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Abstract
Numerous applications of large language models
(LLMs) rely on their ability to perform step-by-
step reasoning. However, the reasoning behav-
ior of LLMs remains poorly understood, posing
challenges to research, development, and safety.
To address this gap, we introduce landscape of
thoughts-the first visualization tool for users to
inspect the reasoning paths of chain-of-thought
and its derivatives on any multi-choice dataset.
Specifically, we represent the states in a reason-
ing path as feature vectors that quantify their
distances to all answer choices. These features
are then visualized in two-dimensional plots us-
ing t-SNE. Qualitative analysis shows that the
landscape of thoughts effectively distinguishes
between strong and weak models, correct and in-
correct answers, as well as different reasoning
tasks. It also uncovers undesirable reasoning pat-
terns, such as low consistency and high uncer-
tainty. Additionally, users can adapt our tool to
a model that predicts any property they observe.
We showcase this advantage by adapting our tool
to a lightweight verifier, which significantly im-
proves reasoning by evaluating the correctness of
reasoning paths. The code is publicly available
at: https://github.com/tmlr-group/
landscape-of-thoughts.

1. Introduction
Large language models (LLMs) have revolutionized the
paradigm of solving problems with their broad spectrum
of capabilities. In particular, several useful applications
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of LLMs, such as tool use (Schick et al., 2023), retrieval-
augmented generation (Lewis et al., 2020), and agents (Yao
et al., 2023b), heavily rely on their capability of step-by-
step reasoning (Wei et al., 2022; Kojima et al., 2022). Al-
though many base models, e.g., OpenAI o1 (Jaech et al.,
2024), and decoding algorithms, e.g., test-time scaling-up
search (Snell et al., 2024), have been introduced to advance
the performance of LLMs on these applications, the under-
lying reasoning behavior of LLMs remains unclear to the
community. This hinders the development of algorithms and
poses potential risks at deployment (Anwar et al., 2024).

A few attempts (Wang et al., 2023a; Saparov and He, 2023;
Saparov et al., 2023; Dziri et al., 2024) have been made to
understand the reasoning capacity of LLMs. Nevertheless,
these findings are often tied to certain decoding algorithms
and tasks, which may not be so instructive for users work-
ing with their own algorithms and tasks. Instead, there is a
strong demand for tools that can be applied to analyze the
reasoning behavior of LLMs in the users’ scenarios. We
foresee that such tools will benefit three groups of practi-
tioners: 1) engineers can iterate their solutions faster based
on the feedback from the tool; 2) researchers can improve
decoding algorithms based on insights revealed by the tool;
3) most importantly, safety researchers can utilize the tool
to monitor, understand, and improve the behavior of LLMs.

We made a small but meaningful step towards the above goal
by introducing the landscape of thoughts, a tool for visual-
izing the reasoning paths produced by chain-of-thought and
other step-by-step reasoning algorithms. Given any multi-
choice reasoning dataset, our tool visualizes the distribution
of intermediate states and any reasoning path of interest
w.r.t. the answer choices, which enables users to uncover
reasoning patterns of LLMs in both success and failure cases
(Fig. 1). The core idea is to characterize the textual states in
a reasoning path as features that quantify their distances to
all answer choices. These distances are estimated by the per-
plexity metric, with the same LLM to generate thoughts and
explain for itself. The state features are then projected to a
two-dimensional space via t-SNE (van der Maaten and Hin-
ton, 2008), a non-linear dimensionality reduction method
that preserves manifolds in original high-dimensional space.
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1. First, let‘s calculate the …
2. Next, let‘s use the number of …
3. The answer is C.

1. 2% of the non-defective …
2. The number of non-defective …
3. The answer is A.

Question: A class of 35 students 
has an average height of 180 cm. …
Calculate the new average height of 
the students of the class is (in cm)? 

Choices: (A) 204.6, (B) 404.6,
(C) 224.6, (D) 184.0, (E) 256.6.

Figure 1: Landscape of thoughts for visualizing the reasoning steps of LLMs. Note that the red landscape represents wrong
reasoning cases, while the blue indicates the correct ones. The darker regions in landscapes indicate more thoughts, with
indicating incorrect answers and marking correct answers. Specifically, given a question with multiple choices, we sample
a few thoughts from an LLM and divide them into two categories based on correctness. We visualize the landscape of each
category by projecting the thoughts into a two-dimensional feature space, where each density map reflects the distribution of
states at a reasoning step. With these landscapes, users can easily discover the reasoning patterns of an LLM or a decoding
algorithm. In addition, a predictive model is applied to predict the correctness of landscapes and can help improve reasoning.

We examine our tool with different combinations of model
sizes, decoding algorithms, and benchmark datasets. Our
tool reveals several qualitative observations regarding the
reasoning behaviors of LLMs. Some notable observations
include: 1) the convergence speed of reasoning paths to-
wards correct answers reflects the accuracy, no matter what
base model, decoding algorithm, or dataset is used; 2) the
convergence speed of reasoning paths in success and failure
cases is distinct, indicating that we may use the convergence
speed of a reasoning path to predict its accuracy; 3) low
consistency and high uncertainty are generally observed in
the intermediate thoughts, presenting the unstable properties
of the reasoning process. To our knowledge, these observa-
tions have not been reported by previous works that analyze
chain-of-thought mostly based on performance metrics.

Since our tool is built on the top of state features, it can be
adapted to a machine-learning model to quantitatively pre-
dict certain properties, such as the findings mentioned above.
We showcase this advantage by training a lightweight model
to predict the success and failure cases, which is equivalent
to verifiers commonly used in LLM reasoning (Cobbe et al.,
2021). Even though this verifier is lightweight compared
to most LLM-based verifiers, it consistently improves the
reasoning performance on most combinations of models, de-
coding algorithms, and datasets in our experiments. Hence,

users can further leverage this advantage to predict other
potential properties that they discover in their own scenarios.

In summary, our main contributions are three-fold:

• We introduce the first visualization tool for inspecting
the reasoning dynamics of different LLMs and decoding
algorithms on any multi-choice reasoning dataset (Sec. 2).

• Our tool reveals several observations regarding the rea-
soning behaviors of different models, algorithms, and
datasets, offering new insights into the reasoning (Sec. 3).

• Our tool can also be adapted to a model to predict certain
properties and guide the reasoning process, improving
LLM reasoning without modifying parameters (Sec. 4).

2. Visualizing Multi-step Reasoning of LLMs
This section outlines a general framework for language
models and reasoning algorithms compatible with our tool
(Sec. 2.1), demonstrates how it visualizes reasoning by pro-
jecting thoughts into a two-dimensional space (Sec. 2.2),
and introduces metrics for quantitative analysis (Sec. 2.3).

2.1. Problem Formulation

Our goal is to visualize the reasoning process of LLMs
across a variety of problem types. To achieve this, we aim
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for a formulation that is sufficiently general to encompass a
wide range of use cases. Specifically, we focus on datasets
consisting of multiple-choice questions, where each sample
(x, y, C) comprises a question x, a correct answer y, and a
finite set of candidate choices C = {cj}kj=1, all represented
in textual format. The proposed visualization tool applies to
the following language models and reasoning algorithms.

Language models. To explore the landscape of thoughts
generated by an LLM pLLM(·), it is necessary for the
model to produce diverse reasoning paths for solving a
given problem. This requires the LLM to support sam-
pling during inference ŷ ∼ pLLM(y|x, C). For chain-of-
thought reasoning, thoughts are sampled autoregressively
as t̂i ∼ pLLM(ti|x, C, t̂1, . . . , t̂i−1). Namely, each thought
t̂i is conditioned on the problem x, the candidate set C, and
the sequence of preceding thoughts t̂1, . . . , t̂i−1. To charac-
terize intermediate states within these reasoning paths, the
LLM must also function as a likelihood estimator, enabling
the computation of the probability pLLM(ŷ|x, C, t̂1, . . . , t̂i)
of any generation ŷ. These two requirements are generally
satisfied by most open-source LLMs, such as Llama (Dubey
et al., 2024), Mistral (Jiang et al., 2024), and DeepSeek (Liu
et al., 2024). However, proprietary LLMs, such as GPT-
4 (Achiam et al., 2023) and Gemini (Team et al., 2023), are
excluded as they do not support likelihood estimation.

Reasoning algorithms. While there are many approaches
to solving reasoning problems with LLMs (Creswell et al.,
2022; Kazemi et al., 2023), this work focuses on chain-of-
thought (CoT) (Wei et al., 2022) and its derivatives (Zhou
et al., 2023; Yao et al., 2023a), owing to their widespread
use and development. These decoding algorithms generally
guide the model in generating a structured path of interme-
diate reasoning thoughts before arriving at the final answer.
Note that to visualize a large number of reasoning thoughts
effectively, these thoughts should be automatically parsed
into distinct units (e.g., via sentence tokenization). This
requirement is typically satisfied by most variants of CoT.
We also empirically verify the robustness of our tool if this
requirement does not hold (please see Appendix D.2).

2.2. Landscape of Thoughts

Given a collection of reasoning paths generated by an LLM,
our tool seeks to visualize how different paths lead to ei-
ther correct or incorrect answers within a two-dimensional
(2D) space, as illustrated in Fig. 1. A key challenge lies in
the absence of a direct mapping from the textual space of
thoughts to 2D coordinates. To address this gap, we first
utilize the same LLM to represent intermediate states as
numerical vectors. These state vectors are then projected
into a 2D space for visualization. For simplicity, we use the
notation ti instead of t̂i, which is clear in the following.

Characterizing the states. Here, the intermediate thoughts

{ti}ni=1 in a reasoning path naturally define a sequence of
states {si}ni=0, where s0 = [x] and si = [x, t1, t2, . . . , ti].
Here, we propose to characterize the states as feature vectors
using the likelihood function of the LLM. Specifically, the
k-dim feature vector si for state si is defined as follows:

si = [d(si, c1), d(si, c2), . . . , d(si, ck)]
⊤, (1)

where d(si, cj) measures the distance between state si and
choice cj . In this context, the vector si indicates the relative
distances from the state si to all possible choices {cj}kj=1.
To reduce the effect of length on choices, we implement
the distance calculation of d(si, cj) through the perplexity
metric (Shannon, 1948; Manning, 1999) shown as below: 1

d(si, cj) = pLLM(cj |si)−1/|cj |, (2)

where |cj | is the number of tokens in cj , and pLLM(cj |si)
is the accumulated probability in an autoregressive manner.
We further normalize the vector si for a unit L1 normaliza-
tion. Additionally, to represent the choices as landmarks
in the visualization, it is necessary to encode the choices
as feature vectors. Notably, the perplexity decreases as the
model’s prediction confidence increases. To align with this
observation, we define the feature vector cj for a choice cj
in a manner consistent with the perplexity, namely:

cj =
1

k
[1(j ̸= 1), . . . ,1(j ̸= k)]⊤. (3)

For r paths, each with n states, we compute the feature
vectors for all r ·n states. 2 Together with the feature vectors
of k choices, we obtain a feature matrix S ∈ Rk×(r·n+k):

S = [s
(1)
1 , . . . , s(1)n , . . . , s

(r)
1 , . . . , s(r)n , c1, . . . , ck]. (4)

Note that a sufficiently large number of paths is necessary
to generate a comprehensive visualization of the reasoning
landscape. However, visualizing all samples in a dataset
under this setting incurs a significant computational cost. In
practice, we found it more efficient to visualize d paths with
r
d samples projected into the same space. This approach
retains much of the visualization quality while substantially
reducing the number of paths required for each sample. The
key idea is to rearrange the order of choices such that the
correct answer consistently aligns with the same dimension
in the k-dimensional feature space across all the r samples.

Visualization. After constructing the feature matrix S, we
project the states and choices into a 2D space for visual-
ization. This dimensionality reduction step can be accom-
plished using various existing algorithms (Pearson, 1901;

1The perplexity can also be expressed as PPL(cj |si) =

exp
(
− 1

|cj |
∑|cj |

t=1 log pLLM(cj [t]|si, cj [: t])
)

.
2Our tool can also be applied to paths with different numbers

of states. We assume n states for demonstrations.
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van der Maaten and Hinton, 2008; McInnes et al., 2018). In
this study, we employ t-SNE (van der Maaten and Hinton,
2008) due to its ability to preserve the underlying manifolds
of the original high-dimensional space and its robustness to
a wide range of transformations. By applying t-SNE to the
k-dim S, we obtain the 2-dim coordinates S̄ ∈ R2×(rn+k).
Note that the two axes in the landscape visualization corre-
spond to reduced dimensions from the original spaces. This
original space captures the full answer space for problem-
solving, with each state’s coordinates reflecting its relative
distance to different answers. The coordinates of the states
define a discrete density function in the 2D space. To create
a more intuitive and visually interpretable representation,
we smooth this density function using a Parzen window
estimator (Silverman, 2018). Given a coordinate v̄, the for-
mulation of the smoothed density is presented as follows,
where the σ controls the radius of Gaussian kernels:

p(v̄) =
1

rn

∑
s̄∈S̄

exp

(
−||v̄ − s̄||2

2σ2

)
. (5)

2.3. Metrics

Besides the qualitative 2D visualization, we introduce three
quantitative metrics to help understand the behavior of the
LLM at different reasoning steps. All these metrics are
defined on the intermediate states introduced in Sec. 2.2.

Consistency. To understand whether the LLM knows the
answer before generating all thoughts, we compute the con-
sistency of state si by checking whether si and sn agree

Consistency(si) = 1(argmin si = argmin sn). (6)

Uncertainty. To know how confident the LLM is about
its predictions at intermediate steps, we compute the uncer-
tainty of state si as the entropy of si (note

∑
d∈si

d = 1)

Uncertainty(si) = −
∑
d∈si

d · log d. (7)

Perplexity. We are also interested in how confident the
LLM is about its thoughts. We use the perplexity of thought
ti, since it is comparable across thoughts of different length

Perplexity(ti) = pLLM(ti|si−1)
−1/|ti|. (8)

3. Results and Observations
In this section, we utilize the landscape of thoughts to ana-
lyze the reasoning behavior of LLMs. Specifically, we con-
duct a comprehensive evaluation and extract several obser-
vations by comparing the landscape of thoughts across three
dimensions: (1) various reasoning algorithms in Sec. 3.1,
(2) different reasoning tasks in Sec. 3.2, and (3) diverse
scales of language models in Sec. 3.3.

To help understand the qualitative visualizations, we quanti-
tatively calculate the consistency and uncertainty of states,
as well as the perplexity of thoughts, all previously intro-
duced in Sec. 2.3. Unless stated otherwise, we employ
Llama-3.1-70B with CoT as the default configuration in
evaluations. Note that all the visualizations are built upon
the model’s estimation of their intermediate thoughts.

3.1. Comparison across Reasoning Algorithms

Setup. We evaluate the default model with four reasoning
algorithms: chain-of-thought (CoT) (Wei et al., 2022), least-
to-most (LtM) (Zhou et al., 2023), MCTS (Zhang et al.,
2024), and tree-of-thought (ToT) (Yao et al., 2023a). We run
these algorithms on 50 problems randomly selected from the
AQuA dataset. The corresponding landscapes are presented
in Fig. 2, which yields the following observations. Further
discussion, detailed experimental settings, and additional
results can be found in Appendix B, C, and D, respectively.

Observation 3.1 (The landscapes converge faster to the cor-
rect answers are of higher reasoning accuracy). By compar-
ing the four groups of landscapes in Fig. 2, we observe that
the states scatter dispersedly at early stages and gradually
converge to correct (or incorrect) answers in later stages.
Here, converge means the trend of a reasoning path ap-
proaching one answer. As can be seen from Fig. 2, different
reasoning algorithms present diverse landscapes. Generally,
methods with more scattered landscapes (converge slower)
present lower accuracy than those that converge faster.

Observation 3.2 (Wrong paths quickly converge to wrong
answers, while correct paths slowly step to correct answers).
By comparing the landscapes of failure and success paths, it
is found that the failure paths usually converge to the wrong
answers at earlier states of reasoning, e.g., 20-40% states.
By contrast, the states in the success paths converge to the
correct answers at later 80-100% states. This implies that
early states of the reasoning process can lead to any potential
answers (from model perspective), while the correct answers
are usually determined at the end of reasoning paths.

Observation 3.3 (Compared to failure paths, the intermedi-
ate states in correct paths have higher consistency w.r.t. the
final state). By comparing the consistency plots in Fig. 2,
we found that the model generally has low consistency be-
tween the intermediate states and the final state. Notably,
the consistency of wrong paths is significantly lower than
that of correct paths. This implies that the reasoning process
can be quite unstable. Even though decoding algorithms like
CoT and LtM are designed to solve a problem directly (with-
out explorations), the generated thoughts by these methods
do not consistently guide the reasoning path to the answer.
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Figure 2: Comparing the landscapes and corresponding metrics of four reasoning algorithms (using Llama-3.1-70B on the
AQuA dataset). Through the reasoning progression, spanning from early (0-20% states) to the later stages (80-100% states),
the visualization shows correct cases (bottom row in blue) with incorrect cases (top row in red). Metrics are calculated w.r.t.
each bin, e.g., 20% - 40% of states. Note that darker regions represent a higher density of states, with indicating incorrect
answers and marking correct answers. The accuracy of reasoning for the four subfigures is: (a) 84.4%, (b) 82.2%, (c)
75.8%, and (d) 81.6%, respectively.

3.2. Comparison across Reasoning Tasks

Setup. Besides the AQuA, we include MMLU, Common-
senseQA, and StrategyQA datasets. We run the base model
with CoT on 50 problems per dataset. The observations
follow are derived from the landscapes in Fig. 3. More
visualization cases can be found in Appendix E.

Observation 3.4 (Similar reasoning tasks exhibit similar
landscapes). The landscapes of AQuA, MMLU, and Strate-
gyQA exhibit organized search behavior with higher state
diversity, while CommonSenseQA presents concentrated
search regions, reflecting direct knowledge retrieval rather
than step-by-step reasoning processes. These distinct land-
scape patterns demonstrate the potential to reveal underlying
domain relationships across different reasoning tasks.

Observation 3.5 (Different reasoning tasks present signif-
icantly different patterns in consistency, uncertainty, and
perplexity). The histograms in Fig. 3 show that path per-

plexity consistently increases as reasoning progresses across
all datasets. Specifically, different datasets, e.g., AQuA and
MMLU, show distinctly higher levels of uncertainty. As
for StrategyQA, correct paths show increasing consistency
that surpasses incorrect paths at around 60% states, while
incorrect paths show decreasing consistency. However, ex-
tending beyond the typical three-step requirement (Geva
et al., 2021), the later stages (60-100% states) show increas-
ing perplexity as well as lower uncertainty.

3.3. Comparison across Language Models

Setup. In this part, we study several LLMs’ behavior across
different parameter scales (1B, 3B, 8B, and 70B). We run
each model with CoT on 50 problems from the AQuA
dataset. The landscapes of these models are shown in Fig. 4.
We also provide case studies on the reasoning models (Guo
et al., 2025; Team, 2025) in the Appendix E, whose behav-
iors are also consistent with the following observations.

5



Landscape of Thoughts: Visualizing the Reasoning Process of Large Language Models
(a

)A
Q

uA
(b

)M
M

L
U

(c
)S

tr
at

eg
yQ

A
(d

)C
om

m
on

Se
ns

eQ
A

Figure 3: Comparing the landscapes and corresponding metrics of different datasets (using Llama-3.1-70B with CoT).
Darker regions represent higher state density, with indicating incorrect answers and marking the correct ones. In
addition, the accuracy of reasoning for the four subfigures is: (a) 84.4%, (b) 80.2%, (c) 75.8%, and (d) 64.8%, respectively.

Observation 3.6 (The landscape converges faster as the
model size increase). As model parameters scale from 1B
to 70B, the corresponding landscape demonstrates faster
convergence to the correct answers with higher density in
the last 20% states, aligning with the increasing accuracy.
With more parameters to store information, larger models
can access broader knowledge (Allen-Zhu and Li, 2024).
This leads to more confident solutions, demonstrated by
more focused answer patterns and lower uncertainty.

Observation 3.7 (Larger models have higher consistency,
lower uncertainty, and lower perplexity). As the model size
increases, the consistency increases, at the same time, the
uncertainty and perplexity decrease significantly. This also
aligns with the higher accuracy for the large models.
Case study on reasoning model. We visualize the reason-
ing behavior of the latest reasoning model, namely QwQ-32
B (Team, 2025), via the landscape, shown in Fig. 7. Here,
we summarize distinctive reasoning behavior apart from
general models as follows:

Observation 3.8 (Correct reasoning demonstrates decen-

tralized patterns). By comparing the correct reasoning pat-
tern with those of general models, as shown in Fig. 4, we
observe decentralization of landscapes from reasoning mod-
els. This is characterized by thoughts distributed broadly
across the landscape, indicating that the reasoning model
engages in extensive exploration to derive its final decisions.

Observation 3.9 (Reasoning Models Exhibit Self-Checking
and Awareness of Correctness). By comparing textual rep-
resentations with reasoning landscapes, we observed that
reasoning models promote self-checking behavior when
thoughts deviate from the correct answer, often manifesting
as ’Aha’ moments (Guo et al., 2025). This suggests that
reasoning models develop an awareness of the correctness
of their reasoning processes.

4. Adapting Visualization to Predictive Models
One advantage of our method is that it can be adapted to
a model to predict any property users observe. Here, we
show how to convert our method to a lightweight verifier
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Figure 4: Comparing the landscapes and corresponding metrics of different language models (with CoT on the AQuA
dataset). Darker regions represent higher state density, with indicating incorrect answers and marking the correct ones.
In addition, the accuracy of reasoning for the four subfigures is: (a) 15.8%, (b) 42.0%, (c) 53.2%, and (d) 84.4%.

Figure 5: Demonstration of the inference-
time scaling effect of the verifier. We show
the voting accuracy (%) on StrategyQA
scales with the number of reasoning paths.

(a) Transfer across datasets (b) Transfer across models

Figure 6: Absolute accuracy changes (∆ Acc) with the verifier, compared
to performance in Fig. 8 (without the verifier). The verifier is trained on
each column (dataset or model) and evaluated on all rows (other datasets or
models). Positive values indicate improvement in accuracy with the verifier.

for voting reasoning paths, following the observations in
Sec. 3. Note that this methodology is not limited to verifiers.
Users can use this technique to adapt the visualization tool
to monitor the properties in their scenarios.

4.1. A Lightweight Verifier

Observation 3.2 and 3.3 show that the convergence speed
and consistency of intermediate states can distinguish cor-
rect and wrong paths. Inspired by these observations, we

build a model f : R(k+1)×n → {0, 1} to predict the correct-
ness of a reasoning path based on the state features {si}ni=1

and consistency metric {Consistency(si)}ni=1. The insight
is that the state features, used to compute the 2-D visualiza-
tion, encode rich location information of the states and can
be used to estimate the convergence speed. Due to the small
dimensionality of these features, we parameterize f with a
random forest (Breiman, 2001) to avoid overfitting. We use
this model as a verifier to enhance LLM reasoning (Cobbe
et al., 2021). Unlike popular verifiers (Lightman et al., 2023)
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Since probabilities can't exceed 1, the maximum 
value of P(A and B) can be the minimum of P(A) 
and P(B). The minimum of 0.56 and 0.74 is 0.56. 
Wait, maybe. Let me check again.

Wait, this might be a 
bit more complicated. 
Let's try to think of it 
in terms of relative 
motion.

Wait, actually when 
solving D = 
\u221a3*(D - 10v), 
let's do it again step 
by step.

Let me check that again. Yes: the non-
defective total is 0.9N, and 2% of that is 
rejected. Therefore, 0.02*(0.9N) = 72.

But maybe it's a trick question 
where the letters have to be 
distinct? Wait, the first part 
might assume whether letters 
can repeat or not,

Wait, first 
maybe I 
need to find 
the total 
distance.

…plus 54,400 gives 1,180,800? Wait, let me 
check again. 626,400 +554,400….

Wait, but perhaps I 
missed something.

Wait, in the previous 
step, the time 
remaining is (d/v). So 
after substitution,…

Wait, let me 
redo the 
division.

Wait, but maybe I made an arithmetic 
mistake somewhere. Let me check the 
division again:

Wait but let me think again. Maybe the question is 
asking for the number of staplers produced that 
day, which is the total N, so yes. The steps seem 
correct. Let me check with another approach.

But wait, looking at the 
answer options, E is 110. 
However, the problem 
says \"at least\" so 
maybe there's a catch 
here?

Let me do the 
calculation in decimals 
without converting to 
fractions. Maybe I 
made a mistake there.

Wait, perhaps 
subtract 
equation 1 
multiplied by 
some factor.

Let me check the options again. The problem's 
options are A)27, B)81, C)90, D)99, E)110. So 
according to this, the answer should be E. But the 
question might be a trick here?

…perhaps the original price must be a value that 
when discounted and subtracted by 20 gives 
exactly the value needed. Let me check.

Wait, maybe 
I confused 
steps here. 
Let me re-
express

Wait a second. 
But hold on, let 
me double-
check because 
maybe I'm 
oversimplifying.

Wait, but this calculation gives exactly 5(\u221a3 
+1), which is option A. But wait, let me check once 
more.

Hmm, that discrepancy is 
odd. Maybe I made a 
mistake in the equation 
setup?

Wait, sorry, let me 
recast…

…Wait, but maybe 
there is another 
approach?

Wait, wait. Wait a second, 
no, actually, maybe I made a 
calculation error here. Let me 
double-check because that 
result seems a bit low. Let me 
recalculate the division:

(N -10 -20e) = (N 
-20 -10e)/2 * 2? 
Wait, no. Wait, 
perhaps better to 
substitute.

Wait, but the options 
include C as 36. So that 
works. Let me confirm 
again step by step. Let 
me see:

But wait the options are A)4 B)4.5 C)5 D)5.5 E)6.5. 
So yes, C is correct. Let me check if there was 
any miscalculation. Hmm, yes, all steps check out.

Wait, let me 
double-check my 
calculation step 
again. Maybe my 
math was wrong.

That's not among the options 
provided. Did I make a 
mistake somewhere?

Wait, perhaps my total cost calculation was 
wrong. Let me check again.

Figure 7: Landscape of QwQ-32B using CoT on AQuA. Better view in color. Distinct reasoning patterns are marked with
different colors, including self-evaluation and self-refinement. More visualization can be found at Appendix E.

that involve a moderately sized language model on textual
thoughts, our verifier operates on state features and is super
lightweight. We train a verifier on thoughts sampled on the
training split of each dataset and apply it to vote reasoning
paths at test time. Given q paths sampled by a decoding
algorithm, the final prediction is produced by a weighted
majority voting given by the following equation:

ŷ =argmax
c∈C

q∑
i=1

1(ŷ(i) = c) · f({si}ni=1, {Consistency(si)}ni=1).

(9)

4.2. Experimental Results

We evaluate our numerical verifier against an unweighted
voting baseline (Wang et al., 2023b) with various models,
decoding algorithms, and reasoning datasets. Detailed set-
tings and results are in Appendix C.1.

Effectiveness of the verifier. We first compare our verifier
against the unweighted voting baseline, each applied to 10
reasoning paths. As shown in Fig. 8, our verifier consis-
tently enhances the reasoning performance of all models and
decoding algorithms, even though our verifier does not use
any pre-trained language model. Notably, smaller language
models (1B and 3B) show significant performance gains
with the verifier’s assistance, achieving substantial improve-
ments over their original capabilities of reasoning. We also
compare the verifier between reward-guided algorithms

Test-time scaling. While the improvement of the verifier
seems marginal with 10 reasoning paths, our verifier can
provide a substantial performance gain with more reasoning
paths. We adjust the number of reasoning paths from 1 to

50, and plot the results of the verifier and the unweighted
voting baseline in Fig. 5. Models with our verifier exhibit
significantly stronger scaling behaviors, achieving over 65%
accuracy. In contrast, the performance of the baseline satu-
rated around 30% accuracy. These results suggest that our
state features, which are used in both the visualization tool
and the verifier, capture important information about the
reasoning behavior of LLMs. Thus, the verifier can boost
test-time scaling, especially in solving complex problems.

Cross-dataset and cross-model transferability. One in-
teresting property of the state features and metrics is that
their shape and range are agnostic to the model and dataset,
suggesting that we may deploy the verifier trained on one
dataset or model in another setting. As illustrated in Fig. 6,
we evaluate how the verifier transfers across reasoning
datasets (e.g., train on AQuA and test on MMLU) and model
scales (e.g., train on 1B model and test on 70B model). We
observe some positive transfers across datasets and models.
For example, a verifier trained on AQuA can improve the
performance of StrategyQA by 4.5%. A verifier trained on
the 70B model also improves the performance of the 3B
model by 5.5%. However, some cases do not benefit from
the transferring verifiers. We leave improving the trans-
ferability of the state features and metrics as future work.

5. Related Work
Reasoning with large language models. Chain-of-Thought
(CoT) prompting (Wei et al., 2022; Kojima et al., 2022) has
empowered LLMs to tackle multi-step reasoning problems
by generating intermediate steps before producing a final
answer. Building upon CoT, numerous methods have been

8
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Figure 8: Accuracy under methods and model scales (averaging across four datasets). Dataset-level results see Appendix E.

proposed to address various challenges, including composi-
tional generalization (Zhou et al., 2023; Khot et al., 2023),
planning (Yao et al., 2023a; Hao et al., 2023), and rule
learning (Zhu et al., 2023) within the CoT reasoning. Be-
yond solving reasoning tasks, CoT has also emerged as
a foundational framework for other techniques, such as
fine-tuning LLMs (Zelikman et al., 2022), enabling LLM-
based agents (Yao et al., 2023b), and facilitating test-time
scaling (Snell et al., 2024). Nevertheless, most of these ap-
proaches are developed in a trial-and-error manner, largely
due to the absence of proper tools for analyzing the CoT.

Understanding chain-of-thought reasoning. There are a
few studies that explore what makes CoT prompting effec-
tive by perturbing its exemplars. To be specific, Madaan
and Yazdanbakhsh (2022) found that the text and patterns
of exemplars help CoT generate sentences resembling cor-
rect answers. Besides, Wang et al. (2023a) highlighted
the importance of maintaining the correct order of reason-
ing steps, while Ye et al. (2022) demonstrated that using
complementary exemplars can enhance reasoning perfor-
mance. Furthermore, CoT can benefit from longer reasoning
chains, even without new information to the prompt (Jin
et al., 2024). Another line of research investigates CoT’s
general behavior (Tang et al., 2023; Saparov and He, 2023;
Saparov et al., 2023; Shi et al., 2023). For example, CoT
heavily depends on the semantic structure of the problem to
perform reasoning (Tang et al., 2023), struggles with plan-
ning and unification in deductive reasoning (Saparov and
He, 2023), has difficulty generalizing to longer reasoning
paths (Saparov et al., 2023), and can be easily misled by
irrelevant information in the context (Shi et al., 2023). How-
ever, these observations are derived from specific reasoning
tasks and prompt settings, limiting their applicability to
other scenarios. In contrast, we introduce a general-purpose
tool that allows users to analyze reasoning in their contexts.

Tools for analyzing chain-of-thought. To the best of our
knowledge, the only existing tool for analyzing CoT is
gradient-based feature attribution (Wu et al., 2023), which
computes a saliency score for each input token based on

the model’s output. However, these token-level saliency
scores do not directly capture the thought-level, multi-step
reasoning process of LLMs. Consequently, the main finding
in (Wu et al., 2023) is that CoT stabilizes saliency scores on
semantically relevant tokens compared to direct prompting.
Metrics designed to quantify CoT performance (Chen et al.,
2024; Ton et al., 2024) can also be used to analyze the rea-
soning behaviors of LLMs. For instance, Ton et al. (2024)
employs information gain to identify failure modes in rea-
soning paths, aligning with Observation 3.2 in this paper.
However, our 2-D visualization offers significantly deeper
insights than a single information gain metric. Additionally,
the verifier derived from our tool is conceptually related to
outcome-supervised reward models (Cobbe et al., 2021).

6. Conclusion
This paper introduces the landscape of thoughts, a visual-
ization tool for analyzing the reasoning paths produced by
large language models with chain-of-thought. Built on top
of feature vectors of intermediate states in reasoning paths,
our tool reveals several insights into LLM reasoning, such
as the relationship between convergence and accuracy, and
issues of low consistency and high uncertainty. Our tool
can also be adapted to predict the observed property, which
is demonstrated by a lightweight verifier developed based
on the feature vectors and our observations. We foresee
that this tool will create several opportunities to develop,
understand, and monitor the LLM reasoning.

One limitation of the landscape of thoughts is its applica-
bility only to multiple-choice tasks. Future work could
focus on adapting this tool for open-ended reasoning tasks,
such as mathematical problem-solving, code generation,
and planning, where reasoning paths are less structured and
more complex. Additionally, further research could aim to
make the tool more accessible by generating intuitive vi-
sual and textual explanations, enabling non-experts to better
understand and trust the reasoning processes of LLMs. An-
other promising direction is the development of automated
methods to detect reasoning failures at scale, which could
enhance the reliability of LLMs across diverse applications.

9
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A. Impact Statement
Our work presents a tool for visualizing and understanding reasoning steps in large language models. We foresee that our
work will introduce more interpretability and transparency into the development and deployment of LLMs, advancing us
toward more trustworthy machine learning. However, we must acknowledge that malicious activities can also be augmented
by our tool. For example, attackers may use this tool to find prompts that bypass the alignment safeguards in LLMs. We
believe such risks will be mitigated if this tool is widely adopted by safety researchers. Overall, the positive societal
consequences of our work outweigh the negative ones, which stem primarily from misuse.

B. Further Discussions
In this section, we further discuss the challenges in developing the system for analyzing LLMs’ reasoning (Appendix B.1),
followed by comparing the proposed landscape visualization technique with the textual analysis methodology (Appendix B.2).
In addition, we compare the lightweight verifier to conventional reward-guided algorithms (Appendix B.3).

B.1. Challenges in Analyzing LLM’s Reasoning Automatically

Currently, the fundamental mechanisms behind both successful and unsuccessful reasoning attempts in LLMs remain
inadequately understood. Traditional performance metrics, such as accuracy, provide insufficient insights into model
behavior. While human evaluation has been employed to assess the quality of sequential thoughts (e.g., logical correctness
and coherence), such approaches are resource-intensive and difficult to scale. We identify three challenges in developing
automated analysis systems for LLMs’ reasoning:

Challenge 1: Bridging the token-thought gap. Current explanatory tools, including attention maps (Clark et al., 2019;
Kobayashi et al., 2020), probing (Alain and Bengio, 2016; Tenney et al., 2019; Hewitt and Liang, 2019), and circuits (Elhage
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et al., 2021; Yao et al., 2024), primarily operate at the token-level explanation. While these approaches offer valuable
insights into model inference, they struggle to capture the emergence of higher-level reasoning patterns from lower-level
token interactions. Additionally, the discrete nature of natural language thoughts poses challenges for traditional statistical
analysis tools designed for continuous spaces. Understanding how thought-level patterns contribute to complex reasoning
capabilities requires new analytical frameworks that can bridge this conceptual gap.

Challenge 2: Analyzing without training data access. Existing investigations into LM reasoning have predominantly
focused on correlating test questions with training data (Ippolito et al., 2022; Wang et al., 2024). This approach becomes
particularly infeasible given the reality of modern LLMs: many models are closed-source, while some offer only model
weights. Therefore, a desired analysis framework should operate across varying levels of model accessibility.

Challenge 3: Measuring reasoning quality. Beyond simple performance metrics, we need new ways to evaluate the quality
and reliability of model reasoning. This includes developing techniques to understand reasoning paths, creating intermediate
representations that capture both token-level and thought-level patterns, and designing metrics that can assess the logical
coherence and validity of reasoning steps.

Consequently, we propose that a viable analysis of reasoning behavior should satisfy multiple criteria: it should operate
in a post-hoc manner with varying levels of model access, bridge the gap between token-level and thought-level analysis,
and provide meaningful metrics for evaluating reasoning quality. Given the absence of tools meeting these requirements,
we identify the need for a new analytical framework that can address these challenges while providing useful insights for
improving model reasoning capabilities.

B.2. A Comparison Between Landscape Visualization and Textual Analysis

Notably, for the language model, one could manually examine the responses of individual samples, as their responses are
interpretable by humans. However, this approach has two major limitations:

Limitation 1: Lack of Scalability. Analyzing individual samples is time-consuming and labor-intensive. In general, text-based
analysis requires human evaluators to carefully read long reasoning chains word by word. For example, if it takes 30 seconds
to understand a single sample, reviewing 100 samples would require around 50 minutes of focused human effort. This
burden grows quickly, especially as researchers often repeat this process many times while developing models and methods.
In practice, researchers need quick, easily interpretable feedback like accuracy when experimenting with changes to models
and methods.

Limitation 2: Lack of Aggregation. It is difficult to aggregate insights across multiple samples to understand model behavior
at the dataset level. Summarizing model behavior across multiple samples presents another challenge. Suppose one
researcher has 100 reasoning chains, it is hard for him/her to reliably synthesize the model’s overall behavior. Different
researchers may arrive at different, subjective summaries, which hinders consistency and interpretability.

By contrast, our visualization method provides a more objective and automatic way to analyze a model, making it much
easier for researchers to analyze the model’s reasoning behavior. Similar to the t-SNE (van der Maaten and Hinton, 2008),
the visualization enables a more comprehensive analysis of multiple reasoning samples instead of only one sample. The
visualization uniquely combines human-readable paths with quantitative, scalable metrics for reasoning process analysis,
enabling both model comparisons and mechanistic insights beyond manual text inspection.

Notably, the landscape provides unique insights into LLM reasoning that text analysis alone cannot capture. This power
source bridges the gap between localized text understanding and global reasoning behavior. Our analysis in Sec. 3 reveals
insights that are not revealed by previous text-based analysis. These insights include structural patterns across many
reasoning paths, a strong correlation between early consistency and accuracy, and model-level differences where larger
models explore more broadly than smaller ones.

B.3. A Comparison Between Lightweight Verifier and Reward-guided Algorithms

It is worth noting to mention that our goal is not to build a sophisticated verifier, but rather to demonstrate how the feature
vectors from the landscape visualization can be effectively used.

In general, reward-guided algorithms are more computationally efficient than the path landscape. Specifically, for a reasoning
path with n thoughts and c answer choices, constructing the landscape requires n× c forward passes through the reasoning
model. In contrast, a reward-guided approach typically makes a single call to a reward model that evaluates the entire
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reasoning chain at once.

Meanwhile, it’s important to consider the overhead involved in training the reward models in reward-guided algorithms.
Notably, for Process-Reward Models (PRMs) (Luo et al., 2024; Xu et al., 2025), collecting high-quality training data often
requires detailed, fine-grained annotations of reasoning steps, which can be costly and time-consuming. Moreover, training
a reward model (often itself a LLM) incurs significant computational expense. In contrast, our lightweight verifier is much
more efficient to train, as it requires no human annotations and uses easily obtainable data.

C. Experiment Settings
C.1. Settings

Visualizing the landscape of thoughts fundamentally relies on the decoding probability of LLMs. To this end, we adopted
four open-source models with varying parameter sizes, namely Llama-3.2-1B, Llama-3.2-3B, Llama-3.1-8B,
and Llama-3.1-70B. We repeatedly sample 10 times from the target LLM using the same reasoning strategy as self-
consistency (Wang et al., 2023b).

For visualization purposes, we randomly sample 50 questions from the testing split of each dataset and generate reasoning
paths with the setup described above. For simplicity, we compute distances only between each state and all candidate
answers. To visualize multiple samples in a shared space, we always place the distance to the correct answer as the first
element of each feature vector. This alignment allows joint analysis across samples, as introduced in the paragraph below
Equation 4. We then aggregate feature vectors from all samples into a feature matrix (Equation 2), which is passed to t-SNE
to compute the pairwise distance between any two states and then outputs the 2D coordinate of each state.

For training the lightweight verifier, we randomly sample 20 questions from the training split of each dataset to obtain
the feature matrix S. We extract these features using three model scales: Llama-3.2-3B, Llama-3.1-8B, and
Llama-3.1-70B. Despite the relatively small training set, it proves sufficient for our lightweight verifier, which we
subsequently evaluate on the data for visualization in Sec. 3.

C.2. Datasets

AQuA (Ling et al., 2017). This dataset develops to challenge language models’ quantitative reasoning capabilities. The
AQuA presents complex algebraic word problems in a multiple-choice format, where only one is correct. Each problem
requires numerical computation, deep linguistic understanding, and logical inference. It provides a nuanced assessment of a
model’s ability to translate textual information into algebraic reasoning.

MMLU (Hendrycks et al., 2021). Spanning 57 distinct academic and professional domains, MMLU provides a rigorous test
of language models’ capabilities across humanities, social sciences, hard sciences, and technical disciplines.

StrategyQA (Geva et al., 2021). This dataset is designed to evaluate implicit reasoning and multi-hop question answering.
The dataset is characterized by yes/no questions that demand implicit reasoning strategies. Unlike straightforward factual
queries, these questions require models to construct elaborate reasoning paths, showing hidden logical connections.

CommonsenseQA (Talmor et al., 2019). This dataset assesses commonsense reasoning through multi-choice questions
derived from the ConceptNet knowledge graph (Speer et al., 2017). The dataset aims to test a model’s understanding of
commonsense concepts and ability to make logical inferences. However, the questions often require the model to incorporate
external knowledge to select the correct answer from plausible distractors.

Note that AQuA, MMLU, and StrategyQA all demand exploratory traversal of intermediate reasoning states, resulting in
diverse but structured landscapes. CommonsenseQA, conversely, represents a distinct domain where answers depend on
static knowledge rather than emergent reasoning pathways.

C.3. Decoding Algorithms

Chain of Thought (CoT) (Wei et al., 2022). CoT elicits the LLM’s reasoning capabilities by incorporating few-shot
examples that demonstrate explicit reasoning steps. It provides the model with exemplar reasoning traces to guide its
problem-solving process.

Zero-shot CoT (Kojima et al., 2022). The core idea of this prompt strategy lies in adding simple instructions, e.g., "Let’s
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Table 1: Statistical verification of the observations in Sec. 3.

(a) Verifying Obs. 3.1

Correct Incorrect

CoT 1.026 0.975
L2M 1.026 0.989
ToT 1.004 0.987

MCTS 1.002 0.985

(b) Verifying Obs. 3.2 and 3.6

Speed Accuracy

CoT 0.322 84.4%
L2M 0.224 82.2%
ToT 0.205 81.6%

MCTS 0.198 75.8%

(c) Verifying Obs. 3.4

AQuA MMLU StrategyQA Common
SenseQA

AQuA 1.0 0.914 0.895 0.859
MMLU 0.914 1.0 0.870 0.843

StrategyQA 0.895 0.870 1.0 0.889
Common
SenseQA 0.859 0.843 0.889 1.0

think step by step." to the prompt, enabling models to generate reasoning traces without assigned task-specific examples.

Least-to-Most (LtM) (Zhou et al., 2023). LtM is an innovative reasoning approach that systematically breaks down complex
problems into progressively simpler subproblems. This approach mirrors human cognitive problem-solving strategies, where
individuals naturally break down complex tasks into smaller, more comprehensible parts.

Tree-of-Thought (ToT) (Yao et al., 2023a). ToT expanded this concept by creating a more sophisticated, multi-branching
reasoning framework. While CoT follows a linear path of reasoning, ToT introduces a more dynamic exploration, allowing
models to generate multiple reasoning paths simultaneously, evaluate them, and strategically prune less promising trajectories.

Monte Carlo tree search (MCTS) (Zhang et al., 2024). MCTS is a powerful computational algorithm originally developed
for game-playing strategies, particularly in complex decision-making environments like chess and Go. The method uses
probabilistic sampling and tree exploration to systematically navigate potential solution spaces, balancing exploring new
possibilities with exploiting promising paths. We adopt the task-agnostic node expansion and evaluation prompt from
ReST-MCTS (Zhang et al., 2024) to conduct our experiment across different tasks.

D. Supplementary Results and Analysis
D.1. Statistical Verification of the Observations

In this part, we conduct extra experiments and statistically verify Obs. 3.1, 3.2, 3.4, and 3.6, while the other Obs. 3.3, 3.5,
and 3.7 have been quantitatively verified by the metrics in Sec. 2.3.

To verify Obs. 3.1, we calculate the convergence coefficient (eβ) by fitting a log-linear regression model to the sequence
of distances di between each state and the final answer as log(di) ≈ α+ βi, where α is the intercept term; β is the slope
coefficient that quantifies convergence behavior; i represents the position index in the reasoning chain. Lower values of eβ

indicate faster convergence. For Obs. 3.2 and 3.6, we measure the speed of a reasoning path moving from start to end as
speed = ∥s̄n−s̄0∥∑

j=1n∥s̄j−s̄j−1∥ ∈ [0, 1], where s̄i represents the 2D coordinate of the state i. Whereas Obs. 3.4, we compute
pairwise histogram intersection scores of the density distributions. Lower scores indicate greater dissimilarity between
landscapes.

Notably, for Tab. 1(a), we found that correct paths consistently show slight divergence, while incorrect paths show more
convergence (p-value = 0.008), thus verifying bs. 3.1. Shown in Tab. 1(b), speed and accuracy correlate strongly (p-value =
9.421e-11), thus verifying Obs. 3.2. This is also applicable for verifying Obs. 3.6. Tab. 1(c) shows that lower scores indicate
greater dissimilarity between landscapes, which verifies Obs. 3.4, i.e., AQuA, MMLU, and StrategyQA are more similar,
while CommonSenseQA exhibits distinct patterns.

D.2. Robustness of Sentence Tokenization

To evaluate the robustness of the landscape to the split thoughts’ information volume, i.e., the granularity of the sentence
tokenization, we conduct the controlled experiment by considering two imperfect cases in thought split, namely over-split
thoughts and under-split thoughts.

Specifically, shown as Fig. 9 (a), compared to the original thoughts split that transform sentences to thoughts based on
the period, over-split thoughts jointly consider the comma, resulting in additional splits. For the under-split, two adjacent
thoughts are merged into one thought. We then visualize the imperfect thought splits using CoT on AQuA following the
setting in Fig. 2(a) and Fig. 4(c),
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Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Original 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Over-spilt 
Thoughts

Let's break down the problem step by step. 

To begin, it is helpful to draw a diagram of the situation.

Under-split 
Thoughts

(a) Demonstration of Sentence Tokenization (b) Llama-3.1 8B (c) Llama-3.1 70B

Figure 9: Demonstration of sentence tokenization methods for thoughts splitting.

Table 2: Absolute accuracy with the verifier, compared to performance in Fig. 8 (without the verifier).

(a) Across datasets

AQuA MMLU StrategyQA Common
SenseQA

AQuA 63.0 (+0.7) 62.3 (+0.0) 62.3 (+0.0) 64.0 (+1.7)
MMLU 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0) 53.0 (+0.0)

StrategyQA 41.5 (+4.5) 40.5 (+3.5) 43.0 (+6.0) 37.0 (+0.0)
Common
SenseQA 54.0 (+1.0) 53.0 (+0.0) 53.0 (+0.0) 54.0 (+1.0)

(b) Across models

1B 3B 8B 70B

1B 26.0 (+0.5) 27.5 (+2.0) 27.5 (+2.0) 27.5 (+2.0)
3B 45.5 (+0.0) 48.0 (+2.5) 51.0 (+5.5) 51.0 (+5.5)
8B 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0) 60.0 (+0.0)
70B 74.0 (+2.0) 73.0 (+1.0) 72.5 (+0.5) 72.5 (+0.5)

Shown in Fig. 9 (b) and (c), the landscapes are robust to the split thoughts’ information volume, which are stable and
consistent with our observations. Notably, for over-split thoughts, the states are more visually diverse but eventually converge
to the answers. Whereas under-split thoughts, the states show a more compact pattern and exhibit a clear convergence trend
toward the answer.

D.3. Absolute Performance of the Verifier

In this part, we provide the absolute performance of the experiment conducted in Fig. 6. Shown as Tab. 2, the results
demonstrate that our approach consistently provides improvements across different domains and models.

D.4. Variants of Verifier

In this part, we extend it into a process verifier and validate its effectiveness through additional experiments. Our lightweight
verifier functions as an outcome reward model (ORM), assessing the correctness of an entire reasoning path. Specifically,
the process verifier predicts the accuracy of each reasoning state using features from the current and all previous thoughts.
State accuracy reflects whether the current state is closer to the correct answer (measured by perplexity) than other answers.
We then aggregate these predictions across the chain to estimate overall accuracy.

Empirically, we collect the state-wise data by comparing the state features and the correct answers, and train the process
verifier. Note, we do not need to manually annotate the step-wise rewards to train conventional PRMs. Results in Tab. 3
show that this process verifier is comparable to the outcome verifier.

D.5. Further Discussion on the StrategyQA

The abnormal reasoning behavior, where states cluster on anchors that differ from their final answer in Fig. 3(c), is not due
to our visualization method but to the unstable reasoning process in the Llama-3.1-70B using CoT on StrategyQA. This
model struggles to reliably represent its self-generated intermediate thoughts, presenting consistency between intermediate
thoughts and final predictions, thus leading to the abnormal patterns observed.

Specifically, the consistency of incorrect paths declines steadily. This highlights the model’s unstable reasoning, as it fails
to maintain coherent reasoning even when approaching the final answer. In addition, the landscape exhibits the highest
perplexity compared to other models, indicating low confidence in its generated thoughts, which undermines the reliability
of the estimated feature matrix used in our visualization.
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Table 3: Performance comparison of reasoning methods across model scales on the AQuA dataset, with and without verifiers.

Model Method Without Verifier With Outcome Verifier With Process Verifier

Llama-3.2-1B
CoT 0.26 0.28 0.26
L2M 0.22 0.24 0.29
ToT 0.35 0.38 0.35
MCTS 0.29 0.32 0.31

Llama-3.2-3B
CoT 0.46 0.51 0.46
L2M 0.29 0.31 0.31
ToT 0.33 0.35 0.33
MCTS 0.35 0.36 0.35

Llama-3.1-8B
CoT 0.60 0.63 0.60
L2M 0.58 0.62 0.58
ToT 0.50 0.53 0.50
MCTS 0.50 0.51 0.50

Llama-3.1-70B
CoT 0.72 0.73 0.73
L2M 0.72 0.72 0.73
ToT 0.74 0.74 0.74
MCTS 0.72 0.73 0.72

Further, we provide landscape visualizations for the same dataset using other models and methods in Fig. 10 to Fig. 13.
These landscapes do not exhibit the same abnormal density patterns, reinforcing that the issue is specific to Llama-3.1-70B’s
reasoning instability rather than a flaw in our visualization framework.

E. Visulizations
In this part, we provide the full visualization of the verifier performance and landscapes.

In Fig. 14 to Fig. 17, we visualize the average voting accuracy (%) of different LLMs reasoning with and without verification
on various datasets and methods. In Fig. 18 to Fig. 21, we display the landscape of different models on various datasets
using four methods. We also provide case studies by visualizing the landscape with corresponding states in Fig 22 to Fig. 25.

In addition, we provide the landscape of thoughts on the latest reasoning model. Specifically, we conduct additional
experiments on the DeepSeek-R1-Distill model (Guo et al., 2025) (Llama-70 B and Qwen-1.5 B). As shown in Fig. 26 and
Fig. 27, the landscape of the reasoning model also aligns with the observation drawn from the general-purpose model, but
exhibits more complex reasoning patterns, such as self-evaluation and back-tracking.
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(a) Llama-3.2-1B with CoT on StrategyQA

(b) Llama-3.2-3B with CoT on StrategyQA

(c) Llama-3.1-8B with CoT on StrategyQA

(d) Llama-3.1-70B with CoT on StrategyQA

Figure 10: The landscapes of the model across scales (using CoT on the StrategyQA dataset).
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(a) Llama-3.2-1B with L2M on StrategyQA

(b) Llama-3.2-3B with L2M on StrategyQA

(c) Llama-3.1-8B with L2M on StrategyQA

(d) Llama-3.1-70B with L2M on StrategyQA

Figure 11: The landscapes of the model across scales (using L2M on the StrategyQA dataset).
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(a) Llama-3.2-1B with MCTS on StrategyQA

(b) Llama-3.2-3B with MCTS on StrategyQA

(c) Llama-3.1-8B with MCTS on StrategyQA

(d) Llama-3.1-70B with MCTS on StrategyQA

Figure 12: The landscapes of the model across scales (using MCTS on the StrategyQA dataset).
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(a) Llama-3.2-1B with ToT on StrategyQA

(b) Llama-3.2-3B with ToT on StrategyQA

(c) Llama-3.1-8B with ToT on StrategyQA

(d) Llama-3.1-70B with ToT on StrategyQA

Figure 13: The landscapes of the model across scales (using ToT on the StrategyQA dataset).
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Figure 14: Average voting accuracy (%) of reasoning with and without verification on AQuA.

Figure 15: Average voting accuracy (%) of reasoning with and without verification on MMLU.

Figure 16: Average voting accuracy (%) of reasoning with and without verification on StrategyQA.

Figure 17: Average voting accuracy (%) of reasoning with and without verification on CommonSenseQA.
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(a) Llama-3.2-1B with CoT on AQuA

(b) Llama-3.2-1B with LtM on AQuA

(c) Llama-3.2-1B with ToT on AQuA

(d) Llama-3.2-1B with MCTS on AQuA

Figure 18: The landscapes of various reasoning methods (using Llama-3.2-1B on the AQuA dataset).
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(a) Llama-3.2-3B with CoT on AQuA

(b) Llama-3.2-3B with LtM on AQuA

(c) Llama-3.2-3B with ToT on AQuA

(d) Llama-3.2-3B with MCTS on AQuA

Figure 19: The landscapes of various reasoning methods (using Llama-3.2-3B on the AQuA dataset).
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(a) Llama-3.1-8B with CoT on AQuA

(b) Llama-3.1-8B with LtM on AQuA

(c) Llama-3.1-8B with ToT on AQuA

(d) Llama-3.1-8B with MCTS on AQuA

Figure 20: The landscapes of various reasoning methods (using Llama-3.1-8B on the AQuA dataset).
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(a) Llama-3.1-70B with CoT on AQuA

(b) Llama-3.1-70B with LtM on AQuA

(c) Llama-3.1-70B with ToT on AQuA

(d) Llama-3.1-70B with MCTS on AQuA

Figure 21: The landscapes of various reasoning methods (using Llama-3.1-70B on the AQuA dataset).
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Step 1: Start by adding 
the positive numbers: 
adding 45 to -30 results 
in 15 since 15 > -15

Conclusion: The original 
price of the item was 
approximately $63.32. 
The answer is A.

To solve the problem, let's 
break it down into a series 
of calculations according 
to the given property.

2. The perimeter of the 
other part is 66 cm 
(perimeter of 16x and 
14y).

Hose A fills the pool in 8 
hours, so its rate is 1/8 of 
the pool per hour.

Step 4: Substitute the 
calculated value for 4/5 
of 25 into the expression 
for the difference.

3. The minimum total 
commission needed to 
reach a salary of at least 
$1000 is 1000.

Step 4: Calculate the 
population 2 years after 
the initial population.

5. Now, divide both 
sides by 1.2, in order 
to solve for C. 
Therefore, C = 360 / 
1.2 = 300.

Based on our calculation, 
the grocer likely sold 
approximately 24.4 bags 
of flour. The answer is C.

Figure 22: Case Study: Landscape of thoughts of Llama-3.2-1B on AQuA using CoT.

Step 2: To find the 
time it takes for them 
to produce 10 yo-yos, 
we need to consider 
the least common 
multiple (LCM) 9 of 
6 and 9 minutes.

Step 8: Since Hose B can 
fill 1/8 of the pool per 
hour, it can fill the entire 
pool in 8 hours. Therefore, 
the answer is D.

Let's break down the steps 
to calculate the average 
speed of the plane around 
the square field.

4. Since the profit is 
25% of the selling 
price, we can calculate 
the total selling price 
for all the bags sold.

6. Since we found that A = 
1/8, we can solve for B by 
substituting A into the 
equation: 1/8 + B = 3/4.

However, the number 
of toys cannot be a 
fraction, so we need to 
round to the nearest 
whole number.

To solve this problem, 
let's break down the 
solution process into 
clear, independent steps.

Step 4: Web those 
formula values into 
the conditional 
probability formula. 
P(A/B) = P(A) / P(B) 
= 0.2 / 0.8.

7. Converting 30/70 to a 
percentage, we get 
(30/70) * 100% = 
42.86%.

The answer is C.

Figure 23: Case Study: Landscape of thoughts of Llama-3.2-3B on AQuA using CoT.
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The answer is B.

Conclusion: The original 
price of the item was 
approximately $63.32. The 
answer is A

Let‘s think step by step to 
solve the problem.

3. This leaves 1 1/4 = 3/4 
of the pool to be filled by 
both hoses working 
together in the following 
3 hours.

We can represent the 
commission of 15% 
on the monthly sale 
as: 0.15 * total 
monthly sale.

To find the percentage 
increase, we'll use the 
formula: ((Increase / 
Original) 100). *

Let's think step by step 
to solve this problem.

Step 3: The total cost can 
be expressed as the sum of 
costs of brown and white 
sharpeners: b X + (18 - b) 
(× + 1) = 100.

Next, we divide the total 
profit by the profit per 
bag: $3,000 / $25 = 120.

Step 8: Solve for x 
using the equation 
identified in step 7.

Figure 24: Case Study: Landscape of thoughts of Llama-3.1-8B on AQuA using CoT.

Figure 25: Case Study: Landscape of thoughts of Llama-3.1-70B on AQuA using CoT.
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Wait, that 
might be the 
correct way to 
model it. Let 
me denote

Wait, that seems high. Let me check my 
calculations again. Maybe I made a mistake 
somewhere.

Let me check the options. I don't think I made any 
mistakes here because the steps align with the 
definition of independent events in probability.

But wait, the initial 
number of marbles isn't 
given, so the total 
number in the bag must 
be unknown.

Wait, the question 
is asking for the 
greatest possible 
value for the 
probability that 
neither happens.

Wait, but that can't be right because the selling 
price has to cover the costs. Wait, let me check 
my calculations again because I think I might 
have made a mistake somewhere.

Wait, that seems 
a bit messy. 
Maybe there's 
another way.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, but let 
me double-
check in 
case I made 
a mistake in 
simplifying.

Wait, let me check: 1.2 times what gives 360. 
Maybe I can do this step by step. 1.2 is the same 
as 6/5, so dividing by 1.2 is the same as multiplying 
by 5/6.

Wait, but I should 
double-check that. Yes, 
tan(60°) is V3, so the 
adjacent side (distance 
to the base) is h / V3 
when the angle is 60°.

But let me make sure I 
didn't make a mistake… 
Yes, that seems correct.

Wait, but let me check again because sometimes 
rounding can cause issues. Let me recalculate 
21.90 divided by 0.28 more accurately.

Wait, maybe 
another way: …

But just to be absolutely sure, let me check with 
another option, say option A is $61.

Wait, but let me check if S=230 would be 
sufficient.

But wait, let me double-
check my initial calculation 
because 78.20 is an option, 
but perhaps I made a mistake 
in my first equation setup.

Wait a second, 
but initially, after 
adding the 20 
black marbles, the 
number of black 
marbles is 20.

Wait, let me check because I think I might have 
made a miscalculation. Let me try another way

Wait, perhaps I should 
compute the per unit 
numbers differently. 
Let me recalculate.

But this seems a 
bit confusing. 
Maybe I made a 
mistake in the 
algebra.

But wait, maybe I made 
an error earlier. Let me 
go back and check my 
steps again.

But wait, the options are 
A)21, B)30, C)31, D)32, 
E)None of the above. So, 
D is available. Therefore, 
the average is 32, which 
matches option

But wait, some-
times when I do 
these problems, I 
might have miss-
ed something. Let 
me think again.

But wait, let me check if 234.2857 would satisfy 
the condition. Let's plug it back in.

Wait, no, in the 
initial example, 
it's a different 
problem. So I 
think my logic 
here is correct. 

Wait, but let me double-check 
that. If the sales-person 
makes 40 sales, each at 
$250, their commission would 
be 40 times $25, which is 
$1000 exactly.

Wait, that 
seems 
similar to 
what I had 
before.

Hmm, so the additional time required is 5(√ 3 +1) 
minutes. Let me check the options given.

Wait, is that right? Let me 
double-check. 420 units/ 
month*12 months=5,040 
units. 5,040* $110=554,400. 
Yeah, that seems correct

Figure 26: Landscape of DeepSeek-R1-Distill-Llama-70B using CoT on AQuA.

Wait, no, that might 
not be the right 
way. Let me 
reframe it.

Then, another 20 
marbles are pulled out, 
and 1 was black. Wait, 
let's analyze this 
carefully

Wait, that seems quite high. Maybe I made a 
mistake. Let me check my calculations again.

But wait, the problem just asks to find the multiple 
of X, not provided specifically, that is divisible by 
both 9 and 12. Hmm, that seems a bit generic. 
Maybe I misread. Let me check again.

Wait, the order might 
matter. So it's 5 + 
(19? -17). Let me 
ensure I'm 
calculating correctly.

Wait a minute, that's 
interesting because 
P(A) is already 0.2, 
so in this case, 
P(A|B) = P(A). Does 
that make sense?

Let me check the setup. After the second pull, 
the bag has N + 40 marbles, with 20 black 
marbles. The percentage of black marbles is 
20/(N + 40) = 5% = 0.05.

Perhaps I made 
a mistake in 
setting up the 
equation. Let's 
check.

Wait, but let me 
double-check my 
calculations to make 
sure I didn't make a 
mistake.

Wait, in the first case, 
the elevator covers 20 
steps in 10 minutes, so 
speed = 20 / 10 = 2 
steps per minute.

But wait, the letters in 'PROBLEC' each have 
different frequencies. Let me check that.

Wait, but I should double-
check to make sure I 
didn't make any mistakes 
in my calculations. 
Alternatively, maybe I can 
think about it another way.

So, unless I made a 
mistake in setting up the 
equation, which doesn't 
seem so, the answer 
should be 4,000, which is 
option A.

So, 21.90 / 0.28 = 77.50, but let me check that 
again because my initial division seems not to align 
with this.

But perhaps I 
made a mistake 
in my reasoning. 
Let me double-
check.

Maybe the problem is designed to have one of the 
options, but I must have miscalculated. Let me 
check the math once more.

Wait, perhaps I read the problem wrong. Let me 
check again.

Wait, I think I need to 
reconsider my approach. 
Let me try again.

Wait, so 
walking more 
steps and 
stopping takes 
longer? 

Still not matching the options. The closest option is 
226 and 230. Did I make a mistake in calculation? 
Let me check.

Wait, maybe I'm 
overcomplicating. Let's 
think about it 
differently.

Wait, that's incorrect. 
It should be (5 + 19? 
-15 -7)/13 =6, which 
simplifies to (19? -
17)/13=6

Wait, perhaps using 
the sine of the angles 
would be more 
straightforward.

Wait, probabilities cannot 
be negative. There must 
be an error in this 
approach. Let me 
reconsider.

Wait, let's go 
back. The 
equation after 
removing 0.5P 
was …

Wait, unless the 2% is on the defective Staplers? 
Let me check the problem again

Wait, but the 
problem says that 
they reach in 10 
minutes. So 
perhaps only T1 
plus T2 equals 10.

Wait, that can't be 
right because 
probabilities can't 
exceed 1.

Wait, maybe it's 
better to 
calculate step by 
step.

But none of the answer choices are given in this 
decimal form. Let me check the answer options 
again

Figure 27: Landscape of DeepSeek-R1-Distill-Qwen-1.5B using CoT on AQuA.
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