
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DYDIFF: LONG-HORIZON ROLLOUT VIA DYNAMICS
DIFFUSION FOR OFFLINE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

With the great success of diffusion models (DMs) in generating realistic synthetic
vision data, many researchers have investigated their potential in decision-making
and control. Most of these works utilized DMs to sample directly from the trajectory
space, where DMs can be viewed as a combination of dynamics models and policies.
In this work, we explore how to decouple DMs’ ability as dynamics models in fully
offline settings, allowing the learning policy to roll out trajectories. As DMs learn
the data distribution from the dataset, their intrinsic policy is actually the behavior
policy induced from the dataset, which results in a mismatch between the behavior
policy and the learning policy. We propose Dynamics Diffusion, short as DyDiff,
which can inject information from the learning policy to DMs iteratively. DyDiff
ensures long-horizon rollout accuracy while maintaining policy consistency and
can be easily deployed on model-free algorithms. We provide theoretical analysis to
show the advantage of DMs on long-horizon rollout over models and demonstrate
the effectiveness of DyDiff in the context of offline reinforcement learning, where
the rollout dataset is provided but no online environment for interaction. Our code
is at https://anonymous.4open.science/r/DyDiff.

1 INTRODUCTION

Diffusion models (DMs) have shown a remarkable ability to capture high-dimensional, multi-modal
distributions and generate high-quality samples, such as images (Ho et al., 2020; Rombach et al.,
2022), drug discovery (Xu et al., 2023), and motion generation (Tevet et al., 2022). Researchers find
that such an ability also serves well in solving decision-making problems (Zhu et al., 2023b). For
instance, using DMs as policy functions to generate single-step actions (Chi et al., 2023), as planners
to generate trajectories guided by rewards or Q-functions (Janner et al., 2022; Zhu et al., 2023a),
or as data synthesizers to learn the data distribution of the dataset and augment the dataset with
more behavior data (He et al., 2024; Lu et al., 2024). Both diffusion planners and data synthesizers
use DMs to generate long-horizon trajectories. However, they choose to directly sample from the
trajectory space, resulting DMs a combination of dynamics models and policies, i.e., a policy (the
dataset average policy or a high-rewarded policy) is embedded in the generated sequences. Thus,
none of those DMs can serve as a dynamics model and generate trajectories for arbitrary policies.

In a preliminary study, we find that the ability to generate long-horizon rollouts can be much
helpful in improving offline RL solutions. Specifically, we build a motivating example where a
TD3BC (Fujimoto & Gu, 2021) agent is trained on an offline dataset with gradually augmenting
on-policy data or dataset behavior data during learning, compared with no augmentation. Results
in Fig. 1a reveal that augmenting on-policy data is better than behavior data. We further compare
augmenting on-policy rollouts with different lengths, and the results plotted in Fig. 1b indicate that
augmenting long-horizon on-policy rollouts is better than shorter-horizon on-policy rollouts.

Given the above findings, we hope to design a model that can synthesize long-horizon on-policy roll-
outs for offline policy training. In this paper, we propose a novel method named Dynamics Diffusion
(DyDiff) to decouple existing DMs’ roles as dynamics models and use their superior generative
ability to accomplish this goal. Although some previous works have developed model-based methods
for augmenting synthetic on-policy data via pre-trained single-step dynamics models (Yu et al., 2020;
2021), it is still difficult for them to generate long-horizon rollouts due to compounding errors. Differ-
ent from them, DyDiff can model the interaction in the sequence level and generate long-horizon

1

https://anonymous.4open.science/r/DyDiff

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 2.5 5.0× 105

Train Step

50

100

A
ve

ra
ge

R
et

u
rn

On-policy

Behavior

Dataset Only

(a) Different data types.

0 2.5 5.0× 105

Train Step

50

100

A
ve

ra
ge

R
et

u
rn

Rollout Length=100

Rollout Length=50

Rollout Length=5

(b) Different rollout length.

0 1.5 3.0×105

Training Step

50

100

A
ve

ra
ge

R
et

u
rn

DyDiff

Single-step

(c) Different model types.

Figure 1: Training the policy on a part of hopper-medium-replay dataset under different
settings. (a) During training, we train a diffusion model to generate and gradually augment on-
policy data and dataset behavior data, compared with no extra data augmented. (b) Augment model
generated on-policy rollouts with different lengths. (c) Use single-step dynamics models and our
DyDiff to generate rollouts. The detailed setting is described in Appendix A.

rollouts, which benefits the learning policy much more than shorter ones, as we showcase in Fig. 1b.
The superiority of DyDiff in synthesizing long sequences over single-step models is also reflected
in Fig. 1c, where the policy is augmented by rollouts with the same length but generated by DyDiff
and single-step models, respectively.

To be more specific, DyDiff works by first running a pre-trained single-step dynamics model with
the current policy for many steps to get the initial on-policy sequences; then, the trajectory served
as the initial conditions for a diffusion model to generate new samples, which is further used for
policy optimization. In this way, DyDiff combines the advantage of both the rollout consistency of
single-step dynamics models with arbitrary policies, and the long-horizon generation of DMs with
less compounding error. Theoretical analysis for DyDiff provides proofs of why DMs are better
for long-horizon rollout than single-step dynamics model, and how the iterative process in DyDiff
reduces the accumulated error of the synthetic trajectories.

We implement DyDiff as a plugin on a set of existing model-free algorithms, and conduct compre-
hensive experiments across various tasks on D4RL benchmarks, showing that DyDiff significantly
improves the performance of these algorithms without any additional hyperparameter tuning.

In summary, our main contributions are listed as follows.

• Investigating the policy mismatch problem: We identify the policy mismatch problem in DMs
for offline RL and investigate it in detail. To the best of our knowledge, this is the first work
providing both theoretical and empirical analyses for this problem.

• Developing the ability of DMs as dynamics models: We propose a novel method named
DyDiff, that combines DMs and single-step dynamics models, leveraging the advantages of
both sides to perform long-horizon rollout with less compounding error.

• Providing theoretical analysis for non-autoregressive generation: We prove the advantage of
non-autoregressive generation scheme against the autoregressive generation one in terms of the
return gap between executing the policy in the real and the learned dynamics, where the former
tightens the gap by a substantial factor of γ

1−γ
ϵd
ϵm
≫ 1.

2 RELATED WORK

Diffusion Models in offline RL. Diffusion models (Ho et al., 2020), a powerful class of generative
models, have recently found applications in offline RL (Zhu et al., 2023b), serving as planners (Janner
et al., 2022; Liang et al., 2023; He et al., 2024; Hu et al., 2023; Ajay et al., 2022; Zhu et al., 2023a)
and policies (Wang et al., 2022; Chen et al., 2022; Lu et al., 2023; Hansen-Estruch et al., 2023; Kang
et al., 2024). For instance, Diffusion QL (DiffQL) (Wang et al., 2022) employs a conditional diffusion
model to represent the policy, aiming to maximize action-values during the training of the diffusion
model. Additionally, Diffuser (Janner et al., 2022) proposes a novel data-driven decision-making
approach based on trajectory-level diffusion probabilistic models. Recently, SynthER (Lu et al., 2024)
utilizes diffusion models as data synthesizers for data augmentation in offline RL. The powerful

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

expressiveness of diffusion models enables non-autoregressive trajectory synthesis, which reduces
compounding errors compared to multilayer perceptrons (MLPs). However, neglecting the learning
policy results in a significant distribution gap between the generated data and the data sampled by
the learning policy in the real environment, which hampers effective policy learning. In contrast,
the proposed DyDiff leverages both the ability of non-autoregressive trajectory synthesis and
information derived from the learning policy. A concurrent work, PGD (Jackson et al., 2024), also
identifies the policy mismatch problem associated with diffusion models, but approaches it differently.
It computes the log-likelihood of generated trajectories based on the learning policy, injecting this
as guidance for diffusion models. However, their illustration is limited to toy environments. In this
work, we investigate the policy mismatch issue from multiple perspectives, evaluating the algorithm
in complicated locomotion tasks while providing a more comprehensive theoretical analysis.

Offline model-based RL. As an intersection of model-based RL and offline RL (Levine et al.,
2020; Liu et al., 2021; Levine et al., 2020), offline model-based RL methods (Yu et al., 2021; 2020;
Argenson & Dulac-Arnold, 2020; Kidambi et al., 2020; Matsushima et al., 2020; Swazinna et al.,
2021) employ supervised learning and generative modeling techniques to improve policy performance.
However, the distributional shift problem remains a fundamental challenge in offline model-based
RL. On the one hand, many methods (Yu et al., 2020; 2021; Kidambi et al., 2020; Rigter et al., 2022;
Li et al., 2024; Matsushima et al., 2020) adopt a conservative approach to utilizing the dynamics
model, aiming to minimize estimation errors and enhance performance. For instance, MOPO (Yu
et al., 2020) integrates uncertainty as a penalty term on the reward, while MOReL (Kidambi et al.,
2020) estimates uncertainty by measuring the maximum discrepancy among ensemble models. This
conservatism helps mitigate risks but may also limit the exploration of potentially beneficial actions.
On the other hand, methods such as SynthER (Lu et al., 2024) leverage the dynamics model for
data augmentation and successfully achieve high performance through enhanced data variety. Our
approach takes into account information from the learning policy while intentionally avoiding overly
conservative techniques, enabling the dynamics model to be fully leveraged without hindrance.

3 PRELIMINARIES

Diffusion model. Diffusion models (DMs) are a class of generative models that generate data x0
by incrementally removing noise from a pure Gaussian distribution. In this work, we follow the
architecture of EDM (Karras et al., 2022), which implements the forward process and the reverse
process of the DM as the increase and decrease of the noise level of a probability flow ordinary
differential equation (ODE) (Song et al., 2020b):

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt , (1)
where the dot denotes the derivative with respect to time. σ(t) is the noise schedule with noise levels
σmax = σ0 > σ1 > · · · > σN = 0 . ∇x log p(x;σ(t)) is the score function. We denote the data
distribution at noise level σi as p(x;σi) and the overall data distribution as σdata. In the forward
process, noise is gradually added to the data xN ∼ p(x;σN), transforming it into pure Gaussian
noise. In contrast, during the reverse process, pure Gaussian noise is drawn from x0 ∼ p(x;σ0), and
the sample is obtained by removing noise from x. Please refer to Appendix B for more details.

Offline RL. Offline RL solves a Markov decision process (MDP) similar to online RL, but optimizes
the policy solely using an offline dataset without interacting with the environment. Denote MDPM =
{S,A, T, r, γ, d0}, where S,A are the state space and the action space, T (s′|s, a) is the dynamics
function, r(s, a) is the reward function, γ ∈ (0, 1) is the discount factor, and d0 is the initial state
distribution. The formal objective of offline RL is to learn a policy π that maximizes the discounted
cumulative rewards as maxπ J(M, π) := Es0∼d0,at∼π(·|st),st+1∼T (·|st,at)[

∑∞
t=0 γ

tr(st, at)] .

4 DYNAMICS DIFFUSION (DYDIFF)

In this section, we present our design for generating synthetic data with DMs while ensuring
consistency with the learning policy. We first detail the generation target of the DM and the sampling
process. Next, we introduce the core of our method: how to use composite single-step dynamics
models and DMs to generate data that adheres to the learning policy. Finally, we provide a theoretical
analysis for our method, explaining why DyDiff outperforms the use of single-step models alone.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: The sketch process of DyDiff. It mainly consists of three parts: (1) Sampling start states
from D to generate initial trajectories as conditions with a single-step model. (2) Synthesizing rollout
trajectories by iteratively sampling from the DM and the learning policy. (3) Filtering synthesized
data and adding high-reward trajectories to Dsyn.

The sketch process of DyDiff is illustrated in Fig. 2. Generally, DyDiff begins by sampling
states from the real dataset D as initial states of rollout, and an action sequence is derived from
interaction between a single-step dynamics model and the learning policy for each initial state. A
DM, conditioned on the initial state and the action sequence, is then employed to synthesize the
corresponding state sequence. This state sequence is iteratively refined using both the learning policy
and the DM. Finally, a reward-based filter is applied to select high-reward data, which are added to
the synthetic dataset Dsyn for further policy training.

4.1 DIFFUSION MODELS AS ROLLOUT SYNTHESIZER

DMs demonstrate a remarkable ability to model complex distributions and have been utilized for
synthesizing sequential data in offline RL in many previous works (Ajay et al., 2022; Zhu et al., 2023a;
Lu et al., 2024). Since offline RL possesses a pre-collected dataset D containing trajectory-level
sequential data, we can easily pre-train DMs over D via supervised learning. We first construct the
training set for the DM from D. Let L denote the length of the generation sequence for the DM. For
a trajectory τ = (s0, a0, s1, . . . , aH−1, sH) ∈ D, the corresponding training trajectories are derived
by slicing or padding τ to a length of L, i.e. containing L+ 1 states and L actions:

S(τ) =
{{τ̃i = (si, ai, si+1, ai+1, . . . , ai+L−1, si+L) | 0 ≤ i ≤ H − L} (H ≥ L)
{τ̃ = (s0, a0, s1, . . . , aH−1, sH , 0, 0, . . . , 0) | |τ̃ | = L} (H < L)

. (2)

The training set for the DM is the union of S(τ) over all trajectories inD, defined as S =
⋃
τ∈D S(τ).

Without causing ambiguity, we will also denote the trajectory in S as τ for simplicity.

There are several possible choices regarding which part of the trajectories the DM will generate.
DecisionDiffuser (Ajay et al., 2022) generates state sequences, MTDiff (He et al., 2024) generates
state-action sequences, whereas SynthER (Lu et al., 2024) generates state-action-reward sequences.
To leave room for the learning policy, we generate only the state sequence τs = (s0, s1, . . . , sL) of a
trajectory τ = (τs, τa), conditioned on the action part τa = (a0, a1, . . . , aL−1) and the initial state
s0. Empirically, we generate both states and actions simultaneously, but replace the generated actions
and the initial state with the given conditions after each diffusion step. This scheme effectively injects
the conditions into the diffusion process, while preserving the relative positions between states and
actions, enabling the DM to learn their causal relation. Formally, suppose the DM produces τ i after
the i-th denoising step. The conditions are applied by a hard replacement as

τ i = (si0, a
i
0, s

i
1, a

i
1, s

i
2, . . . , a

i
L−1, s

i
L)

Apply Conditions
=========⇒ τ i = (s0, a0, s

i
1, a1, s

i
2, . . . , aL−1, s

i
L) . (3)

We follow EDM (Karras et al., 2022) to train and sample from the DM, which uses a neural network
Dθ to directly predict the denoised sample from the noisy one, instead of predicting the noise. Let

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

τ̂N = Dθ(τ
i) be the predicted denoised trajectory from τ i. Denote τ̂Ns>0 = (ŝN1 , ŝ

N
2 , . . . , ŝ

N
L) for the

predicted state sequence and τ̂Na = (âN0 , â
N
1 , . . . , â

N
L−1) for the action sequence. With hard-replaced

conditions, τ̂Na always equals the given condition τa, and ŝN0 equals s0. Therefore, we only need to
compute the loss between τ̂Ns>0 and τs>0. The overall training loss for Dθ is

Ldiff(θ) = Eτ∼S,σ∼pσ,n∼N (0,σ2I)[λ(σ)∥τNs>0 − τs>0∥22], where (sN0 , τ
N
s>0, τ

N
a) = Dθ(τ + n;σ) .

(4)
Here, σ is the noise scale, pσ is the distribution of σ, and λ(σ) gives weights for different noise scales.
We follow the same configuration as EDM, with detailed values listed in Appendix C. Under Eq. (4),
we expect the DM to learn the environment dynamics from the dataset.

With a trained DMDθ, we can now sample a state sequence τNs beginning from s0 and corresponding
to a given action sequence τa, starting from pure noise τ0 ∼ N (0, t20I). We utilize the EDM sampler
for improved sampling accuracy and speed, with a slightly modification in the denoising part to apply
the conditions. Most of the sampling process remains identical to EDM, so we provide the details in
Algo. 2 in Appendix C. For brevity, we denote this sampling process as drawing from the distribution
pθ(τ |s0, τa).
Though we can now use DMs to generate state trajectories, the choice of initial action trajectory is
worth considering. Relying on random action trajectories would produce low-reward samples, as it is
equivalent to executing a random policy from s0. Moreover, directly picking an real action sequence
from the dataset would still correspond to the underlying behavior policy rather than the learning
policy, which fails to meet our goal of maintaining policy consistency. Therefore, we need to derive
the initial action trajectory with the assistance of a single-step dynamics model. Besides, we do
not incorporate policy information in the generation process of the DM, so the immediate synthetic
trajectories requires further refinement. We will introduce the details in the next section.

4.2 REFINE ROLLOUTS WITH DIFFUSION MODELS

To obtain a good initial action sequence, we allow the learning policy to interact with a pre-trained
single-step dynamics model Tϕ(s, a) parameterized by ϕ. This model is directly trained via supervised
learning over the dataset D, with the following loss objective:

Ldyn(ϕ) = E(s,a,s′)∼D,ŝ′∼Tϕ(s,a)[∥ŝ′ − s′∥22] . (5)

For interaction, the most straightforward approach is to start from an initial state s0 sampled from
D, and sample â0 from the learning policy π(·|s0). The dynamics model then predicts the next state
ŝ1 ∼ Tϕ(·|s0, â1). By iteratively sampling from the policy and the dynamics model, we can form a
rollout trajectory autoregressively as

τ̂dyn = (s0, â0, ŝ1, . . . , âL−1, ŝL), âi ∼ π(·|ŝi), ŝi+1 ∼ Tϕ(·|ŝi, âi), 0 ≤ i ≤ L− 1 , (6)

where L is the rollout length and ŝ0 := s0. However, rollout by interacting with a single-step
dynamics model leads to severe compounding error as L increases, thus not benefiting policy training
as shown in Fig. 1c. Therefore, τ̂dyn is not directly used for policy improvement but only as an
initial condition for the DM, which can generate more accurate trajectories. As all actions of τ̂dyn are
sampled from the learning policy π, τ̂dyn naturally ensures policy consistency, making it a suitable
initial condition for pθ. Formally, we select the action sequence τ̂a,dyn and the first state s0 as
conditions, sampling a new trajectory from pθ(τ |s0, τa):

(s0, τ̂
(1)
s,DM, τ̂a,dyn) ∼ pθ(·|s0, τ̂a,dyn) . (7)

Here, we use τ̂ (k)DM to represent the synthetic trajectory after the k-th generation. However, the diffusion
sampling process only modifies the state sequence while preserving s0 and τ̂a,dyn unchanged, which
violates the policy consistency.To correct this, we resample the action sequence from the learning
policy given s0 and τ̂ (1)s,DM:

â
(1)
0,DM ∼ π(·|s0), â

(1)
i,DM ∼ π(·|ŝ

(1)
i,DM), where 1 ≤ i ≤ L− 1 . (8)

Now, τ̂ (1)DM = (s0, τ̂
(1)
s,DM, τ̂

(1)
a,DM) is consistent with the learning policy but violates the dynamics. We

address this in the same way as τ̂dyn, by sampling a new trajectory from the DM pθ given s0 and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

τ̂
(1)
a,DM as conditions:

(s0, τ̂
(2)
s,DM, τ̂

(1)
a,DM) ∼ pθ(·|s0, τ̂ (1)a,DM) . (9)

Then, the learning policy π is used to correct the action sequence, ensuring policy consistency. By
iteratively applying the DM and the learning policy, we can gradually inject information about the
learning policy into the generated trajectory while maintaining the dynamics accuracy with the DM.

Finally, we denote the final trajectory after M iterations as (s0, τ̂a,DM, τ̂s,DM) = τ̂DM := τ̂
(M)
DM

. Following the scheme of MBPO (Janner et al., 2019), we create another replay buffer Dsyn to
store synthetic data. In practice, a batch of states is uniformly sampled from the real dataset D as
initial states, denoted as Bs = {(s0)k}Brk=1, where Br is the batch size of the rollout. Each initial
state s0 will induce a rollout trajectory τ̂DM, so Bs derives a trajectory set Bτ = {(τ̂DM)k}Brk=1.
To prevent data with low rewards from negatively impacting policy training, we filter Bτ using a
reward-based filter before adding the rollout trajectories intoDsyn. As we do not have direct access to
the actual reward function, we pre-train a reward model rψ(s, a) that predicts the rewards of synthetic
transitions. Similar to the dynamics model, rψ is simply trained through supervised learning:

Lrew(ψ) = E(s,a,r)∼D,r̂∼rψ(s,a)[(r̂ − r)2] . (10)

For filtering, we predict the reward for each transition in τ̂DM and sum them up for the entire
trajectory:

rψ(τ̂DM) := rψ(s0, â0,DM) +

L−1∑
i=1

rψ(ŝi,DM, âi,DM) . (11)

Only a proportion η of trajectories in Bτ is added to Dsyn. We introduce two filtering schemes to
select high-reward data as follows:

• Hardmax: Sort the trajectories by their accumulative rewards and directly select ⌊ηBr⌋ of them
with the highest rewards.

• Softmax: Calculate a probability distribution pr((τ̂DM)k) =
exp(rψ((τ̂DM)k))∑Br
j=1 exp(rψ((τ̂DM)j))

using the

softmax of their accumulative rewards, and sample ⌊ηBr⌋ of them according to pr.

Intuitively, the hardmax filter strictly selects trajectories with high rewards, while the softmax filter
includes those with low rewards. However, considering that offline RL policies can outperform the
behavior policy by stitching together trajectories in the dataset, the softmax filter provides greater
diversity and opportunities for the policy to discover better patterns.

As DyDiff is an add-on scheme for synthesizing data, we do not design additional policy training
algorithms but instead directly incorporate existing model-free offline policy training methods that
explicitly require policies. Our overall algorithm is summarized in Algo. 1.

4.3 THEORETICAL ANALYSIS

We provide a brief theoretical analysis to show why models supporting non-autoregressive generation,
such as DMs, are superior than single-step models. The following analysis is Let T (s′|s, a) be the
real dynamics function. We begin with a lemma from MBPO (Janner et al., 2019) that bounds the
return gap between the real dynamics and the learned single-step dynamics. Denote the accumulative
discounted return in dynamics T with policy π as J(T, π), and the maximum reward as R.
Lemma 1. (Lemma B.3 of MBPO). Suppose the error of a single-step dynamics model Tm(s′|s, a)
can be bounded as maxt Ea∼π[DKL(Tm(s′|s, a)∥T (s′|s, a))] ≤ ϵm. Then after executing the same
policy π from the same initial state s0 in Tm and the real dynamics T , the expected returns are
bounded as

|J(T, π)− J(Tm, π)| ≤
2Rγϵm
(1− γ)2 . (12)

Note that this formulation differs slightly from its original version in MBPO, as there is no policy
error term; the policies executed in both the trained dynamics model and the real dynamics are the
same in offline RL. Then, the return gap of DMs can also be bounded. Denote the state distribution
after executing an action sequence τa from s0 in the real dynamics as T (st|s0, τa), and the state
distribution induced by the DM conditioned on s0 and τa as Td(st|s0, τa).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 1. Suppose the error of a non-autoregressive model Td(st|s0, τa) can be bounded as
maxtDTV(Td(st|s0, τa))∥T (st|s0, τa) ≤ ϵd. Then after executing the same policy π from the same
initial state s0 in Td and the real dynamics T , the expected returns are bounded as

|J(T, π)− J(Td, π)| ≤
2Rϵd
1− γ . (13)

The proof is provided in the Appendix D. We observe that these two bounds differ by a multiplier
γ

1−γ
ϵm
ϵd

. The first part, γ
1−γ , is greater than 1 when 0.5 < γ < 1. In practice, γ is typically

set above 0.9. For the second part, although ϵm bounds the single-step error and ϵd bounds the
accumulative multi-step error, we still have ϵd ≈ ϵm due to the superior modeling capabilities of
DMs. Consequently, the inequality γ

1−γ
ϵm
ϵd
> 1 holds, indicating that the non-autoregressive models

enjoy a better return gap than single-step models. The difference in the multiplier arises from the fact
that the non-autoregressive model is merely affected by the compounding error. However, both ϵd
and ϵm are related to complicated neural networks without theoretical analysis so far, they cannot
be further decomposed analytically. To validate our assumptions on the error rates of single-step
models versus DMs, we conduct a simple experiment to compute the MSE of rollouts generated
by both models. The results support that ϵd < ϵm over long horizons. Detailed settings and results
are provided in Appendix D.3. Finally, we would like to clarify that the theoretical analysis applies
to general non-autoregressive models, with DMs and DyDiff serving as specific examples. It
highlights the potential of using non-autoregressive models for synthesizing rollouts.

Next, we analyze the effect of the iteration times M . In DyDiff, we start from the state trajectory
generated by the autoregressive model, and iterate between the DM and the learning policy for
M times. While non-autoregressive models demonstrate greater accuracy than single-step models
at the transition level, their performance at the trajectory level warrants further investigation. Let
τ = (s0, a0, s1, . . .) = (τs, τa) denote the trajectory from s0 induced by π in the real dynamics. We
define τm = (s0, a0,m, s1,m, . . .) = (τs,m, τa,m) as the trajectory generated autoregressively, and
τ
(k)
d = (s0, a

(k)
0,d, s

(k)
1,d, a

(k)
1,d, s

(k)
2,d, . . .) = (τ

(k)
s,d , τ

(k)
a,d) as generated non-autoregressively after the k-th

iteration. We begin with assumptions on the state distribution distance between τs and τs,d under
different action sequences.
Assumption 1. The error between T (st|s0, τa) and Td(st|s0, τa,d) can be bounded as
maxtDTV(Td(st|s0, τa,d)∥T (st|s0, τa)) ≤ ϵs,d +Ca,dmaxt ∥τa,d − τa∥, where Ca,d is a constant.
Assumption 2. Given two state sequences τs,1 and τs,2, the distance between corresponding action
sequences induced by π is bounded as maxtDTV(π(τa|τs,1)∥π(τa|τs,2)) ≤ Cπmaxt ∥τs,1 − τs,2∥,
where Cπ is a constant.

Assumption 1 is very similar to the condition outlined in Theorem 1, but it also takes into account the
difference in the action sequences. Intuitively, the error of the non-autoregressive model is distributed
across the entire trajectory, which suggests the change in the action sequence will not result in
significant differences in the state sequence. Assumption 2 reflects the smoothness of the policy.
Now, we derive how the distance between τ (k)s,d and τs evolves over iterations. The error of the initial
state sequence τs,m is given by Lemma 2 in Appendix D, specifically Lϵm. Then, the error of the
initial action sequence is

d(τa,m, τa) = max
t
DTV(π(τa|τs,m)∥π(τa|τs)) ≤ CπLϵm . (14)

We then sample a new state trajectory τ (1)s,d from pθ(τ |s0, τa,m). Under Assumption 1, the error of

τ
(1)
s,d is bounded as

d(τ
(1)
s,d , τs) = max

t
DTV(Td(st|τa,m, s0)∥T (st|τa, s0)) ≤ ϵs,d + Ca,dCπLϵm . (15)

This state sequence is then fed into the policy π to compute the corresponding action sequence τ (1)a,d ,
and its error is bounded as

d(τ
(1)
a,d , τa) = max

t
DTV(π(τa|τ (1)s,d)∥π(τa|τs)) ≤ Cπ(ϵs,d + Ca,dCπLϵm) . (16)

From Eq. (15) and Eq. (16), each iteration introduces both additive and multiplicative constant
coefficients to the error bound. Continuing the iterations, we can derive the error of the state sequence

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

after the k-th iteration as

d(τ
(k)
s,d , τs) = maxtDTV(Td(st|τ (k−1)

a,d , s0)∥T (st|τa, s0)) ≤ 1−Ck
1−C ϵs,d + CkLϵm, k = 1, 2, . . . , (17)

where C = Ca,dCπ . As k increases, the error bound evolves from Lϵm to ϵs,d/(1− C). In practice,
the accuracy of DMs is generally much better than that of auto-regressive models, which implies
ϵs,d ≪ Lϵm. This shows that the iterating optimizes the error bound of the synthetic trajectory.

Finally, it is important to note that increasing the iteration times M will not necessarily lead to
improved performance. Too many iterations may push the intermediate result out of the dataset’s
coverage, reducing the accuracy of the DM. Additionally, large M can significantly increase rollout
time, as each rollout requires sampling from the DM M times. Therefore, the choice of M should be
determined based on the complexity of the dataset and the structure of the DM. Further discussions
can be found in Section 5.4.

5 EXPERIMENTS

To validate the effectiveness and generalization capability of DyDiff, we conduct extensive experi-
ments across various benchmark tasks and different offline model-free policy training algorithms.
Our experiments are designed to answer the following key research questions:

• Can DyDiff effectively enhance the performance of underlying policies without requiring policy
hyperparameter tuning?

• Is DyDiff adaptable to different types of tasks, including dense- and sparse-reward tasks?

• How do different critical hyperparameters impact the performance of DyDiff?

5.1 EXPERIMENT SETTINGS

We conduct the experiments on the D4RL (Fu et al., 2020) offline benchmark, following the common
standards as previous offline RL studies. Specifically, we evaluated our performance on MuJoCo
locomotion tasks and Maze2d, with the former characterized as dense-reward tasks and the lat-
ter as sparse-reward tasks. For each MuJoCo locomotion task, three datasets are included: (a)
medium-replay, shorted as mr, containing data collected by a policy during its online training
process, ranging from stochastic to medium-level. (b) medium, shorted as md, containing data
collected by a single medium-level policy. (c) medium-expert, shorted as me, containing a 50/50
mixture of data collected by a medium policy and an expert policy, respectively. In summary, mr
and me are mixed dataset, while md is a single-policy datasets. For Maze2d, we evaluated all three
difficulties: umaze, medium, and large, from easy to hard. The harder the task, the larger and more
intricate the maze becomes.

For the underlying policy, we select three popular state-of-the-art offline RL algorithms: CQL (Kumar
et al., 2020), TD3BC (Fujimoto & Gu, 2021), and DiffQL (Wang et al., 2022). CQL is a Q-constraint
method that employs a stochastic Gaussian policy, while TD3BC is a straightforward modification of
TD3 (Fujimoto et al., 2018) using a deterministic policy. DiffQL is a recent Q-learning method that
incorporates DMs as policies. Our choices for baseline cover various types of the learning policy.
Note that we omit IQL (Kostrikov et al., 2021) as our underlying policy, since it only trains the value
and Q-functions without an explicit policy, which does not align with our goal of reducing the gap to
the learning policy. All underlying policies are reimplemented in our codebase for fair comparison.
We test both hardmax and softmax filters and report the results of the softmax filter here. The full
results are detailed in Appendix E.2.

In addition to the underlying policies as baselines, we also compare DyDiff to SynthER (Lu et al.,
2024), an add-on data augmentation method that utilizes DMs to synthesize trajectories. SynthER is
similarly reimplemented and added on the same base policies.

5.2 RESULTS

The main results for D4RL MuJoCo locomotion tasks are presented in Tab. 1, demonstrating that
DyDiff improves base policies across most datasets, and achieving comparable performance in the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Results on MuJoCo locomotion tasks. The reported number is the normalized score, averaged
over 3 seeds and last 5 epochs, ± standard deviation. Note that our method is an add-on method to
model-free offline algorithms, we reimplement the baselines in the same codebase of DyDiff for
fair comparison. The best average results are in bold.

Dataset TD3BC CQL DiffQL
Base SynthER DyDiff Base SynthER DyDiff Base SynthER DyDiff

hopper-md 65.8±5.8 59.0±5.2 71.5±15.5 57.9±3.7 57.1±2.3 54.9±2.3 60.2±3.6 58.9±2.9 55.1±2.6
hopper-me 95.2±14.9 94.1±12.3 98.4±13.4 85.3±9.8 92.3±7.4 90.9±8.2 109.0±4.6 108.2±4.8 109.1±3.7
hopper-mr 81.5±17.4 50.4±13.4 82.6±20.1 87.7±7.8 92.4±6.5 95.3±2.6 97.8±5.1 99.1±4.4 99.5±3.4

halfcheetah-md 50.6±0.5 51.2±2.9 58.9±2.1 43.8±2.6 43.7±0.2 43.2±1.1 47.1±2.5 47.3±2.6 54.9±4.6
halfcheetah-me 69.7±18.4 80.0±7.5 77.6±10.6 53.0±9.0 49.4±5.1 60.8±9.2 94.1±0.7 90.2±4.7 94.5±2.0
halfcheetah-mr 46.0±0.6 45.2±0.4 44.2±6.1 42.9±2.6 43.2±0.3 41.5±2.2 45.1±4.1 46.0±2.8 47.5±5.7

walker2d-md 76.8±16.3 83.5±2.1 87.9±1.1 79.3±2.4 82.5±1.1 79.4±0.2 84.3±0.8 85.0±1.3 83.3±1.9
walker2d-me 110.7±0.6 110.6±0.4 110.6±1.3 108.9±0.6 109.1±0.4 108.8±0.4 109.6±0.2 109.8±0.4 109.7±0.3
walker2d-mr 85.8±11.8 90.4±5.3 74.5±8.9 80.5±3.7 85.7±2.8 86.8±7.0 90.6±1.9 94.4±3.5 92.3±2.2

Average 75.8 73.8 79.6 71.0 72.8 73.5 82.0 82.1 82.9

remaining ones. Our reimplemented baselines yield similar performance compared to their original
papers, except SynthER, which enlarges the size of the base policy networks, a change we do not
implement in our reimplementation. Moreover, we maintain the original hyperparameters of all base
algorithms. Detailed settings and hyperparameters are described in Appendix E.

Among the various datasets (md, me, and mr), DyDiff performs well on mr and me datasets but
fails to improve the baselines on md. A possible reason is that the data coverage of md is so narrow
that the intermediate results of the sampling iterations fall out of distribution, leading to a decrease
in data accuracy. In contrast, DyDiff effectively generates high-quality, diversified data when the
data coverage is broad, thereby enhancing the base policies. Furthermore, as the synthetic data aligns
with the distribution of the learning policy, it promotes better performance than SynthER, which
uniformly upsamples the entire dataset. From the perspective of different base policies, DyDiff
exhibits relative incompatibility with CQL. The computation of the conservative term in CQL relies
on Q-values on out-of-distribution data, making CQL more sensitive to data accuracy.

5.3 EXPERIMENTS ON SPARSE-REWARD TASKS

Table 2: Results on Maze2d tasks. We report average normalized scores over 3 independent runs, ±
standard deviation. The best average results are in bold.

Dataset TD3BC CQL DiffQL
Base SynthER DyDiff Base SynthER DyDiff Base SynthER DyDiff

maze2d-umaze 0.35±0.10 0.32±0.09 0.55±0.12 0.19±0.15 0.10±0.12 0.58±0.43 0.47±0.01 0.45±0.02 0.46±0.02
maze2d-medium 0.81±0.50 0.49±0.20 1.34±0.19 0.93±0.13 0.92±0.03 1.56±0.17 0.50±0.02 0.17±0.04 1.62±0.02
maze2d-large 0.43±0.46 0.98±0.33 1.82±0.42 0.05±0.11 0.37±0.05 1.10±0.07 1.09±0.29 1.38±0.26 1.97±0.15

Average 0.53 0.60 1.24 0.39 0.46 1.08 0.69 0.67 1.35

For sparse-reward environments, we evaluate DyDiff across Maze2d tasks of varying difficulties, as
presented in Tab. 2. It shows that DyDiff consistently improves the base policy, particularly in the
more challenging maze2d-medium and maze2d-large tasks. In these environments, the agent
only receives rewards when approaching the goal, leaving most transitions in the offline dataset with
zero reward. Consequently, the policy training algorithm must "stitch" together partial trajectories
to discover the optimal path to the goal. This stitching process is highly challenging due to the
sparse reward signal. However, DyDiff alleviates this difficulty by leveraging its ability to generate
long-horizon trajectories. By synthesizing full trajectories that guide the agent directly toward the
goal, DyDiff reduces the reliance on stitching partial trajectories, thereby accelerating learning and
improving policy performance. In contrast, SynthER, which merely upsamples the dataset uniformly,
lacks the capability to integrate long-horizon information meaningfully, thus offering less assistance
during policy training.

5.4 ABLATION STUDIES

To verify our theoretical analysis and assess the sensitivity of DyDiff to key hyperparameters, we
conduct experiments on varying the iteration times M , rollout length L, filter proportion η, and real

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4
(a) Iteration Times

0

25

50

75

100

A
ve

ra
ge

R
et

u
rn

Oracle

Softmax

Hardmax

4 8 60 100 200
(b) Rollout Length

0

25

50

75

100

0.4 0.6 0.8 1
(c) Filter Proportion

65

75

85

95

105

0.4 0.6 0.8
(d) Real Ratio

0

25

50

75

100

Figure 3: Ablation studies on various hyperparameters. Experiments on iteration times and rollout
length validate our theory analysis, whereas those on filter proportion and real ratio prove the
robustness of DyDiff.

ratio α. The former three hyperparameters have been introduced above, and the last real ratio α is
commonly used in MBRL to control the proportion of the real data used in policy training (Lai et al.,
2021). All ablation studies are performed on the hopper-mr dataset using the TD3BC base policy.

Iteration time. As discussed in Section 4.3, larger iteration times reduces the error bound but
increases the probability of falling out of the data distribution, which may degrade the data accuracy.
Fig. 3a proves our analysis that a medium M yields the best performance. Note that when M = 0,
DyDiff reverts to only using single-step models for rollout. This also highlights the ability of DMs
on long-horizon generation against single-step models.

Rollout length. As illustrated in Fig. 1b, large rollout length benefits the exploration of the policy.
However, longer rollouts also increase ϵd, loosening the return gap. We test DyDiff across various
rollout lengths, with results presented in Fig. 3b. These results support our analysis of L, showcasing
that DMs have a greater potential than single-step models due to their ability to generate accurate
long-horizon trajectories.

Filter proportion. This hyperparameter controls the amount of data added to Dsyn during each
rollout. Intuitively, a higher η increases the data diversity but may also introduce more low-reward
data, and vice versa. The results in Fig. 3c show that DyDiff is robust in η, suggesting the high
quality of generated data.

Real ratio. The real ratio determines the proportion of the real data when sampling from D and
Dsyn. Since DyDiff only does rollout from real initial states, it is not feasible to entirely replace
the real data with synthetic data as SynthER. We begin with a commonly used setting of α = 0.6
and evaluate different α. The results, depicted in Fig. 3d, show that an α around 0.6 leads to good
performance. Increasing α too much decreases the benefit of synthetic data generated from DyDiff.

6 CONCLUSION

In this paper, we explored the application of Diffusion Models (DMs) in sequence generation for
decision-making problems, focusing on their role as dynamics models in fully offline reinforcement
learning settings. We identified a critical issue where data directly synthesized by DMs can lead
to a mismatch with the state-action distribution of the learning policy, negatively impacting policy
learning. To address this, we introduced Dynamics Diffusion (DyDiff), a framework that effectively
generates trajectories aligned with the learning policy’s distribution, ensuring both policy consistency
and dynamics accuracy of the synthetic trajectories. DyDiff’s superior performance stems from
two critical components: (1) the intrinsic modeling ability of DMs and (2) the iterative correction
mechanism between the DM and the learning policy. Both theoretical analysis and experiment results
validate the effectiveness of these components. As an add-on scheme, DyDiff can be seamlessly
integrated into any offline model-free algorithms that train explicit policies. Overall, DyDiff offers
a promising direction for enhancing offline policy training using DMs. Furthermore, DyDiff holds
potential for future extensions, including applications to online RL algorithms with more compact
DM architectures since the training is relatively time-consuming with the full U-Net backbone, as
well as approaches to improve scalability for large-scale tasks, which we aim to explore in future
work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in neural information
processing systems, 34:29304–29320, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is con-
ditional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657,
2022.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint
arXiv:2008.05556, 2020.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning via
high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang (Shane) Gu. A minimalist approach to offline reinforcement learning.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems, volume 34, pp. 20132–20145. Curran Associates, Inc.,
2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

Haoran He, Chenjia Bai, Kang Xu, Zhuoran Yang, Weinan Zhang, Dong Wang, Bin Zhao, and Xue-
long Li. Diffusion model is an effective planner and data synthesizer for multi-task reinforcement
learning. Advances in neural information processing systems, 36, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Jifeng Hu, Yanchao Sun, Sili Huang, SiYuan Guo, Hechang Chen, Li Shen, Lichao Sun, Yi Chang,
and Dacheng Tao. Instructed diffuser with temporal condition guidance for offline reinforcement
learning. arXiv preprint arXiv:2306.04875, 2023.

Matthew Thomas Jackson, Michael Tryfan Matthews, Cong Lu, Benjamin Ellis, Shimon Whiteson,
and Jakob Foerster. Policy-guided diffusion. arXiv preprint arXiv:2404.06356, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020.

Hang Lai, Jian Shen, Weinan Zhang, Yimin Huang, Xing Zhang, Ruiming Tang, Yong Yu, and
Zhenguo Li. On effective scheduling of model-based reinforcement learning. Advances in Neural
Information Processing Systems, 34:3694–3705, 2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Gen Li, Laixi Shi, Yuxin Chen, Yuejie Chi, and Yuting Wei. Settling the sample complexity of
model-based offline reinforcement learning. The Annals of Statistics, 52(1):233–260, 2024.

Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptdiffuser:
Diffusion models as adaptive self-evolving planners. arXiv preprint arXiv:2302.01877, 2023.

Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, and Tie-Yan Liu.
Curriculum offline imitating learning. Advances in Neural Information Processing Systems, 34:
6266–6277, 2021.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. In
International Conference on Machine Learning, pp. 22825–22855. PMLR, 2023.

Cong Lu, Philip Ball, Yee Whye Teh, and Jack Parker-Holder. Synthetic experience replay. Advances
in Neural Information Processing Systems, 36, 2024.

Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang Gu. Deployment-
efficient reinforcement learning via model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. Advances in neural information processing systems, 35:16082–16097,
2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10684–10695, 2022.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Phillip Swazinna, Steffen Udluft, and Thomas Runkler. Overcoming model bias for robust offline
deep reinforcement learning. Engineering Applications of Artificial Intelligence, 104:104366,
2021.

Guy Tevet, Sigal Raab, Brian Gordon, Yonatan Shafir, Daniel Cohen-Or, and Amit H Bermano.
Human motion diffusion model. arXiv preprint arXiv:2209.14916, 2022.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Minkai Xu, Alexander S Powers, Ron O Dror, Stefano Ermon, and Jure Leskovec. Geometric latent
diffusion models for 3d molecule generation. In International Conference on Machine Learning,
pp. 38592–38610. PMLR, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: Conservative offline model-based policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. arXiv preprint
arXiv:2305.17330, 2023a.

Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Yong Yu, and Weinan
Zhang. Diffusion models for reinforcement learning: A survey. arXiv preprint arXiv:2311.01223,
2023b.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DETAILS OF THE MOTIVATION EXAMPLE

In this part, we list the details of experiment settings of our motivation example illustrated in Fig. 1.

For the first part (Fig. 1a), we randomly 5%/95% split the hopper-medium-replay dataset (Fu et al.,
2020) into two parts, denoted as D5 adn D95, respectively. Then, we train a TD3BC (Fujimoto & Gu,
2021) agent on D5 while augmenting (1) on-policy data collected in the real environment; (2) data
following the behavior policy randomly selected from D95; (3) no extra data to D5 every 50 epochs.
We keep the data amount of scheme (1) and (2) the same for fair comparison. Note that both extra
data in scheme (1) and (2) are real data without any error, and the only difference is that the former
follows the distribution induced by the learning policy, whereas the latter follows the distribution
induced by the behavior policy.

In the experiment about the rollout length (Fig. 1b), we also train the TD3BC agents on D5 and add
model approximated on-policy data to it. For every epoch, we sample a batch of states from the
dataset and start rollout from them. Though the rollout lengths differ, their transition amounts are
kept the same by adjusting the state batch size. As single-step models cannot handle long-horizon
rollout, we use DyDiff to do rollout in this experiment.

Finally, in Fig. 1c, we still train the TD3BC agents on D5 and add model approximated on-policy
rollout trajectories of length 100. Those trajectories are synthesized by Bayesian Neural Networks
(BNNs) suggested in MBPO (Janner et al., 2019) and DyDiff, respectively. For BNN, the trajectory
is generated autoregressively as Eq. (6).

B DETAILS OF PRELIMINARIES

Both diffusion models and reinforcement learning contain the concept of step, which refers to the
diffusion step in DMs and the timestep of trajectories in RL. To avoid confusion between them, we
use the superscript to represent the diffusion step, whereas the subscript is for the RL timestep. For
example, xi is the sample at the i-th diffusion step, and st is the state at the t-th timestep in a RL
trajectory.

B.1 DIFFUSION MODEL

Diffusion models (DMs) are a class of generative models that mimic the diffusion process in physics.
They first learn the data distribution and generate new data by incrementally removing noise from a
pure Gaussian distribution. Formally, suppose the real data distribution is pdata(x) and the initial
sample is x0 ∼ N (0, I). For each timestep, DMs sample xi+1 ∼ p(x|x0:i). After N timesteps,
we obtain the final sample xN , which is supposed to be distributed as pdata(x). Therefore, the key
point of DMs is to model and learn the distribution p(x|x0:i). A widely used framework of DMs is
DDPM (Ho et al., 2020), which formulates it as a parameterized Markov chain:

pθ(x
0:N) = p(x0)

N∏
i=1

pθ(x
i|xi−1), pθ(x

i|xi−1) = N (µθ(x
i−1, i− 1),Σθ(x

i−1, i− 1)) (18)

The corresponding posterior q(x0:N−1|xN) gradually adds Gaussian noise to the real data in a fixed
variance schedule βi:

q(x0:N−1|xN) =

N∏
i=1

q(xi−1|xi), q(xi−1|xi) = N (
√
1− βi−1xi, βi−1I) , (19)

where βi is the hyperparameter. With the posterior distribution, DDPM learns pθ by optimizing the
variational lower bound:

E[− log pθ(x
N)] ≤ Eq

[
− log

pθ(x
0:N)

q(x0:N−1|xN)

]
. (20)

After DDPM, many works propose variety of DDPM or improve the sample efficiency of
DDPM (Song et al., 2020a; 2023; Nichol & Dhariwal, 2021). In this paper, we follow the architecture

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

proposed by EDM (Karras et al., 2022). EDM expresses DMs in a common framework by defining
p(x;σ) as the distribution obtained by adding Gaussian noise N (0, σ2I) to pdata. Let σdata be the
standard deviation of pdata. If σmax ≫ σdata, p(x;σmax) becomes nearly the same as the pure Gaus-
sian noise. Reversely, starting from a noise sample x0 ∼ N (0, σ2

maxI), DMs denoise it following
noise levels σmax = σ0 > σ1 > · · · > σN = 0. Finally, we obtain xN ∼ p(x;σN) = pdata(x).

Following Song et al. (2020b), there is a corresponding probability flow ordinary differential equation
(ODE) whose solution is our desired p(x;σ):

dx = −σ̇(t)σ(t)∇x log p(x;σ(t))dt . (21)
Here, the noise level σ(t) changes continuously with respect to time, σ̇(t) := dσ(t)/dt, and
∇x log p(x;σ(t)) is called the score function. As t decreases, x described by Eq. (21) will move
towards the data distribution pdata(x). Noting that σ(t) is defined by ourselves, if the score function
∇x log p(x;σ(t)) is known, we can sample x by solving Eq. (21). Suppose Dθ(x;σ) is a denoiser
function that predicts the real data from the noised sample x and the noise level σ. Theoretical
analysis shows that if Dθ minimizes the L2 distance to pdata

θ = argmin
θ

Ex∼pdataEn∼N (0,σ2I)∥Dθ(x+ n;σ)− x∥22 , (22)

then the score function can be expressed as

∇x log p(x;σ(t)) =
Dθ(x;σ)− x

σ2
. (23)

For more detailed theoretical analysis and how to choose the noise level function σ(t), please refer to
the original paper of EDM (Karras et al., 2022).

B.2 OFFLINE RL

Reinforcement learning (RL) models the sequential decision problem as a Markov Decision Process
(MDP)M = (S,A, T, r, γ, d0), where S is the state space andA is the action space. Let ∆(C) be the
set of probability distributions over the set C. T (s′|s, a) : S ×A → ∆(S) is the dynamics function
that gives the distribution over next state s′ when executing action a at state s, r(s, a) : S ×A → R
is the reward function, γ ∈ (0, 1) is the discounted factor, and d0(s) is the distribution of the initial
state. An agent on the MDP is a policy π(a|s) : S → ∆(A) that defines a distribution over action
a given state s. The objective of RL is to learn a policy π to maximize the discounted cumulative
reward, as

max
π

J(M, π) = Es0∼d0,at∼π(·|st),st+1∼T (·|st,at)

[∞∑
t=0

γtr(st, at)

]
. (24)

In the online RL setting, the policy is allowed to interact with the environment, receiving real next
states and rewards as feedback. However, such interaction is impractical in many real-world situations
since it may be dangerous or cost a lot of resources. To address this problem, offline RL manages to
train the policy π on a pre-collected fixed dataset Dreal. The training objective of offline RL is the
same as online RL given by Eq. (24), but the agent cannot receive real feedback to correct potential
errors in training, which makes offline RL more challenging than online RL.

C ALGORITHMS

We provide the overall algorithm of DyDiff in Algo. 1. To unify the notation in the initial rollout and
the iteration, we define τ̂ (0)a,DM := τ̂a,dyn. Any diffusion sampling process that supports conditions can
be incorporated for sampling the state sequence from pθ, and we choose the EDM sampler (Karras
et al., 2022) for its high speed and accuracy.

For the sampling process, we slightly modify the EDM (Karras et al., 2022) sampling process to
inject the first state s0 and the action sequence τa as conditions.

The hyperparameters in Algo. 2 are the same as EDM. For those that should be adapted across
datasets, we follow the grid search suggestion in Appendix E.2 of EDM (Karras et al., 2022) to find
the best hyperparameters that minimize the loss of DMs. We list them and other hyperparameters
used in training the DM in Tab. 3.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Algorithm 1 DyDiff
Require: Offline dataset D, number of training epochs E, number of optimization step M , rollout

batch size Br, ratio of real data α, batch size B.
Train the DM Dθ(τ ;σ), the dynamics model Tϕ(s, a), and the reward model rψ(s, a) by Eq. (4),
Eq. (5), Eq. (10), respectively.
Initial the synthetic replay buffer Dsyn = ∅ and the learning policy πξ.
for e = 1→ E do

Sample a batch of state Bs = {sk0}Brk=1 ∼ D as initial states for rollout.
for s0 ∈ Bs do

Autoregressively generate τ̂dyn = (s0, â0, ŝ1, . . . , âL−1, ŝL) by Tϕ and πξ.
for k = 1→M do

Sample new trajectory (s0, τ̂
(k)
s,DM, τ̂

(k−1)
a,DM) ∼ pθ(τ |s0, τ̂ (k−1)

a,DM), following Algo. 2.

Sample new action sequence τ̂ (k)a,DM from the learning policy πξ by Eq. (8).
end for
Get final rollout trajectory τ̂DM := τ̂

(M)
DM .

end for
Calculate the cumulative rewards {rψ(τ̂ iDM)}Bri=1.
Filter the trajectories by their rewards using the hardmax or softmax filter.
Add all transitions of remaining trajectories to Dsyn.
Sample a batch of transitions Bsyn from Dsyn, where |Bsyn| = ⌊αB⌋.
Sample a batch of transitions Breal from D, where |Breal| = B − |Bsyn|.
Use B = Breal ∪ Bsyn to train the learning policy πξ.

end for
return πξ

Algorithm 2 Sampling process from the diffusion model

Require: Diffusion modelDθ(τ ;σ), diffusion stepN , the first state s0, action sequence τa, timesteps
t0, t1, . . . , tN , noise factors γ1, γ2, . . . , γN−1, noise level Snoise.
Sample τ0 ∼ N (0, t20I).
for i = 0→ N − 1 do

Sample ϵi ∼ N (0, S2
noiseI).

Increase the noise level t̂i ← ti + γiti.

Calculate τ̂ i ← τ i +
√
t̂2i − t2i ϵi.

Predict the denoised trajectories τ̂N = (ŝN0 , τ̂
N
s>0, τ̂

N
a)← Dθ(τ̂

i; t̂i))

Evaluate the first-order gradient di ← (τ̂ i − τ̂N)/t̂i.
Take the Euler step τ i+1 ← τ̂ i + (ti+1 − ti)di.
Apply hard replace τ i+1 ← (s0, τ

i+1
s>0, τa).

if ti+1 ̸= 0 then
d′
i ← (τ i+1 −Dθ(τ

i+1; ti+1))/ti+1.
Apply the second order correction τ i+1 ← τ̂ i + (ti+1 − t̂i)(di + d′

i)/2.
Apply hard replace τ i+1 ← (s0, τ

i+1
s>0, τa).

end if
end for
return τN

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters used for training and sampling process following EDM.

Hyperparameters Values

ti<N

(
σ
1/ρ
max +

i
N−1 (σ

1/ρ
min − σ

1/ρ
max)

)ρ
tN 0

γi<N

{
min

(
Schurn/N,

√
2− 1

)
if ti ∈ [Stmin, Stmax]

0 otherwise
λ(σ) (σ2 + σ2

data)/(σ ∗ σdata)2
pσ lnσ ∼ N (Pmean, P

2
std)

σmin 0.002
σmax 80
σdata 0.5
ρ 7

Stmin 0.370
Stmax 52.212
Schurn 60
Snoise 1.002
Pmean -1.2
Pstd 1.2
N 34

D PROOFS

In this section, we provide proofs of lemmas and theories in the main paper.

D.1 PROOF OF LEMMA 1

As Lemma 1 is from MBPO (Janner et al., 2019), we directly borrow the proof from MBPO with a
slight modification. The following lemma from MBPO is necessary for proof.
Lemma 2. (Lemma B.2 of MBPO). Suppose the error of a single-step dynamics model Tm(s′|s, a)
can be bounded as maxt Ea∼π[DKL(Tm(s′|s, a)∥T (s′|s, a))] ≤ ϵm. Then after executing the same
policy π from the same initial state s0 for t timesteps, the distance of the state marginal distribution
at st is bounded as

DTV(Tm(st|s0, π)∥T (st|s0, π)) ≤ tϵm . (25)

Proof. Let ϵt = DTV(Tm(st|s0, π)∥T (st|s0, π)). For brevity, we define T tm(s) := Tm(st|s0, π) and
T t(s) := T (st|s0, π).
|T tm(s)− T t(s)| = |

∑
s′

Tm(s|s′, π(s′))T t−1
m (s′)− T (s|s′, π(s′))T t−1(s′)|

≤
∑
s′

|Tm(s|s′, π(s′))T t−1
m (s′)− T (s|s′, π(s′))T t−1(s′)|

≤
∑
s′

T t−1
m (s′)|Tm(s|s′, π(s′))− T (s|s′, π(s′))|+

∑
s′

T (s|s′, π(s′))|T t−1
m (s′)− T t−1(s′)|

= Es′∼T t−1
m (s′)[|Tm(s|s′, π(s′))− T (s|s′, π(s′))|] +

∑
s′

T (s|s′, π(s′))|T t−1
m (s′)− T t−1(s′)|

(26)

ϵt = DTV(T
t
m(s)∥T t(s)) = 1

2

∑
s

|T tm(s)− T t(s)|

=
1

2

∑
s

(
Es′∼T t−1

m (s′)[|Tm(s|s′, π(s′))− T (s|s′, π(s′))|] +
∑
s′

T (s|s′, π(s′))|T t−1
m (s′)− T t−1(s′)|

)

=
1

2
Es′∼T t−1

m (s′)

[∑
s

|Tm(s|s′, π(s′))− T (s|s′, π(s′))|
]
+DTV(T

t−1
m (s′)∥T t−1(s′))

≤ ϵm + ϵt−1

= tϵm

(27)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then we can prove Lemma 1 following the original proof in MBPO.
Lemma 1. (Lemma B.3 of MBPO). Suppose the error of a single-step dynamics model Tm(s′|s, a)
can be bounded as maxt Ea∼π[DKL(Tm(s′|s, a)∥T (s′|s, a))] ≤ ϵm. Then after executing the same
policy π from the same initial state s0 in Tm and the real dynamics T , the expected returns are
bounded as

|J(T, π)− J(Tm, π)| ≤
2Rγϵm
(1− γ)2 . (28)

Proof. Denote the state-action distribution at timestep t induced by T as pt(s, a), and that by Tm as
ptm(s, a).

|J(T, π)− J(Tm, π)| = |
∑
s,a

(p(s, a)− pm(s, a))r(s, a)|

≤ R|
∑
s,a

∑
t

γt(pt(s, a)− ptm(s, a))|

≤ R
∑
t

γt
∑
s,a

|pt(s, a)− ptm(s, a)|

= 2R
∑
t

γtDTV(p
t(s, a)∥ptm(s, a))

(29)

Note that pt(s, a) = T t(s)π(at|st), which gives

DTV(p
t(s, a)∥ptm(s, a)) = DTV(T

t(s)π(at|st)∥T tm(s)π(at|st)) ≤ DTV(T
t(s)∥T tm(s)) . (30)

Therefore,
|J(T, π)− J(Tm, π)| ≤ 2R

∑
t

γtDTV(T
t(s)∥T tm(s))

≤ 2R
∑
t

γttϵm

=
2Rγϵm
(1− γ)2

(31)

D.2 PROOF OF THEOREM 1

As Theorem 1 is similar with Lemma 1 with a slight modification in the assumption, we can prove
Theorem 1 following the previous proof.
Theorem 1. Suppose the error of a non-autoregressive model Td(st|s0, τa) can be bounded as
maxtDTV(Td(st|s0, τa))∥T (st|s0, τa) ≤ ϵd. Then after executing the same policy π from the same
initial state s0 in Td and the real dynamics T , the expected returns are bounded as

|J(T, π)− J(Td, π)| ≤
2Rϵd
1− γ . (32)

Proof. The first part is the same as Eq. (29).

|J(T, π)− J(Td, π)| ≤ 2R
∑
t

γtDTV(p
t(s, a)∥ptd(s, a)) . (33)

Then, the non-autoregressive model gives a different state-action distribution as ptd(s, a) =
Td(st|s0, τa)π(at|st), and the real distribution can be expressed as

pt(s, a) = T t(s|s0)π(at|st)
= T t−1(s′|s0)T (st|s′, a′)π(a′|s′)π(at|st)
= · · ·

= π(at|st)
t∏

j=1

T (sj |sj−1, aj−1)π(aj−1|sj−1)

= π(at|st)T (st|s0, τa)

(34)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Therefore, their TV distance is bounded by
DTV(p

t(s, a)∥ptd(s, a)) ≤ DTV(Td(st|s0, τa)∥T (st|s0, τa)) . (35)
Following this, we can continue from Eq. (33):

|J(T, π)− J(Td, π)| ≤ 2R
∑
t

γtDTV(p
t(s, a)∥ptd(s, a))

≤ 2R
∑
t

γtDTV(Td(st|s0, τa)∥T (st|s0, τa))

≤ 2R
∑
t

γtϵd

=
2Rϵd
1− γ

(36)

D.3 EMPIRICAL VALUES OF ERROR RATES

0 20 40 60 80 100
Rollout Step

0.00

0.02

0.04

0.06

0.08

M
S

E

Single-step

Diffusion Accum.

Figure 4: The transition-level MSE of single-step models and accumulative MSE of DMs for rollout,
corresponding to ϵm and ϵd, respectively.

To empirically validate our assumption that ϵm ≈ ϵd, we conduct a rollout experiment using the
hopper-medium-replay dataset with the TD3BC policy. We employ a pre-trained single-step
dynamics model Tm and a diffusion model Td, alongside an expert TD3BC policy π. For each
initial state s0 sampled from the dataset, we first generate a rollout by having π interact with Tm
autoregressively, following the scheme described in the main paper. Let τm = (τs,m, τa) denote this
trajectory. Next, s0 and τa are fed in to the DM Td to synthesize a new rollout τd = (τs,d, τa). Finally,
we execute τa from s0 in the real environment, obtaining the ground truth trajectory τ = (τs, τa).
As the action is consistent across all three rollouts, we focus on computing the MSE of the state
sequence, as:

em,t = ∥sm,t − st∥22, ed,t = ∥sd,t − st∥22 . (37)

The estimated transition-level MSE em,t reflects the error rate of the single-step dynamics model ϵm.
In contrast, the error rate of the DM is defined by executing a t-step action sequence, estimated by
Ed,t =

∑t
i=1 ed,i.

We repeat the experiment over multiple initial states and random seeds, plotting em,t and Ed,t over
t, as shown in Fig. 4. The results demonstrate that Ed,t < em,t over a long horizon, supporting our
assumption that ϵd ≈ ϵm. Notably, comparing the accumulative error Ed,t against the single-step
error em,t further demonstrates the superior long-horizon generation capability of DMs.

D.4 EXPLANATION TO ASSUMPTIONS

To illustrate the effectiveness of the iteration process in DyDiff, we first introduce Assumption 1
and Assumption 2. Here, we provide an intuitive explanation for these two assumptions.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The Assumption 1 can be decomposed into two assumptions:
Assumption 3. The error between T (st|s0, τa) and Td(st|s0, τa) can be bounded as
maxtDTV(Td(st|s0, τa)∥T (st|s0, τa)) ≤ ϵs,d, where ϵs,d is a constant.
Assumption 4. The error between Td(st|s0, τa) and Td(st|s0, τa,d) can be bounded as
maxtDTV(Td(st|s0, τa,d)∥Td(st|s0, τa)) ≤ Ca,dmaxt ∥τa,d − τa∥, where Ca,d is a constant.

With Assumption 3 and Assumption 4, the Assumption 1 is actually a corollary. Using the triangular
inequality of the TV distance, we have

max
t
DTV(Td(st|s0, τa,d)∥T (st|s0, τa)) ≤ max

t
[DTV(Td(st|s0, τa,d)∥Td(st|s0, τa))

+DTV(Td(st|s0, τa)∥T (st|s0, τa))]
≤ max

t
DTV(Td(st|s0, τa,d)∥Td(st|s0, τa))

+ max
t
DTV(Td(st|s0, τa)∥T (st|s0, τa))

≤ Ca,dmax
t
∥τa,d − τa∥+ ϵs,d .

(38)

The Assumption 3 is the same as the condition of Theorem 1. For Assumption 4 and Assumption 2,
their forms are similar to the Lipschitz condition. Assumption 4 bounds the change in the state
distribution induced by the diffusion model when the action sequence changes, whereas Assumption 2
bounds the change in the action distribution induced by the learning policy when the state changes. In
practice, when input states and actions do not fall far from the data coverage of the training set, these
assumptions can be assumed to hold. In the far-out-of-distribution region, the accuracy of models
becomes too low for us to predict their behavior, where these assumptions are probably violated.

E EXPERIMENTS

In this section, we list the detailed settings of DyDiff for experiments, and comparison between
hardmax and softmax filters.

E.1 EXPERIMENT DETAILS

We implement DyDiff under the ILSwiss1 framework, which provides RL training pipelines in
PyTorch. As an add-on scheme over offline policy training algorithms, we reimplement the base
algorithms over our codebase, and we refer to their official implementations from:

• TD3BC: https://github.com/sfujim/TD3_BC
• CQL: https://github.com/aviralkumar2907/CQL
• DiffQL: https://github.com/Zhendong-Wang/Diffusion-Policies-f
or-Offline-RL

The additional hyperparameters of DyDiff are listed in Tab. 4. We do not change the hyperparame-
ters of the underlying policy training algorithms, thus they are omitted here.

E.2 ABLATION STUDIES ON FILTER TYPE

We propose two filter schemes: the hardmax filter and the softmax filter in Section 4.2. For further
comparison, we test both filters on MuJoCo locomotion tasks and over all base policies, and the
results are listed in Tab. 5. It shows that DyDiff-H and DyDiff-S have no significant performance
gap when the data coverage is relatively narrow such as md dataset, but the hardmax filter is slightly
worse on mr and me datasets. A possible reason is that the softmax filter will provide more diversified
data, which are easy to go outside of the data coverage, reducing the data accuracy. We suggest using
the softmax filter as the default.

To examine whether the filtering scheme enhances the performance of SynthER, we apply the same
softmax filter to the data generated by SynthER. Since SynthER synthesizes transitions rather than

1https://github.com/Ericonaldo/ILSwiss

20

https://github.com/sfujim/TD3_BC
https://github.com/aviralkumar2907/CQL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Zhendong-Wang/Diffusion-Policies-for-Offline-RL
https://github.com/Ericonaldo/ILSwiss

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Additional hyperparameters for DyDiff.

Hyperparameters Values

Batch size B 256
Rollout batch size Br 2048

Real ratio α 0.6
Rollout length L 100

Iteration time M 2 (MuJoCo locomotion)
1 (Maze2D)

Filter proportion η 0.8 (mr and me)
0.6 (md and Maze2D)

Softmax temperature 0.05

Table 5: Full results on MuJoCo locomotion tasks that include both hardmax and softmax filters.
DyDiff with hardmax filter is denoted as DyDiff-H, whereas that with softmax filter as DyDiff-
S.

Dataset TD3BC CQL DiffQL
Base SynthER DyDiff-H DyDiff-S Base SynthER DyDiff-H DyDiff-S Base SynthER DyDiff-H DyDiff-S

hopper-md 65.8±5.8 59.0±5.2 52.2±3.6 71.5±15.5 57.9±3.7 57.1±2.3 54.1±2.0 54.9±2.3 61.0±5.6 58.9±4.8 58.2±4.5 58.6±4.9
hopper-me 95.2±14.9 86.1±7.6 94.5±14.1 98.4±13.4 85.3±9.8 92.3±7.4 88.4±10.2 90.9±8.2 106.7±6.3 108.2±4.8 107.1±2.7 109.2±3.0
hopper-mr 81.5±17.4 46.3±7.7 93.5±22.7 82.6±20.1 87.7±7.8 92.4±6.5 87.8±8.0 95.3±2.6 97.8±5.1 99.1±4.4 99.5±2.0 99.5±3.4

halfcheetah-md 50.6±0.5 51.2±2.9 57.4±3.8 58.9±2.1 43.8±2.6 43.7±0.2 43.1±0.2 43.2±1.1 47.1±2.5 47.3±2.6 47.6±2.7 47.5±2.8
halfcheetah-me 69.7±18.4 87.0±8.1 87.0±8.1 77.6±10.6 53.0±9.0 49.4±5.1 65.0±13.2 60.8±9.2 94.2±3.0 90.2±4.7 93.0±4.2 92.6±5.7
halfcheetah-mr 46.0±0.6 46.7±2.7 45.6±6.0 44.2±6.1 42.9±2.6 43.2±0.3 41.5±0.3 41.5±2.2 39.5±8.5 46.0±2.8 47.1±2.9 46.6±2.5

walker2d-md 76.8±16.3 8.0±7.4 68.6±14.3 87.9±1.1 79.3±2.4 82.5±1.1 78.5±0.3 79.4±0.2 84.4±0.6 85.0±1.3 83.2±1.9 82.7±1.9
walker2d-me 110.7±0.6 111.7±0.4 107.0±6.8 110.6±1.3 108.9±0.6 109.1±0.4 107.8±0.2 108.8±0.4 109.6±0.2 109.8±0.4 109.9±0.2 109.9±0.4
walker2d-mr 85.8±11.8 91.9±6.1 28.4±21.5 74.5±8.9 80.5±3.7 85.7±2.8 84.5±4.9 86.8±7.0 90.6±1.9 94.4±3.5 92.1±2.6 92.3±2.2

Average 75.8 65.3 70.5 79.6 71.0 72.8 72.3 73.5 81.2 82.1 82.0 82.1

entire trajectories, the softmax filter is applied at the transition level. Specifically, we calculate the
softmax rewards of synthetic transitions to determine their sampling probabilities and select the same
proportion, η, of these transitions for training TD3BC agents. The results, presented in Tab. 6, indicate
that the reward filter yields a slight improvement in performance compared to the original SynthER.
However, the performance gains are primarily observed in relatively simple tasks, such as Hopper
and Walker2d. Conversely, filtered SynthER underperforms relative to the original SynthER on more
complex tasks like HalfCheetah and Maze2d-large. This may occur because selecting high-reward
transitions limits the training data to better but less accessible regions, which does not necessarily
benefit policy learning. For DyDiff, we apply the filtering scheme at the trajectory level, preserving
the complete paths leading to high-reward regions.

E.3 ANALYSIS OVER TASKS AND DATASET TYPES

To better understand the advantages and limitations of DyDiff, we compute the normalized in-
terquantile mean (IQM) scores as suggested by Agarwal et al. (2021), grouped by environment and
dataset type. For the IQM scores, we evaluate the trained policy in the real environment, exclude
the top 25% and bottom 25% of results, and compute the mean of the remaining data. This statis-

0.75 0.80 0.85 0.90 0.95

TD3BC

TD3BC+DyDiff

CQL

CQL+DyDiff

DiffQL

DiffQL+DyDiff

hopper

0.88 0.90 0.92 0.94

walker2d

0.50 0.55 0.60 0.65

halfcheetah

Normalized IQMs

Figure 5: Normalized IQM scores grouped by the environment.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Results in comparison to filtered SynthER (SynthER-f) on MuJoCo locomotion tasks and
Maze2D navigation tasks, with the underlying policy TD3BC. The best average results are in bold.

Dataset TD3BC
Base SynthER SynthER-f DyDiff

hopper-md 65.8±5.8 59.0±5.2 62.9±3.4 71.5±15.5
hopper-me 95.2±14.9 94.1±12.3 96.6±11.5 98.4±13.4
hopper-mr 81.5±17.4 50.4±13.4 51.4±19.8 82.6±20.1

halfcheetah-md 50.6±0.5 51.2±2.9 48.3±0.4 58.9±2.1
halfcheetah-me 69.7±18.4 80.0±7.5 78.7±8.0 77.6±10.6
halfcheetah-mr 46.0±0.6 45.2±0.4 43.6±0.3 44.2±6.1

walker2d-md 76.8±16.3 83.5±2.1 84.5±2.2 87.9±1.1
walker2d-me 110.7±0.6 110.6±0.4 110.5±0.6 110.6±1.3
walker2d-mr 85.8±11.8 90.4±5.3 91.1±3.0 74.5±8.9

Average 75.8 73.8 74.2 79.6
maze2d-umaze 0.35±0.10 0.32±0.09 0.39±0.15 0.55±0.12
maze2d-medium 0.81±0.50 0.49±0.20 0.73±0.28 1.34±0.19
maze2d-large 0.43±0.46 0.98±0.33 0.87±0.29 1.82±0.42

Average 0.53 0.60 0.66 1.24

0.68 0.72 0.76 0.80

TD3BC

TD3BC+DyDiff

CQL

CQL+DyDiff

DiffQL

DiffQL+DyDiff

medium-replay

0.60 0.65 0.70 0.75

medium

0.85 0.90 0.95 1.00 1.05

medium-expert

Normalized IQMs

Figure 6: Normalized IQM scores grouped by the dataset type.

tical approach mitigates the impact of outliers on the final results. Using IQMs, we observe that
DyDiff shows slight instability in walker2d, particularly in walker2d-mr. This instability
likely stems from the walker2d-mr dataset containing a large amount of low-quality data, re-
ducing the accuracy of rollouts generated by DyDiff. On the contrary, DyDiff performs well in
medium-expert datasets, suggesting that the synthetic data are both accurate and of high rewards.
Overall, incorporating DyDiff tends to improve the performance of underlying model-free policies.

E.4 COMPARISON TO MTDIFF-S

MTDiff (He et al., 2024) utilizes DMs as the planner or the data synthesizer to solve offline multi-task
RL problems. It proposes two variants of MTDiff: MTDiff-p directly plans the future trajectories and
selects the action to be executed, while MTDiff-s only synthesizes extra data to assist policy training.
We compare DyDiff with MTDiff-s on single-task datasets with the underlying policy TD3BC,
and the results are listed in Tab. 7. Note that MTDiff-s is originally designed to solve multi-task
problems, where the DM can learn knowledge across different tasks and generalize to unseen tasks.
In single-task scenarios, MTDiff-s does not leverage its full potential, thus only reaching similar
performance as SynthER, and is worse than DyDiff.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 7: Results in comparison to MTDiff-s on MuJoCo locomotion tasks and Maze2D navigation
tasks, with the underlying policy TD3BC. The best average results are in bold.

Dataset TD3BC
Base SynthER MTDiff-s DyDiff

hopper-md 65.8±5.8 59.0±5.2 55.1±3.3 71.5±15.5
hopper-me 95.2±14.9 94.1±12.3 85.2±10.1 98.4±13.4
hopper-mr 81.5±17.4 50.4±13.4 78.4±12.4 82.6±20.1

halfcheetah-md 50.6±0.5 51.2±2.9 46.7±2.6 58.9±2.1
halfcheetah-me 69.7±18.4 80.0±7.5 71.2±8.3 77.6±10.6
halfcheetah-mr 46.0±0.6 45.2±0.4 43.3±0.5 44.2±6.1

walker2d-md 76.8±16.3 83.5±2.1 82.0±1.0 87.9±1.1
walker2d-me 110.7±0.6 110.6±0.4 110.4±0.5 110.6±1.3
walker2d-mr 85.8±11.8 90.4±5.3 80.4±4.8 74.5±8.9

Average 75.8 73.8 72.5 79.6
maze2d-umaze 0.35±0.10 0.32±0.09 0.31±0.06 0.55±0.12
maze2d-medium 0.81±0.50 0.49±0.20 0.61±0.20 1.34±0.19
maze2d-large 0.43±0.46 0.98±0.33 0.86±0.31 1.82±0.42

Average 0.53 0.60 0.59 1.24

0 1 2 3 4
Iteration Times

4.5

5.0

5.5

6.0

6.5

7.0

M
SE

Figure 7: Change of the total MSE of synthetic trajectories over the iteration times.

E.5 SYNTHETIC ERROR WITH ITERATION TIMES

In practice, the iteration times M cannot be arbitrarily large since the intermediate result may go
out of the data distribution of the dataset, which significantly increases the error of DM generation.
As an illustrative example, we compute the total MSE of generated trajectories during the gener-
ation process and plot how it changes over the iteration times, shown in Fig. 7. We test it in the
hopper-medium-replay task with a TD3BC policy, and the single-step dynamics model and
the diffusion model are the same as we used in the main experiments. The results show that the initial
MSE of trajectories generated by the single-step dynamics is relatively large. After two steps of
refinement by the DM and the learning policy, the MSE decreases but rapidly goes up as the iteration
continues. In practice, using M = 1 or 2 is sufficient for accurate generation.

E.6 VISUALIZATION ON MAZE2D

To further investigate how the quality of the single-step dynamics model and the learning policy affect
the synthetic trajectories in DyDiff, we visualize the trajectories in Maze2D-medium, as shown in
Fig. 8. For each setting, we sample 64 initial states from the dataset and generate rollouts starting
from them. Fig. 8(a)(b)(c) utilizes a random single-step dynamics, while (d)(e)(f) are with a trained
single-step dynamics the same as the main paper. For quality of policies, (a)(d) tests random policies,

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(b)(e) medium-level policies, and (c)(f) expert policies. In each subfigure, the left maze depicts the
trajectories generated autoregressively by the policy and the single-step dynamics, and the right one
shows those after one-step refinement by DyDiff. Generally, DyDiff can optimize the quality
of trajectories with various dynamics models and policies. Comparing to the trained single-step
dynamics, we find that the single-step dynamics is prone to omitting the obstacles in the maze, while
most trajectories refined by DyDiff bypass the walls. Although the single-step dynamics can learn
the real dynamics in this simple task, it fails to learn the general distribution. On the contrary, the
modeling ability of DMs allows DyDiff to learn the knowledge of obstacles from the long-horizon
data distribution.

We also illustrate how the synthetic trajectories change over the refinement iteration in Fig. 9, with
a trained single-step dynamics and the medium-level policy. We annotate the number of legal
trajectories after each iteration. Here, a trajectory is legal if it does not contain states in the wall. This
results also support our observation that the single-step dynamics model cannot learn long-horizon
distribution, providing more illegal trajectories, and the iterative refinement of DMs will improve the
data quality.

Random single-step model DyDiff

rand policy

(a) Random dynamics, random
policy

Random single-step model DyDiff

med policy

(b) Random dynamics, medium
policy

Random single-step model DyDiff

exp policy

(c) Random dynamics, expert pol-
icy

Single-step model DyDiff

rand policy

(d) Trained dynamics, random
policy

Single-step model DyDiff

med policy

(e) Trained dynamics, medium
policy

Single-step model DyDiff

exp policy

(f) Trained dynamics, expert pol-
icy

Figure 8: Synthetic trajectories in Maze2D-medium from different single-step dynamics and policies.

Single-step model

legal trajectories: 27

DyDiff (iter 1)

legal trajectories: 37

DyDiff (iter 2)

legal trajectories: 46

DyDiff (iter 3)

legal trajectories: 46

DyDiff (iter 4)

legal trajectories: 43

Figure 9: The change of synthetic trajectories over the refinement iteration in Maze2D.

E.7 COMPUTATIONAL RESOURCES AND MODEL SIZES

Most experiments are conducted on NVIDIA RTX 3080 Ti GPUs. The training time of DyDiff
is about 20 hours in addition to the original time cost of the underlying policies for each task. In
comparison, training a SynthER model and generating 5× 106 samples cost about 2.5 hours. Also,
we would like to point out that the training time in offline RL is usually less important than that in
online RL. For deployment, the DM is no longer used once the policy training is finished, so the
inference time depends on the specific underlying RL algorithms themselves.

As for model sizes, DyDiff leverages the same DM structure as EDM, which is about 58M, whereas
SynthER is 6.5M.

24

	Introduction
	Related Work
	Preliminaries
	Dynamics Diffusion (DyDiff)
	Diffusion Models as Rollout Synthesizer
	Refine Rollouts with Diffusion Models
	Theoretical Analysis

	Experiments
	Experiment settings
	Results
	Experiments on Sparse-reward Tasks
	Ablation Studies

	Conclusion
	Details of the Motivation Example
	Details of Preliminaries
	Diffusion Model
	Offline RL

	Algorithms
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Empirical Values of Error Rates
	Explanation to Assumptions

	Experiments
	Experiment Details
	Ablation Studies on Filter Type
	Analysis over Tasks and Dataset Types
	Comparison to MTDiff-s
	Synthetic Error with Iteration Times
	Visualization on Maze2D
	Computational Resources and Model Sizes

