
Meta-Rewarding Language Models:
Self-Improving Alignment with LLM-as-a-Meta-Judge

Anonymous EMNLP submission

Abstract

Large Language Models (LLMs) are rapidly001
surpassing human knowledge in many domains.002
While improving these models traditionally re-003
lies on costly human data, recent self-rewarding004
mechanisms (Yuan et al., 2024c) have shown005
that LLMs can improve by judging their own006
responses instead of relying on human label-007
ers. However, existing methods have primarily008
focused on improving model responses rather009
than judgment capabilities, resulting in rapid010
saturation during iterative training. To ad-011
dress this issue, we introduce a novel Meta-012
Rewarding step to the self-improvement pro-013
cess, where the model judges its own judge-014
ments and uses that feedback to refine its judg-015
ment skills. Surprisingly, this unsupervised016
approach improves the model’s ability to judge017
and follow instructions, as demonstrated by a018
win rate improvement of Llama-3-8B-Instruct019
from 22.9% to 39.4% on AlpacaEval 2, and020
20.6% to 29.1% on Arena-Hard. These re-021
sults strongly suggest the potential for self-022
improving models without human supervision.023

1 Introduction024

Large Language Models (LLMs) are advancing sig-025

nificantly in their ability to follow instructions and026

respond to user queries (OpenAI, 2023; Touvron027

et al., 2023). An important phase in training these028

models is instruction tuning (Ouyang et al., 2022),029

which typically involves training LLMs on datasets030

curated by humans, either via supervised finetun-031

ing or preference optimization. Nevertheless, the032

acquisition of human-generated data is both costly033

and time-consuming. Furthermore, the quality of034

such data is inherently constrained by the limita-035

tions of human capabilities. The so-called ‘Super036

Alignment’ challenge (Burns et al., 2023) aims to037

find a solution to steering or controlling potentially038

super-intelligent AIs when their actions are inher-039

ently beyond human abilities to judge.040

Among the potential solutions to this challenge,041

self-judging by the AI emerges as a particularly 042

promising approach. Yuan et al. (2024c) introduces 043

an iterative Self-Rewarding mechanism that enables 044

an LLM to improve autonomously. The process 045

involves a single model that takes on two distinct 046

roles, as an actor and as a judge. As an actor, the 047

model produces responses that are aimed to fulfill 048

specific instructions. As a judge (a special kind 049

of acting), the model evaluates these responses via 050

LLM-as-a-Judge prompting (Zheng et al., 2024) 051

and assigns rewards. The objective of the actor dur- 052

ing this self-play is to maximize its reward, thereby 053

improving its ability to follow instructions. 054

A major limitation of this previous work is that 055

its learning objective enhances the model’s ability 056

as an actor to generate better responses, while over- 057

looking improving the model’s ability as a judge. 058

If the ability to judge does not improve then train- 059

ing the actor over iterations can quickly saturate 060

– or worse could overfit the reward signal, a.k.a. 061

reward hacking. Consequently, it is imperative to 062

also improve the model’s capabilities as a judge in 063

addition to its ability to act. 064

In this paper, we propose a novel method called 065

Meta-Rewarding which assigns rewards to its own 066

judgements to train the model’s ability to judge. 067

The key idea is to introduce a third role of meta- 068

judge, whose task is to evaluate the model’s own 069

judgements. While the judge evaluates the actor’s 070

responses, the meta-judge evaluates the judge’s 071

judgments (including rewards that it assigns) using 072

a mechanism similar to LLM-as-a-Judge, which 073

we term LLM-as-a-Meta-Judge. The meta-judge 074

enables us to build training data containing prefer- 075

ence pairs of judgements, in addition to the stan- 076

dard preferences between actor responses derived 077

from the standard judge. Our Meta-Rewarding 078

method thus aims to explicitly improve both the 079

acting and judging skills of a model – whereby 080

these combined skills should help to enhance its 081

instruction following ability as an actor. It is im- 082

1

Sample multiple
responses

Actor data
Prompt

Actor Data Creation Preference Optimization

Next iteration
model

JudgeActor

Judge Data Creation

 Select
pairs

Sample multiple
judgements

Pairwise
rankings

Generate
judgements

Judge Meta-Judge

Response

DPO
training

 Select
pairs

Judge data

Figure 1: Meta-Rewarding iterative training scheme. The language model at step t behaves as an actor to generate
responses to instructions, as a judge to assign rewards to those responses, and as a meta-judge to evaluate its own
judgments. The judgments are used to create preference pairs to improve its ability to act, and the meta-judgments
are used to create preference pairs to improve its ability to judge. Both preference pair sets are used together to train
the model for the next iteration.

portant to note that all three roles - actor, judge,083

and meta-judge - are performed by the same model,084

thereby maintaining a self-improving nature that085

requires no extra human data.086

In addition to enhancing the judging ability087

through Meta-Rewarding, we also address the088

length-bias issue in the judging process (Singhal089

et al., 2023). Like other reward models, the judge090

tends to favor long responses, which can make re-091

sponse length grow during iterative DPO (Yuan092

et al., 2024c). To counteract this, we combine the093

judge score with length information to determine094

the winning response, ensuring that a shorter re-095

sponse is chosen when scores are close.096

In our experiments we start from Llama-3-8B-097

Instruct and perform multiple iterations of our098

Meta-Rewarding training. When evaluated on Al-099

pacaEval 2 (Dubois et al., 2024b), we see a sub-100

stantial improvement in the length-controlled (LC)101

win rate (from 22.9% to 39.4%), even outperform-102

ing GPT-4-03141. We also observe that our method103

outperforms standard Self-Rewarding training even104

if it is enhanced with our length-bias improvements105

(35.5% vs 39.4%), highlighting the importance of106

the meta-judge. We also see similar improvement107

on Arena-Hard benchmark (Li et al., 2024), which108

is a benchmark targeting models’ ability to answer109

complex and hard questions.110

2 Meta-Rewarding111

In our method, we assume a setup where we only112

have an initial seed model, an instruction-tuned113

LLM, and no further human supervised training114

data. The idea is to generate training data from the115

model itself through an iterative self-play process.116

1https://tatsu-lab.github.io/alpaca_eval/

In this process, the model assumes three main roles: 117

as an actor, it generates responses to given prompts; 118

as a judge, it evaluates and scores its own responses; 119

and as a meta-judge, it compares the quality of its 120

own judgments. 121

While training the actor to generate better re- 122

sponses to user queries is the final objective, this 123

training’s efficacy relies on the accuracy of the 124

judge. As the judge’s accuracy increases, it will 125

provide higher quality feedback for training the 126

actor, ultimately leading to a better actor. There- 127

fore, the goal of Meta-Rewarding is to improve the 128

model’s capability both as actor and judge during 129

training. The role of the meta-judge is to provide 130

feedback necessary for training the judge. 131

At a high level, as depicted in Figure 1, our 132

method is an iterative training scheme that starts 133

from a given seed LLM, which assumes all three 134

roles. An iteration starts with the actor generating 135

multiple response variations for each prompt. This 136

is followed by the judge evaluating each response 137

using an LLM-as-a-Judge prompt and generating 138

a judgement that contains a score. This score then 139

allows us to build preference pairs of responses for 140

training the actor. For training the judge, we pick a 141

single response and let the meta-judge compare two 142

of its judgement variations generated by the judge 143

to determine which one is better using an LLM- 144

as-a-Meta-Judge prompt, see Figure 2. This step 145

enables us to create preference pairs of judgements 146

that can be used for training the judge. 147

Once we have the preference data both for the 148

actor and the judge, then we apply preference op- 149

timization on the dataset via DPO (Rafailov et al., 150

2024)2. After the training, we end up with an im- 151

2Note that while other RLHF methods can be employed,

2

https://tatsu-lab.github.io/alpaca_eval/

LLM-as-a-Meta-Judge Prompt
Review the user’s question and the corre-
sponding response, along with two judgments.
Determine which judgment is more accurate
according to the rubric provided below. The
rubric used for the initial judgments is as follows:

{Rubric}

User:
{prompt}

Response:
{response}

Judgment A:
{judgment_a}

Judgment B:
{judgment_b}

After examining the original question, re-
sponse, and both judgments:

- Explain which judgment is more accu-
rate according to the original rubric and why.
Consider factors such as adherence to the
rubric, accuracy in evaluating the response, and
consistency in applying the criteria.
- Conclude with a clear statement of which
judgment is better using the format: “Winner:
[Judgement A | Judgement B]”

Figure 2: Prompt used by the meta-judge to compare
given two judgements. (See subsection A.2 for the full
prompt)

proved model that will be then used for the next152

iteration, both for generating training data and as153

an initial model for the optimization. Next, we will154

describe each preference data creation process in155

detail.156

2.1 Actor Preference Dataset Creation157

Our approach to create the actor preference dataset158

on a given iteration is built upon the pipeline intro-159

duced by Yuan et al. (2024c), with a crucial modi-160

fication to incorporate a length-control mechanism.161

subsection 3.5 proves this change to be essential in162

preventing the responses from lengthening and im-163

proving the length-controlled win rate. The dataset164

creation process consists of three steps:165

Sample Responses from Actor. We assume we166

have a given set of prompts. For each prompt x,167

we generate K different responses {y1, . . . , yK}168

by sampling from the current model Mt at iteration169

t.170

Aggregate Multiple Judgments. For each re-171

sponse yk, we generate N different judgments172

{j1k , . . . jNk } from Mt using an LLM-as-a-Judge173

we chose to use DPO because of its simplicity and stability.

prompt (shown in subsection A.1). The prompt 174

instructs the model to evaluate the given response 175

yk for prompt x according to a fixed rubric and 176

output its chain-of-thought reasoning and a final 177

score out of 5. We use regular expressions to parse 178

the scores, discarding any judgments with parsing 179

errors or those not adhering to the 5-point scale. 180

The final reward score for each response is then 181

calculated by averaging all valid judgment scores. 182

Preference Data Selection with Length- 183

Control. The previous work simply selects the 184

highest Smax and lowest Smin scored responses as 185

the chosen yc and rejected yr as a preference pair 186

for each prompt. However, this leads to length 187

explosion where responses get longer with each it- 188

eration, due to the length-bias of the judge (Dubois 189

et al., 2024a; Park et al., 2024; Yuan et al., 2024b). 190

To mitigate this, we introduce a simple length- 191

control mechanism. We define a quality tier pa- 192

rameter ρ ∈ [0, 1] to control the trade-off between 193

score-based selection and length consideration. Re- 194

sponses with scores in the top tier, specifically 195

within the range [(1− ρ)Smax + ρSmin, Smax], are 196

considered to have similar quality. For selecting 197

the chosen response yc, we opt for the shortest re- 198

sponse within this top tier. This approach helps to 199

counteract the tendency of judges to favor longer 200

responses, which can lead to biased training data. 201

Conversely, for the rejected response yr, we se- 202

lect the longest response with a score in the range 203

[Smin, (1 − ρ)Smin + ρSmax]. Setting ρ to 0 effec- 204

tively disables the length-control, reverting to a 205

purely score-based selection. 206

2.2 Judge Preference Dataset Creation 207

Unlike the judge that provides score-based judge- 208

ments, we design the meta-judge to operate in 209

a pairwise mode by comparing two given judge- 210

ments. 211

Response Selection: To prepare effective train- 212

ing data for the judge, we focus on responses where 213

the judge is the least certain, as measured by the 214

variance of the scores it has given. To be more 215

specific, we first compute the score variance given 216

by the N different judgments for every response 217

yk. We then pick the response y with the highest 218

score variance for each prompt x to be used in the 219

judge training. If multiple responses have the same 220

variance, we break ties randomly. 221

Pairwise Meta-Judge Evaluations: For each 222

selected response y, we have up to N correspond- 223

3

ing judgments, denoted as {j1, . . . , jN}. We then224

evaluate each pair of different judgments (jm, jn)225

using a meta-judge prompt shown in Figure 2.226

This LLM-as-a-Meta-Judge prompt includes the227

original prompt x, response y, and its two judge-228

ments (jm, jn) as well as the rubric used by the229

judge. Then the model is asked to generate chain-230

of-thought reasoning followed by its choice of the231

better judgement. Again this uses the same LLM232

model, but acting as a meta-judge this time.233

To mitigate positional bias , we prompt the234

model twice by changing the ordering of the235

two judgements. In addition, we also introduce236

weighted scoring for winning in the first vs second237

positions. We define win1st and win2nd as the total238

wins in the first and second positions respectively,239

and calculate the weights as:240

ω1 =
win2nd

win1st + win2nd
, ω2 =

win1st

win1st + win2nd
241

The result of a single battle between judgments242

(jm, jn) is defined as:243

rmn =


1 If the meta-judge prefers m wins
−1 If the meta-judge prefers n wins
0 If tie or parse error.

244

We then construct a battle matrix B as the weighted
sum of the battle results:

Bmn = ω11[r
mn = 1] + ω21[r

nm = −1]

Elo Score and Pairs Selection: The next step is
to convert the battle matrix into rewards (meta-
rewards) corresponding to each judgement. In-
spired by Zheng et al. (2024), we determine the
Elo score εm for each judgment jm by solving the
following maximum likelihood estimation prob-
lem:

argmax
ε

∑
m,n

Bmn log

(
eεm−εn

1 + eεm−εn

)
.

This approach allows us to compute scores that ac-245

count for the positional bias in the meta-judge eval-246

uations. When creating the preference pairs, we247

select the chosen jc and rejected jr as the judgment248

with the highest and lowest Elo score respectively,249

breaking ties randomly3.250

3We perform additional length filtering after this step to
mitigate length explosion

SFT Iter 1 Iter 2 Iter 3 Iter 4
26

28

30

32

34

36

38

40

42

LC
 W

in
 ra

te
 (%

)

Meta Rewarding (Ours)
Self Rewarding w/ LC
Claude Opus
GPT-4-0314
GPT-4-0613

Figure 3: AlpacaEval 2. Length-controlled (LC) win
rate increases with Meta-Rewarding iterations, even
approaching Claude-Opus level. The Self-Rewarding
w/LC baseline lags behind in later iterations due to its
lack of judge training.

3 Experiments 251

3.1 Experimental Setup 252

We use instruction-finetuned Llama-3-8B-Instruct 253

as a seed model, and otherwise closely follow the 254

experimental setup of Yuan et al. (2024c). Before 255

our Meta-Rewarding training, we first perform su- 256

pervised finetuning (SFT) of the seed model on the 257

Evaluation Fine-Tuning (EFT) dataset from Yuan 258

et al. (2024c). This dataset is built from Open 259

Assistant (Köpf et al., 2024) and provides initial 260

LLM-as-a-Judge training data of ranked human re- 261

sponses, thus aiding the model to act as a judge. 262

We refer to this model as SFT on EFT, or simply 263

SFT for short. 264

For Meta-Rewarding iterations, we utilize 265

20,000 prompts from Yuan et al. (2024c) that were 266

generated by Llama-2-70B-Chat using an 8-shot 267

prompt. We provide a visualization of their distri- 268

bution in Appendix Figure 6. For each iteration, we 269

sample 5,000 prompts from this seed set and con- 270

duct four iterations in total. The iterative process is 271

formally defined as follows: 272

Iter 1 Obtain M1 by training using DPO (initial- 273

ized from the SFT model) on both actor and 274

judge preference pairs generated by the SFT 275

model. 276

Iter 2 Obtain M2 by training M1 using DPO on 277

actor and judge preference pairs generated 278

by M1. 279

Iter 3 Obtain M3 by training M2 using DPO exclu- 280

sively on actor preference pairs generated by 281

M2. 282

4

Iter 4 Obtain M4 by training M3 using DPO exclu-283

sively on actor preference pairs generated by284

M3.285

We provide a detailed recipe for training in286

subsection A.6. In each iteration, we generate287

K = 7 response variations per prompt and N = 11288

judgements per response using temperature 0.8 and289

top_p 0.95. We filtered out identical responses.290

3.2 Evaluation Methods291

As Meta-Rewarding aims to improve the model292

both as an actor and a judge, we evaluate its perfor-293

mance in both of these roles.294

Actor’s Instruction Following: We make use of295

three well-established auto-evaluation benchmarks296

based on GPT4-as-a-Judge: AlpacaEval 2 (Dubois297

et al., 2024a), Arena-Hard (Li et al., 2024) and298

MT-Bench (Zheng et al., 2024). These benchmarks299

focus on different aspects of the model. For in-300

stance, AlpacaEval mainly focuses on chat scenar-301

ios, where the prompt sets cover a diverse range of302

daily questions. In comparison, Arena-Hard consist303

of more complex or challenging questions, where304

they satisfy more criteria in the predefined 7 as-305

pects (creativity, complexity, problem-solving, etc).306

Notably, Arena-Hard has the highest correlation307

with Chatbot-Arena among popular open-ended308

LLM benchmarks (Li et al., 2024). MT-Bench has309

8 different question categories and evaluates the310

multi-turn conversation ability of the model.311

Judge’s Reward Modeling: We measure the312

correlation of our judge scores with human pref-313

erences, as well as a strong AI judge when hu-314

man labeling is not available. We calculate the315

Spearman correlation and agreement between the316

model-generated ranking with the human-labeled317

preferences provided in the Open Assistant dataset.318

We use a held-out split of 190 samples, with each319

sample consisting of a prompt and several human320

ranked responses, totalling 580 different responses.321

Additionally, we also measure the judge’s per-322

formance on ranking responses generated by the323

seed model, which is considered to be more in-324

distribution compared to human or other model325

generated responses. This is because the judge is326

mainly trained and applied on samples that are self-327

generated. However, in this case, we do not have328

ground-truth human preference labels, so we adopt329

the strong judge gpt-4-1106-preview as a proxy.330

Table 1: AlpacaEval 2: The evaluation on AlpacaEval
shows significant improvement with Meta-Rewarding
training. While the seed model only achieves 22.92%
length-controlled (LC) win rate against GPT4-Turbo,
our 4-th iteration achieves 39.44%.

Model LC win rate Win rate Length

Llama-3-8B-Instruct (Seed)4 22.92% 22.57% 1899

SFT on EFT 25.47% 25.10% 1943

Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 26.93% 27.12% 1983
Iteration 2 30.38% 29.77% 1940
Iteration 3 34.87% 34.59% 1967
Iteration 4 35.49% 35.37% 2005

Meta-Rewarding LLM (Ours)
Iteration 1 27.85% 27.62% 1949
Iteration 2 32.66% 33.29% 2001
Iteration 3 35.45% 37.24% 2064
Iteration 4 39.44% 39.45% 2003

3.3 Instruction Following Evaluation 331
Sc

ie
nc

e
En

te
rta

in
m

en
t

So
cia

l I
nt

er
ac

tio
n

Ph
ilo

so
ph

y
M

isc
el

la
no

us
Pr

of
es

sio
na

l
So

ftw
ar

e
De

ve
lo

p
DI

Y
Pr

oj
ec

ts
Hi

st
or

y
Ex

er
cis

e
Tr

av
el

Te
ch

no
lo

gy
Co

ok
in

g
La

ng
ua

ge
 L

ea
rn

in
g

Ga
m

in
g

M
at

he
m

at
ics

M
us

ic
Lit

er
at

ur
e

0.0

0.1

0.2

0.3

0.4

0.5

LC
 W

in
 ra

te
 (%

)

Seed
SFT
Iter 1

Iter 2
Iter 3
Iter 4

Figure 4: Fine-grained AlpacaEval LC Winrate Anal-
ysis. We classify all 805 AlpacaEval test prompts into
18 categories. Meta-Rewarding improves upon Llama-
3-8B-Instruct for 17 out of 18 categories.

Meta-Rewarding iterations significantly im- 332

proves the win rate. In Figure 3, we show the 333

length-controlled (LC) win rate of our method over 334

its training iterations on the AlpacaEval benchmark. 335

Overall, we see a substantial increase from 22.9% 336

to 39.4%, outperforming GPT-4 and approaching 337

close to the Claude Opus model. This is a remark- 338

able result considering our model has only 8B pa- 339

4Our evaluation shows slightly higher numbers, with the
LC Winrate 24.57%, Winrate 24.89% and Length 1936. This
is likely due to a different inference template.

5

rameters and our training did not utilize any extra340

human data beyond the seed model (except the EFT341

dataset used in the SFT stage). In addition, our342

method surpasses the strong baseline of SPPO (Wu343

et al., 2024), which has a similar iterative training344

setup using Llama-3-8B-Instruct, but uses a reward345

model that was trained on a large set of human346

and GPT-4 data. Despite its reliance on a strong347

external reward model as a judge, SPPO achieves348

38.77% LC win rate, which is slightly lower than349

our method.350

Importance of the meta-judge and length-351

control mechanism. The Self-Rewarding base-352

line with our length-control (LC), which lacks the353

meta-judge for training the judge, also brings im-354

provement, but to a lesser degree, especially in later355

iterations. This signifies the importance of training356

the judge and the effectiveness of the meta-judge357

in achieving this. As shown in Table 1, the average358

response length (measured in characters) does not359

grow substantially over training iterations, proving360

the effectiveness of our length-control mechanisms361

(see ablations in subsection 3.5).362

Meta-Rewarding improves nearly all instruc-363

tion categories. We perform a fine-grained analy-364

sis by breaking down the 805 questions in AlpacaE-365

val into 18 categories5 given in Yuan et al. (2024c).366

Notably, we find significant improvements in most367

of the categories as shown in Figure 4, including368

categories that require a considerable amount of369

knowledge and reasoning, e.g. science, gaming,370

literature, etc. However, there are also categories371

like Travel or Mathematics, where the model only372

has slight improvement compared with the seed373

model Llama-3-8B-Instruct.374

Meta-Rewarding improves answering of com-375

plex and hard questions. We further evaluate our376

method’s performance on answering complex and377

challenging prompts using Arena-Hard. The evalu-378

ation results in Table 2 show that Meta-Rewarding379

is able to improve the score in all 4 iterations, show-380

ing a substantial improvement (+8.5%) compared381

with the seed model (20.6%). This further validate382

the effectiveness of our method.383

Meta-Rewarding does not sacrifice multi-turn384

ability despite training only on single-turn. We385

perform MT-Bench evaluation to examine the loss386

in multi-turn conversation ability since we trained387

only on single-turn data. The result (detailed in388

Appendix Table 5) shows that Meta-Rewarding sig-389

5We dropped 2 categories that had less than 10 samples.

Table 2: Arena-Hard: Although our prompt set are far
from the distribution of Arena-Hard (which is selected
from the highest quality clusters from the Chatbot Arena
dataset), we observe a substantial improvement. Four
iterations of Meta-Rewarding brings +8.5% increase
over the seed model.

Model Score 95% CI Len

Llama-3-8B-Instruct (Seed) 20.6% (-2.0, 1.8) 2485

SFT on EFT 24.2% (-2.0, 1.8) 2444

Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 23.2% (-1.7, 1.9) 2438
Iteration 2 26.3% (-2.1, 2.3) 2427
Iteration 3 28.2% (-2.0, 1.9) 2413
Iteration 4 27.3% (-2.0, 2.2) 2448

Meta-Rewarding LLM (Ours)
Iteration 1 25.1% (-1.9, 1.8) 2395
Iteration 2 27.4% (-2.0, 2.0) 2416
Iteration 3 27.6% (-2.3, 2.6) 2501
Iteration 4 29.1% (-2.3, 2.1) 2422

nificantly improves the Turn 1 Score from 8.319 390

to 8.738 in the last iteration, while sacrificing no 391

more than 0.1 in Turn 2 Score. This is a large im- 392

provement on Self-Rewarding + LC, as it typically 393

sacrifices more than 0.2 in Turn 2 score while not 394

improving the Turn 1 score. 395

3.4 Reward Modeling Evaluation 396

We evaluate the judging accuracy of our models 397

on responses generated by the seed model Llama- 398

3-8B-Instruct. In the absence of human labeling, 399

we measure the correlation between our model and 400

the currently strongest judge model, gpt-4-1106- 401

preview. Our analysis employs two slightly differ- 402

ent settings, primarily differing in how they handle 403

ties given by the judge models. We begin with a 404

fixed set of Open Assistant prompts that do not 405

overlap with our training prompts. 406

For the GPT-4 Chosen Pairs setting (Table 6), 407

we generate two responses using the seed model for 408

each prompt. We then generate preference labels 409

with GPT-4 judge using a prompt adopted from 410

AlpacaEval (see subsection A.1). To mitigate posi- 411

tional bias, we make two judgements by switching 412

the positions of the compared responses. We retain 413

the data only where the two judgments agree, dis- 414

carding the rest. This process yields a total of 170 415

pairs with preference judge labels. Subsequently, 416

we use the model being evaluated to predict rank- 417

ings on those pairs, employing the same procedure 418

as before by generating 11 judgments and averag- 419

6

Table 3: Judge agreement with GPT-4 on responses
generated by the seed model: Evaluation of the judge’s
correlation with GPT4 on the Open Assistant test set,
with responses generated by Llama-3-8B-Instruct. We
adopt the Self-Chosen Pairs setting, where we first let
our judge select the win-lose pairs and then calculate
agreement with GPT4.

Model Agreement Agree wo Tie

Llama-3-8B-Instruct (Seed) 55.80% 61.03%

SFT on EFT 61.66% 73.51%

Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 55.17% 59.59%
Iteration 2 54.89% 60.00%
Iteration 3 61.13% 72.68%
Iteration 4 64.44% 78.42%

Meta-Rewarding LLM (Ours)
Iteration 1 60.06% 68.75%
Iteration 2 61.57% 72.34%
Iteration 3 63.43% 76.80%
Iteration 4 64.50% 79.33%

ing their scores. We calculate two metrics: agree-420

ment (counting ties as 0.5) and agreement with-421

out ties (removing all ties predicted by the weaker422

judge and assessing agreement on the remaining423

pairs).424

For the Self-Chosen Pairs setting (Table 3), we425

generate 7 responses from the seed model and rank426

them using the target model. Again, we use the427

same procedure of averaging of 11 judgements.428

We select the highest and lowest scoring responses429

as the predicted chosen and rejected pairs, respec-430

tively. We then perform the same judgment using431

the strong GPT-4 model and report the agreement432

and agreement without ties metrics.433

The model improves in judging after per-434

forming judge training. Our analysis shown in435

Table 3 and Table 6 reveals significant improve-436

ments in the correlation between Meta-Rewarding437

and the strong GPT-4 judge compared to the Self-438

Rewarding baseline in both evaluation settings.439

The enhancement is most notable in the agreement440

without ties metric. For Self-Chosen Pairs (Ta-441

ble 3), the improvement reaches up to +12.34%442

(Iteration 2) when comparing the same iterations443

of both models, while in the GPT-4 Chosen Pairs444

setting (Table 6), the increase exceeds +6%.445

Meta-Rewarding training improve judging446

correlation with Human. We examine the judge’s447

correlation with the human-ranked responses from448

the Open Assistant dataset. As shown in Appendix449

Table 4: Meta-Judge Statistics. We observe growing
biases in the meta-judge towards preferring higher score
judgements or those in the first position.

Score Bias Positional Bias

Meta-Judge High / Low Win Same / Diff Score Avg

Iteration 1 63.04% / 36.96% 47.79% / 41.12% 43.92%
Iteration 2 97.68% / 2.32% 87.75% / 56.18% 68.11%

Table 7, we measure the agreement as well as 450

the average Spearman correlation (over prompts). 451

There is a notable increase in correlation with 452

human judgement, especially in Meta-Rewarding 453

LLMs. 454

3.5 Ablations and Analysis 455

Length-Control Mechanism: Our length-control 456

mechanism is essential in maintaining a balance 457

between comprehensiveness and conciseness of 458

the model responses. We compare the last train- 459

ing iteration with different length-control param- 460

eter choices ρ and present the results in Table 8. 461

Using ρ = 0 is equivalent to not performing any 462

length-control in the preference data selection. As 463

expected, training this way makes the model exces- 464

sively verbose for both models, and negatively af- 465

fects the LC win rate as shown for Self-Rewarding 466

LLMs. 467

Training with an External Reward Model: 468

Meta-Rewarding employs an LLM-as-a-Judge 469

prompt to judge its own responses. Instead, we 470

experiment with using a strong external reward 471

model Starling-RM-34B (Zhu et al., 2023) to se- 472

lect actor preference pairs. However, we find that 473

Starling-RM-34B failed to increase the LC win 474

rate of AlpacaEval in the first iteration (24.63% vs 475

27.85%), perhaps due to its length bias. 476

Meta-Judge Biases: After the first iteration of 477

Meta-Rewarding training, the meta-judge becomes 478

more likely to prefer a higher score judgment nearly 479

all the time, as shown in Table 4. This score-bias, 480

in turn, significantly shifts the scoring distribution 481

of the judge towards the full score of 5. For the 482

positional bias, we also see an increasing trend of 483

during the training, especially for comparing two 484

judgments with the same score. 485

Judge Scoring Shift. To investigate the judge 486

score distribution change during Meta-Rewarding 487

training iterations, we use the same validation 488

prompts as used for reward modeling evaluation. 489

Figure 5 is a visualization of the scoring distribu- 490

7

3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00
Judge score

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity
 (E

st
. b

y
KD

E)

Seed
SFT
Iteration 1
Iteration 2

Figure 5: Change in Scoring Distribution: Training
the judge using the meta-judge changes its score distri-
bution significantly. Notably, the judge tends to concen-
trate more into giving a high score. As a result, the mean
score is increased from 4.1 to 4.7+ after two iterations
of training.

tion, where the density is estimated using Gaus-491

sian kernel density estimation (Davis et al., 2011).492

Training the judge using the meta-judge further in-493

creases its likelihood of generating higher scores.494

However, we notice that the first 2 iterations of the495

judge training makes it prefer to assign scores 4.5,496

4.75, 4.9 even though the scores should be integers497

according to the instruction.498

4 Related work499

RLHF. Alignment strategies can be broadly classi-500

fied into aligning with a reward model or aligning501

directly based on a preference dataset. Ziegler et al.502

(2019); Stiennon et al. (2020); Ouyang et al. (2022);503

Bai et al. (2022a) train a fixed reward model from504

human preference data, and then use the reward505

model to train via reinforcement learning (RL), e.g.506

via Proximal Policy Optimization (PPO) (Schul-507

man et al., 2017). To further reduce engineering508

costs, P3O (Wu et al., 2023) derived the contrastive509

policy gradient, which has shown superior perfor-510

mance over PPO while removing the need for a511

value function. In contrast, methods such as Direct512

Preference Optimization (DPO) (Rafailov et al.,513

2024; Xu et al., 2023; Zhao et al., 2023; Zheng514

et al., 2023; Yuan et al., 2024a) avoid training the515

reward model entirely, and instead directly train516

the LLM using human preferences.517

LLM-as-a-Judge. Using LLM-as-a-Judge for eval-518

uation (Li et al., 2024; Dubois et al., 2023, 2024b;519

Saha et al., 2023; Bai et al., 2024) and training520

reward models (Lee et al., 2023; Zhu et al., 2023;521

Chen et al., 2023; Li et al., 2023) has become a522

standard practice. Some works, such as Kim et al. 523

(2023, 2024), have investigated how to construct 524

datasets for training a LLM-as-a-Judge. However, 525

these approaches typically use human data or data 526

coming from a much stronger model. In con- 527

trast, our approach emphasizes self-improvement 528

of judgment skills. 529

Super Alignment. Since current alignment meth- 530

ods mostly rely on either supervised fine-tuning 531

(SFT) with human-provided demonstrations (Sanh 532

et al., 2021; Wei et al., 2021; Chung et al., 2024) 533

or reinforcement learning from human feedback 534

(RLHF) (Ziegler et al., 2019; Stiennon et al., 2020; 535

Ouyang et al., 2022), their capabilities would be 536

inherently limited as humans cannot always pro- 537

vide helpful demonstrations or supervision on the 538

hard tasks beyond their expertise (Sharma et al., 539

2023). The closest direction along this line to our 540

work is using AI to produce feedback for training 541

AI, also known as RLAIF (Zhu et al., 2024; Lee 542

et al., 2023). For example, Constitutional AI (Bai 543

et al., 2022b) uses an LLM to provide feedback and 544

refine responses. McAleese et al. (2024) trained 545

CriticGPT to write critiques that highlight inaccu- 546

racies in ChatGPT answers. Self-Rewarding (Yuan 547

et al., 2024c) proposed an iterative training scheme 548

where the model acts as a judge to evaluate its own 549

responses. However, as far as we know, less work 550

has focused on training the actor and the judge 551

simultaneously during self-improvement. 552

5 Conclusion 553

In this work, we propose a novel mechanism for 554

improving the judging skill of models by using 555

a meta-judge that assigns meta-rewards to select 556

chosen and rejected judgments for preference op- 557

timization. The effectiveness of our method is 558

demonstrated through auto-evaluation benchmarks 559

AlpacaEval, Arena-Hard, and MT-Bench. Remark- 560

ably, even without additional human feedback, our 561

approach significantly improves upon Llama-3-8B- 562

Instruct and surpasses both Self-Rewarding and 563

SPPO (Wu et al., 2024), a strong baseline that 564

relies heavily on human feedback. Furthermore, 565

when we evaluate our model’s judging ability, it 566

shows significant improvement in correlation with 567

both human judges and strong AI judges like gpt-4- 568

1106-preview. Overall, our findings provide strong 569

evidence that self-improving the model without hu- 570

man feedback is a promising direction for achiev- 571

ing super alignment. 572

8

6 Limitations573

A deficiency in our experimental setup is the 5-574

point judging system that we chose, following Yuan575

et al. (2024b). We discovered that this scoring576

method often results in ties due to minimal quality577

differences between responses, necessitating care-578

ful averaging of multiple judgments to differentiate579

between them. Moreover, as training progressed,580

responses increasingly approached the maximum581

score, making further improvements difficult to de-582

tect. A more nuanced scoring system that covers583

diverse aspects (Wang et al., 2024) or a comparison-584

based approach might address these issues.585

Another significant limitation lies in the judge586

training process. Despite our efforts to mitigate po-587

sitional bias of our meta-judge, this issue persists588

and hindered further improvements in Iteration 3.589

The judge also demonstrated a tendency to assign590

higher scores, which accelerated score saturation591

and reduced its ability to discriminate between re-592

sponses.593

Ethics Statement594

This paper presents work whose goal is to advance595

the field of Machine Learning. There are many596

potential societal consequences of our work, none597

which we feel must be specifically highlighted here.598

Acknowledgments599

We thank the anonymous reviewers for their helpful600

comments. This paper’s writing received minor601

language-polishing suggestions from Gemini and602

GPT-4.603

References604

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda605
Askell, Anna Chen, Nova DasSarma, Dawn Drain,606
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.607
2022a. Training a helpful and harmless assistant with608
reinforcement learning from human feedback. arXiv609
preprint arXiv:2204.05862.610

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,611
Amanda Askell, Jackson Kernion, Andy Jones,612
Anna Chen, Anna Goldie, Azalia Mirhoseini,613
Cameron McKinnon, et al. 2022b. Constitutional614
ai: Harmlessness from ai feedback. arXiv preprint615
arXiv:2212.08073.616

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He,617
Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia Xiao,618
Haozhe Lyu, et al. 2024. Benchmarking foundation619

models with language-model-as-an-examiner. Ad- 620
vances in Neural Information Processing Systems, 621
36. 622

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, 623
Bowen Baker, Leo Gao, Leopold Aschenbrenner, 624
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan 625
Leike, et al. 2023. Weak-to-strong generalization: 626
Eliciting strong capabilities with weak supervision. 627
arXiv preprint arXiv:2312.09390. 628

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa 629
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini- 630
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al- 631
pagasus: Training a better alpaca with fewer data. 632
arXiv preprint arXiv:2307.08701. 633

Hyung Won Chung, Le Hou, Shayne Longpre, Barret 634
Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi 635
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. 636
2024. Scaling instruction-finetuned language models. 637
Journal of Machine Learning Research, 25(70):1–53. 638

Richard A Davis, Keh-Shin Lii, and Dimitris N Politis. 639
2011. Remarks on some nonparametric estimates 640
of a density function. Selected Works of Murray 641
Rosenblatt, pages 95–100. 642

Yann Dubois, Balázs Galambosi, Percy Liang, and Tat- 643
sunori B Hashimoto. 2024a. Length-controlled al- 644
pacaeval: A simple way to debias automatic evalua- 645
tors. arXiv preprint arXiv:2404.04475. 646

Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi 647
Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, 648
Percy S Liang, and Tatsunori B Hashimoto. 2024b. 649
Alpacafarm: A simulation framework for methods 650
that learn from human feedback. Advances in Neural 651
Information Processing Systems, 36. 652

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, 653
Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy 654
Liang, and Tatsunori B. Hashimoto. 2023. Alpaca- 655
farm: A simulation framework for methods that learn 656
from human feedback. 657

Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, 658
Shayne Longpre, Hwaran Lee, Sangdoo Yun, 659
Seongjin Shin, Sungdong Kim, James Thorne, et al. 660
2023. Prometheus: Inducing fine-grained evaluation 661
capability in language models. In The Twelfth Inter- 662
national Conference on Learning Representations. 663

Seungone Kim, Juyoung Suk, Shayne Longpre, 664
Bill Yuchen Lin, Jamin Shin, Sean Welleck, Graham 665
Neubig, Moontae Lee, Kyungjae Lee, and Minjoon 666
Seo. 2024. Prometheus 2: An open source language 667
model specialized in evaluating other language mod- 668
els. arXiv preprint arXiv:2405.01535. 669

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, 670
Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, 671
Abdullah Barhoum, Duc Nguyen, Oliver Stan- 672
ley, Richárd Nagyfi, et al. 2024. Openassistant 673
conversations-democratizing large language model 674
alignment. Advances in Neural Information Process- 675
ing Systems, 36. 676

9

http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387
http://arxiv.org/abs/2305.14387

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie677
Lu, Thomas Mesnard, Colton Bishop, Victor Car-678
bune, and Abhinav Rastogi. 2023. Rlaif: Scaling679
reinforcement learning from human feedback with ai680
feedback. arXiv preprint arXiv:2309.00267.681

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,682
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and683
Ion Stoica. 2024. From crowdsourced data to high-684
quality benchmarks: Arena-hard and benchbuilder685
pipeline. arXiv preprint arXiv:2406.11939.686

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke687
Zettlemoyer, Omer Levy, Jason Weston, and Mike688
Lewis. 2023. Self-alignment with instruction back-689
translation. arXiv preprint arXiv:2308.06259.690

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron691
Uribe, Evgenia Nitishinskaya, Maja Trebacz, and Jan692
Leike. 2024. Llm critics help catch llm bugs. arXiv693
preprint arXiv:2407.00215.694

OpenAI. 2023. Gpt-4 technical report. arXiv preprint695
arXiv:2303.08774.696

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,697
Carroll Wainwright, Pamela Mishkin, Chong Zhang,698
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.699
2022. Training language models to follow instruc-700
tions with human feedback. Advances in neural in-701
formation processing systems, 35:27730–27744.702

Ryan Park, Rafael Rafailov, Stefano Ermon, and703
Chelsea Finn. 2024. Disentangling length from qual-704
ity in direct preference optimization. arXiv preprint705
arXiv:2403.19159.706

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-707
pher D Manning, Stefano Ermon, and Chelsea Finn.708
2024. Direct preference optimization: Your language709
model is secretly a reward model. Advances in Neu-710
ral Information Processing Systems, 36.711

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz,712
Mohit Bansal, Jason Weston, and Xian Li.713
2023. Branch-solve-merge improves large language714
model evaluation and generation. arXiv preprint715
arXiv:2310.15123.716

Victor Sanh, Albert Webson, Colin Raffel, Stephen H717
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine718
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun719
Raja, et al. 2021. Multitask prompted training en-720
ables zero-shot task generalization. arXiv preprint721
arXiv:2110.08207.722

John Schulman, Filip Wolski, Prafulla Dhariwal,723
Alec Radford, and Oleg Klimov. 2017. Proxi-724
mal policy optimization algorithms. arXiv preprint725
arXiv:1707.06347.726

Mrinank Sharma, Meg Tong, Tomasz Korbak, David727
Duvenaud, Amanda Askell, Samuel R Bowman,728
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds,729
Scott R Johnston, et al. 2023. Towards understand-730
ing sycophancy in language models. arXiv preprint731
arXiv:2310.13548.732

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and 733
Greg Durrett. 2023. A long way to go: Investi- 734
gating length correlations in rlhf. arXiv preprint 735
arXiv:2310.03716. 736

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel 737
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, 738
Dario Amodei, and Paul F Christiano. 2020. Learn- 739
ing to summarize with human feedback. Advances 740
in Neural Information Processing Systems, 33:3008– 741
3021. 742

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 743
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 744
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 745
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton 746
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, 747
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, 748
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An- 749
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan 750
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, 751
Isabel Kloumann, Artem Korenev, Punit Singh Koura, 752
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di- 753
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar- 754
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly- 755
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen- 756
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten, 757
Ruan Silva, Eric Michael Smith, Ranjan Subrama- 758
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay- 759
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu, 760
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, 761
Melanie Kambadur, Sharan Narang, Aurelien Ro- 762
driguez, Robert Stojnic, Sergey Edunov, and Thomas 763
Scialom. 2023. Llama 2: Open foundation and fine- 764
tuned chat models. 765

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi 766
Zeng, Gerald Shen, Daniel Egert, Jimmy J Zhang, 767
Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. 768
2024. Helpsteer2: Open-source dataset for train- 769
ing top-performing reward models. arXiv preprint 770
arXiv:2406.08673. 771

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 772
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 773
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 774
guage models are zero-shot learners. arXiv preprint 775
arXiv:2109.01652. 776

Tianhao Wu, Banghua Zhu, Ruoyu Zhang, Zhaojin Wen, 777
Kannan Ramchandran, and Jiantao Jiao. 2023. Pair- 778
wise proximal policy optimization: Harnessing rel- 779
ative feedback for llm alignment. arXiv preprint 780
arXiv:2310.00212. 781

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim- 782
ing Yang, and Quanquan Gu. 2024. Self-play pref- 783
erence optimization for language model alignment. 784
arXiv preprint arXiv:2405.00675. 785

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason 786
Weston. 2023. Some things are more cringe than 787
others: Preference optimization with the pairwise 788
cringe loss. arXiv preprint arXiv:2312.16682. 789

10

http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288

Hongyi Yuan, Zheng Yuan, Chuanqi Tan, Wei Wang,790
Songfang Huang, and Fei Huang. 2024a. Rrhf: Rank791
responses to align language models with human feed-792
back. Advances in Neural Information Processing793
Systems, 36.794

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho,795
Sainbayar Sukhbaatar, Jason Weston, and Jing Xu.796
2024b. Following length constraints in instructions.797
arXiv preprint arXiv:2406.17744.798

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,799
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Jason E800
Weston. 2024c. Self-rewarding language models.801
In Forty-first International Conference on Machine802
Learning.803

Yao Zhao, Rishabh Joshi, Tianqi Liu, Misha Khalman,804
Mohammad Saleh, and Peter J Liu. 2023. Slic-hf: Se-805
quence likelihood calibration with human feedback.806
arXiv preprint arXiv:2305.10425.807

Chujie Zheng, Pei Ke, Zheng Zhang, and Minlie Huang.808
2023. Click: Controllable text generation with809
sequence likelihood contrastive learning. arXiv810
preprint arXiv:2306.03350.811

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan812
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,813
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.814
Judging llm-as-a-judge with mt-bench and chatbot815
arena. Advances in Neural Information Processing816
Systems, 36.817

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,818
Karthik Ganesan, Wei-Lin Chiang, Jian Zhang, and819
Jiantao Jiao. 2024. Starling-7b: Improving helpful-820
ness and harmlessness with rlaif. In First Conference821
on Language Modeling.822

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,823
and Jiantao Jiao. 2023. Starling-7b: Improving llm824
helpfulness & harmlessness with rlaif.825

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B826
Brown, Alec Radford, Dario Amodei, Paul Chris-827
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-828
guage models from human preferences. arXiv829
preprint arXiv:1909.08593.830

11

https://openreview.net/forum?id=0NphYCmgua

A Appendix831

A.1 Judge Prompt832

Pointwise Judge Prompt
Review the user’s question and the corresponding response using the additive 5-point scoring system
described below. Points are accumulated based on the satisfaction of each criterion:

- Add 1 point if the response is relevant and provides some information related to the user’s in-
quiry, even if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an AI Assistant or if it has elements typically found
in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the
user’s question directly and comprehensively, and is well-organized and helpful, even if there is slight room
for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant,
without extraneous information, reflecting expert knowledge, and demonstrating a high-quality, engaging,
and insightful answer.

User: {query}

<response>{response}</response>

After examining the user’s instruction and the response:

- Briefly justify your total score, up to 100 words.
- Conclude with the score using the format: “Score: <total points>”

Remember to assess from the AI Assistant perspective, utilizing web search knowledge as necessary.
833

We adopt the same judge prompt as in Yuan et al. (2024c).834

12

A.2 Meta-Judge Prompt 835

LLM-as-a-Meta-Judge Prompt
Review the user’s question and the corresponding response, along with two judgments. Determine
which judgment is more accurate according to the rubric provided below. The rubric used for the initial
judgments is as follows:

- Add 1 point if the response is relevant and provides some information related to the user’s inquiry, even
if it is incomplete or contains some irrelevant content.
- Add another point if the response addresses a substantial portion of the user’s question, but does not
completely resolve the query or provide a direct answer.
- Award a third point if the response answers the basic elements of the user’s question in a useful way,
regardless of whether it seems to have been written by an AI Assistant or if it has elements typically found
in blogs or search results.
- Grant a fourth point if the response is clearly written from an AI Assistant’s perspective, addressing the
user’s question directly and comprehensively, and is well-organized and helpful, even if there is slight room
for improvement in clarity, conciseness or focus.
- Bestow a fifth point for a response that is impeccably tailored to the user’s question by an AI Assistant,
without extraneous information, reflecting expert knowledge, and demonstrating a high-quality, engaging,
and insightful answer.

User: {prompt}

Response:
{response}

Judgment A:
{judgment_a}

Judgment B:
{judgment_b}

After examining the original question, response, and both judgments:

- Explain which judgment is more accurate according to the original rubric and why. Consider fac-
tors such as adherence to the rubric, accuracy in evaluating the response, and consistency in applying the
criteria.
- Conclude with a clear statement of which judgment is better using the format: “Winner: [Judgement A |
Judgement B]”

836

13

A.3 GPT4 Judge Prompt837

alpaca_eval_clf_gpt4_turbo
<|im_start|>system
You are a highly efficient assistant, who evaluates and selects the best large language model (LLMs) based
on the quality of their responses to a given instruction. This process will be used to create a leaderboard
reflecting the most accurate and human-preferred answers.
<|im_end|>
<|im_start|>user
I require a leaderboard for various large language models. I’ll provide you with prompts given to these
models and their corresponding outputs. Your task is to assess these responses, and select the model that
produces the best output from a human perspective.

Instruction

{
“instruction”: ““{instruction}””,

}

Model Outputs

Here are the unordered outputs from the models. Each output is associated with a specific model,
identified by a unique model identifier.

{
{

“model_identifier”: “m”,
“output”: ““{output_1}””

},
{

“model_identifier”: “M”,
“output”: ““{output_2}””

}
}

Task

Evaluate the models based on the quality and relevance of their outputs, and select the model
that generated the best output. Answer by providing the model identifier of the best model. We will use
your output as the name of the best model, so make sure your output only contains one of the following
model identifiers and nothing else (no quotes, no spaces, no new lines, ...): m or M.

Best Model Identifier
<|im_end|>

838

We adopt this prompt from AlpacaEval, which is proved to have high correlation with human judges.839

14

A.4 MT-Bench Results 840

Table 5: MT-Bench: Since our training mainly focus on the first-turn capability, we observe a significant im-
provement in the Turn 1 Score. While the Self-Rewarding baseline suffer from a large drop in Turn 2 score, our
Meta-Rewarding only sacrifice slightly and even improving the Turn 2 score in Iteration 3 & 4.

Model Score Turn 1 Turn 2 Length

Llama-3-8B-Instruct 8.116 8.319 7.911 1568

SFT on EFT 7.943 8.138 7.747 1511

Self-Rewarding LLM + LC
Iteration 1 7.909 8.144 7.671 1576
Iteration 2 7.894 8.200 7.588 1570
Iteration 3 7.984 8.231 7.734 1528
Iteration 4 8.028 8.381 7.675 1539

Meta-Rewarding LLM
Iteration 1 7.994 8.263 7.725 1555
Iteration 2 8.198 8.794 7.595 1577
Iteration 3 8.341 8.731 7.950 1596
Iteration 4 8.288 8.738 7.838 1592

A.5 Additional Evaluation Results 841

Table 6: Judge agreement with GPT-4 on responses generated by the seed model: Evaluation of the judge’s
correlation with GPT4 on the Open Assistant test set, with responses generated by Llama-3-8B-Instruct.

GPT-4 Chosen Pairs Self-Chosen Pairs

Model Agreement Agree wo Tie Agreement Agree wo Tie

Llama-3-8B-Instruct (Seed) 55.95% 56.49% 55.80% 61.03%

SFT on EFT 51.48% 51.79% 61.66% 73.51%

Self-Rewarding LLM (Yuan et al., 2024c) + LC
Iteration 1 56.54% 57.97% 55.17% 59.59%
Iteration 2 52.67% 53.43% 54.89% 60.00%
Iteration 3 55.65% 55.90% 61.13% 72.68%
Iteration 4 52.97% 53.12% 64.44% 78.42%

Meta-Rewarding LLM (Ours)
Iteration 1 56.54% 57.23% 60.06% 68.75%
Iteration 2 55.05% 56.58% 61.57% 72.34%
Iteration 3 58.63% 61.24% 63.43% 76.80%
Iteration 4 57.44% 59.54% 64.50% 79.33%

15

Table 7: Judge’s Correlation with Human: We measure the judge’s agreement (with and without ties) with
humans on the Open Assistant test set. Spearman correlation represent the ranking spearman correlation with the
ground truth averaged over prompts.

Model Agreement Agree wo Tie Spearman corr.

Llama-3-8B-Instruct 62.81% 64.18% 0.315

SFT on EFT 63.20% 64.59% 0.321

Self-Rewarding LLM + LC
Iteration 1 63.04% 65.04% 0.298
Iteration 2 64.14% 67.17% 0.347
Iteration 3 60.23% 61.63% 0.251
Iteration 4 61.48% 62.22% 0.283

Meta-Rewarding LLM
Iteration 1 57.73% 61.98% 0.210
Iteration 2 66.64% 68.33% 0.382
Iteration 3 63.35% 65.24% 0.329
Iteration 4 62.96% 64.82% 0.326

A.6 Training Details842

For the SFT model, we train for a total of 10 epochs using a learning rate 5 × 10−8 and global batch843

size of 32. We employed cosine learning rate scheduling and saved a checkpoint after every epoch. We844

selected checkpoint from epoch 5 as the final model.845

For all DPO training, we also trained for 10 epochs, with a learning rate of 5 × 10−6, β = 0.1 and846

global batch size of 32. We adopted cosine learning rate scheduling.847

For Self-Rewarding training, during Iteration 1 we set ρ = 0 for actor data creation and applied a filter848

to exclude pairs where the chosen response length exceeded 2500 characters. We selected the checkpoint849

from epoch 5 for this iteration. In both Iteration 2 & 3 we continue with ρ = 0 and chose checkpoints850

from epoch 1 and epoch 2 respectively. For Iteration 4, we adjust ρ to 0.1 and selected the checkpoint851

from epoch 2.852

For Meta-Rewarding training in Iteration 1 we set ρ = 0 for actor data creation, and we filtered out853

pairs with chosen response length exceeding 2500 characters. Additionally, for the judge data creation, we854

filtered out pairs if the chosen judgment length exceeded 1100. We selected checkpoint from epoch 6 for855

this iteration. In Iteration 2, we increased ρ to 0.32 and set the threshold to 1000 for judge data filtering,856

we selected the checkpoint from epoch 4. In Iteration 3 we maintain ρ at 0.32 and chose the checkpoint857

from epoch 2. Finally, in Iteration 4, we further increased ρ to 0.4 and again selected the checkpoint from858

epoch 2.859

16

Table 8: Effect of Length-Control Parameter ρ on AlpacaEval: We find that the length-control parameter ρ
significantly impacts both the win rate and length-controlled (LC) win rate. Using a larger threshold decreases the
model generation length, and vise versa. While turning off the length-control mechanism (ρ = 0) increases the
win rate, it hurts the LC win rate and makes the responses longer. Choosing a balanced length-control parameter
provides a balanced final performance.

Model LC win rate Win rate Len

Self-Rewarding LLM + LC
Iteration 3 (Base) 34.87% 34.59% 1967
Iteration 4 (ρ = 0) 34.68% 36.11% 2063
Iteration 4 (ρ = 0.1) 35.49% 35.37% 2005
Iteration 4 (ρ = 0.3) 35.83% 31.95% 1806

Meta-Rewarding LLM (Ours)
Iteration 3 (Base) 35.45% 37.24% 2064
Iteration 4 (ρ = 0) - - 2212
Iteration 4 (ρ = 0.3) - - 2127
Iteration 4 (ρ = 0.35) - - 2067
Iteration 4 (ρ = 0.4) 39.44% 39.45% 2003

A.7 Prompt Distribution Visualization 860

17

Figure 6: Distribution of Prompts: A t-SNE to visualization of three sources of prompts: training prompts,
AlpacaEval prompts and Arena-Hard prompts. The embedding of the prompts are calculated by text-embedding-3-
small. Our training prompts are closer in distribution to AlpacaEval prompts, while Arena-Hard is more concentrated
into a subset of the distribution.

18

