question: Is a scalar reward
enough to solve tasks safely? To answer this question, we bound the Minmax penalty, which takes
into account the diameter and solvability of an environment in order to minimise the probability of en-
countering unsafe states. We prove that the penalty does indeed minimise this probability, and present
a method that uses an agent’s value estimates to learn an estimate of the penalty. Our results in tabular
and high-dimensional continuous settings have demonstrated that, by encoding the safe behaviour
directly in the reward function via the Minmax penalty, agents are able to solve tasks while prioritising
safety, learning safer policies than popular constraint-based approaches. Our method is also easy to
incorporate with any off-the-shelf RL algorithms that maintain value estimates, requiring no changes
to the algorithms themselves. By autonomously learning the penalty, our method also alleviates the
need for a human designer to manually tweak rewards or cost functions to elicit safe behaviour.

Finally, while we show that scalar rewards are indeed enough for safe RL, the current analysis is
only applicable to unsafe terminal states—which only covers tasks that can be naturally represented
by stochastic-shortest path MDPs. Given that other popular RL settings like discounted MDPs can
be converted to stochastic shortest path MDPs (Bertsekas, 1987; Sutton & Barto, 1998), a promising
future direction could be to find the dual of our results for other theoretically equivalent settings.
In conclusion, we see this reward-only approach as a promising direction towards truly autonomous
agents capable of independently learning to solve tasks safely.
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A PROOFS OF THEORETICAL RESULTS

Theorem 1 (Estimation) Algorithm 2 converges to D and C for any given solvable environment.

Proof This follows from the convergence guarantee of policy evaluation (Sutton & Barto, 1998).

Theorem 2 (Safety Bounds) Consider a solvable environment where task rewards are bounded by
[RMIN RMAX] for all s′ ̸∈ G!. Then R̄MIN ≤ RMinmax ≤ R̄MAX.

Proof Let π∗ be an optimal policy for an arbitrary task ⟨S,A, P,R⟩ in the environment. Given the
definition of the Minmax penalty (Definition 2), we need to show the following:

(i) If R(s, a, s′) < R̄MIN for all s′ ∈ G!, then π∗ is safe for all R; and
(ii) If R(s, a, s′) > R̄MAX for some s′ ∈ G! reachable from S \ G, then there exists an R s.t. π∗

is unsafe.

(i) Since π∗ is optimal, it is also proper and hence must reach G.

Assume π∗ is unsafe. Then there exists another proper policy π that is safe, such that

Pπ
s (sT ∈ G!) < Pπ∗

s (sT ∈ G!) for some s ∈ S.

Then,

V π∗
(s) ≥ V π(s)

=⇒ Eπ∗

s

[ ∞∑
t=0

R(st, at, st+1)

]
≥ Eπ

s

[ ∞∑
t=0

R(st, at, st+1)

]
=⇒ Eπ∗

s

[
GT−1 +R(sT , aT , sT+1)

]
≥ Eπ

s

[
GT−1 +R(sT , aT , sT+1)

]
,

where GT−1 =

T−1∑
t=0

R(st, at, st+1) and T is a random variable denoting when sT+1 ∈ G.

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ∗

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)
,

where R̄unsafe denotes the rewards for transitions into G! and aT = π∗(sT ).

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)R(sT , aT , sT+1) + R̄unsafe(sT , aT , sT+1)
)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)R(sT , aT , sT+1) + Pπ

s (sT ∈ G!)R̄unsafe(sT , aT , sT+1)
)
,

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
R̄unsafe(sT , aT , sT+1)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
R̄MIN

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1),

since R̄unsafe(sT , aT , sT+1) < R̄MIN.

=⇒ Eπ∗

s

[
GT−1

]
+
(
1− Pπ

s (sT ∈ G!)
)
(RMIN −RMAX)

D

C

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ∗

s

[
GT−1

]
+ (RMIN −RMAX)D

> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1), using definition of C.

=⇒ Eπ∗

s

[
GT−1

]
−RMAXD
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> Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)−RMIND

=⇒ Eπ∗

s

[
GT−1

]
−RMAXD > 0,

since Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1) ≥ RMIND

=⇒ Eπ∗

s

[
GT−1

]
> RMAXD.

But this is a contradiction since the expected return of following an optimal policy up to a terminal
state without the reward for entering the terminal state must be less than receiving RMAX for every
step of the longest possible trajectory to G. Hence we must have π∗ ∈ argmin

π
Pπ
s (sT ∈ G!).

(ii) Assume π∗ is safe. Then, Pπ∗

s (sT ̸∈ G!) ≥ Pπ′

s (sT ̸∈ G!) for all s ∈ S, π′ ∈ Π.

Let π be the policy that maximises the probability of reaching s′ ∈ G! from some state s ∈ G. Then,
similarly to (i), we have

V π∗
(s) ≥ V π(s)

=⇒ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ∈ G!)− Pπ
s (sT ∈ G!)

)
R̄unsafe(sT , aT , sT+1)

≥ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ̸∈ G!)− Pπ∗

s (sT ̸∈ G!)
)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
R̄unsafe(sT , aT , sT+1)

≤ Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
R̄MAX

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1), since R̄unsafe > R̄MAX.

=⇒ Eπ
s

[
GT−1

]
+
(
Pπ
s (sT ∈ G!)− Pπ∗

s (sT ∈ G!)
)
RMIND

′

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1), by definition of R̄MAX.

=⇒ Eπ
s

[
GT−1

]
+RMIND

′

< Eπ∗

s

[
GT−1

]
+
(
Pπ∗

s (sT ̸∈ G!)− Pπ
s (sT ̸∈ G!)

)
R(sT , aT , sT+1)

=⇒ Eπ
s

[
GT−1

]
+RMIND

′ < 0

But this is a contradiction when R is such that the agent receives a reward of RMAX ≥ |RMIN|D′ at
least once in its trajectory when following π and zero everywhere else.

Theorem 3 (Complexity) Estimating the Minmax penalty RMinmax accurately is NP-hard.

Proof This follows from the NP-hardness of longest-path problems. Since the Minmax penalty
is bounded by R̄MIN and R̄MAX, both are defined by the diameter, which is in turn defined as the
expected total timesteps of the longest path.
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B ALGORITHMS

Algorithm 2: Estimating the Diameter and Solvability

Input :⟨S,A, P ⟩, RD(s′) := 1(s′ ̸∈ G), RC(s, a, s
′) := 1(s ̸∈ G and s′ ∈ G \ G!)

Initialise :Diameter D = 0, Solvability C = 1, Value functions V π
D(s) = 0, V π

C (s) = 0, Error
∆ = 1

for π ∈ Π do
/* Policy evaluation for D */
while ∆ > 0 do
∆← 0
for s ∈ S do
v′←

∑
s′

P (s′|s, π(s))(RD(s′)+V π
D(s′))

∆ = max{∆, |V π
D(s)− v′|}

V π
D(s)← v′

end for
end while
for s ∈ S do
D = max{D,V π

D(s)}
end for

end for

for π ∈ Π do
/* Policy evaluation for C */
while ∆ > 0 do

∆← 0
for s ∈ S do
v′←

∑
s′

P (s′|s, π(s))(RC(s, π(s), s
′)+V π

C (s′))

∆ = max{∆, |V π
C (s)− v′|}

V π
C (s)← v′

end for
end while
for s ∈ S do
C = min{C, V π

C (s)} if V π
C (s) ̸= 0 else

C
end for

end for

14
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C EXTENDED RELATED WORK

C.1 REWARD SHAPING

The problem of designing reward functions to produce desired policies in RL settings is well-studied
(Singh et al., 2009). Particular focus has been placed on the practice of reward shaping, in which
an initial reward function provided by an MDP is augmented in order to improve the rate at which
an agent learns the same optimal policy (Ng et al., 1999; Devidze et al., 2021). While sacrificing
some optimality, other approaches like Lipton et al. (2016) propose shaping rewards using an idea of
intrinsic fear. Here, the agent trains a supervised fear model representing the probability of reaching
unsafe states in a fixed horizon, scales said probabilities by a fear factor, and then subtracts the scaled
probabilities from Q-learning targets.

These approaches differ from ours in that they seek to find reward functions that improve convergence
while preserving the optimality from an initial reward function. In contrast, we seek to determine the
optimal rewards for terminal states in order to minimise undesirable behaviours irrespective of the
original reward function and optimal policy.

C.2 CONSTRAINED RL

Disincentivising or preventing undesirable behaviours is core to the field of safe RL. A popular
approach is to define constraints on the behaviour of an agent using CMDPs, tasking the agent with
limiting the accumulation of costs associated with violating safety constraints while simultaneously
maximising reward (Altman, 1999; Achiam et al., 2017; Chow et al., 2018; Ray et al., 2019; Hasan-
zadeZonuzy et al., 2021). Widely used examples of these approaches include constrained policy
optimisation (CPO) (Achiam et al., 2017), which augments TRPO (Schulman et al., 2015) with
constraints to satisfy a constrained MDP, and TRPO-Lagrangian (Ray et al., 2019), which combines
Lagrangian methods with TRPO. Another example is Sauté RL (Sootla et al., 2022), which incor-
porates the cost function into the rewards and augments the state with the remaining ”cost budget”
spent by violating safety constraints. Other constraint-based approaches include Projection-based
CPO (Yang et al., 2020), which projects a TRPO policy onto a space defined by constraints, and PID
Lagrangian methods (Stooke et al., 2020), which augment Lagrangian methods with PID control.

In deterministic environments with a cost threshold of 0, the set of safe policies for these approaches
are the same as ours. However, in stochastic environments, these approaches require the correct
choice of inequality constraints to even be well defined. If the cost threshold is not carefully chosen,
there may exist no policy that satisfies the CMDP constraints, implying there would exist no optimal
safe policy to converge to. For example, in the LAVA GRIDWORLD or the PILLAR domains with
noise > 0, a cost threshold of 0 can never be satisfied by any policy for all states, making these
approaches theoretically ill-defined in these environments with that cost threshold. That said, we found
in practice that a cost threshold of 0 gave them the best performance in the safety-gym experiments
(compared to 1 and the default of 25). In contrast, we showed the existence of a Minmax penalty
irrespective of the stochasticity of the environment. Additionally, while these approaches in general
theoretically define or learn safety parameters—like Lagrange coefficients—for each reward function
even when the cost function and cost threshold remain unchanged, our minmax penalty approach is
theoretically defined and learned for all reward functions.

C.3 SHIELDING

Finally, another important line of work involves relying on interventions from a model (Dalal et al.,
2018; Wagener et al., 2021) or human (Tennenholtz et al., 2022) to prevent unsafe actions from being
considered by the agent (shielding the agent) or prevent the environment from executing those unsafe
actions by correcting them (shielding the environment). Other approaches here also look at using
temporal logics to define or enforce safety constraints on the actions considered or selected by the
agent (Alshiekh et al., 2018).

These approaches fit seamlessly into our proposed reward-only framework since they are primarily
about modifications on the transition dynamics and not the reward function—for example, unsafe
actions here can simply lead to unsafe goal states.
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D SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH RAY ET AL.
(2019) BASELINES

TRPO LagrangianTRPO CPO SauteTRPO TRPO Minmax (Ours)
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Figure 7: Training curves in the PILLAR environment with noise = 0.
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Figure 8: Training curves in the PILLAR environment with noise = 2.5.
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(d) Average returns (↑)
Figure 9: Training curves in the PILLAR environment with noise = 5.
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Figure 10: Training curves in the PILLAR environment with noise = 7.5.
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Figure 11: Training curves in the PILLAR environment with noise = 10.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Noise Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↓
0.0 TRPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 130.30 ± 14.94

TRPO-Lagrangian 0.00 ± 0.01 1.00 ± 0.01 3.20 ± 0.02 132.16 ± 14.43
CPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.01 128.06 ± 14.40
Sauté-TRPO 0.04 ± 0.19 0.95 ± 0.21 3.09 ± 0.55 176.51 ± 117.93
TRPO-Minmax 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.01 131.53 ± 15.15

Total Steps ↑
2.5 TRPO 0.18 ± 0.03 0.82 ± 0.03 2.58 ± 0.12 351.33 ± 40.17

TRPO-Lagrangian 0.13 ± 0.03 0.86 ± 0.02 2.73 ± 0.09 364.41 ± 32.24
CPO 0.08 ± 0.03 0.92 ± 0.03 2.91 ± 0.10 393.36 ± 29.50
Sauté-TRPO 0.62 ± 0.49 0.16 ± 0.37 0.59 ± 1.27 484.24 ± 340.57
TRPO-Minmax 0.02 ± 0.02 0.47 ± 0.38 2.00 ± 1.02 799.41 ± 181.46

5.0 TRPO 0.32 ± 0.07 0.41 ± 0.16 1.66 ± 0.43 665.62 ± 38.34
TRPO-Lagrangian 0.20 ± 0.07 0.39 ± 0.16 1.78 ± 0.47 760.66 ± 43.54
CPO 0.18 ± 0.04 0.27 ± 0.21 1.53 ± 0.54 807.28 ± 51.38
Sauté-TRPO 0.62 ± 0.49 0.01 ± 0.07 -0.09 ± 0.54 594.09 ± 363.81
TRPO-Minmax 0.05 ± 0.03 0.00 ± 0.00 -0.00 ± 0.19 975.59 ± 17.81

7.5 TRPO 0.43 ± 0.06 0.02 ± 0.03 0.45 ± 0.21 726.97 ± 31.42
TRPO-Lagrangian 0.30 ± 0.06 0.01 ± 0.01 0.55 ± 0.18 806.91 ± 41.44
CPO 0.28 ± 0.04 0.00 ± 0.01 0.38 ± 0.13 830.78 ± 25.03
Sauté-TRPO 0.54 ± 0.50 0.00 ± 0.03 -0.15 ± 0.48 650.94 ± 364.90
TRPO-Minmax 0.02 ± 0.02 0.00 ± 0.00 -0.46 ± 0.20 989.69 ± 7.78

10.0 TRPO 0.46 ± 0.08 0.00 ± 0.00 0.13 ± 0.11 725.03 ± 49.64
TRPO-Lagrangian 0.36 ± 0.09 0.00 ± 0.00 0.17 ± 0.09 789.52 ± 42.68
CPO 0.27 ± 0.06 0.00 ± 0.00 0.10 ± 0.10 859.58 ± 30.94
Sauté-TRPO 0.46 ± 0.50 0.00 ± 0.00 -0.18 ± 0.48 701.60 ± 355.32
TRPO-Minmax 0.07 ± 0.05 0.00 ± 0.00 -0.48 ± 0.20 960.96 ± 28.39

Table 1: Evaluation of trained models with Ray et al. (2019) baselines in the PILLAR environment
with varying noise levels. For each algorithm in each noise level, we train using 10 random seeds
for 10 million steps and evaluate the learned policies over 100 random seeds, for a total of 1000
evaluation episodes. We report the mean and standard errors of various performance metrics, bolding
the ones with the best mean. Figures 7-11 shows the training curves. Here, higher episode lengths are
better for noise > 0 because that means the policy is taking longer safer paths. We observe that only
TPRO-Minmax prioritises minimising the probability of unsafe transitions, consistently achieving the
lowest cost while trading off the rewards. It achieves the same highest success rate as the baselines
only in the deterministic case, since the pure maximisation of rewards here doesn’t come at the cost
of higher unsafe transitions. It also does not completely ignore the rewards when the noise is not too
large (noise = 2.5). We can also observe from the training curves of noise = 2.5 (Figure 8) that
TPRO-Minmax has not converged in its rewards performance and is still increasing.
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noise = 0.0 noise = 2.5 noise = 5.0 noise = 7.5 noise = 10.0

(a) TRPO. Failures per noise left to right: 0, 0, 1
3
, 1
3
, 1
3

(b) TRPO-Lagrangian. Failures per noise left to right: 0, 1
3
, 1
3
, 1
3
, 1
3

(c) CPO. Failures per noise left to right: 0, 0, 1
3
, 1
3
, 1
3

(d) Sauté-TRPO. Failures per noise left to right: 0, 1
3
, 1
3
, 1
3
, 1
3

(e) TRPO-Minmax. Failures per noise left to right: 0, 0, 0, 1
3
, 0

Figure 12: Sample trajectories of policies learned by each baseline and our TRPO-Minmax approach
in the Safety Gym PILLAR environment with varying noise levels. To sample the trajectories for
each noise level, we use the same three environment random seeds across all the algorithms. We can
observe that noise ≥ 5 is too noisy to learn safe policies, at least after 10 million training steps.
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E ABLATIONS IN SAFETY-GYM DEFAULT ENVIRONMENTS WITH RAY ET AL.
(2019) BASELINES

(a) POINTGOAL1 (b) POINTPUSH1

(c) POINTBUTTON1 (d) CARBUTTON1

Figure 13: Sample default task’s from OpenAI’s Safety Gym environments (Ray et al., 2019). We
use these to investigate the effect of termination in complex, high-dimensional, continuous control
tasks. In all of the default tasks, G = ∅ by default. (a) Here, a simple robot must navigate to a
goal location  across a 2D plane while avoiding several hazards . The agent’s sensors, actions,
and rewards are identical to the PILLAR domain. Unlike the PILLAR domain, the goal location is
randomly reset when the agent reaches it, but does not terminate the episode. (b) This task is similar
to POINTGOAL1, but with the addition of a pillar obstacle  and a large box the agent must push
to the goal location  to receive the goal reward. (c-d) These tasks are also similar to POINTGOAL1,
but with the more complex car robot for CARBUTTON1 and the addition of: (i) Gremlins , which
are dynamic obstacles that move around the environment and must be avoided; and (ii) Buttons ,
where the agent must reach the goal button with a cylinder  to receive the goal reward.
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(c) Failure rate (↓) (d) Average returns (↑)
Figure 14: Comparison with baselines in POINTGOAL1, modified to terminate in G = G! = { }.
Here, higher episode lengths are better because episodes only terminate when the agent reaches G!
or after 1000 timesteps. Similar to Figure 6, all the baselines except Sauté-RL achieve significantly
high returns at the expense of a rapidly increasing cumulative cost. By comparison, TRPO-Minmax
dramatically reduces the failure rate while still being able to solve the task, as observed by average
returns achieved as well as the trajectories observed. However, returns are lower since TRPO-Minmax
learns safer longer paths to the goals (see sample trajectories in Figure 18).
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(d) Average returns (↑)
Figure 15: Comparison with baselines in POINTPUSH1, modified to terminate in G = G! = { , }.
Here, higher episode lengths are better because episodes only terminate when the agent reaches G!
or after 1000 timesteps. Similar to Figure 6, the baselines achieve higher returns at the expense of
a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises maintaining low
failure rates by sacrificing rewards.
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(d) Average returns (↑)
Figure 16: Comparison with baselines in POINTBUTTON1, modified to terminate in G = G! =
{ , , }. Here, higher episode lengths are better since epsiodes only terminate when the agent
reaches G! or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns
at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.
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Figure 17: Comparison with baselines in CARBUTTON1, modified to terminate in G = G! =
{ , , }). Here, higher episode lengths are better since epsiodes only terminate when the agent
reaches G! or after 1000 timesteps. Similar to Figure 6, the baselines achieve significantly high returns
at the expense of a rapidly increasing cumulative cost while TRPO-Minmax consistently prioritises
maintaining low failure rates.
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(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 18: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 14. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.
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(a) The cumulative cost.
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Figure 19: Comparison with baselines in POINTGOAL1, modified to terminate in G = G! = { }.
Here, higher episode lengths are better since episodes only terminate when the agent reaches a hazard
or after 1000 timesteps. This experiment is similar to Figure 14, but instead of a cost threshold of
0, it uses a cost threshold of 25 for the baselines (as in Ray et al. (2019)) to check its effect on the
performance of the baselines when episodes immediately terminate at unsafe states. We can observe
drastically worse failure rates and cumulative costs for the baselines compared to their performance in
Figure 14. Similar results where obtained when using a cost threshold of 1. These show how sensitive
such approaches are to the cost threshold, while a reward only approach like TRPO-Minmax does not
depend on such hyperparameters.
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(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 20: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 19. Trajectories that hit hazards or
take more than 1000 timesteps to reach the goal location are considered failures.
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Figure 21: Comparison with baselines in the original Safety Gym POINTGOAL1 environment. Here,
episodes do not terminate when a hazard is hit (G = G! = ∅). Hence every episode only terminates
after 1000 steps. We set the cost threshold for the baselines to 25 as in Ray et al. (2019). For TRPO-
Minmax, we replace the reward with the Minmax penalty every time the agent is in an unsafe state
(that is every time the cost is greater than zero), as in previous experiments and as per Algorithm 1.
While TRPO-Minmax still beats the baselines in safe exploration (a-b), unlike the previous results
with termination (Figure 19), it struggles to maximise rewards while avoiding unsafe states (d).
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(a) TRPO successes (top) and failures (bottom)

(b) TRPO-Lagrangian successes (top) and failures (bottom)

(c) CPO successes (top) and failures (bottom)

(d) Sauté-TRPO successes (top) and failures (bottom)

(e) TRPO-Minmax successes (top) and failures (bottom)

Figure 22: Sample trajectories of policies learned by each baseline and our Minmax approach in the
Safety Gym POINTGOAL1 domain, in the experiments of Figure 21. Trajectories that hit hazards (the
hits are highlighted by the red spheres) or take more than 1000 timesteps to reach the goal location
are considered failures.
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F SAFETY-GYM PILLAR TRAINING AND TESTING RESULTS WITH JI ET AL.
(2024) OMNISAFE BASELINES

Noise Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↓
0.0 TRPO-Minmax (Ours) 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 136.60 ± 12.32

TRPO-Lagrangian 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 137.52 ± 14.50
Sauté-TRPO 0.00 ± 0.00 0.99 ± 0.02 3.20 ± 0.03 142.88 ± 12.37
TRPO 0.00 ± 0.00 1.00 ± 0.00 3.21 ± 0.00 138.92 ± 14.47
CPO* 0.10 ± 0.29 0.18 ± 0.36 -0.51 ± 3.42 818.85 ± 289.68
P3O 0.10 ± 0.30 0.83 ± 0.35 2.74 ± 1.01 205.50 ± 220.31

Total Steps ↑
1.5 TRPO-Minmax (Ours) 0.06 ± 0.02 0.94 ± 0.02 3.01 ± 0.08 262.19 ± 28.06

TRPO-Lagrangian 0.09 ± 0.04 0.91 ± 0.04 2.90 ± 0.12 255.55 ± 26.62
Sauté-TRPO 0.11 ± 0.04 0.89 ± 0.04 2.81 ± 0.14 232.26 ± 10.55
TRPO 0.13 ± 0.08 0.87 ± 0.08 2.74 ± 0.29 262.91 ± 32.70
CPO* 0.08 ± 0.12 0.00 ± 0.00 -0.44 ± 0.45 952.51 ± 74.45
P3O 0.11 ± 0.13 0.76 ± 0.33 2.43 ± 1.04 391.09 ± 221.08

2.5 TRPO-Minmax (Ours) 0.14 ± 0.05 0.80 ± 0.11 2.61 ± 0.27 503.49 ± 98.67
TRPO-Lagrangian 0.20 ± 0.05 0.72 ± 0.24 2.38 ± 0.46 461.89 ± 132.78
Sauté-TRPO 0.19 ± 0.09 0.76 ± 0.24 2.45 ± 0.54 435.18 ± 104.06
TRPO 0.28 ± 0.10 0.63 ± 0.22 2.05 ± 0.52 446.21 ± 143.94
CPO* 0.09 ± 0.10 0.00 ± 0.01 -0.50 ± 0.40 962.74 ± 41.12
P3O 0.17 ± 0.07 0.71 ± 0.16 2.42 ± 0.34 552.42 ± 139.28

Table 2: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in the PILLAR
environment with varying noise levels. For valid comparison, TRPO-Minmax here is implemented by
using Algorithm 1 with OmniSafe’s implementation of TRPO. For each algorithm in each noise level,
we train using 10 random seeds for 10 million steps and evaluate the learned policies over 100 random
seeds, for a total of 1000 evaluation episodes. We report the mean and standard errors of various
performance metrics, bolding the ones with the best mean. Figures 23-28 shows the training curves,
including other noise levels for only TRPO-Minmax, TRPO-Lagrangian, and P3O. Here, higher
episode lengths are better because that means the policy is taking longer safer paths. We observe CPO
in general struggles to learn to solve the tasks irrespective of noise level, even in the simplest case
with noise = 0. We suspect this could be due to an implemention issue with Omnisafe’s codebase,
since Ray et al. (2019) codebase did not have this issue. Hence we exclude CPO from our analysis
(denoted by a *) since its results are not consistent with those of Ray et al. (2019) and Achiam et al.
(2017). All the other results are consistent with Ji et al. (2024). Given that, we observe that only
TPRO-Minmax prioritises minimising the probability of unsafe transitions, consistently achieving
the lowest cost while trading off the rewards. Interestingly, by using Algorithm 1 with OmniSafe’s
implementation of TRPO, TPRO-Minmax achieves the lowest cost, highest success rate, and highest
returns across all noise levels.
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Figure 23: Training curves using OmniSafe in the PILLAR environment with noise = 0
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Figure 24: Training curves using OmniSafe in the PILLAR environment with noise = 1.5
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Figure 25: Training curves using OmniSafe in the PILLAR environment with noise = 2.5
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Figure 26: Training curves using OmniSafe in the PILLAR environment with noise = 5
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Figure 27: Training curves using OmniSafe in the PILLAR environment with noise = 7.5
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Figure 28: Training curves using OmniSafe in the PILLAR environment with noise = 10
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G ABLATIONS IN SAFETY-GYMNASIUM DEFAULT ENVIRONMENTS WITH JI
ET AL. (2024) OMNISAFE BASELINES

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps
TRPO-Minmax (Ours) 0.04 ± 0.03 0.50 ± 0.17 0.84 ± 0.45 532.08 ± 148.18
PPO-Minmax (Ours) 0.04 ± 0.02 0.84 ± 0.06 1.64 ± 0.18 253.69 ± 49.72
TRPO-Lagrangian 0.09 ± 0.03 0.86 ± 0.03 1.76 ± 0.08 119.18 ± 19.82
Sauté-TRPO 0.12 ± 0.03 0.87 ± 0.03 1.77 ± 0.09 77.97 ± 10.33
TRPO 0.10 ± 0.02 0.90 ± 0.02 1.84 ± 0.04 73.86 ± 4.37
CPO* 0.04 ± 0.04 0.06 ± 0.02 -0.48 ± 0.51 940.59 ± 23.63
P3O 0.08 ± 0.02 0.91 ± 0.02 1.86 ± 0.06 101.98 ± 13.03

Table 3: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTGOAL1, modified to terminate in G = { , } where G! = { }. Episodes terminate when
the agent reaches G or after 1000 timesteps, but due to the large number of hazards, shorter or longer
timesteps are better depending on the random positions of hazards. Similarly to Table 2, we exclude
CPO from our analysis (denoted by a *) since its results are not consistent with those of Ray et al.
(2019) and Achiam et al. (2017). Given that, we observe that our approach consistently achieves the
lowest cost while trading off the rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↑
TRPO-Minmax (Ours) 0.08 ± 0.05 0.45 ± 0.16 1.87 ± 1.60 950.31 ± 31.45
PPO-Minmax (Ours) 0.13 ± 0.05 0.63 ± 0.13 4.45 ± 2.45 927.75 ± 28.89
TRPO-Lagrangian 0.62 ± 0.07 0.34 ± 0.06 10.17 ± 0.77 607.44 ± 56.15
Sauté-TRPO 0.79 ± 0.03 0.21 ± 0.03 11.01 ± 0.55 493.01 ± 24.51
TRPO 0.78 ± 0.05 0.22 ± 0.05 10.68 ± 0.74 483.42 ± 33.07
CPO* 0.02 ± 0.02 0.15 ± 0.06 -0.03 ± 0.23 988.25 ± 8.46
P3O 0.56 ± 0.07 0.42 ± 0.07 10.63 ± 0.74 667.08 ± 49.14

Table 4: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTGOAL1, modified to terminate in G = G! = { }. Here, higher episode lengths are better
because episodes terminate only when the agent reaches G! or after 1000 timesteps. Similarly to
Table 2, we exclude CPO from our analysis (denoted by a *) since its results are not consistent with
those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe that despite the absence
of terminal safe goals, our approach still prioritises minimising the probability of unsafe transitions,
consistently achieving the lowest cost while trading off the rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps
TRPO-Minmax (Ours) 4.11 ± 4.34 0.10 ± 0.04 -2.21 ± 1.52 1000.00 ± 0.00
PPO-Minmax (Ours) 3.38 ± 3.08 0.13 ± 0.05 -3.18 ± 2.71 1000.00 ± 0.00
TRPO-Lagrangian 18.18 ± 5.03 0.48 ± 0.05 9.24 ± 2.21 1000.00 ± 0.00
Sauté-TRPO 4.49 ± 3.12 0.17 ± 0.12 0.03 ± 0.63 1000.00 ± 0.00
TRPO 52.90 ± 3.27 0.07 ± 0.02 27.16 ± 0.07 1000.00 ± 0.00
CPO* 5.26 ± 7.90 0.10 ± 0.05 -1.34 ± 0.52 1000.00 ± 0.00
P3O 30.72 ± 56.92 0.05 ± 0.03 -1.18 ± 0.79 1000.00 ± 0.00

Table 5: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines the Safety-Gymnasium
POINTGOAL1, modified to terminate in G = G! = ∅. Here, every episode terminates only after 1000
timesteps. Similarly to Table 2, we exclude CPO from our analysis (denoted by a *) since its results
are not consistent with those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe
that despite no termination in the environment, our approach still achieves the lowest cost.
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Algorithm Costs ↓ Success Rate ↓ Returns ↑ Total Steps
TRPO-Minmax (Ours) 0.08 ± 0.03 0.01 ± 0.01 0.47 ± 0.11 940.58 ± 20.33
PPO-Minmax (Ours) 0.12 ± 0.07 0.09 ± 0.14 1.12 ± 1.30 927.77 ± 31.18
TRPO-Lagrangian 0.12 ± 0.05 0.03 ± 0.03 0.62 ± 0.21 914.53 ± 29.49
Sauté-TRPO 0.13 ± 0.05 0.08 ± 0.14 0.92 ± 0.73 905.51 ± 33.87
TRPO 0.14 ± 0.06 0.05 ± 0.06 0.72 ± 0.37 903.23 ± 37.82
CPO* 0.02 ± 0.02 0.01 ± 0.01 0.11 ± 0.12 989.71 ± 8.27
P3O 0.13 ± 0.04 0.06 ± 0.05 0.76 ± 0.33 921.17 ± 26.78

Table 6: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTPUSH1, modified to terminate in G = { , , } where G! = { , }. Episodes terminate
when the agent reaches G or after 1000 timesteps, but due to the large object the agent needs to
push to the goal while avoiding both hazards and the pillar, shorter or longer timesteps are better
depending on the random positions of the hazards and pillar. Similarly to Table 2, we exclude CPO
from our analysis (denoted by a *) since its results are not consistent with those of Ray et al. (2019)
and Achiam et al. (2017). Given that, we observe that our approach consistently achieves the lowest
cost while obtaining the highest success rate and rewards.

Algorithm Costs ↓ Success Rate ↑ Returns ↑ Total Steps ↑
TRPO-Minmax (Ours) 0.09 ± 0.03 0.05 ± 0.04 0.53 ± 0.15 905.26 ± 20.12
PPO-Minmax (Ours) 0.10 ± 0.02 0.03 ± 0.02 0.52 ± 0.07 914.64 ± 16.92
TRPO-Lagrangian 0.11 ± 0.03 0.13 ± 0.18 0.83 ± 0.49 844.21 ± 110.39
Sauté-TRPO 0.12 ± 0.05 0.10 ± 0.12 0.68 ± 0.30 838.98 ± 106.42
TRPO 0.15 ± 0.07 0.16 ± 0.21 0.86 ± 0.56 795.70 ± 157.18
CPO* 0.02 ± 0.01 0.01 ± 0.01 0.16 ± 0.25 983.25 ± 11.54
P3O 0.13 ± 0.06 0.11 ± 0.12 0.78 ± 0.36 859.75 ± 74.76

Table 7: Evaluation of trained models with Ji et al. (2024) OmniSafe baselines in Safety-Gymnasium
POINTPUSH1, modified to terminate in G = G! = { , }. Here, higher episode lengths are better
because episodes terminate only when the agent reaches G! or after 1000 timesteps. Similarly to
Table 2, we exclude CPO from our analysis (denoted by a *) since its results are not consistent with
those of Ray et al. (2019) and Achiam et al. (2017). Given that, we observe that despite the absence
of terminal safe goals, our approach still prioritises minimising the probability of unsafe transitions,
consistently achieving the lowest cost while trading off the rewards.
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Figure 29: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = { , } where G! = { }.
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Figure 30: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = G! = { }.
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Figure 31: Training curves for trained models with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTGOAL1 environment, modified to terminate in G = G! = ∅.

600

700

800

900

1000

Metrics/EpLen

0

500

1000

1500

2000

2500

3000

Metrics/CumulativeCost

0.0

0.1

0.2

0.3

0.4
Metrics/EpCost

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

1.0

0.5

0.0

0.5

1.0

1.5

Metrics/EpRet

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.1

0.0

0.1

0.2

0.3

0.4

Metrics/EpSuccess

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

2.4

2.2

2.0

1.8

1.6

1.4

Misc/MinmaxPenalty

PointPush1 (goal-unsafe-terminal)

TRPO TRPOLag TRPOSaute CPO P3O TRPOMinmax (Ours) PPOMinmax (Ours)

Figure 32: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTPUSH1 environment, modified to terminate in G = { , , } where G! =

{ , }.
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Figure 33: Training curves of models trained with Ji et al. (2024) OmniSafe baselines in the Safety-
Gymnasium POINTPUSH1 environment, modified to terminate in G = G! = { , }.
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