Meta-Rewarding Language Models:
Self-Improving Alignment with LLM-as-a-Meta-Judge

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) are rapidly
surpassing human knowledge in many domains.
While improving these models traditionally re-
lies on costly human data, recent self-rewarding
mechanisms (Yuan et al., 2024c¢) have shown
that LLMs can improve by judging their own
responses instead of relying on human label-
ers. However, existing methods have primarily
focused on improving model responses rather
than judgment capabilities, resulting in rapid
saturation during iterative training. To ad-
dress this issue, we introduce a novel Meta-
Rewarding step to the self-improvement pro-
cess, where the model judges its own judge-
ments and uses that feedback to refine its judg-
ment skills. Surprisingly, this unsupervised
approach improves the model’s ability to judge
and follow instructions, as demonstrated by a
win rate improvement of Llama-3-8B-Instruct
from 22.9% to 39.4% on AlpacaEval 2, and
20.6% to 29.1% on Arena-Hard. These re-
sults strongly suggest the potential for self-
improving models without human supervision.

1 Introduction

Large Language Models (LLMs) are advancing sig-
nificantly in their ability to follow instructions and
respond to user queries (OpenAl, 2023; Touvron
et al., 2023). An important phase in training these
models is instruction tuning (Ouyang et al., 2022),
which typically involves training LLMs on datasets
curated by humans, either via supervised finetun-
ing or preference optimization. Nevertheless, the
acquisition of human-generated data is both costly
and time-consuming. Furthermore, the quality of
such data is inherently constrained by the limita-
tions of human capabilities. The so-called ‘Super
Alignment’ challenge (Burns et al., 2023) aims to
find a solution to steering or controlling potentially
super-intelligent Als when their actions are inher-
ently beyond human abilities to judge.

Among the potential solutions to this challenge,

self-judging by the Al emerges as a particularly
promising approach. Yuan et al. (2024c¢) introduces
an iterative Self-Rewarding mechanism that enables
an LLM to improve autonomously. The process
involves a single model that takes on two distinct
roles, as an actor and as a judge. As an actor, the
model produces responses that are aimed to fulfill
specific instructions. As a judge (a special kind
of acting), the model evaluates these responses via
LLM-as-a-Judge prompting (Zheng et al., 2024)
and assigns rewards. The objective of the actor dur-
ing this self-play is to maximize its reward, thereby
improving its ability to follow instructions.

A major limitation of this previous work is that
its learning objective enhances the model’s ability
as an actor to generate better responses, while over-
looking improving the model’s ability as a judge.
If the ability to judge does not improve then train-
ing the actor over iterations can quickly saturate
— or worse could overfit the reward signal, a.k.a.
reward hacking. Consequently, it is imperative to
also improve the model’s capabilities as a judge in
addition to its ability to act.

In this paper, we propose a novel method called
Meta-Rewarding which assigns rewards to its own
judgements to train the model’s ability to judge.
The key idea is to introduce a third role of meta-
Jjudge, whose task is to evaluate the model’s own
judgements. While the judge evaluates the actor’s
responses, the meta-judge evaluates the judge’s
judgments (including rewards that it assigns) using
a mechanism similar to LLM-as-a-Judge, which
we term LLM-as-a-Meta-Judge. The meta-judge
enables us to build training data containing prefer-
ence pairs of judgements, in addition to the stan-
dard preferences between actor responses derived
from the standard judge. Our Meta-Rewarding
method thus aims to explicitly improve both the
acting and judging skills of a model — whereby
these combined skills should help to enhance its
instruction following ability as an actor. It is im-

Actor Data Creation

Sample multiple
responses

Prompt

Preference Optimization

Sample multiple
judgements

Generate
judgements Select
pairs Actor data M;
DPO
training
Pairwise
rankings

Judge data

a
s

Next iteration
model

Figure 1: Meta-Rewarding iterative training scheme. The language model at step ¢ behaves as an actor to generate
responses to instructions, as a judge to assign rewards to those responses, and as a meta-judge to evaluate its own
judgments. The judgments are used to create preference pairs to improve its ability to act, and the meta-judgments
are used to create preference pairs to improve its ability to judge. Both preference pair sets are used together to train

the model for the next iteration.

portant to note that all three roles - actor, judge,
and meta-judge - are performed by the same model,
thereby maintaining a self-improving nature that
requires no extra human data.

In addition to enhancing the judging ability
through Meta-Rewarding, we also address the
length-bias issue in the judging process (Singhal
et al., 2023). Like other reward models, the judge
tends to favor long responses, which can make re-
sponse length grow during iterative DPO (Yuan
et al., 2024c¢). To counteract this, we combine the
judge score with length information to determine
the winning response, ensuring that a shorter re-
sponse is chosen when scores are close.

In our experiments we start from Llama-3-8B-
Instruct and perform multiple iterations of our
Meta-Rewarding training. When evaluated on Al-
pacaEval 2 (Dubois et al., 2024b), we see a sub-
stantial improvement in the length-controlled (LC)
win rate (from 22.9% to 39.4%), even outperform-
ing GPT-4-0314!. We also observe that our method
outperforms standard Self-Rewarding training even
if it is enhanced with our length-bias improvements
(35.5% vs 39.4%), highlighting the importance of
the meta-judge. We also see similar improvement
on Arena-Hard benchmark (Li et al., 2024), which
is a benchmark targeting models’ ability to answer
complex and hard questions.

2 Meta-Rewarding

In our method, we assume a setup where we only
have an initial seed model, an instruction-tuned
LLM, and no further human supervised training
data. The idea is to generate training data from the
model itself through an iterative self-play process.

1h'ctps ://tatsu-lab.github.io/alpaca_eval/

In this process, the model assumes three main roles:
as an actor, it generates responses to given prompts;
as a judge, it evaluates and scores its own responses;
and as a meta-judge, it compares the quality of its
own judgments.

While training the actor to generate better re-
sponses to user queries is the final objective, this
training’s efficacy relies on the accuracy of the
judge. As the judge’s accuracy increases, it will
provide higher quality feedback for training the
actor, ultimately leading to a better actor. There-
fore, the goal of Meta-Rewarding is to improve the
model’s capability both as actor and judge during
training. The role of the meta-judge is to provide
feedback necessary for training the judge.

At a high level, as depicted in Figure 1, our
method is an iterative training scheme that starts
from a given seed LLM, which assumes all three
roles. An iteration starts with the actor generating
multiple response variations for each prompt. This
is followed by the judge evaluating each response
using an LL.M-as-a-Judge prompt and generating
a judgement that contains a score. This score then
allows us to build preference pairs of responses for
training the actor. For training the judge, we pick a
single response and let the meta-judge compare two
of its judgement variations generated by the judge
to determine which one is better using an LLM-
as-a-Meta-Judge prompt, see Figure 2. This step
enables us to create preference pairs of judgements
that can be used for training the judge.

Once we have the preference data both for the
actor and the judge, then we apply preference op-
timization on the dataset via DPO (Rafailov et al.,
2024)%. After the training, we end up with an im-

“Note that while other RLHF methods can be employed,

https://tatsu-lab.github.io/alpaca_eval/

LLM-as-a-Meta-Judge Prompt

Review the wuser’s question and the corre-
sponding response, along with two judgments.
Determine which judgment is more accurate
according to the rubric provided below. The
rubric used for the initial judgments is as follows:

{Rubric}

User:
{prompt}

Response:
{response}

Judgment A:
{judgment_a}

Judgment B:
{judgment_ b}

After examining the original question, re-
sponse, and both judgments:

- Explain which judgment is more accu-
rate according to the original rubric and why.
Consider factors such as adherence to the
rubric, accuracy in evaluating the response, and
consistency in applying the criteria.

- Conclude with a clear statement of which
judgment is better using the format: “Winner:
[Judgement A | Judgement B]”

Figure 2: Prompt used by the meta-judge to compare
given two judgements. (See subsection A.2 for the full
prompt)

proved model that will be then used for the next
iteration, both for generating training data and as
an initial model for the optimization. Next, we will
describe each preference data creation process in
detail.

2.1 Actor Preference Dataset Creation

Our approach to create the actor preference dataset
on a given iteration is built upon the pipeline intro-
duced by Yuan et al. (2024c), with a crucial modi-
fication to incorporate a length-control mechanism.
subsection 3.5 proves this change to be essential in
preventing the responses from lengthening and im-
proving the length-controlled win rate. The dataset
creation process consists of three steps:

Sample Responses from Actor. We assume we
have a given set of prompts. For each prompt z,
we generate K different responses {y1,...,yx}
by sampling from the current model M; at iteration
t.

Aggregate Multiple Judgments. For each re-
sponse yi, we generate N different judgments
{j},...jN} from M, using an LLM-as-a-Judge

we chose to use DPO because of its simplicity and stability.

prompt (shown in subsection A.1). The prompt
instructs the model to evaluate the given response
Yy, for prompt x according to a fixed rubric and
output its chain-of-thought reasoning and a final
score out of 5. We use regular expressions to parse
the scores, discarding any judgments with parsing
errors or those not adhering to the 5-point scale.
The final reward score for each response is then
calculated by averaging all valid judgment scores.

Preference Data Selection with Length-
Control. The previous work simply selects the
highest Spax and lowest S, scored responses as
the chosen y. and rejected y, as a preference pair
for each prompt. However, this leads to length
explosion where responses get longer with each it-
eration, due to the length-bias of the judge (Dubois
et al., 2024a; Park et al., 2024; Yuan et al., 2024b).
To mitigate this, we introduce a simple length-
control mechanism. We define a quality tier pa-
rameter p € [0, 1] to control the trade-off between
score-based selection and length consideration. Re-
sponses with scores in the top tier, specifically
within the range [(1 — p)Smax + 2 Smin, Smax), are
considered to have similar quality. For selecting
the chosen response y., we opt for the shortest re-
sponse within this top tier. This approach helps to
counteract the tendency of judges to favor longer
responses, which can lead to biased training data.
Conversely, for the rejected response y,, we se-
lect the longest response with a score in the range
[Smins (1 — p)Smin + pSmax]. Setting p to 0 effec-
tively disables the length-control, reverting to a
purely score-based selection.

2.2 Judge Preference Dataset Creation

Unlike the judge that provides score-based judge-
ments, we design the meta-judge to operate in
a pairwise mode by comparing two given judge-
ments.

Response Selection: To prepare effective train-
ing data for the judge, we focus on responses where
the judge is the least certain, as measured by the
variance of the scores it has given. To be more
specific, we first compute the score variance given
by the N different judgments for every response
yr. We then pick the response y with the highest
score variance for each prompt z to be used in the
judge training. If multiple responses have the same
variance, we break ties randomly.

Pairwise Meta-Judge Evaluations: For each
selected response y, we have up to NV correspond-

ing judgments, denoted as {j',...,;"}. We then
evaluate each pair of different judgments (5", j")
using a meta-judge prompt shown in Figure 2.
This LLM-as-a-Meta-Judge prompt includes the
original prompt z, response ¥, and its two judge-
ments (5™, ;™) as well as the rubric used by the
judge. Then the model is asked to generate chain-
of-thought reasoning followed by its choice of the
better judgement. Again this uses the same LL.M
model, but acting as a meta-judge this time.

To mitigate positional bias , we prompt the
model twice by changing the ordering of the
two judgements. In addition, we also introduce
weighted scoring for winning in the first vs second
positions. We define win g and winoyg as the total
wins in the first and second positions respectively,
and calculate the weights as:

Winond Win s
w1 = wy =

. .)
WINst + WINnd

Wins + Winond

The result of a single battle between judgments
(j™,4™) is defined as:

1 If the meta-judge prefers m wins

mn

r" = ¢ —1 If the meta-judge prefers n wins

0 If tie or parse error.

We then construct a battle matrix B as the weighted
sum of the battle results:

B, = w11[r™" = 1] + wol[r™™ = —1]

Elo Score and Pairs Selection: The next step is
to convert the battle matrix into rewards (meta-
rewards) corresponding to each judgement. In-
spired by Zheng et al. (2024), we determine the
Elo score ¢, for each judgment j™ by solving the
following maximum likelihood estimation prob-
lem:

efm—En
arg max Z B log (Heam—an> '

m,n

This approach allows us to compute scores that ac-
count for the positional bias in the meta-judge eval-
uations. When creating the preference pairs, we
select the chosen j€ and rejected j” as the judgment
with the highest and lowest Elo score respectively,
breaking ties randomly>.

3We perform additional length filtering after this step to
mitigate length explosion

N
N

L Meta Rewarding (Ours)
1 —@— Self Rewarding w/ LC
——=- Claude Opus

1 —-- GPT-4-0314

o GPT-4-0613

LC Win rate (%)
w w w w w B
o N N ()} [s¢] o

N
o]
L

N
o
L

SFT Iter 1 Iter 2 Iter 3 Iter 4

Figure 3: AlpacaEval 2. Length-controlled (LC) win
rate increases with Meta-Rewarding iterations, even
approaching Claude-Opus level. The Self-Rewarding
w/LC baseline lags behind in later iterations due to its
lack of judge training.

3 Experiments

3.1 Experimental Setup

We use instruction-finetuned Llama-3-8B-Instruct
as a seed model, and otherwise closely follow the
experimental setup of Yuan et al. (2024c). Before
our Meta-Rewarding training, we first perform su-
pervised finetuning (SFT) of the seed model on the
Evaluation Fine-Tuning (EFT) dataset from Yuan
et al. (2024¢). This dataset is built from Open
Assistant (Kopf et al., 2024) and provides initial
LLM-as-a-Judge training data of ranked human re-
sponses, thus aiding the model to act as a judge.
We refer to this model as SFT on EFT, or simply
SFT for short.

For Meta-Rewarding iterations, we utilize
20,000 prompts from Yuan et al. (2024c) that were
generated by Llama-2-70B-Chat using an 8-shot
prompt. We provide a visualization of their distri-
bution in Appendix Figure 6. For each iteration, we
sample 5,000 prompts from this seed set and con-
duct four iterations in total. The iterative process is
formally defined as follows:

Iter 1 Obtain M; by training using DPO (initial-
ized from the SFT model) on both actor and
judge preference pairs generated by the SFT
model.

Iter 2 Obtain M5 by training M; using DPO on
actor and judge preference pairs generated
by M 1-

Iter 3 Obtain M3 by training M5 using DPO exclu-
sively on actor preference pairs generated by
Mo.

Iter 4 Obtain M, by training M3 using DPO exclu-
sively on actor preference pairs generated by
Ms.

We provide a detailed recipe for training in
subsection A.6. In each iteration, we generate
K = 7 response variations per prompt and N = 11
judgements per response using temperature 0.8 and
top_p 0.95. We filtered out identical responses.

3.2 Evaluation Methods

As Meta-Rewarding aims to improve the model
both as an actor and a judge, we evaluate its perfor-
mance in both of these roles.

Actor’s Instruction Following: We make use of
three well-established auto-evaluation benchmarks
based on GPT4-as-a-Judge: AlpacaEval 2 (Dubois
et al., 2024a), Arena-Hard (Li et al., 2024) and
MT-Bench (Zheng et al., 2024). These benchmarks
focus on different aspects of the model. For in-
stance, AlpacaEval mainly focuses on chat scenar-
ios, where the prompt sets cover a diverse range of
daily questions. In comparison, Arena-Hard consist
of more complex or challenging questions, where
they satisfy more criteria in the predefined 7 as-
pects (creativity, complexity, problem-solving, etc).
Notably, Arena-Hard has the highest correlation
with Chatbot-Arena among popular open-ended
LLM benchmarks (Li et al., 2024). MT-Bench has
8 different question categories and evaluates the
multi-turn conversation ability of the model.

Judge’s Reward Modeling: We measure the
correlation of our judge scores with human pref-
erences, as well as a strong Al judge when hu-
man labeling is not available. We calculate the
Spearman correlation and agreement between the
model-generated ranking with the human-labeled
preferences provided in the Open Assistant dataset.
We use a held-out split of 190 samples, with each
sample consisting of a prompt and several human
ranked responses, totalling 580 different responses.
Additionally, we also measure the judge’s per-
formance on ranking responses generated by the
seed model, which is considered to be more in-
distribution compared to human or other model
generated responses. This is because the judge is
mainly trained and applied on samples that are self-
generated. However, in this case, we do not have
ground-truth human preference labels, so we adopt
the strong judge gpt-4-1106-preview as a proxy.

Table 1: AlpacaEval 2: The evaluation on AlpacaEval
shows significant improvement with Meta-Rewarding
training. While the seed model only achieves 22.92%
length-controlled (LC) win rate against GPT4-Turbo,
our 4-th iteration achieves 39.44%.

Model LC winrate Win rate Length
Llama-3-8B-Instruct (Seed)* 22.92% 22.57% 1899
SFT on EFT 25.47% 25.10% 1943
Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 26.93% 27.12% 1983
Iteration 2 30.38% 29.77% 1940
Iteration 3 34.87% 34.59% 1967
Iteration 4 35.49% 35.37% 2005
Meta-Rewarding LLM (Ours)
Iteration 1 27.85% 27.62% 1949
Iteration 2 32.66% 33.29% 2001
Iteration 3 35.45% 37.24% 2064
Iteration 4 39.44% 39.45% 2003

3.3 Instruction Following Evaluation

0.5
= 0.4
X
°)
% 031 AL . b d
o ’ i}
. 1
£ '/ X \ \
=0 WA\ Vo)
o ¢)
b \‘/ |
0.1 1 —e— Seed Iter 2 \ \
SFT Iter 3 \
|
0.0 Iter 1 Iter 4
VW E C>XV T QN >0 g >0 00V U o
S 55 £38ec 528w s
g ET oc 2 Qg r s ¥XEETSH
G E® QS8 D 3 OLOF 286 8 £ °
W g o2 g o00a f £ 0O 9 0O o 53]
£ 2 T 0 % (o] - < 5
T o o X] =})
o £ w0 2 ¢ @) 4
P zn_mD o s
£ E z 8
3 5)
(2]) o
-

Figure 4: Fine-grained AlpacaEval LC Winrate Anal-
ysis. We classify all 805 AlpacaEval test prompts into
18 categories. Meta-Rewarding improves upon Llama-
3-8B-Instruct for 17 out of 18 categories.

Meta-Rewarding iterations significantly im-
proves the win rate. In Figure 3, we show the
length-controlled (LC) win rate of our method over
its training iterations on the AlpacaEval benchmark.
Overall, we see a substantial increase from 22.9%
to 39.4%, outperforming GPT-4 and approaching
close to the Claude Opus model. This is a remark-
able result considering our model has only 8B pa-

*Our evaluation shows slightly higher numbers, with the
LC Winrate 24.57%, Winrate 24.89% and Length 1936. This
is likely due to a different inference template.

rameters and our training did not utilize any extra
human data beyond the seed model (except the EFT
dataset used in the SFT stage). In addition, our
method surpasses the strong baseline of SPPO (Wu
et al., 2024), which has a similar iterative training
setup using Llama-3-8B-Instruct, but uses a reward
model that was trained on a large set of human
and GPT-4 data. Despite its reliance on a strong
external reward model as a judge, SPPO achieves
38.77% LC win rate, which is slightly lower than
our method.

Importance of the meta-judge and length-
control mechanism. The Self-Rewarding base-
line with our length-control (LC), which lacks the
meta-judge for training the judge, also brings im-
provement, but to a lesser degree, especially in later
iterations. This signifies the importance of training
the judge and the effectiveness of the meta-judge
in achieving this. As shown in Table 1, the average
response length (measured in characters) does not
grow substantially over training iterations, proving
the effectiveness of our length-control mechanisms
(see ablations in subsection 3.5).

Meta-Rewarding improves nearly all instruc-
tion categories. We perform a fine-grained analy-
sis by breaking down the 805 questions in AlpacaE-
val into 18 categories5 given in Yuan et al. (2024c).
Notably, we find significant improvements in most
of the categories as shown in Figure 4, including
categories that require a considerable amount of
knowledge and reasoning, e.g. science, gaming,
literature, etc. However, there are also categories
like Travel or Mathematics, where the model only
has slight improvement compared with the seed
model Llama-3-8B-Instruct.

Meta-Rewarding improves answering of com-
plex and hard questions. We further evaluate our
method’s performance on answering complex and
challenging prompts using Arena-Hard. The evalu-
ation results in Table 2 show that Meta-Rewarding
is able to improve the score in all 4 iterations, show-
ing a substantial improvement (+8.5%) compared
with the seed model (20.6%). This further validate
the effectiveness of our method.

Meta-Rewarding does not sacrifice multi-turn
ability despite training only on single-turn. We
perform MT-Bench evaluation to examine the loss
in multi-turn conversation ability since we trained
only on single-turn data. The result (detailed in
Appendix Table 5) shows that Meta-Rewarding sig-

>We dropped 2 categories that had less than 10 samples.

Table 2: Arena-Hard: Although our prompt set are far
from the distribution of Arena-Hard (which is selected
from the highest quality clusters from the Chatbot Arena
dataset), we observe a substantial improvement. Four
iterations of Meta-Rewarding brings +8.5% increase
over the seed model.

Model Score 95% CI Len
Llama-3-8B-Instruct (Seed) 20.6% (-2.0,1.8) 2485
SFT on EFT 242% (-2.0,1.8) 2444
Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 23.2% (-1.7,1.9) 2438
Iteration 2 263% (-2.1,2.3) 2427
Iteration 3 282% (-2.0,1.9) 2413
Iteration 4 27.3% (-2.0,2.2) 2448
Meta-Rewarding LLM (Ours)
Iteration 1 251% (-1.9,1.8) 2395
Iteration 2 27.4% (-2.0,2.0) 2416
Iteration 3 27.6% (-2.3,2.6) 2501
Iteration 4 29.1% (-2.3,2.1) 2422

nificantly improves the Turn 1 Score from 8.319
to 8.738 in the last iteration, while sacrificing no
more than 0.1 in Turn 2 Score. This is a large im-
provement on Self-Rewarding + LC, as it typically
sacrifices more than 0.2 in Turn 2 score while not
improving the Turn 1 score.

3.4 Reward Modeling Evaluation

We evaluate the judging accuracy of our models
on responses generated by the seed model Llama-
3-8B-Instruct. In the absence of human labeling,
we measure the correlation between our model and
the currently strongest judge model, gpt-4-1106-
preview. Our analysis employs two slightly differ-
ent settings, primarily differing in how they handle
ties given by the judge models. We begin with a
fixed set of Open Assistant prompts that do not
overlap with our training prompts.

For the GPT-4 Chosen Pairs setting (Table 6),
we generate two responses using the seed model for
each prompt. We then generate preference labels
with GPT-4 judge using a prompt adopted from
AlpacaEval (see subsection A.1). To mitigate posi-
tional bias, we make two judgements by switching
the positions of the compared responses. We retain
the data only where the two judgments agree, dis-
carding the rest. This process yields a total of 170
pairs with preference judge labels. Subsequently,
we use the model being evaluated to predict rank-
ings on those pairs, employing the same procedure
as before by generating 11 judgments and averag-

Table 3: Judge agreement with GPT-4 on responses
generated by the seed model: Evaluation of the judge’s
correlation with GPT4 on the Open Assistant test set,
with responses generated by Llama-3-8B-Instruct. We
adopt the Self-Chosen Fairs setting, where we first let
our judge select the win-lose pairs and then calculate
agreement with GPT4.

Model Agreement Agree wo Tie
Llama-3-8B-Instruct (Seed) 55.80% 61.03%
SFT on EFT 61.66% 73.51%
Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 55.17% 59.59%
Iteration 2 54.89% 60.00%
Iteration 3 61.13% 72.68%
Iteration 4 64.44% 78.42%
Meta-Rewarding LLM (Ours)
Iteration 1 60.06% 68.75%
Iteration 2 61.57% 72.34%
Iteration 3 63.43% 76.80%
Iteration 4 64.50% 79.33%

ing their scores. We calculate two metrics: agree-
ment (counting ties as 0.5) and agreement with-
out ties (removing all ties predicted by the weaker
judge and assessing agreement on the remaining
pairs).

For the Self-Chosen Pairs setting (Table 3), we
generate 7 responses from the seed model and rank
them using the target model. Again, we use the
same procedure of averaging of 11 judgements.
We select the highest and lowest scoring responses
as the predicted chosen and rejected pairs, respec-
tively. We then perform the same judgment using
the strong GPT-4 model and report the agreement
and agreement without ties metrics.

The model improves in judging after per-
forming judge training. Our analysis shown in
Table 3 and Table 6 reveals significant improve-
ments in the correlation between Meta-Rewarding
and the strong GPT-4 judge compared to the Self-
Rewarding baseline in both evaluation settings.
The enhancement is most notable in the agreement
without ties metric. For Self-Chosen Pairs (Ta-
ble 3), the improvement reaches up to +12.34%
(Iteration 2) when comparing the same iterations
of both models, while in the GPT-4 Chosen Pairs
setting (Table 6), the increase exceeds +6%.

Meta-Rewarding training improve judging
correlation with Human. We examine the judge’s
correlation with the human-ranked responses from
the Open Assistant dataset. As shown in Appendix

Table 4: Meta-Judge Statistics. We observe growing
biases in the meta-judge towards preferring higher score
judgements or those in the first position.

Score Bias Positional Bias
Meta-Judge High/Low Win Same / Diff Score Avg
Iteration 1 63.04% /36.96% 47.79% / 41.12% 43.92%
Iteration2 97.68%12.32% 87.715% /56.18% 68.11%

Table 7, we measure the agreement as well as
the average Spearman correlation (over prompts).
There is a notable increase in correlation with
human judgement, especially in Meta-Rewarding
LLM:s.

3.5 Ablations and Analysis

Length-Control Mechanism: Our length-control
mechanism is essential in maintaining a balance
between comprehensiveness and conciseness of
the model responses. We compare the last train-
ing iteration with different length-control param-
eter choices p and present the results in Table 8.
Using p = 0 is equivalent to not performing any
length-control in the preference data selection. As
expected, training this way makes the model exces-
sively verbose for both models, and negatively af-
fects the LC win rate as shown for Self-Rewarding
LLM:s.

Training with an External Reward Model:
Meta-Rewarding employs an LLM-as-a-Judge
prompt to judge its own responses. Instead, we
experiment with using a strong external reward
model Starling-RM-34B (Zhu et al., 2023) to se-
lect actor preference pairs. However, we find that
Starling-RM-34B failed to increase the LC win
rate of AlpacaEval in the first iteration (24.63% vs
27.85%), perhaps due to its length bias.

Meta-Judge Biases: After the first iteration of
Meta-Rewarding training, the meta-judge becomes
more likely to prefer a higher score judgment nearly
all the time, as shown in Table 4. This score-bias,
in turn, significantly shifts the scoring distribution
of the judge towards the full score of 5. For the
positional bias, we also see an increasing trend of
during the training, especially for comparing two
judgments with the same score.

Judge Scoring Shift. To investigate the judge
score distribution change during Meta-Rewarding
training iterations, we use the same validation
prompts as used for reward modeling evaluation.
Figure 5 is a visualization of the scoring distribu-

Seed

SFT
Iteration 1
Iteration 2

R

3.00 325 350 375 4.00 425 450 475 5.00
Judge score

w
<)
L

N
5

N
<)
L

=
w
)

g
=}
|

Density (Est. by KDE)

o
v

Figure 5: Change in Scoring Distribution: Training
the judge using the meta-judge changes its score distri-
bution significantly. Notably, the judge tends to concen-
trate more into giving a high score. As a result, the mean
score is increased from 4.1 to 4.7+ after two iterations
of training.

tion, where the density is estimated using Gaus-
sian kernel density estimation (Davis et al., 2011).
Training the judge using the meta-judge further in-
creases its likelihood of generating higher scores.
However, we notice that the first 2 iterations of the
judge training makes it prefer to assign scores 4.5,
4.75, 4.9 even though the scores should be integers
according to the instruction.

4 Related work

RLHF. Alignment strategies can be broadly classi-
fied into aligning with a reward model or aligning
directly based on a preference dataset. Ziegler et al.
(2019); Stiennon et al. (2020); Ouyang et al. (2022);
Bai et al. (2022a) train a fixed reward model from
human preference data, and then use the reward
model to train via reinforcement learning (RL), e.g.
via Proximal Policy Optimization (PPO) (Schul-
man et al., 2017). To further reduce engineering
costs, P30 (Wu et al., 2023) derived the contrastive
policy gradient, which has shown superior perfor-
mance over PPO while removing the need for a
value function. In contrast, methods such as Direct
Preference Optimization (DPO) (Rafailov et al.,
2024; Xu et al., 2023; Zhao et al., 2023; Zheng
et al., 2023; Yuan et al., 2024a) avoid training the
reward model entirely, and instead directly train
the LLM using human preferences.

LLM-as-a-Judge. Using LLM-as-a-Judge for eval-
uation (Li et al., 2024; Dubois et al., 2023, 2024b;
Saha et al., 2023; Bai et al., 2024) and training
reward models (Lee et al., 2023; Zhu et al., 2023;
Chen et al., 2023; Li et al., 2023) has become a

standard practice. Some works, such as Kim et al.
(2023, 2024), have investigated how to construct
datasets for training a LLM-as-a-Judge. However,
these approaches typically use human data or data
coming from a much stronger model. In con-
trast, our approach emphasizes self-improvement
of judgment skills.

Super Alignment. Since current alignment meth-
ods mostly rely on either supervised fine-tuning
(SFT) with human-provided demonstrations (Sanh
et al., 2021; Wei et al., 2021; Chung et al., 2024)
or reinforcement learning from human feedback
(RLHF) (Ziegler et al., 2019; Stiennon et al., 2020;
Ouyang et al., 2022), their capabilities would be
inherently limited as humans cannot always pro-
vide helpful demonstrations or supervision on the
hard tasks beyond their expertise (Sharma et al.,
2023). The closest direction along this line to our
work is using Al to produce feedback for training
Al, also known as RLAIF (Zhu et al., 2024; Lee
et al., 2023). For example, Constitutional Al (Bai
et al., 2022b) uses an LLLM to provide feedback and
refine responses. McAleese et al. (2024) trained
CriticGPT to write critiques that highlight inaccu-
racies in ChatGPT answers. Self-Rewarding (Yuan
et al., 2024c) proposed an iterative training scheme
where the model acts as a judge to evaluate its own
responses. However, as far as we know, less work
has focused on training the actor and the judge
simultaneously during self-improvement.

5 Conclusion

In this work, we propose a novel mechanism for
improving the judging skill of models by using
a meta-judge that assigns meta-rewards to select
chosen and rejected judgments for preference op-
timization. The effectiveness of our method is
demonstrated through auto-evaluation benchmarks
AlpacaEval, Arena-Hard, and MT-Bench. Remark-
ably, even without additional human feedback, our
approach significantly improves upon Llama-3-8B-
Instruct and surpasses both Self-Rewarding and
SPPO (Wu et al., 2024), a strong baseline that
relies heavily on human feedback. Furthermore,
when we evaluate our model’s judging ability, it
shows significant improvement in correlation with
both human judges and strong Al judges like gpt-4-
1106-preview. Overall, our findings provide strong
evidence that self-improving the model without hu-
man feedback is a promising direction for achiev-
ing super alignment.

6 Limitations

A deficiency in our experimental setup is the 5-
point judging system that we chose, following Yuan
et al. (2024b). We discovered that this scoring
method often results in ties due to minimal quality
differences between responses, necessitating care-
ful averaging of multiple judgments to differentiate
between them. Moreover, as training progressed,
responses increasingly approached the maximum
score, making further improvements difficult to de-
tect. A more nuanced scoring system that covers
diverse aspects (Wang et al., 2024) or a comparison-
based approach might address these issues.

Another significant limitation lies in the judge
training process. Despite our efforts to mitigate po-
sitional bias of our meta-judge, this issue persists
and hindered further improvements in Iteration 3.
The judge also demonstrated a tendency to assign
higher scores, which accelerated score saturation
and reduced its ability to discriminate between re-
sponses.

Ethics Statement

This paper presents work whose goal is to advance
the field of Machine Learning. There are many
potential societal consequences of our work, none
which we feel must be specifically highlighted here.

Acknowledgments

We thank the anonymous reviewers for their helpful
comments. This paper’s writing received minor
language-polishing suggestions from Gemini and
GPT-4.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022a. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini,
Cameron McKinnon, et al. 2022b. Constitutional
ai: Harmlessness from ai feedback. arXiv preprint
arXiv:2212.08073.

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He,
Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia Xiao,
Haozhe Lyu, et al. 2024. Benchmarking foundation

models with language-model-as-an-examiner. Ad-
vances in Neural Information Processing Systems,
36.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner,
Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan
Leike, et al. 2023. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision.
arXiv preprint arXiv:2312.09390.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2024. Scaling instruction-finetuned language models.
Journal of Machine Learning Research, 25(70):1-53.

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis.
2011. Remarks on some nonparametric estimates
of a density function. Selected Works of Murray
Rosenblatt, pages 95-100.

Yann Dubois, Baldzs Galambosi, Percy Liang, and Tat-
sunori B Hashimoto. 2024a. Length-controlled al-
pacaeval: A simple way to debias automatic evalua-
tors. arXiv preprint arXiv:2404.04475.

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin,
Percy S Liang, and Tatsunori B Hashimoto. 2024b.
Alpacafarm: A simulation framework for methods
that learn from human feedback. Advances in Neural
Information Processing Systems, 36.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang,
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca-
farm: A simulation framework for methods that learn
from human feedback.

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang,
Shayne Longpre, Hwaran Lee, Sangdoo Yun,
Seongjin Shin, Sungdong Kim, James Thorne, et al.
2023. Prometheus: Inducing fine-grained evaluation
capability in language models. In The Twelfth Inter-
national Conference on Learning Representations.

Seungone Kim, Juyoung Suk, Shayne Longpre,
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon
Seo. 2024. Prometheus 2: An open source language
model specialized in evaluating other language mod-
els. arXiv preprint arXiv:2405.01535.

Andreas Kopf, Yannic Kilcher, Dimitri von Riitte,
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens,
Abdullah Barhoum, Duc Nguyen, Oliver Stan-
ley, Richard Nagyfi, et al. 2024. Openassistant
conversations-democratizing large language model
alignment. Advances in Neural Information Process-
ing Systems, 36.

http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie
Lu, Thomas Mesnard, Colton Bishop, Victor Car-
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling
reinforcement learning from human feedback with ai
feedback. arXiv preprint arXiv:2309.00267.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ion Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke
Zettlemoyer, Omer Levy, Jason Weston, and Mike
Lewis. 2023. Self-alignment with instruction back-
translation. arXiv preprint arXiv:2308.06259.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan
Leike. 2024. Llm critics help catch llm bugs. arXiv
preprint arXiv:2407.00215.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Ryan Park, Rafael Rafailov, Stefano Ermon, and
Chelsea Finn. 2024. Disentangling length from qual-
ity in direct preference optimization. arXiv preprint
arXiv:2403.19159.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz,
Mohit Bansal, Jason Weston, and Xian Li.
2023. Branch-solve-merge improves large language
model evaluation and generation. arXiv preprint
arXiv:2310.15123.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David
Duvenaud, Amanda Askell, Samuel R Bowman,
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds,
Scott R Johnston, et al. 2023. Towards understand-
ing sycophancy in language models. arXiv preprint
arXiv:2310.13548.

10

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and
Greg Durrett. 2023. A long way to go: Investi-
gating length correlations in rlhf. arXiv preprint
arXiv:2310.03716.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008—
3021.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi
Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang,
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev.
2024. Helpsteer2: Open-source dataset for train-
ing top-performing reward models. arXiv preprint
arXiv:2406.08673.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen,
Kannan Ramchandran, and Jiantao Jiao. 2023. Pair-
wise proximal policy optimization: Harnessing rel-
ative feedback for llm alignment. arXiv preprint
arXiv:2310.00212.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. 2024. Self-play pref-
erence optimization for language model alignment.
arXiv preprint arXiv:2405.00675.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. 2023. Some things are more cringe than
others: Preference optimization with the pairwise
cringe loss. arXiv preprint arXiv:2312.16682.

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang,
Songfang Huang, and Fei Huang. 2024a. Rrhf: Rank
responses to align language models with human feed-
back. Advances in Neural Information Processing
Systems, 36.

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho,
Sainbayar Sukhbaatar, Jason Weston, and Jing Xu.
2024b. Following length constraints in instructions.
arXiv preprint arXiv:2406.17744.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason E
Weston. 2024c. Self-rewarding language models.
In Forty-first International Conference on Machine
Learning.

Yao Zhao, Rishabh Joshi, Tianqgi Liu, Misha Khalman,
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-
quence likelihood calibration with human feedback.
arXiv preprint arXiv:2305.10425.

Chujie Zheng, Pei Ke, Zheng Zhang, and Minlie Huang.
2023. Click: Controllable text generation with
sequence likelihood contrastive learning. arXiv
preprint arXiv:2306.03350.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Fric Xing, et al. 2024.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and
Jiantao Jiao. 2024. Starling-7b: Improving helpful-
ness and harmlessness with rlaif. In First Conference
on Language Modeling.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness & harmlessness with rlaif.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

11

https://openreview.net/forum?id=0NphYCmgua

A Appendix
A.1 Judge Prompt

Pointwise Judge Prompt

Review the user’s question and the corresponding response using the additive 5-point scoring system
described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the response is relevant and provides some information related to the user’s in-
quiry, even if it is incomplete or contains some irrelevant content.

- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.

- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an AI Assistant or if it has elements typically found

in blogs or search results.

- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the
user’s question directly and comprehensively, and is well-organized and helpful, even if there is slight room
for improvement in clarity, conciseness or focus.

- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant,
without extraneous information, reflecting expert knowledge, and demonstrating a high-quality, engaging,
and insightful answer.

User: {query}
<response>{response}< /response>
After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>"

Remember to assess from the Al Assistant perspective, utilizing web search knowledge as necessary.

We adopt the same judge prompt as in Yuan et al. (2024c).

12

A.2 Meta-Judge Prompt

LLM-as-a-Meta-Judge Prompt

Review the user’s question and the corresponding response, along with two judgments. Determine
which judgment is more accurate according to the rubric provided below. The rubric used for the initial
judgments is as follows:

- Add 1 point if the response is relevant and provides some information related to the user’s inquiry, even
if it is incomplete or contains some irrelevant content.

- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.

- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an AI Assistant or if it has elements typically found
in blogs or search results.

- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the
user’s question directly and comprehensively, and is well-organized and helpful, even if there is slight room
for improvement in clarity, conciseness or focus.

- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant,
without extraneous information, reflecting expert knowledge, and demonstrating a high-quality, engaging,
and insightful answer.

User: {prompt}

Response:
{response}

Judgment A:
{judgment_a}

Judgment B:
{judgment b}

After examining the original question, response, and both judgments:

- Explain which judgment is more accurate according to the original rubric and why. Consider fac-
tors such as adherence to the rubric, accuracy in evaluating the response, and consistency in applying the
criteria.

- Conclude with a clear statement of which judgment is better using the format: “Winner: [Judgement A |

Judgement B]”

13

A.3 GPT4 Judge Prompt

alpaca_eval_clf_gpt4_turbo

<|im_ start|>system

You are a highly efficient assistant, who evaluates and selects the best large language model (LLMs) based
on the quality of their responses to a given instruction. This process will be used to create a leaderboard
reflecting the most accurate and human-preferred answers.

<|im__end|>

<|im__start|>user

I require a leaderboard for various large language models. I'll provide you with prompts given to these
models and their corresponding outputs. Your task is to assess these responses, and select the model that
produces the best output from a human perspective.

Instruction
{

}
Model Outputs

wee

“instruction”: ““{instruction}””,

Here are the unordered outputs from the models. Each output is associated with a specific model,
identified by a unique model identifier.

{

“model identifier”: “m”

“output”: 143 “{outputil}” ”

—~———

“model__identifier”: “M”,
“output”: ““{output_2}””

}
Task

Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model. We will use
your output as the name of the best model, so make sure your output only contains one of the following
model identifiers and nothing else (no quotes, no spaces, no new lines, ...): m or M.

#+4 Best Model Identifier
<|im_end|>

We adopt this prompt from AlpacaEval, which is proved to have high correlation with human judges.

14

A.4 MT-Bench Results

Table 5: MT-Bench: Since our training mainly focus on the first-turn capability, we observe a significant im-
provement in the Turn 1 Score. While the Self-Rewarding baseline suffer from a large drop in Turn 2 score, our
Meta-Rewarding only sacrifice slightly and even improving the Turn 2 score in Iteration 3 & 4.

Model Score Turn1l Turn2 Length
Llama-3-8B-Instruct 8.116 8.319 7911 1568
SFT on EFT 7.943 8.138 7.747 1511
Self-Rewarding LLM + LC
Iteration 1 7.909 8.144 7.671 1576
Iteration 2 7.894 8.200 7.588 1570
Iteration 3 7.984 8.231 7.734 1528
Iteration 4 8.028 8.381 7.675 1539
Meta-Rewarding LLM
Iteration 1 7.994 8.263 7.725 1555
Iteration 2 8.198 8.794 7.595 1577
Iteration 3 8.341 8.731 7.950 1596
Iteration 4 8.288 8.738 7.838 1592

A.5 Additional Evaluation Results

Table 6: Judge agreement with GPT-4 on responses generated by the seed model: Evaluation of the judge’s
correlation with GPT4 on the Open Assistant test set, with responses generated by Llama-3-8B-Instruct.

GPT-4 Chosen Pairs Self-Chosen Pairs

Model Agreement Agree wo Tie Agreement Agree wo Tie
Llama-3-8B-Instruct (Seed) 55.95% 56.49% 55.80% 61.03%
SFT on EFT 51.48% 51.79% 61.66% 73.51%
Self-Rewarding LLM (Yuan et al., 2024c) + LC

Iteration 1 56.54% 57.97% 55.17% 59.59%

Iteration 2 52.67% 53.43% 54.89% 60.00%

Iteration 3 55.65% 55.90% 61.13% 72.68%

Iteration 4 52.97% 53.12% 64.44% 78.42%
Meta-Rewarding LLM (Ours)

Iteration 1 56.54% 57.23% 60.06% 68.75%

Iteration 2 55.05% 56.58% 61.57% 72.34%

Iteration 3 58.63% 61.24% 63.43% 76.80%

Iteration 4 57.44% 59.54% 64.50 % 79.33%

15

Table 7: Judge’s Correlation with Human: We measure the judge’s agreement (with and without ties) with
humans on the Open Assistant test set. Spearman correlation represent the ranking spearman correlation with the
ground truth averaged over prompts.

Model Agreement Agree wo Tie Spearman corr.
Llama-3-8B-Instruct 62.81% 64.18% 0.315
SFT on EFT 63.20% 64.59% 0.321
Self-Rewarding LLM + LC
Iteration 1 63.04% 65.04% 0.298
Iteration 2 64.14% 67.17% 0.347
Iteration 3 60.23% 61.63% 0.251
Iteration 4 61.48% 62.22% 0.283
Meta-Rewarding LLM
Iteration 1 57.73% 61.98% 0.210
Iteration 2 66.64 % 68.33% 0.382
Iteration 3 63.35% 65.24% 0.329
Iteration 4 62.96% 64.82% 0.326

A.6 Training Details

For the SFT model, we train for a total of 10 epochs using a learning rate 5 x 10~ and global batch
size of 32. We employed cosine learning rate scheduling and saved a checkpoint after every epoch. We
selected checkpoint from epoch 5 as the final model.

For all DPO training, we also trained for 10 epochs, with a learning rate of 5 x 107%, 3 = 0.1 and
global batch size of 32. We adopted cosine learning rate scheduling.

For Self-Rewarding training, during Iteration 1 we set p = 0 for actor data creation and applied a filter
to exclude pairs where the chosen response length exceeded 2500 characters. We selected the checkpoint
from epoch 5 for this iteration. In both Iteration 2 & 3 we continue with p = 0 and chose checkpoints
from epoch 1 and epoch 2 respectively. For Iteration 4, we adjust p to 0.1 and selected the checkpoint
from epoch 2.

For Meta-Rewarding training in Iteration 1 we set p = 0 for actor data creation, and we filtered out
pairs with chosen response length exceeding 2500 characters. Additionally, for the judge data creation, we
filtered out pairs if the chosen judgment length exceeded 1100. We selected checkpoint from epoch 6 for
this iteration. In Iteration 2, we increased p to 0.32 and set the threshold to 1000 for judge data filtering,
we selected the checkpoint from epoch 4. In Iteration 3 we maintain p at 0.32 and chose the checkpoint
from epoch 2. Finally, in Iteration 4, we further increased p to 0.4 and again selected the checkpoint from
epoch 2.

16

Table 8: Effect of Length-Control Parameter p on AlpacaEval: We find that the length-control parameter p
significantly impacts both the win rate and length-controlled (LC) win rate. Using a larger threshold decreases the
model generation length, and vise versa. While turning off the length-control mechanism (p = 0) increases the
win rate, it hurts the LC win rate and makes the responses longer. Choosing a balanced length-control parameter
provides a balanced final performance.

Model LC winrate Winrate Len
Self-Rewarding LLM + LC
Iteration 3 (Base) 34.87% 34.59% 1967
Iteration 4 (p = 0) 34.68% 36.11% 2063
Iteration 4 (p = 0.1) 35.49% 35.37% 2005
Iteration 4 (p = 0.3) 35.83% 31.95% 1806
Meta-Rewarding LLM (Ours)
Iteration 3 (Base) 35.45% 37.24% 2064
Iteration 4 (p = 0) - - 2212
Iteration 4 (p = 0.3) - - 2127
Iteration 4 (p = 0.35) - - 2067
Iteration 4 (p = 0.4) 3944% 39.45% 2003

A.7 Prompt Distribution Visualization

17

100

50 _ 0
~N w: s:.
c B o
9 .:Qﬁf >
T} oL SR
£ @‘.@ -
s -® b

—301 @ alpaca 8w Se
® arenahard » s.0 %
—100 | O train

—100 -50 0 50 100
Dimension 1
Figure 6: Distribution of Prompts: A t-SNE to visualization of three sources of prompts: training prompts,

AlpacaEval prompts and Arena-Hard prompts. The embedding of the prompts are calculated by text-embedding-3-

small. Our training prompts are closer in distribution to AlpacaEval prompts, while Arena-Hard is more concentrated
into a subset of the distribution.

18

