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ABSTRACT

With the great success of diffusion models (DMs) in generating realistic synthetic
vision data, many researchers have investigated their potential in decision-making
and control. Most of these works utilized DMs to sample directly from the trajectory
space, where DMs can be viewed as a combination of dynamics models and policies.
In this work, we explore how to decouple DMs’ ability as dynamics models in fully
offline settings, allowing the learning policy to roll out trajectories. As DMs learn
the data distribution from the dataset, their intrinsic policy is actually the behavior
policy induced from the dataset, which results in a mismatch between the behavior
policy and the learning policy. We propose Dynamics Diffusion, short as DyDiff,
which can inject information from the learning policy to DMs iteratively. DyDif £
ensures long-horizon rollout accuracy while maintaining policy consistency and
can be easily deployed on model-free algorithms. We provide theoretical analysis to
show the advantage of DMs on long-horizon rollout over models and demonstrate
the effectiveness of DyDi f f in the context of offline reinforcement learning, where
the rollout dataset is provided but no online environment for interaction. Our code
isathttps://anonymous.4open.science/r/DyDiff.

1 INTRODUCTION

Diffusion models (DMs) have shown a remarkable ability to capture high-dimensional, multi-modal
distributions and generate high-quality samples, such as images (Ho et al.| [2020; Rombach et al.,
2022), drug discovery (Xu et al.,[2023)), and motion generation (Tevet et al.,[2022). Researchers find
that such an ability also serves well in solving decision-making problems (Zhu et al.,|2023b). For
instance, using DMs as policy functions to generate single-step actions (Chi et al.,|2023)), as planners
to generate trajectories guided by rewards or Q-functions (Janner et al., [2022; [Zhu et al., [2023a),
or as data synthesizers to learn the data distribution of the dataset and augment the dataset with
more behavior data (He et al., 2024} |Lu et al.| 2024). Both diffusion planners and data synthesizers
use DMs to generate long-horizon trajectories. However, they choose to directly sample from the
trajectory space, resulting DMs a combination of dynamics models and policies, i.e., a policy (the
dataset average policy or a high-rewarded policy) is embedded in the generated sequences. Thus,
none of those DMs can serve as a dynamics model and generate trajectories for arbitrary policies.

In a preliminary study, we find that the ability to generate long-horizon rollouts can be much
helpful in improving offline RL solutions. Specifically, we build a motivating example where a
TD3BC (Fujimoto & Gul |2021)) agent is trained on an offline dataset with gradually augmenting
on-policy data or dataset behavior data during learning, compared with no augmentation. Results
in Fig.[Ta|reveal that augmenting on-policy data is better than behavior data. We further compare
augmenting on-policy rollouts with different lengths, and the results plotted in Fig. [Ib]indicate that
augmenting long-horizon on-policy rollouts is better than shorter-horizon on-policy rollouts.

Given the above findings, we hope to design a model that can synthesize long-horizon on-policy roll-
outs for offline policy training. In this paper, we propose a novel method named Dynamics Diffusion
(DyD1iff) to decouple existing DMs’ roles as dynamics models and use their superior generative
ability to accomplish this goal. Although some previous works have developed model-based methods
for augmenting synthetic on-policy data via pre-trained single-step dynamics models (Yu et al.| [2020;
2021)), it is still difficult for them to generate long-horizon rollouts due to compounding errors. Differ-
ent from them, DyD1 f £ can model the interaction in the sequence level and generate long-horizon
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(a) Different data types. (b) Different rollout length. (c) Different model types.

Figure 1: Training the policy on a part of hopper-medium-replay dataset under different
settings. (a) During training, we train a diffusion model to generate and gradually augment on-
policy data and dataset behavior data, compared with no extra data augmented. (b) Augment model
generated on-policy rollouts with different lengths. (c¢) Use single-step dynamics models and our
DyD1iff to generate rollouts. The detailed setting is described in Appendix

rollouts, which benefits the learning policy much more than shorter ones, as we showcase in Fig. [Tb]
The superiority of DyD1 f £ in synthesizing long sequences over single-step models is also reflected
in Fig.[lc] where the policy is augmented by rollouts with the same length but generated by DyDif f
and single-step models, respectively.

To be more specific, DyDiff works by first running a pre-trained single-step dynamics model with
the current policy for many steps to get the initial on-policy sequences; then, the trajectory served
as the initial conditions for a diffusion model to generate new samples, which is further used for
policy optimization. In this way, DyD1if f combines the advantage of both the rollout consistency of
single-step dynamics models with arbitrary policies, and the long-horizon generation of DMs with
less compounding error. Theoretical analysis for DyD1i £ £ provides proofs of why DMs are better
for long-horizon rollout than single-step dynamics model, and how the iterative process in DyDif £
reduces the accumulated error of the synthetic trajectories.

We implement DyDiff as a plugin on a set of existing model-free algorithms, and conduct compre-
hensive experiments across various tasks on D4RL benchmarks, showing that DyD1 f £ significantly
improves the performance of these algorithms without any additional hyperparameter tuning.

In summary, our main contributions are listed as follows.

* Investigating the policy mismatch problem: We identify the policy mismatch problem in DMs
for offline RL and investigate it in detail. To the best of our knowledge, this is the first work
providing both theoretical and empirical analyses for this problem.

* Developing the ability of DMs as dynamics models: We propose a novel method named
DyDif £, that combines DMs and single-step dynamics models, leveraging the advantages of
both sides to perform long-horizon rollout with less compounding error.

* Providing theoretical analysis for non-autoregressive generation: We prove the advantage of
non-autoregressive generation scheme against the autoregressive generation one in terms of the
return gap between executing the policy in the real and the learned dynamics, where the former
tightens the gap by a substantial factor of ﬁ > 1L

2 RELATED WORK

Diffusion Models in offline RL. Diffusion models (Ho et al.,[2020), a powerful class of generative
models, have recently found applications in offline RL (Zhu et al.|[2023b)), serving as planners (Janner
et al.,[2022; |Liang et al.,|2023}; |He et al.| [2024; [Hu et al., 2023} |Ajay et al., 2022; Zhu et al., 2023a)
and policies (Wang et al.,[2022; (Chen et al.,|2022; Lu et al., 2023; Hansen-Estruch et al.| 2023 |Kang
et al.,|2024). For instance, Diffusion QL (DiffQL) (Wang et al.|, 2022) employs a conditional diffusion
model to represent the policy, aiming to maximize action-values during the training of the diffusion
model. Additionally, Diffuser (Janner et al.,2022) proposes a novel data-driven decision-making
approach based on trajectory-level diffusion probabilistic models. Recently, SynthER (Lu et al.|[2024)
utilizes diffusion models as data synthesizers for data augmentation in offline RL. The powerful
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expressiveness of diffusion models enables non-autoregressive trajectory synthesis, which reduces
compounding errors compared to multilayer perceptrons (MLPs). However, neglecting the learning
policy results in a significant distribution gap between the generated data and the data sampled by
the learning policy in the real environment, which hampers effective policy learning. In contrast,
the proposed DyDiff leverages both the ability of non-autoregressive trajectory synthesis and
information derived from the learning policy. A concurrent work, PGD (Jackson et al.,[2024), also
identifies the policy mismatch problem associated with diffusion models, but approaches it differently.
It computes the log-likelihood of generated trajectories based on the learning policy, injecting this
as guidance for diffusion models. However, their illustration is limited to toy environments. In this
work, we investigate the policy mismatch issue from multiple perspectives, evaluating the algorithm
in complicated locomotion tasks while providing a more comprehensive theoretical analysis.

Offline model-based RL. As an intersection of model-based RL and offline RL (Levine et al.|
2020; Liu et al., [2021}; |Levine et al., 2020)), offline model-based RL methods (Yu et al., 20215 2020;
Argenson & Dulac-Arnold, [2020; Kidambi et al.| 2020; Matsushima et al., 2020} [Swazinna et al.|
2021)) employ supervised learning and generative modeling techniques to improve policy performance.
However, the distributional shift problem remains a fundamental challenge in offline model-based
RL. On the one hand, many methods (Yu et al.| [2020; 2021} |Kidambi et al.| 2020; Rigter et al., [2022;
Li et al., 2024} [Matsushima et al.| |2020) adopt a conservative approach to utilizing the dynamics
model, aiming to minimize estimation errors and enhance performance. For instance, MOPO (Yu
et al.;2020) integrates uncertainty as a penalty term on the reward, while MOReL (Kidambi et al.|
2020) estimates uncertainty by measuring the maximum discrepancy among ensemble models. This
conservatism helps mitigate risks but may also limit the exploration of potentially beneficial actions.
On the other hand, methods such as SynthER (Lu et al., [2024) leverage the dynamics model for
data augmentation and successfully achieve high performance through enhanced data variety. Our
approach takes into account information from the learning policy while intentionally avoiding overly
conservative techniques, enabling the dynamics model to be fully leveraged without hindrance.

3 PRELIMINARIES

Diffusion model. Diffusion models (DMs) are a class of generative models that generate data x(
by incrementally removing noise from a pure Gaussian distribution. In this work, we follow the
architecture of EDM (Karras et al.| [2022), which implements the forward process and the reverse
process of the DM as the increase and decrease of the noise level of a probability flow ordinary
differential equation (ODE) (Song et al., 2020b):

do = —6(t)o(t) Vg log p(a; o(t))dt , (1)
where the dot denotes the derivative with respect to time. o(t) is the noise schedule with noise levels
omax = g0 > gl > ... > 0N = 0. V,logp(x; o(t)) is the score function. We denote the data
distribution at noise level 0% as p(x; o) and the overall data distribution as 0%, In the forward
process, noise is gradually added to the data ™ ~ p(x;0'V), transforming it into pure Gaussian

noise. In contrast, during the reverse process, pure Gaussian noise is drawn from x® ~ p(x; 00), and
the sample is obtained by removing noise from x. Please refer to Appendix [B] for more details.

Offline RL. Offline RL solves a Markov decision process (MDP) similar to online RL, but optimizes
the policy solely using an offline dataset without interacting with the environment. Denote MDP M =
{8, A, T,r,v,do}, where S, A are the state space and the action space, T'(s'|s, a) is the dynamics
function, r(s, a) is the reward function, v € (0, 1) is the discount factor, and dy is the initial state
distribution. The formal objective of offline RL is to learn a policy 7 that maximizes the discounted
cumulative rewards as max J (M, ) := Eg wag.apmm(-lse),s0s1~T(lsea0) Dot YT (St ae)] -

4 DYNAMICS DIFFUSION (DYDIFF)

In this section, we present our design for generating synthetic data with DMs while ensuring
consistency with the learning policy. We first detail the generation target of the DM and the sampling
process. Next, we introduce the core of our method: how to use composite single-step dynamics
models and DMs to generate data that adheres to the learning policy. Finally, we provide a theoretical
analysis for our method, explaining why DyD1i f £ outperforms the use of single-step models alone.
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Figure 2: The sketch process of DyD1i f £. It mainly consists of three parts: (1) Sampling start states
from D to generate initial trajectories as conditions with a single-step model. (2) Synthesizing rollout
trajectories by iteratively sampling from the DM and the learning policy. (3) Filtering synthesized
data and adding high-reward trajectories to Dgy,.

The sketch process of DyDiff is illustrated in Fig. 2} Generally, DyDiff begins by sampling
states from the real dataset D as initial states of rollout, and an action sequence is derived from
interaction between a single-step dynamics model and the learning policy for each initial state. A
DM, conditioned on the initial state and the action sequence, is then employed to synthesize the
corresponding state sequence. This state sequence is iteratively refined using both the learning policy
and the DM. Finally, a reward-based filter is applied to select high-reward data, which are added to
the synthetic dataset Dsy,, for further policy training.

4.1 DIFFUSION MODELS AS ROLLOUT SYNTHESIZER

DMs demonstrate a remarkable ability to model complex distributions and have been utilized for
synthesizing sequential data in offline RL in many previous works (Ajay et al.}[2022}Zhu et al.,[20234;
[2024). Since offline RL possesses a pre-collected dataset D containing trajectory-level
sequential data, we can easily pre-train DMs over D via supervised learning. We first construct the
training set for the DM from D. Let L denote the length of the generation sequence for the DM. For
a trajectory 7 = (8o, ag, S1,---,aH—1,SH) € D, the corresponding training trajectories are derived
by slicing or padding 7 to a length of L, i.e. containing L + 1 states and L actions:

S(r) = {7i = (84, G4y Siq1, Qig1s - - -5 Qipp—1,8i41) | 0<i<H—-L} (H>1L)
{712 (807(10781,...,aH,1,8H7O,0,...,0) | |’7~'| :L} (H<L) '

(@)

The training set for the DM is the union of S(7) over all trajectories in D, defined as S = (J ., S(7).
Without causing ambiguity, we will also denote the trajectory in S as 7 for simplicity.

There are several possible choices regarding which part of the trajectories the DM will generate.
DecisionDiffuser generates state sequences, MTDiff generates
state-action sequences, whereas SynthER [2024) generates state-action-reward sequences.
To leave room for the learning policy, we generate only the state sequence 75 = (s, $1,...,8) of a
trajectory 7 = (75, 7, ), conditioned on the action part 7, = (ag, a1, ...,ar—1) and the initial state
so. Empirically, we generate both states and actions simultaneously, but replace the generated actions
and the initial state with the given conditions after each diffusion step. This scheme effectively injects
the conditions into the diffusion process, while preserving the relative positions between states and
actions, enabling the DM to learn their causal relation. Formally, suppose the DM produces 7* after
the i-th denoising step. The conditions are applied by a hard replacement as

i ; ; i ;i i i i Apply Conditions i i i i
(2 3 K3 ? 3 ] 7 K] ? X2 3 7
T = (84, a4, 81,01, 8%, .. .,a7_1,8]) ——==T' = (S0,00,51,01,5,---,0L-1,57,) - (3)

We follow EDM (Karras et all[2022)) to train and sample from the DM, which uses a neural network
Dy to directly predict the denoised sample from the noisy one, instead of predicting the noise. Let
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#N = Dy(7*) be the predicted denoised trajectory from 7¢. Denote 7, = (37,32, ...,5Y) for the
predicted state sequence and 7Y = (a{Y,a¥,...,a¥ ) for the action sequence. With hard-replaced

conditions, 7V always equals the given condition 7,, and 32’ equals sq. Therefore, we only need to
compute the loss between 7Y ) and 75~0. The overall training loss for Dy is

Laitt(0) = Erns,ompo mmn (0,02 M) 750 = Tes0ll3], where (sg', 780, 72") = Do(7 +n30) .

“)
Here, o is the noise scale, p,, is the distribution of o, and A(o) gives weights for different noise scales.
We follow the same configuration as EDM, with detailed values listed in Appendix [C| Under Eq. (@),
we expect the DM to learn the environment dynamics from the dataset.

With a trained DM Dy, we can now sample a state sequence 7.V beginning from sy and corresponding
to a given action sequence 7,, starting from pure noise 7° ~ N(0,3I). We utilize the EDM sampler
for improved sampling accuracy and speed, with a slightly modification in the denoising part to apply
the conditions. Most of the sampling process remains identical to EDM, so we provide the details in
Algo. 2]in Appendix [C] For brevity, we denote this sampling process as drawing from the distribution
po (7|50, 7a)-

Though we can now use DMs to generate state trajectories, the choice of initial action trajectory is
worth considering. Relying on random action trajectories would produce low-reward samples, as it is
equivalent to executing a random policy from sg. Moreover, directly picking an real action sequence
from the dataset would still correspond to the underlying behavior policy rather than the learning
policy, which fails to meet our goal of maintaining policy consistency. Therefore, we need to derive
the initial action trajectory with the assistance of a single-step dynamics model. Besides, we do
not incorporate policy information in the generation process of the DM, so the immediate synthetic
trajectories requires further refinement. We will introduce the details in the next section.

4.2 REFINE ROLLOUTS WITH DIFFUSION MODELS

To obtain a good initial action sequence, we allow the learning policy to interact with a pre-trained
single-step dynamics model T4 (s, a) parameterized by ¢. This model is directly trained via supervised
learning over the dataset D, with the following loss objective:

Ldyn(¢) = E(s,a,s/)ND,§’~T¢(s,a)[”g/ - SI”%] . Q)

For interaction, the most straightforward approach is to start from an initial state sy sampled from
D, and sample G from the learning policy 7(+|sg). The dynamics model then predicts the next state
51 ~ Ty(-|s0, G1). By iteratively sampling from the policy and the dynamics model, we can form a
rollout trajectory autoregressively as

Tayn = (50,00, 581,...,01-1,5), ;i ~7(-|8;), 841 ~ Tp(:3:,0;),0<i <L -1, (6)

where L is the rollout length and 5y := so. However, rollout by interacting with a single-step
dynamics model leads to severe compounding error as L increases, thus not benefiting policy training
as shown in Fig. Therefore, 74yn is not directly used for policy improvement but only as an
initial condition for the DM, which can generate more accurate trajectories. As all actions of 7qyy, are
sampled from the learning policy 7, 74y, naturally ensures policy consistency, making it a suitable
initial condition for pg. Formally, we select the action sequence 7, 4yn and the first state sq as
conditions, sampling a new trajectory from pg(7|sq, 74):

(50a%§}]g)Ma%a,dyrl) ~ p9('|50a7ﬁa,dyn) . (7)
Here, we use %](ij\)[ to represent the synthetic trajectory after the k-th generation. However, the diffusion
sampling process only modifies the state sequence while preserving sg and 7, q,, unchanged, which
violates the policy consistency.To correct this, we resample the action sequence from the learning

policy given sy and %SI))M:

ai' by ~ m(ls0), @Dy ~ (8 0y), where1<i< L—1. (8)

Now, %](311\)/[ = (so, f's(ll))M, ﬁi%M) is consistent with the learning policy but violates the dynamics. We

address this in the same way as 74yy,, by sampling a new trajectory from the DM pg given s, and
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(1) N
7,.bym as conditions:

~(2 ~(1 ~(1
(50, 7 D 7 tr) ~ Po (150, 7 D) - )

Then, the learning policy 7 is used to correct the action sequence, ensuring policy consistency. By
iteratively applying the DM and the learning policy, we can gradually inject information about the
learning policy into the generated trajectory while maintaining the dynamics accuracy with the DM.

Finally, we denote the final trajectory after M iterations as (o, 74,pM, 7s,DM) = TDM = %](3]1\44)

. Following the scheme of MBPO (Janner et al., 2019), we create another replay buffer D;,,, to
store synthetic data. In practice, a batch of states is uniformly sampled from the real dataset D as
initial states, denoted as Bs = {(so)x} 1{11’ where B, is the batch size of the rollout. Each initial

state so will induce a rollout trajectory 7pn, so B, derives a trajectory set B, = {(7pm )} E;].
To prevent data with low rewards from negatively impacting policy training, we filter B, using a
reward-based filter before adding the rollout trajectories into Dsy,,. As we do not have direct access to

the actual reward function, we pre-train a reward model 7y (s, a) that predicts the rewards of synthetic
transitions. Similar to the dynamics model, r,; is simply trained through supervised learning:

Lrew(w) = }E(s,a,r)N’D,f’wrw(s,a)[(72 - 7,)2] . (10)

For filtering, we predict the reward for each transition in 7py; and sum them up for the entire
trajectory:
L-1
Ty (ToM) = 7 (S0, Go,pMm) + Z Ty (8:, DM, Gi,DM) - (11)
i=1
Only a proportion 7 of trajectories in B, is added to Dsy,. We introduce two filtering schemes to
select high-reward data as follows:

» Hardmax: Sort the trajectories by their accumulative rewards and directly select |7 B, | of them
with the highest rewards.
exp(ry ((Tom)r))
Zf;] exp(ry ((Fpm);))
softmax of their accumulative rewards, and sample |7 B, | of them according to p,..

* Softmax: Calculate a probability distribution p,.((Tpm)k) =

using the

Intuitively, the hardmax filter strictly selects trajectories with high rewards, while the softmax filter
includes those with low rewards. However, considering that offline RL policies can outperform the
behavior policy by stitching together trajectories in the dataset, the softmax filter provides greater
diversity and opportunities for the policy to discover better patterns.

As DyDiff is an add-on scheme for synthesizing data, we do not design additional policy training
algorithms but instead directly incorporate existing model-free offline policy training methods that
explicitly require policies. Our overall algorithm is summarized in Algo. [T}

4.3 THEORETICAL ANALYSIS

We provide a brief theoretical analysis to show why models supporting non-autoregressive generation,
such as DMs, are superior than single-step models. The following analysis is Let T'(s'|s, a) be the
real dynamics function. We begin with a lemma from MBPO (Janner et al.,|2019) that bounds the
return gap between the real dynamics and the learned single-step dynamics. Denote the accumulative
discounted return in dynamics 7" with policy 7 as J(7T', 7), and the maximum reward as R.

Lemma 1. (Lemma B.3 of MBPO). Suppose the error of a single-step dynamics model T,,(s'|s, a)
can be bounded as max; Eq [Dxr, (T (8'|s,a)|T(s'|s,a))] < €. Then after executing the same
policy T from the same initial state sg in T,,, and the real dynamics T, the expected returns are
bounded as

2Rvyem
(1—=79)?

Note that this formulation differs slightly from its original version in MBPO, as there is no policy
error term; the policies executed in both the trained dynamics model and the real dynamics are the
same in offline RL. Then, the return gap of DMs can also be bounded. Denote the state distribution
after executing an action sequence 7, from s in the real dynamics as T'(s¢|sg, 74), and the state
distribution induced by the DM conditioned on sg and 7, as Ty(s¢|s0, 74)-

|J(T,7) — J (T, )| < 12)
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Theorem 1. Suppose the error of a non-autoregressive model T;(st|so,Ta) can be bounded as
max; Doy (Ty(st|S0, 7)) | T (st|80, Ta) < €q. Then after executing the same policy m from the same
initial state sy in Ty and the real dynamics T, the expected returns are bounded as

2Rey
1—~"

|J(T,7) — J(Tg,m)| < (13)

The proof is provided in the Appendix D] We observe that these two bounds differ by a multiplier
ﬁi—’: The first part, ﬁ, is greater than 1 when 0.5 < « < 1. In practice, 7 is typically
set above 0.9. For the second part, although ¢, bounds the single- step error and ¢4 bounds the
accumulative multi-step error, we st111 have €4 ~ €., due to the superior modeling capabilities of
DMs. Consequently, the inequality 1_7 o> 1 holds, indicating that the non-autoregressive models
enjoy a better return gap than single-step models. The difference in the multiplier arises from the fact
that the non-autoregressive model is merely affected by the compounding error. However, both ¢,
and ¢, are related to complicated neural networks without theoretical analysis so far, they cannot
be further decomposed analytically. To validate our assumptions on the error rates of single-step
models versus DMs, we conduct a simple experiment to compute the MSE of rollouts generated
by both models. The results support that €; < ¢, over long horizons. Detailed settings and results
are provided in Appendix [D.3] Finally, we would like to clarify that the theoretical analysis applies
to general non-autoregressive models, with DMs and DyDiff serving as specific examples. It
highlights the potential of using non-autoregressive models for synthesizing rollouts.

Next, we analyze the effect of the iteration times M. In DyDiff, we start from the state trajectory
generated by the autoregressive model, and iterate between the DM and the learning policy for
M times. While non-autoregressive models demonstrate greater accuracy than single-step models
at the transition level, their performance at the trajectory level warrants further investigation. Let
7 = (80,00, 51, - - .) = (7Ts, Ta) denote the trajectory from sy induced by 7 in the real dynamics. We

define 7, = (S0, @0,m» S1,ms - --) = (Ts,m» Ta,m) as the trajectory generated autoregressively, and
( ) = = (so, ag ;, sgkg, ag C)l, sgkg, )= (T( d), (Ed)) as generated non-autoregressively after the k-th
1terat10n We begln with assumptions on the state distribution distance between 7s and 75 4 under

different action sequences.

Assumption 1. The error between T(si|so,7,) and Ty(s¢|So,Ta,q) can be bounded as
max; Doy (Ta(se|so0, Ta,a) |1 T(5¢]50, Ta)) < €s,a + Co,a maxy ||, ,d IS a constant.

Assumption 2. Given two state sequences T, 1 and Ts 2, the distance between corresponding action
sequences induced by  is bounded as max; DTV (Ta|TS D|7(7a|Ts,2)) < Crmaxy ||7s1 —
where C is a constant.

Assumption|T]is very similar to the condition outlined in Theorem [I] but it also takes into account the
difference in the action sequences. Intuitively, the error of the non-autoregressive model is distributed
across the entire trajectory, which suggests the change in the action sequence will not result in
significant differences in the state sequence. Assumption [2]reflects the smoothness of the policy.
Now, we derive how the distance between T(Z) and 7, evolves over iterations. The error of the initial

state sequence T ,, 1S glven by Lemma|z|1n Appendix EI, specifically Le,,. Then, the error of the
initial action sequence is

A(Tam, Ta) = IIltaXDTv(ﬂ'(Ta‘Ts’m)”W(Ta|TS>) < C,Le,, . (14)
We then sample a new state trajectory 7 ( d) from pg(7|s0, Ta,m ). Under Assumptionm the error of
( ) is bounded as

d(r{)7) = max Doy (Ta(sil7am: 50)| T (51170, 50)) < €60+ CaaCrlem . (15)

)

This state sequence is then fed into the policy 7 to compute the corresponding action sequence Téi}l,

and its error is bounded as
d(r337a) = max Doy (w(ral N I7(7al7,)) < Crl€.4+ CadCrLem) (16)

a

From Eq. (T3) and Eq. (I6), each iteration introduces both additive and multiplicative constant
coefficients to the error bound. Continuing the iterations, we can derive the error of the state sequence
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after the k-th iteration as

d(r"), 75) = max, Doy (Ta(se|7" ", 50) | T(5¢l7ar 50)) < 5% €sa+ CFLe, k=1,2,..., (17)

where C' = C, 4Cr. As k increases, the error bound evolves from Le,, to €, 4/(1 — C'). In practice,
the accuracy of DMs is generally much better than that of auto-regressive models, which implies
€s5,d < Ley,. This shows that the iterating optimizes the error bound of the synthetic trajectory.

Finally, it is important to note that increasing the iteration times M will not necessarily lead to
improved performance. Too many iterations may push the intermediate result out of the dataset’s
coverage, reducing the accuracy of the DM. Additionally, large M can significantly increase rollout
time, as each rollout requires sampling from the DM M times. Therefore, the choice of M should be
determined based on the complexity of the dataset and the structure of the DM. Further discussions
can be found in Section 3.4

5 EXPERIMENTS

To validate the effectiveness and generalization capability of DyD1 f £, we conduct extensive experi-
ments across various benchmark tasks and different offline model-free policy training algorithms.
Our experiments are designed to answer the following key research questions:

» Can DyDiff effectively enhance the performance of underlying policies without requiring policy
hyperparameter tuning?

* Is DyDiff adaptable to different types of tasks, including dense- and sparse-reward tasks?

* How do different critical hyperparameters impact the performance of DyDif£?

5.1 EXPERIMENT SETTINGS

We conduct the experiments on the D4RL (Fu et al.l 2020) offline benchmark, following the common
standards as previous offline RL studies. Specifically, we evaluated our performance on MuJoCo
locomotion tasks and Maze2d, with the former characterized as dense-reward tasks and the lat-
ter as sparse-reward tasks. For each MuJoCo locomotion task, three datasets are included: (a)
medium-replay, shorted as mr, containing data collected by a policy during its online training
process, ranging from stochastic to medium-level. (b) medium, shorted as md, containing data
collected by a single medium-level policy. (c) medium-expert, shorted as me, containing a 50/50
mixture of data collected by a medium policy and an expert policy, respectively. In summary, mr
and me are mixed dataset, while md is a single-policy datasets. For Maze2d, we evaluated all three
difficulties: umaze, medium, and large, from easy to hard. The harder the task, the larger and more
intricate the maze becomes.

For the underlying policy, we select three popular state-of-the-art offline RL algorithms: CQL (Kumar
et al.| 2020), TD3BC (Fujimoto & Gu,|2021)), and DiffQL (Wang et al.| 2022)). CQL is a Q-constraint
method that employs a stochastic Gaussian policy, while TD3BC is a straightforward modification of
TD3 (Fujimoto et al.,[2018) using a deterministic policy. DiffQL is a recent Q-learning method that
incorporates DMs as policies. Our choices for baseline cover various types of the learning policy.
Note that we omit IQL (Kostrikov et al.,[2021) as our underlying policy, since it only trains the value
and Q-functions without an explicit policy, which does not align with our goal of reducing the gap to
the learning policy. All underlying policies are reimplemented in our codebase for fair comparison.
We test both hardmax and softmax filters and report the results of the softmax filter here. The full
results are detailed in Appendix [E.2]

In addition to the underlying policies as baselines, we also compare DyD1 f £ to SynthER (Lu et al.,
2024), an add-on data augmentation method that utilizes DMs to synthesize trajectories. SynthER is
similarly reimplemented and added on the same base policies.

5.2 RESULTS

The main results for DARL MuJoCo locomotion tasks are presented in Tab. [I| demonstrating that
DyDi f f improves base policies across most datasets, and achieving comparable performance in the
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Table 1: Results on MuJoCo locomotion tasks. The reported number is the normalized score, averaged
over 3 seeds and last 5 epochs, + standard deviation. Note that our method is an add-on method to
model-free offline algorithms, we reimplement the baselines in the same codebase of DyDiff for
fair comparison. The best average results are in bold.

Dataset TD3BC CQL DiffQL

Base SynthER DyDiff Base SynthER DyDiff Base SynthER DyDiff
hopper-md 65.8458  59.04£52 71.5£15.5 | 57.943.7  57.14£23 549423 | 60.24£3.6 589429  55.14+2.6
hopper-me 9524149 94.14+12.3 984+134 | 85349.8 923+74 909482 | 109.0+4.6 108.2+4.8 109.1+£3.7
hopper-mr 81.5+17.4 504+134 82.6+£20.1 | 87.7+7.8  92.4+6.5 953+2.6 | 97.84£5.1 99.1+44  99.5+3.4

halfcheetah-md | 50.6£0.5 512429  58942.1 | 43.842.6 437402  43.241.1 | 47.1£25 473+£2.6 549446
halfcheetah-me | 69.7£18.4 80.0+£7.5 77.6+10.6 | 53.0£9.0  49.445.1 60.84£9.2 | 94.1£0.7  90.2+£4.7  94.5+2.0
halfcheetah-mr | 46.0£0.6  452+04  44.246.1 | 429426 432+03  41.5422 | 45.14+4.1 46.0+£2.8  47.5+5.7

walker2d-md 76.8+16.3  83.5+2.1 87.9+1.1 | 79.3+24  82.5+1.1 79.4+0.2 | 84.3+0.8 85.0+13  83.3%1.9
walker2d-me 110.7+0.6  110.6+04 110.6£1.3 | 108.9+0.6 109.1+£0.4 108.8£0.4 | 109.6+£0.2 109.8+0.4 109.7+£0.3
walker2d-mr 85.8+11.8 904453 745489 | 80.5+£3.7  85.7+2.8  86.8£7.0 | 90.6+£1.9 944435 923422
Average ‘ 75.8 73.8 79.6 ‘ 71.0 72.8 73.5 ‘ 82.0 82.1 82.9

remaining ones. Our reimplemented baselines yield similar performance compared to their original
papers, except SynthER, which enlarges the size of the base policy networks, a change we do not
implement in our reimplementation. Moreover, we maintain the original hyperparameters of all base
algorithms. Detailed settings and hyperparameters are described in Appendix

Among the various datasets (md, me, and mr), DyDiff performs well on mr and me datasets but
fails to improve the baselines on md. A possible reason is that the data coverage of md is so narrow
that the intermediate results of the sampling iterations fall out of distribution, leading to a decrease
in data accuracy. In contrast, DyD1i f f effectively generates high-quality, diversified data when the
data coverage is broad, thereby enhancing the base policies. Furthermore, as the synthetic data aligns
with the distribution of the learning policy, it promotes better performance than SynthER, which
uniformly upsamples the entire dataset. From the perspective of different base policies, DyDiff
exhibits relative incompatibility with CQL. The computation of the conservative term in CQL relies
on Q-values on out-of-distribution data, making CQL more sensitive to data accuracy.

5.3 EXPERIMENTS ON SPARSE-REWARD TASKS

Table 2: Results on Maze2d tasks. We report average normalized scores over 3 independent runs, +
standard deviation. The best average results are in bold.

TD3BC CQL DiffQL
Base SynthER DyDiff Base SynthER DyDiff Base SynthER DyDiff

0.35£0.10  0.324+0.09 0.5540.12 | 0.19+0.15 0.10£0.12  0.58+0.43 | 0.474+0.01 0.45+0.02 0.46+0.02
maze2d-medium | 0.81+0.50 0.49+0.20 1.34+0.19 | 0.93£0.13 0.924+0.03  1.56+0.17 | 0.50£0.02 0.17£0.04 1.62+0.02
maze2d-large 0.43+£0.46 0.984+0.33 1.824+0.42 | 0.05+£0.11 0.37£0.05 1.10£0.07 | 1.094+0.29 1.38+£0.26 1.97£0.15

Average | 0.53 0.60 124 | 0.39 0.46 1.08 | 0.69 0.67 135

Dataset

maze2d-umaze

For sparse-reward environments, we evaluate DyDi f £ across Maze2d tasks of varying difficulties, as
presented in Tab. 2] It shows that DyDif £ consistently improves the base policy, particularly in the
more challenging maze2d-medium and maze2d-large tasks. In these environments, the agent
only receives rewards when approaching the goal, leaving most transitions in the offline dataset with
zero reward. Consequently, the policy training algorithm must "stitch" together partial trajectories
to discover the optimal path to the goal. This stitching process is highly challenging due to the
sparse reward signal. However, DyD1 f £ alleviates this difficulty by leveraging its ability to generate
long-horizon trajectories. By synthesizing full trajectories that guide the agent directly toward the
goal, DyDi f f reduces the reliance on stitching partial trajectories, thereby accelerating learning and
improving policy performance. In contrast, SynthER, which merely upsamples the dataset uniformly,
lacks the capability to integrate long-horizon information meaningfully, thus offering less assistance
during policy training.

5.4 ABLATION STUDIES

To verify our theoretical analysis and assess the sensitivity of DyD1i f £ to key hyperparameters, we
conduct experiments on varying the iteration times M, rollout length L, filter proportion 7, and real
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Figure 3: Ablation studies on various hyperparameters. Experiments on iteration times and rollout
length validate our theory analysis, whereas those on filter proportion and real ratio prove the
robustness of DyDiff.

ratio ov. The former three hyperparameters have been introduced above, and the last real ratio « is
commonly used in MBRL to control the proportion of the real data used in policy training (Lai et al.|
2021). All ablation studies are performed on the hopper—-mr dataset using the TD3BC base policy.

Iteration time. As discussed in Section larger iteration times reduces the error bound but
increases the probability of falling out of the data distribution, which may degrade the data accuracy.
Fig. 3 proves our analysis that a medium ) yields the best performance. Note that when M = 0,
DyDif f reverts to only using single-step models for rollout. This also highlights the ability of DMs
on long-horizon generation against single-step models.

Rollout length. As illustrated in Fig. |1b} large rollout length benefits the exploration of the policy.
However, longer rollouts also increase €4, loosening the return gap. We test DyDi f f across various
rollout lengths, with results presented in Fig. [Bp. These results support our analysis of L, showcasing
that DMs have a greater potential than single-step models due to their ability to generate accurate
long-horizon trajectories.

Filter proportion. This hyperparameter controls the amount of data added to Dsy,, during each
rollout. Intuitively, a higher 7 increases the data diversity but may also introduce more low-reward
data, and vice versa. The results in Fig. |3t show that DyDiff is robust in 77, suggesting the high
quality of generated data.

Real ratio. The real ratio determines the proportion of the real data when sampling from D and
Dgyn. Since DyD1iff only does rollout from real initial states, it is not feasible to entirely replace
the real data with synthetic data as SynthER. We begin with a commonly used setting of o = 0.6
and evaluate different «v. The results, depicted in Fig. 3[d, show that an o around 0.6 leads to good
performance. Increasing « too much decreases the benefit of synthetic data generated from DyDiff.

6 CONCLUSION

In this paper, we explored the application of Diffusion Models (DMs) in sequence generation for
decision-making problems, focusing on their role as dynamics models in fully offline reinforcement
learning settings. We identified a critical issue where data directly synthesized by DMs can lead
to a mismatch with the state-action distribution of the learning policy, negatively impacting policy
learning. To address this, we introduced Dynamics Diffusion (DyD1i £ f), a framework that effectively
generates trajectories aligned with the learning policy’s distribution, ensuring both policy consistency
and dynamics accuracy of the synthetic trajectories. DyD1i f £’s superior performance stems from
two critical components: (1) the intrinsic modeling ability of DMs and (2) the iterative correction
mechanism between the DM and the learning policy. Both theoretical analysis and experiment results
validate the effectiveness of these components. As an add-on scheme, DyDiff can be seamlessly
integrated into any offline model-free algorithms that train explicit policies. Overall, DyD1i £ f offers
a promising direction for enhancing offline policy training using DMs. Furthermore, DyD1 f £ holds
potential for future extensions, including applications to online RL algorithms with more compact
DM architectures since the training is relatively time-consuming with the full U-Net backbone, as
well as approaches to improve scalability for large-scale tasks, which we aim to explore in future
work.

10
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A DETAILS OF THE MOTIVATION EXAMPLE

In this part, we list the details of experiment settings of our motivation example illustrated in Fig.[I]

For the first part (Fig.[Ta)), we randomly 5%/95% split the hopper-medium-replay dataset (Fu et al,
2020) into two parts, denoted as D5 adn Dy, respectively. Then, we train a TD3BC (Fujimoto & Gu,
2021) agent on D5 while augmenting (1) on-policy data collected in the real environment; (2) data
following the behavior policy randomly selected from Dys; (3) no extra data to Ds every 50 epochs.
We keep the data amount of scheme (1) and (2) the same for fair comparison. Note that both extra
data in scheme (1) and (2) are real data without any error, and the only difference is that the former
follows the distribution induced by the learning policy, whereas the latter follows the distribution
induced by the behavior policy.

In the experiment about the rollout length (Fig. [Ib), we also train the TD3BC agents on D5 and add
model approximated on-policy data to it. For every epoch, we sample a batch of states from the
dataset and start rollout from them. Though the rollout lengths differ, their transition amounts are
kept the same by adjusting the state batch size. As single-step models cannot handle long-horizon
rollout, we use DyD1 ff to do rollout in this experiment.

Finally, in Fig. [Ic| we still train the TD3BC agents on D5 and add model approximated on-policy
rollout trajectories of length 100. Those trajectories are synthesized by Bayesian Neural Networks
(BNNs) suggested in MBPO (Janner et al.;[2019) and DyD1 £ £, respectively. For BNN, the trajectory
is generated autoregressively as Eq. (0).

B DETAILS OF PRELIMINARIES

Both diffusion models and reinforcement learning contain the concept of step, which refers to the
diffusion step in DMs and the timestep of trajectories in RL. To avoid confusion between them, we
use the superscript to represent the diffusion step, whereas the subscript is for the RL timestep. For
example, 2% is the sample at the i-th diffusion step, and s; is the state at the ¢-th timestep in a RL
trajectory.

B.1 DIFFUSION MODEL

Diffusion models (DMs) are a class of generative models that mimic the diffusion process in physics.
They first learn the data distribution and generate new data by incrementally removing noise from a
pure Gaussian distribution. Formally, suppose the real data distribution is pgata(2) and the initial
sample is 20 ~ N(0, I). For each timestep, DMs sample ! ~ p(z|2%%). After N timesteps,
we obtain the final sample 2%V, which is supposed to be distributed as pqa;a (). Therefore, the key
point of DMs is to model and learn the distribution p(z|z°%). A widely used framework of DM is
DDPM (Ho et al.,|2020), which formulates it as a parameterized Markov chain:

N
po(a®N) = p(a°) [ [ po(a'a"™"),  po(a’la"™") = N(ug(a' " i = 1), Zg(2" 1, = 1)) (18)
i=1

The corresponding posterior (2% ~*|2V) gradually adds Gaussian noise to the real data in a fixed
variance schedule 3°:

N
q(xO:NfllxN) _ Hq(xiflkci)’ q(xi71|xi) :N( /1_5i71xi’ﬁi71‘[) , (19)
i=1
where 3¢ is the hyperparameter. With the posterior distribution, DDPM learns py by optimizing the
variational lower bound:

pe(xO:N)

_ 20
Q(9€0:N—1|IEN) 20)

E[- logpg(mN)} <E, {— log

After DDPM, many works propose variety of DDPM or improve the sample efficiency of
DDPM (Song et al., 2020aj 2023}, [Nichol & Dhariwal,2021). In this paper, we follow the architecture
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proposed by EDM (Karras et al.,[2022). EDM expresses DMs in a common framework by defining
p(w; o) as the distribution obtained by adding Gaussian noise N'(0, 021) t0 pgata. Let 0gata be the
standard deviation of pgata. If Omax > Fdata, P(T; Omax ) becomes nearly the same as the pure Gaus-
sian noise. Reversely, starting from a noise sample z° ~ N'(0, 2, T), DMs denoise it following
noise levels ooy = 0¥ > 0! > ... > ¢V = 0. Finally, we obtain x5 ~ p(x;0Y) = paata(T).

Following [Song et al.|(2020b), there is a corresponding probability flow ordinary differential equation
(ODE) whose solution is our desired p(z; o):

dz = —a(t)o(t)Vylogp(z; o(t))dt . 21
Here, the noise level o(t) changes continuously with respect to time, &(¢t) := do(t)/dt, and
V. log p(x; o(t)) is called the score function. As ¢ decreases, x described by Eq. will move
towards the data distribution pgata (). Noting that o (¢) is defined by ourselves, if the score function
V, log p(z; o (t)) is known, we can sample z by solving Eq. (21). Suppose Dy(x;0) is a denoiser
function that predicts the real data from the noised sample = and the noise level o. Theoretical
analysis shows that if Dy minimizes the Lo distance to pqata

0 = argminEyop,,, Ennn(o,02n) | Doz +n50) — 23 (22)
0
then the score function can be expressed as
Dy(x;0) —x
V. logp(ro(t) = 22T @3)

For more detailed theoretical analysis and how to choose the noise level function o (t), please refer to
the original paper of EDM (Karras et al.|[2022).

B.2 OFFLINE RL

Reinforcement learning (RL) models the sequential decision problem as a Markov Decision Process
(MDP) M = (S, A, T,r,~,do), where S is the state space and A is the action space. Let A(C') be the
set of probability distributions over the set C. T'(s'|s,a): S x A — A(S) is the dynamics function
that gives the distribution over next state s’ when executing action « at state s, r(s,a): S x A = R
is the reward function, v € (0, 1) is the discounted factor, and d(s) is the distribution of the initial
state. An agent on the MDP is a policy 7(a|s): S — A(A) that defines a distribution over action
a given state s. The objective of RL is to learn a policy 7 to maximize the discounted cumulative
reward, as

max JM,m) = Eggndo,asmm(]se)sses1~T(:|sesat) [Z'ytT(Stﬂt)] . (24)
t=0

In the online RL setting, the policy is allowed to interact with the environment, receiving real next
states and rewards as feedback. However, such interaction is impractical in many real-world situations
since it may be dangerous or cost a lot of resources. To address this problem, offline RL manages to
train the policy 7 on a pre-collected fixed dataset D;,1. The training objective of offline RL is the
same as online RL given by Eq. (24), but the agent cannot receive real feedback to correct potential
errors in training, which makes offline RL more challenging than online RL.

C ALGORITHMS

We provide the overall algorithm of DyD1 £ £ in Algo.|l} To unify the notation in the initial rollout and

the iteration, we define %(E%M = Tq,dyn- Any diffusion sampling process that supports conditions can
be incorporated for sampling the state sequence from py, and we choose the EDM sampler (Karras

et al.,[2022)) for its high speed and accuracy.

For the sampling process, we slightly modify the EDM (Karras et al.| [2022) sampling process to
inject the first state sy and the action sequence 7, as conditions.

The hyperparameters in Algo. [2 are the same as EDM. For those that should be adapted across
datasets, we follow the grid search suggestion in Appendix E.2 of EDM (Karras et al., 2022 to find
the best hyperparameters that minimize the loss of DMs. We list them and other hyperparameters
used in training the DM in Tab.
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Algorithm 1 DyDiff

Require: Offline dataset D, number of training epochs E, number of optimization step M, rollout
batch size B,., ratio of real data «, batch size B.
Train the DM Dy (7; 0), the dynamics model Ty (s, a), and the reward model 7. (s, a) by Eq. (@),
Eq. (), Eq. (T0), respectively.
Initial the synthetic replay buffer Dy, = & and the learning policy m¢.
fore=1— Edo
Sample a batch of state B, = {sk}", ~ D as initial states for rollout.
for s € B, do
Autoregressively generate 74y, = (S0, G0, $1,---,ar-1,81) by Ty and 7.
fork=1— Mdo
Sample new trajectory (so, %S(%M, %éﬁ;l\}[)) ~ pg(T|s0, %15%_1\?), following Algo.

Sample new action sequence %(Ef%M from the learning policy m¢ by Eq. .

end for o
Get final rollout trajectory Tpy = %I()M).
end for

Calculate the cumulative rewards {7y (7,,)}27,.
Filter the trajectories by their rewards using the hardmax or softmax filter.
Add all transitions of remaining trajectories to Dgy,.
Sample a batch of transitions Bgyy, from Dyyy, where |Bgyn| = |aB].
Sample a batch of transitions Byea1 from D, where |Byeal| = B — | Bgyn|-
Use B = Brcal U Bgyn, to train the learning policy 7.

end for

return 7,

Algorithm 2 Sampling process from the diffusion model

Require: Diffusion model Dy(7; o), diffusion step NV, the first state s¢, action sequence 7,, timesteps
to,t1,-..,tn, noise factors y1, s, ..., Yn—1, noise level Spoise.
Sample 70 ~ N(0,31).
fort=0— N —1do
Sample €; ~ N(Oa Sr210iseI)'
Increase the noise level #; < ¢; + Yiti.

Calculate 7% +— 7% + /12 — t?¢;.
Predict the denoised trajectories 7 85, N 0, 7Y« Dy(74:1;))
Evaluate the first-order gradient d; < (7* — #V) /.
Take the Euler step 7071 < #¢ + (t;41 — t;)d;.
Apply hard replace 7' < (s0, 730, 74).
if ti-i—l 7é 0 then
di « (77 = Do(7"F 5 ti41)) [tigr.
Apply the second order correction 79t <— 7% 4 (t,, 1 — t;)(d; + d}) /2.
Apply hard replace 711 < (50,730, 74).
end if
end for
return 7

Y

N
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Table 3: Hyperparameters used for training and sampling process following EDM.

Hyperparameters  Values

ti<N (Urln/apx + Ni_l (O'rln/upl - Urln/apx)>p
in
min (Schurn/Na \@ - 1) ift; € [Stmina Stmax]
TiN 0 otherwise
)\(O') (U + Udata)/(a * adata)2
Do Ino ~ N( mean btd)
Omin 0.002
Omax 80
Odata 05
p 7
Stmin 0.370
Stmax 52.212
Schurn 60
Shoise 1.002
Prean -1.2
Paa 12
N 34

D PROOFS
In this section, we provide proofs of lemmas and theories in the main paper.

D.1 PROOF oF LEMMA[I]

As Lemmamis from MBPO (Janner et al.,[2019), we directly borrow the proof from MBPO with a
slight modification. The following lemma from MBPO is necessary for proof.

Lemma 2. (Lemma B.2 of MBPO). Suppose the error of a single-step dynamics model T,,(s'|s, a)
can be bounded as maxy Eq . [Dxr,(Tm ('|s,a)||T(s'|s,a))] < €. Then after executing the same
policy  from the same initial state sq for t timesteps, the distance of the state marginal distribution
at s; is bounded as

Dy (T (stlso, m)| T (st]50, 7)) < tem - (25)

Proof. Let ¢, = Dy (T (st|s0, 7)||T(s¢]s0, m)). For brevity, we define T7, (s) :== T}y, (s¢|s0, ) and
Tt(s) :== T(st\so,ﬂ').

T, \—IZTm sls', ()T (s) = T(sls’, ()T ()]
<Z|Tm sls', ()T (s) = T(sls’, (/)TN ()]

(26)
ZTf T o1 () Tl D]+ Tl 6 DI () =77
= ES,NTJ;I(S,)HTM(S|S ,w(s)) = T(s|s',m(s")|] + ZT s|s’, w(s)|TE(s") — T (s
€t 7DTV(T7tn HTf(S 22‘ m
5 Z < onrt (o T (sl m(s) = T(sls',m(s") ] + D Tsls’, m(sNIT5 (') = Ttl($’)>
. 27
; Tl (s) Z T (s]s", m( T(sls',w(s))]| + Drv(Ty (ST H(s")
< €m + €41
=tem
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Then we can prove Lemmal ] following the original proof in MBPO.

Lemma 1. (Lemma B.3 of MBPO). Suppose the error of a single-step dynamics model T,,(s'|s, a)
can be bounded as max; Eqr[Dxr, (T (8|5, a)||T(s']s,a))] < €m. Then after executing the same
policy T from the same initial state sg in T,, and the real dynamics T, the expected returns are

bounded as
2Rvem

(1—=7)2%"

Proof. Denote the state-action distribution at timestep ¢ induced by T as p'(s, a), and that by T}, as
¢
pt (s,a).

‘J(T?ﬂ-) _J<Tma77)| < (28)

|J(T,70) — J(Tp,7)| = |Z (s,a) — pm(s,a))r(s,a)|
< R|ZZV (' (s.a) = P, (s, a))]
<RY A [p'(s,a) = plu(s,a)l

= 2R 1 Dy (p'(s.a) [y (5. )

(29)

Note that p’(s,a) = T*(s)m(a;|s;), which gives
Drv(p'(s,a)|[pra(s,a)) = Drv (T (s)m(ar|se) | T, (s)m(aclst)) < Drv(T' ()T, (5)) - (30)

Therefore,
|J(T,70) = J (T, )] < 2RY A" Dy (T(s)|T5,(5))
t

S2R) A'tem 31)
t

_ 2Rvep
(=)

D.2 PROOF OF THEOREM[I]

As Theorem|T]is similar with Lemmal | with a slight modification in the assumption, we can prove
Theorem |I] following the previous proof.

Theorem 1. Suppose the error of a non-autoregressive model Ty(s¢|so,Ta) can be bounded as
max Dy (Ty(st]S0, 7a)) | T (8t|80, Ta) < €q. Then after executing the same policy m from the same
initial state sg in Ty and the real dynamics T, the expected returns are bounded as

2R
J(T,7) = J(Ta, ™) < _ei : (32)
Proof. The first part is the same as Eq. (29).
[J(T,m) = J(Ta,m)| <2RY 4" Drv(p'(s,a)|ph(s, a)) - (33)
t

Then, the non-autoregressive model gives a different state-action distribution as pl(s,a) =
Tu(st|S0, 7o )m(at|s:), and the real distribution can be expressed as

p'(s,a) = T"(s|so)m(as]st)
=T (s |s0)T(s¢]s", 0’ ) (d|s ) (as|s¢)

¢ (34)

at|3t H SJ|SJ'_1,aj_l)ﬂ(aj—ﬂsj—l)
(aft|5t) (s¢ls0,7a)
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Therefore, their TV distance is bounded by

Drv(p'(s, a)llpa(s, a)) < Drv(Ta(selso, 7a) 1T (stls0, 7)) - (35)
Following this, we can continue from Eq. (33):

[J(T,7) = J (T, m)| < 2R ~' Do (p (s, a)|[ph(s, a))

<2R> ' Drv(Ta(st]s0, 7a) T (s1]50, 7a))

' (36)
<2R Z Yeq
t
_ 2R€d
=1
D.3 EMPIRICAL VAT.TIES OF ERROR RATES
0.084 Single-step
—— Diffusion Accum.
0.061
[Sa)]
w0
= 0.041
0.021
0.00+

0 20 40 60 80 100
Rollout Step

Figure 4: The transition-level MSE of single-step models and accumulative MSE of DMs for rollout,
corresponding to €, and €4, respectively.

To empirically validate our assumption that €,, =~ €4, we conduct a rollout experiment using the
hopper-medium-replay dataset with the TD3BC policy. We employ a pre-trained single-step
dynamics model 7}, and a diffusion model T};, alongside an expert TD3BC policy n. For each
initial state sg sampled from the dataset, we first generate a rollout by having 7 interact with 75,
autoregressively, following the scheme described in the main paper. Let 7,, = (75 m, 7, ) denote this
trajectory. Next, so and 7, are fed in to the DM T} to synthesize a new rollout 74 = (75,4, 7, ). Finally,
we execute 7, from sg in the real environment, obtaining the ground truth trajectory 7 = (75, 7o )-
As the action is consistent across all three rollouts, we focus on computing the MSE of the state
sequence, as:

emit = |[Sme — sell3,  ear = l|sa — sl - 37

The estimated transition-level MSE e,,, ; reflects the error rate of the single-step dynamics model .
In contrast, the error rate of the DM is defined by executing a ¢-step action sequence, estimated by

t
Ed,t - Zi:l €d,i-

We repeat the experiment over multiple initial states and random seeds, plotting e, ; and Fq ¢ over
t, as shown in Fig.[d] The results demonstrate that Ey; < e, ; over a long horizon, supporting our
assumption that €5 ~ €,,. Notably, comparing the accumulative error E;; against the single-step
error e, ; further demonstrates the superior long-horizon generation capability of DMs.

D.4 EXPLANATION TO ASSUMPTIONS

To illustrate the effectiveness of the iteration process in DyD1i £ £, we first introduce Assumption|I]
and Assumption [2| Here, we provide an intuitive explanation for these two assumptions.
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The Assumption[T]can be decomposed into two assumptions:

Assumption 3. The error between T(s¢|so,7a) and T4(s¢|so,Ta) can be bounded as
max; Doy (Ty(se|so, Ta) | T (st]50, Ta)) < €5,4, where €5 4 is a constant.

Assumption 4. The error between Ty(si|so,T,) and Tu(s¢|so,Ta,q) can be bounded as
max; Doy (Ty(se|So, Ta,a) | Ta(st|50, Ta)) < Coamaxy [|Tq,q — Tall, where Cy q is a constant.

With Assumption [3|and Assumption ] the Assumption [I]is actually a corollary. Using the triangular
inequality of the TV distance, we have

max Drv(Ta(st]s0, Ta,a) | T (5¢]50,7a)) < m?X[DTV(Td(StLSOa Ta,d) | Ta(st|50, Ta))

+ Doy (Ta(st]s0, 7a)l| T (st 50, 7a))]
< max Drv (Ta(sil0, 7a,a) | Talstls0, 7a)) (38

+ max Dy (Ta(st|so, Ta) | T (st]50, Ta))

S Ca,d m?X HTa,d - TaH + €s,d -

The Assumption [3]is the same as the condition of Theorem [I] For Assumption[dand Assumption 2]
their forms are similar to the Lipschitz condition. Assumption f] bounds the change in the state
distribution induced by the diffusion model when the action sequence changes, whereas Assumption 2]
bounds the change in the action distribution induced by the learning policy when the state changes. In
practice, when input states and actions do not fall far from the data coverage of the training set, these
assumptions can be assumed to hold. In the far-out-of-distribution region, the accuracy of models
becomes too low for us to predict their behavior, where these assumptions are probably violated.

E EXPERIMENTS

In this section, we list the detailed settings of DyD1i f £ for experiments, and comparison between
hardmax and softmax filters.

E.1 EXPERIMENT DETAILS

We implement DyDi £ £ under the ILSwissﬂ framework, which provides RL training pipelines in
PyTorch. As an add-on scheme over offline policy training algorithms, we reimplement the base
algorithms over our codebase, and we refer to their official implementations from:

* TD3BC: https://github.com/sfujim/TD3_BC
* CQL: https://github.com/aviralkumar2907/CQL

e DiffQL: https://github.com/Zhendong-Wang/Diffusion-Policies—f
or-0Offline-RL

The additional hyperparameters of DyDi £ £ are listed in Tab.[d] We do not change the hyperparame-
ters of the underlying policy training algorithms, thus they are omitted here.

E.2 ABLATION STUDIES ON FILTER TYPE

We propose two filter schemes: the hardmax filter and the softmax filter in Section[d.2] For further
comparison, we test both filters on MuJoCo locomotion tasks and over all base policies, and the
results are listed in Tab.[5] It shows that DyD1if f-H and DyDi £ £-S have no significant performance
gap when the data coverage is relatively narrow such as md dataset, but the hardmax filter is slightly
worse on mr and me datasets. A possible reason is that the softmax filter will provide more diversified
data, which are easy to go outside of the data coverage, reducing the data accuracy. We suggest using
the softmax filter as the default.

To examine whether the filtering scheme enhances the performance of SynthER, we apply the same
softmax filter to the data generated by SynthER. Since SynthER synthesizes transitions rather than

'https://github.com/Ericonaldo/ILSwiss
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Table 4: Additional hyperparameters for DyDiff.

Hyperparameters Values
Batch size B 256
Rollout batch size B,, 2048
Real ratio o 0.6
Rollout length L 100
. 2 (MuJoCo locomotion)
Iteration time M | (Maze2D)
. . 0.8 (mr and me)
Filter proportion 7 0.6 (md and Maze2D)
Softmax temperature  0.05

Table 5: Full results on MuJoCo locomotion tasks that include both hardmax and softmax filters.
DyDi f f with hardmax filter is denoted as DyDi £ £-H, whereas that with softmax filter as DyDiff-
S.

Dataset TD3BC CQL DiffQL

atasel Base SynthER ~ DyDiff-H DyDiff-5 Base SynthER ~ DyDiff-H DyDiff-S Base SynthER  DyDiff-H DyDiff-S
hopper-md 658458 590452 522436 7154155 | 579437 571423 541420 549423 | 610456 589+48 582445  58.6+4.9
hopper-me 952+149  86.147.6 9454141 984+134 | 853408 923474  884+102  909+82 | 1067463 1082448 1071427  109.2+3.0
hopper-mr 81.5+174 463177 9354227  82.6420.1 | 87.7+7.8 924465 878480 953426 | 978+5.1 99.1+44 995420  99.5+34
halfcheetah-md | 506405 512429 574438 589421 | 438426 437402 431402  432+11 | 471425 473426  47.6+27  47.5+28
halfcheetah-me | 69.7+184 87.0+8.1  87.0+8.1  77.6410.6 | 53.049.0 494451 650+132 608492 | 942430 902+47  93.0+42 926457
halfcheetah-mr | 46.0£0.6 467+27 456460  442+6.1 | 429426 432403  415+£03 415422 | 395485 460428 471429  46.6+25
walker2d-md 76.8+163  80+74  68.6+143  87.9+11 | 793+24 825+11 785403  794+02 | 844+06 850+13  832+19  827+19
walker2d-me 110.740.6  111.7+04  107.0+6.8  110.6+1.3 | 108.9+0.6 109.140.4 107.840.2  108.8+04 | 109.6£02 109.8+0.4 109.9+0.2  109.9+0.4
walker2d-mr 85.8+11.8 919461 2844215  745+89 | 80537 857428  845+49  868+7.0 | 90.6£19  944+35 921426 923422
Average | 758 65.3 70.5 796 | 710 728 723 735 | 812 82.1 82.0 821

entire trajectories, the softmax filter is applied at the transition level. Specifically, we calculate the
softmax rewards of synthetic transitions to determine their sampling probabilities and select the same
proportion, 7, of these transitions for training TD3BC agents. The results, presented in Tab.[6] indicate
that the reward filter yields a slight improvement in performance compared to the original SynthER.
However, the performance gains are primarily observed in relatively simple tasks, such as Hopper
and Walker2d. Conversely, filtered SynthER underperforms relative to the original SynthER on more
complex tasks like HalfCheetah and Maze2d-large. This may occur because selecting high-reward
transitions limits the training data to better but less accessible regions, which does not necessarily
benefit policy learning. For DyD1if £, we apply the filtering scheme at the trajectory level, preserving
the complete paths leading to high-reward regions.

E.3 ANALYSIS OVER TASKS AND DATASET TYPES

To better understand the advantages and limitations of DyD1if £, we compute the normalized in-
terquantile mean (IQM) scores as suggested by [Agarwal et al.| (2021)), grouped by environment and
dataset type. For the IQM scores, we evaluate the trained policy in the real environment, exclude
the top 25% and bottom 25% of results, and compute the mean of the remaining data. This statis-

hopper walker2d halfcheetah
TD3BC [ [ [
TD3BC+DyDiff ] [ [ |
coLq [ ik
CQLA+DyDiff 1N
DiffQL | | |
DiffQL+DyDiff | | |
0.75 0.80 0.85 0.90 0.95 0.88 0.90 0.92 0.94 0.50 0.55 0.60 0.65

Normalized IQMs

Figure 5: Normalized IQM scores grouped by the environment.
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Table 6: Results in comparison to filtered SynthER (SynthER-f) on MuJoCo locomotion tasks and
Maze2D navigation tasks, with the underlying policy TD3BC. The best average results are in bold.

Dataset TD3BC
ase Base SynthER  SynthER-f DyDiff
hopper-md 65.8+£5.8 59.04£5.2 62.9+34 71.5+15.5
hopper-me 95.2+149 94.1+12.3 96.6+t11.5 98.4+134
hopper-mr 81.5+17.4 50.4+13.4 51.44+19.8 82.6+20.1
halfcheetah-md | 50.6+0.5 512429  48.3+04  58.942.1
halfcheetah-me | 69.7+18.4  80.0+7.5 78.74£8.0  77.6£10.6
halfcheetah-mr | 46.0+0.6 452404  43.6+0.3 44.246.1
walker2d-md 76.8416.3  83.5+2.1 84.54+2.2 87.9+1.1
walker2d-me 110.74£0.6  110.6+0.4 110.5+0.6 110.6%1.3
walker2d-mr 85.8£11.8 90.4£5.3 91.1£3.0  74.5+8.9
Average 75.8 73.8 74.2 79.6
maze2d-umaze 0.354+0.10 0.32+0.09 0.394+0.15 0.55+0.12
maze2d-medium 0.81£0.50 0.49+0.20 0.734+0.28 1.34+0.19
maze2d-large 0.43+0.46 0.98+0.33 0.87+0.29 1.82+0.42
Average 0.53 0.60 0.66 1.24
medium-replay medium medium-expert
TD3BC [ [ ] .
TD3BC-+DyDiff | [ [
cou{ e =
CQL+DyDiff [ [ [ |
DIffQL | I |
DiffQL+DyDiff | | |

0.68 0.72 0.76 0.80 0.60 0.65 0.70 0.75 0.85 0.90 0.95 1.00 1.05
Normalized IQMs

Figure 6: Normalized IQM scores grouped by the dataset type.

tical approach mitigates the impact of outliers on the final results. Using IQMs, we observe that
DyDiff shows slight instability in walker2d, particularly in walker2d-mr. This instability
likely stems from the walker2d-mr dataset containing a large amount of low-quality data, re-
ducing the accuracy of rollouts generated by DyDi f £. On the contrary, DyDi £ f performs well in
medium-expert datasets, suggesting that the synthetic data are both accurate and of high rewards.
Overall, incorporating DyDi f £ tends to improve the performance of underlying model-free policies.

E.4 COMPARISON TO MTDIFF-S

MTDiff (He et al.,|2024) utilizes DMs as the planner or the data synthesizer to solve offline multi-task
RL problems. It proposes two variants of MTDiff: MTDiff-p directly plans the future trajectories and
selects the action to be executed, while MTDiff-s only synthesizes extra data to assist policy training.
We compare DyD1iff with MTDiff-s on single-task datasets with the underlying policy TD3BC,
and the results are listed in Tab. [/| Note that MTDiff-s is originally designed to solve multi-task
problems, where the DM can learn knowledge across different tasks and generalize to unseen tasks.
In single-task scenarios, MTDiff-s does not leverage its full potential, thus only reaching similar
performance as SynthER, and is worse than DyDiff.
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Table 7: Results in comparison to MTDiff-s on MuJoCo locomotion tasks and Maze2D navigation

tasks, with the underlying policy TD3BC. The best average results are in bold.

Dataset TD3BC
ase Base SynthER ~ MTDiff-s  DyDiff

hopper-md 658458  59.0452  55.1433  71.5+155
hopper-me 952+14.9 94.1+123 852+10.1 98.4+13.4
hopper-mr 81.5£17.4 5044134 784+124 82.64+20.1
halfcheetah-md | 50.640.5 512429 46.7+2.6  58.9+2.1
halfcheetah-me | 69.7+18.4 80.0£7.5 71.2+83 77.6+10.6
halfcheetah-mr | 46.040.6 452404 433405 44.2+46.1
walker2d-md 76.8+16.3 83.5+2.1  82.0+1.0 87.9+1.1
walker2d-me 110.74£0.6 110.64£0.4 110.4+0.5 110.6+1.3
walker2d-mr 85.8+11.8 904453  80.4+4.8  74.5+8.9
Average 75.8 73.8 72.5 79.6
maze2d-umaze 0.35+£0.10  0.324+0.09 0.31+0.06 0.55+0.12
maze2d-medium | 0.81£0.50 0.49+0.20 0.61+£0.20 1.34-0.19
maze2d-large 0.434+0.46 0.98+0.33 0.86+0.31 1.82:+0.42
Average | 053 0.60 0.59 124 |

7.0

6.5 A

6.0 A

@
=

5.5 A

5.0 4

451 : : : :

0 1 2 3 4

Iteration Times

Figure 7: Change of the total MSE of synthetic trajectories over the iteration times.

E.5 SYNTHETIC ERROR WITH ITERATION TIMES

In practice, the iteration times M cannot be arbitrarily large since the intermediate result may go
out of the data distribution of the dataset, which significantly increases the error of DM generation.
As an illustrative example, we compute the total MSE of generated trajectories during the gener-
ation process and plot how it changes over the iteration times, shown in Fig.[7] We test it in the
hopper-medium-replay task with a TD3BC policy, and the single-step dynamics model and
the diffusion model are the same as we used in the main experiments. The results show that the initial
MSE of trajectories generated by the single-step dynamics is relatively large. After two steps of
refinement by the DM and the learning policy, the MSE decreases but rapidly goes up as the iteration
continues. In practice, using M = 1 or 2 is sufficient for accurate generation.

E.6 VISUALIZATION ON MAZE2D

To further investigate how the quality of the single-step dynamics model and the learning policy affect
the synthetic trajectories in DyDif f, we visualize the trajectories in Maze2D-medium, as shown in
Fig.[8] For each setting, we sample 64 initial states from the dataset and generate rollouts starting
from them. Fig. [8[a)(b)(c) utilizes a random single-step dynamics, while (d)(e)(f) are with a trained
single-step dynamics the same as the main paper. For quality of policies, (a)(d) tests random policies,
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(b)(e) medium-level policies, and (c)(f) expert policies. In each subfigure, the left maze depicts the
trajectories generated autoregressively by the policy and the single-step dynamics, and the right one
shows those after one-step refinement by DyDiff. Generally, DyDiff can optimize the quality
of trajectories with various dynamics models and policies. Comparing to the trained single-step
dynamics, we find that the single-step dynamics is prone to omitting the obstacles in the maze, while
most trajectories refined by DyD1 f £ bypass the walls. Although the single-step dynamics can learn
the real dynamics in this simple task, it fails to learn the general distribution. On the contrary, the
modeling ability of DMs allows DyD1i f £ to learn the knowledge of obstacles from the long-horizon
data distribution.

We also illustrate how the synthetic trajectories change over the refinement iteration in Fig.[9] with
a trained single-step dynamics and the medium-level policy. We annotate the number of legal
trajectories after each iteration. Here, a trajectory is legal if it does not contain states in the wall. This
results also support our observation that the single-step dynamics model cannot learn long-horizon
distribution, providing more illegal trajectories, and the iterative refinement of DMs will improve the
data quality.

rand policy med policy exp policy

e T P T i T
sl sl e

(a) Random dynamics, random (b) Random dynamics, medium (c) Random dynamics, expert pol-
policy policy icy

rand policy med policy exp policy

(d) Trained dynamics, random (e) Trained dynamics, medium (f) Trained dynamics, expert pol-
policy policy icy

Figure 8: Synthetic trajectories in Maze2D-medium from different single-step dynamics and policies.

Figure 9: The change of synthetic trajectories over the refinement iteration in Maze2D.

E.7 COMPUTATIONAL RESOURCES AND MODEL SIZES

Most experiments are conducted on NVIDIA RTX 3080 Ti GPUs. The training time of DyDiff
is about 20 hours in addition to the original time cost of the underlying policies for each task. In
comparison, training a SynthER model and generating 5 x 105 samples cost about 2.5 hours. Also,
we would like to point out that the training time in offline RL is usually less important than that in
online RL. For deployment, the DM is no longer used once the policy training is finished, so the
inference time depends on the specific underlying RL algorithms themselves.

As for model sizes, DyD1i f f leverages the same DM structure as EDM, which is about 58M, whereas
SynthER is 6.5M.
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