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ABSTRACT

There is increasingly widespread use of reward model learning from human preferences to
align Al systems with human values, with applications including large language models,
recommendation systems, and robotic control. Nevertheless, a fundamental understand-
ing of our ability to successfully learn utility functions in this model remains limited. We
initiate this line of work by studying learnability of linear utility functions from pairwise
comparison queries. In particular, we consider two learning objectives. The first objec-
tive is to predict out-of-sample responses to pairwise comparisons, whereas the second
is to approximately recover the true parameters of the utility function. We show that in
the passive learning setting, linear utilities are efficiently learnable with respect to the first
objective, both when query responses are uncorrupted by noise, and under Tsybakov noise
when the distributions are sufficiently “nice”. In contrast, we show that utility parameters
are not learnable for a large set of data distributions without strong modeling assumptions,
even when query responses are noise-free. Next, we proceed to analyze the learning prob-
lem in an active learning setting. In this case, we show that even the second objective is
efficiently learnable, and present algorithms for both the noise-free and noisy query re-
sponse settings. This qualitative learnability gap between passive and active learning from
pairwise comparisons suggests that the tendency of conventional alignment practices to
simply annotate a fixed set of queries may fail to yield effective reward model estimates,
an issue that can be remedied through more deliberate query selection.

1 INTRODUCTION

Guiding machines in accordance with human values is a fundamental principle in technology, commonly
referred to as “alignment” in the field of Artificial Intelligence (AI). A common approach for achieving
alignment involves learning a utility function (or reward model) from a large collection of human responses
to pairwise comparison queries, that is, queries about their preferences between pairs of options. A notable
example of this is the collection of such data in training large language models (LLMs) to increase help-
fulness and reduce harm (Ouyang et al.| 2022; Bai et al., [2022)) as part of a reinforcement learning from
human feedback (RLHF) framework, in which learned reward models are used as reward functions in a
reinforcement learning loop to fine-tune LLMs.

Despite the centrality of utility function estimation from pairwise comparison data across a broad array
of domains (from personalized recommendation systems (Kalloori et al.l 2018; (Qomariyahl 2018) to kid-
ney exchange platforms (Freedman et al., [2020) ), understanding of which utility functions are learnable
remains limited. Theoretical consideration of this problem has been largely in the context of random util-
ity model (RUM) learning based on complete preference information about a fixed set of candidates (out-
comes) (Marschak, (1974; [Becker et al., [1963; Negahban et al., 2018} [Noothigattu et al., 2018). However,
few have considered the issue of learning utility models over a vector space of outcomes, even when utility
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functions are linear, where the observed preference data constitutes a negligible fraction of possible pref-
erence ranking data, and generalization beyond what is observed is key (a notable exception is [Zhu et al.
(2023)), which we discuss below). In the real world, we often face an infinite choice space that the traditional
framework fails to describe. As such settings constitute an important new horizon in social choice as it is
integrated into modern Al, a deeper understanding of the issue is needed.

Our central goal is to initialize a comprehensive investigation of the problem of reward model learning that
is central to value alignment, and particularly, the fundamental question under what conditions is sample-
efficient learning from pairwise comparison data possible. We focus on linear utility models, but allow
arbitrary embeddings of the instance space so that the class of utility models we consider is much more
general (include the reward model used in LLM with neural network structure). Aside from a recent positive
result by|[Zhu et al.|(2023)), who showed that parameters of a linear utility function can be efficiently estimated
in the covariance norm when data follows the Bradley-Terry (BT) random utility model (Bradley & Terryl,
1952), this question remains largely open. We extend their setting to the general random utility model of
which BT, and many other common noisy utility models, are a special case. Moreover, we consider two
natural measures of generalization error: 1) accuracy in predicting responses to unseen pairwise comparison
queries, and 2) efficacy (which we capture as ¢,, distances) in estimating parameters of the utility function.

We first investigate the “passive” learning setting in which pairs of inputs (outcomes) are generated according
to an unknown distribution P, and responses to these comparison queries may be corrupted by noise that
comes from a given distribution Q. When there is no noise in query responses, efficient learnability of
learning to predict responses to unseen pairwise comparison queries follows directly from efficient learning
of halfspaces (Blumer et al.| |1989). However, the traditional PAC model allows so much freedom of the
input distribution that the presence of any noise with its c.d.f. continuous at 0 can lead to an exponential
lower bound on sample complexity. Nevertheless, we show that if we restrict the input distribution to be
well-behaved, provided some mild conditions on the noise distribution, utilities are efficiently learnable in
the PAC sense.

Turning next to the goal of estimating utility function parameters, we show that it is impossible to do so
effectively with polynomial sample complexity even when there is no query noise. This is in contrast to the
positive result by Zhu et al.[(2023) which implies that we can efficiently learn linear utility functions when
the smallest eigenvalue of the covariance matrix of the input distribution is bounded from below. A strong
modeling assumption is thus necessary for learning in this sense.

While the “passive” setting is conventional in learning theory, the practice of reward model learning, partic-
ularly in the context of RLHF, allows one to carefully select the outcome pairs for which human preferences
are queried (for example, we can curate both the prompts, and alternative responses to these, before sending
the queries for annotation). We study this systematically by considering an active learning problem whereby
we can select arbitrary pairs of inputs to query interactively in order to learn the parameters of a linear utility
function. Our main results are that in the active learning model we can efficiently estimate parameters of
the linear utility model, whether or not query responses are corrupted by noise. Our results thus suggest
that conventional reward model learning approaches that construct the queries first, and subsequently have
these annotated with pairwise comparison preferences, may yield potentially misleading estimates. In con-
trast, dynamically generating queries (such as prompts and pairs of responses) in a way that is designed to
facilitate effective learning can lead to more reliable reward model estimation.

2 PRELIMINARIES

Our goal is to learn utility functions from pairwise comparison queries. To this end, we consider the hy-
pothesis class U of weight-normalized monotone linear utility functions u(z) = @’ ¢(x) with (learnable)
parameters , where ¢(z) : RY — X = [0,1]™ is a fixed and known feature function of candidate profiles
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and R? is the original space of candidates (defined by associated feature vectors ). More specifically, we
consider utility functions with @ > 0 and ||@||; = 1, which has been the common assumption in RLHF|Zhu
et al.| (2023). When the embedding is not needed, we just take ¢(x) = . In many cases such as LLMs, ¢ is
derived from a pretrained model with the last layer removed.

In the passive learning setting, we assume that we obtain a dataset D = {(xz, x%,y;) Y, which contains
labels y; € {0,1} associated with responses to pairwise comparison queries (z;, ;) that are interpreted
as preferences. In particular, y; = 1 if a is preferred to x; (which we denote by z > x;), and y; = 0
otherwise. We assume that input pairs (x, a:’ ) € D are generated i.i.d. according to an unknown distribution
P over RY. This, in turn, induces a distribution P4 over embedded pairs (¢(z), p(z")).

We assume that the label y is generated according to the commonly used random utility model
(RUM) (Noothigattu et al.,|2020). Specifically, if u(x) is the true utility function, query responses follow a
random utility model @(z) = u(z) + ¢, where ¢ is an independent random variable distributed according to
a fixed probability distribution Q. Define Z; (z, 2') = sign(a(z’) — @(z)), where sign(z) = 1if z > 0, 0if
z < 0, and a random variable being 0 or 1 with equal probability 0.5 if z = 0. Then y = Zg(z,2") € {0,1}.

We further define the difference between a pair (¢(z), ¢(x')) as Ay(z,2') = (¢(2') — ¢(z)) € [-1,1]™.
Since @(z) —i(z) = W Ag(z, 2') +C(p(x')) — {(B(x)), it will be most useful to consider ¢ = {(¢(z”)) —
(¢(x)) for a pair of feature vectors (¢(z), d(z')), so that Z;(x,2') = sign(w® Ag(z,z') + ¢). Let Q
be the distribution over ¢ induced by Q, and let F(¢) be its c.d.f.. Then the probability that y = 1 for
a pair (¢(x),¢(a’)), that is, the probability that 2’ = z, is Pr(2’ = z) = Pr(¢ < W Ay(z,2')) =
F(@TAy(z,2")).

Remark 1. Observe that for all (z,z'), Pr(z' > z) + Pr(z = 2') = 1, ie, F(@TAy(z,2")) +
F(—wTAy(z,2")) = 1. Hence F(z) + F(—xz) = 1 and F(0) = 1/2. These two conditions will be
used for further analysis.

Note that our random utility model is quite general. For example, the two most widely-used models are both
special cases: the Bradley-Terry (BT) model (Bradley & Terryl, [{1952)) corresponds to a logistic F', and the
Thurstone-Mosteller (TM) model (Thurstonel|1927) corresponds to a Gaussian F'. Additionally, we consider
an important special case in which there is no noise, i.e., ¢ = 0. In this case, Pr(z’ > z) € {0,0.5,1}
depending on whether W A 4(z, 2') is negative, zero, or positive.

Broadly speaking, the goal of learning utility functions from D is to effectively capture the true utility
u(z). In the setting where data provides only information about pairwise preferences, there are a number of
reasonable learnability goals. Here, we consider two.

Our first goal is motivated by a general consideration that a common role of a utility function is to induce a
ranking over alternatives, used in downstream tasks, such as reinforcement learning, recommendations, and
so on. Thus, a corresponding aim of learning a utility function is to approximate its ranking over a finite
subset of alternatives, so that the learned function is a useful proxy in downstream tasks. Here, we consider
the simplest variant of this, which is to learn a linear function % : X — [0, 1] from D with the property that it
yields the same outcomes from pairwise comparisons as u(x). Formally, we capture this using the following
error function:

e1(t,u) = . E)rNP (Za(z,2') # Zy(x,2")) . )]

We refer to this goal as minimizing the error of predicted pairwise preferences. Note that this error function
has an important difference from conventional learning goals in similar settings: we wish to predict pairwise
comparisons with respect to the true utility u, rather than the noise-perturbed utility . This is a consequential
difference, as it effectively constitutes a distributional shift when pairwise preference responses are noisy.
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Our second goal is to accurately capture the weights of . Formally, we define it as
ea (it u) = ||& — a* )

where p > 1 and W, W™ are vectors denoting the weights of functions @, u respectively. Henceforth, we focus
on Euclidean norm ¢5. Our results generalize to any p > 1: counterexamples in the impossibility results still
work, and the positive results hold by norm equivalence in R”. Moreover, focusing on ¢5 norm facilitates a
direct comparison to|Zhu et al.|(2023), who use a weighted 2-norm ||z||x = v/ 22z that is most comparable
with respected to the /5. We refer to this model as the utility estimation error.

Our learnability discussion will be based on an adaptation of the Probably Approximately Correct (PAC)
Learning framework (Valiant, [1984), with the goal of identifying a utility model # that has error at most €
with probability at least 1 — ¢ fore > 0 and § > 0. We now formalize this as PAC learnability from pairwise
comparisons (PAC-PC). Let N be the space of natural numbers.

Definition 1 (PAC-PC learnability). Given a noise distribution Q, a utility class U is PAC learnable from
pairwise comparisons (PAC-PC learnable) for error function e(, u) if there is a learning algorithm A and a
functionn 4 : [0,1]2 — N such that for any input distribution P, and Ve, § € [0, 1], whenever n > n (e, d),
A({(zi, 2}, i) Yioy) with (x4, x}) ~ P iid. and y; = sign(u(x}) — u(z;) + §;) for ¢ ~ Q i.i.d. returns
such that e(t,u) < € with probability at least 1 — 0. Moreover, if n 4 is polynomial in 1/e,1/§, Dim(U),
where Dim(U) denotes the VC-dimension of U, then we say U is efficiently PAC-PC learnable.

We stated this definition quite generally, but our focus here is on the class ¢/ of linear functions, in which
case Dim(U/) = m.

3 PASSIVE LEARNING

We begin with the learning setting described as above. We refer to this as the passive learning setting to
distinguish it from active learning that we consider later. For convenience, we define the distributions over
(¢(z), ¢(x")) as Py and that over Ag(z, ") as Pa,, both induced by the input distribution 7 where pairs
(z,2') in the training data are generated i.i.d. from.

3.1 PREDICTING PAIRWISE PREFERENCES

We begin by considering the error function ey, that is, where the goal is to predict outcomes of pairwise
comparisons. In the noise-free setting, we can immediately obtain the following result as a direct corollary
of learnability of halfspaces.

Theorem 1. Suppose ¢ = 0. Excluding the input distribution where each pair satisfies that ¢(x) — ¢(z') =
0, the linear utility functions are efficiently PAC-PC learnable under the error function e;.

Proof. Since y = sign(ﬁ*TA¢(x, 2')), PAC-PC learning under e; and P is equivalent to PAC learnability
of halfspaces «w* under Pa,. As shown by Blumer et al. (1989), halfspaces are learnable with sample

complexity O((m + log(5))). O

We have excluded the special case where A, (x, ) = 0 holds across the dataset D because in the traditional
learning literature, halfspaces are defined by a different sign function sign(z) = 1 if > 0 and sign(z) = 0
if x < 0. For our setting, it would be impossible to learn to predict over entirely indistinguishable pairs
whereas this problem is typically omitted for halfspace learning.

With the connection between learnability in the sense of e; and learning of halfspaces in mind, we now
consider the case in which pairwise preference responses are corrupted by noise. We next show that for a
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broad class of noise distributions, adding noise to pairwise preferences makes learning in the PAC-PC sense
impossible.

For the next impossibility result, as well as the discussion that follows, it will be useful to define the chance
of getting a misreported comparison label for A, (z, z") as n(Ag(x, 2’)). Suppose the true label is © > 2/,
then @*" Ay(z,z') < 0and n(Ay(z,a')) = Prle’ = z] = F(0* Ay(x, ') = F(—|d* Ay(z,z')])).
Similarly, if the true label is ' = z, then 1B*TA¢(JC,I’) > 0 and n(Ay(z,2")) = Prjz = 2] =
F(fu_i*TAgb(x,x’)) = F(f\w'*TA(i,(a:,x')\)). Hence, 77(A¢(Tx,x’)) is bounded above by 1 as the c.d.f.
F is monotonically increasing and is equal to § at 0, and —|w* Ay (z, z')| is always non-positive.

Theorem 2. [f the preference noise distribution Q has a c.d.f. F' continuous at zero, U is not efficiently
PAC-PC learnable under error function ey.

Proof. Suppose F is continuous at 0: for any ¢ > 0, there exists s > 0 such that for all |[v — 0] < s,
|F(v) — F(0)| = |F(v) — 4| < t. Now for a fixed & < 1, define ¢ty = 1/exp(1/c). Then there exists a
corresponding so such that for all @ with the margin |&7 Ay (z, 2')| < so, [n(Ag(z, 7)) — | < to. Now
consider the input distribution that puts all its weight on one pair (z,2’) that satisfies |@*7 Ay (z,2")| < so.
Then we will witness the false label as a Bernoulli variable. With fixed probability p > % — tp we obtain
the false label, and with probability 1 — p < % + to we obtain the true label. Recall that an optimal method
to determine the true label is to query n times and pick the majority label. (This event attains the TV
distance between the given distribution and any distribution with the false label.) By Slud’s inequality on
Binomial distributions (Slud, |1977)), the probability of witnessing the false labels for a majority of trials
is bounded below by Pr[>"" | I{false label} > 2] > 1(1 — /1 — exp(—n(1 — 2p)2/(1 — (1 — 2p)?))).
Suppose n is in o(1/(1 — 2p)?), then Pr[}_7 , I{false label > Z}] will be o(1), i.e., below any positive

constant, since for any fixed p € (0, 3), (1 — /1 —exp(—1/(1 — (1 — 2p)?))) is a positive constant.

Therefore, in order to establish confidence with arbitrary magnitude, the sample complexity needs to be

Q(1/(1 = 2p)*) = Q(1/(p — 1/2)*). As 0 < 1/2 = p < to, ;477 = = Consequently, the sample
0

complexity is in Q(%) = Q(exp(1)?), exponential in 1. O

Notably, all common models of noisy preference responses, such as Bradley-Terry and Thurstone-Mosteller,
entail continuity of F' at 0, so this result yields impossibility of learning linear utilities for these standard
RUM settings. The consequence of Theorem [2] is that to achieve any general positive results we must
constrain both the distribution over inputs, and the noise to some degree.

We now show that we can leverage Tsybakov noise and a “well-behavedness” condition on distributions to
attain sufficient conditions for efficient learnability.

Definition 2 (Tsybakov Noise Condition). (Tsybakov| [2004) Let C' be a concept class of Boolean-valued
functions over X = R® F be a family of distributions on X, 0 < € < 1 be the error parameter, and
0 < a <1, A > 0 be parameters of the noise model. Let f be an unknown target function in C. A
Tsybakov example oracle, EXTY*(f, F'), works as follows: Each time EXTV*(f, F) is invoked, it returns
a labeled example (x,y), such that: (a) x ~ Dy, where D, is a fixed distribution in F, and (b) y = f(x)
with probability 1 — n(x) and y = 1 — f(x) with probability n(x). Here n(x) is an unknown function that
satisfies the Tsybakov noise condition with parameters (c, A). That is, for any 0 < t < %, n(x) satisfies the
condition Pry.p, [n(z) > % —t] < AtT-a,

Definition 3 (Well-Behaved Distributions). (Diakonikolas et al.| |2021) For L, R, U > 0, k € Z,, and
B > 1, a distribution D, on R is called (k, L, R, U, 3)-well-behaved if (i) for any t > 0 and unit vector
W € R, we have that Pr,p,[|{(w,z)| > t] < exp(1 — t/f3) (subexponential concentration) and for any
projection (D), of D, on a k-dimensional subspace V' of RY, the corresponding p.d.f. v on'V satisfies
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the following properties: (ii) vy (x) > L, for all z € V with ||z||2 < R (anti-anti-concentration), and (iii)
vv(z) < U for all x € V (anti-concentration).

Although the definition may appear challenging to understand, we believe Tsybakov noise is ideal for mod-
eling human judgments. This family of noise processes is analytically tractable and allows noise rates to
vary based on the distance from the decision boundary in any latent space. It imposes only a bound on the
density of points with a given noise rate, rather than on their actual geometry, and approaches pure noise
only at the boundary. As the only standard model with these properties, it is particularly suited for situations
where there is no strong preference between alternatives that are essentially equivalent in terms of utilities.
Moreover, it has also been adopted by a different branch of learning from pairwise comparison such as Xu
et al.[|(2017).

And the intuition behind this seemingly convoluted definition strikes a balance between avoiding excessive
concentration (as having all the mass on one extremely similar pair would render the data uninformative)
and insufficient concentration (ensuring that we can still derive meaningful insights from the observations).
Indeed, |[Diakonikolas et al.| (2021 have demonstrated how to learn halfspaces efficiently in the presence of
Tsybakov noise, under the following well-behavedness condition:

Theorem 3 (Learning Tsybakov Halfspaces under Well-Behaved Distributions). (Diakonikolas et al.||2021|
Theorem 5.1) Let D,, be a (3, L, R, U, 8)-well-behaved isotropic distribution on R® x {41} that satisfies
the («, A)-Tsybakov noise condition with respect to an unknown halfspace f(x) = sign({w, z)). There
exists an algorithm that draws N = 54(%)0(1/0‘)109(1/5) samples from D,, runs in poly(N,d) time,
and computes a vector W such that, with probability 1 — 6, we have Pr,.p [h(z) # f(x)] <e.

By leveraging the condition on the input distribution as well as a mild assumption on the noise distribution,
we can establish the conditions of the Tsybakov model hold. This leads to the following positive result,
where poly(-) means polynomial in the argument:

Theorem 4. Suppose that Py is a (3, L, R, U, B)-well-behaved isotropic distribution, and the noise c.d.f.
F~1(¢) < poly(C) on (0, 3. Then the linear utility class U is efficiently PAC-PC learnable.

Due to the length of the proof, it is deferred to Appendix A, accompanied by our demonstration that
the standard models of noise in RUM settings—Bradley-Terry (Bradley & Terryl [1952) and Thurstone-
Mosteller (Thurstonel |1927)—both satisfy the condition on the noise distribution in TheoremE}

3.2 ESTIMATING UTILITY PARAMETERS

Next, we tackle the more challenging learning goal represented by the error function es, that is, where
our goal is to learn to effectively estimate the parameters « of the true linear utility model in the £, sense
(focusing on #5 here for clarity of exposition).

We begin with the known positive result. Specifically, [Zhu et al.| (2023) showed that maximum like-
lihood estimation (MLE) with the common BT noise model achieves efficient utility estimation in the
following sense. With probability at least 1 — J, the MLE parameter estimator w for the loss {p =
—L5 Jlog (1(y* =1) - Pr(2’ = z) + 1(y* = 0) - Pr(x > 2’)) from n samples has a bounded error mea-
sured in a seminorm with respectto X = L 3" (¢(x;) — d(});) (d(2;) — (). With C being constant,

3

We are able to extend their positive result to a larger set of RUMs. The proof is deferred to the Appendix B
due to the similarity of the approaches.
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Theorem 5. [f there exists 7y > 0 such that the noise c.d.f. F(z) satisfies F'(2)*> — F"(z) - F(z) > ~ for all
z, then with probability 1 — 0§, the MLE estimator W satisfies inequality .

Consequently, as long as >’s smallest eigenvalue is bounded from below (which excludes the case where
¢(z), d(z’) are consistently close, as ¥ tends to 0 the bound becomes vacuous), sample complexity with
respect to e will also be quadratic. Formally, suppose that the smallest eigenvalue A,,,;,, > C2 > 0. Then,

o, Cy,n 5,
16—l = [ 92— 07— )
2

1 - A
< . "_"*TE o a7k
<\ g - @S - )
<. m + log(1/4)
n

for a constant C.

However, the above condition F’(z)? — F"(z) - F(z) > # is both hard to interpret and hard to satisfy
(Thurstone-Mosteller fails this condition for instance). Now we show that without any structural noise
assumption, learning to estimate linear utility parameters in the {5 norm is impossible, even when we have
no noise at all:

Theorem 6. If there is no noise, the class of linear utility functions U is not PAC-PC learnable with respect
fo ey, i.e. there is a probability distribution P over (x,z'), that no learning algorithm can achieve e5 < €
with probability at least 1 — 6, for any 0 < £, < 1 under a finite set of samples.

Proof. Consider an oracle that only provides pairs (z, ) satisfying ¢(z')? > ¢(z)* on each dimension
7. Then since all W > 0, J*TA¢(x7 x’) > 0 for every input pair (x,’); in other words, the labels are
uninformative because we can also infer the sign of w’ *TA¢ (z, 2") being positive and any algorithm produces
the same distribution on guesses @ for all 1. For § < %, we can consider w0, w' € U with distance equal to
\/2. This is achievable because U/ contains segments of length v/2 defined by {w’ + w’ = 1,0 < w',w’ <
1} for any distinct pair of 4,5 € {1,...,m} and we know m > 2 for otherwise there is no need to learn.
But the algorithm cannot output @ with eg < (%)2 = % for both @ and w’ simultaneously, and hence its
output must obtain ez > 1 with probability > 1 for one of these. O

The reason behind this contrast between the positive and negative results lies precisely in the assumption
of the noise model. Unlike a common misconception that noise always makes learning more challenging,
a highly structured model assumption like BT actually provides more information to each query — from a
pair where Ay (x,z') > 0, if we know F, and we can estimate the probability of its label being ' > z as
Pr(a’ = x), since Pr(2’ = x) = F(@W*T Ay (x,2')), we obtain information about «* immediately.

To illustrate a necessary and sufficient results for passive learning in the noise-free or noise-agnostic setting,
let us switch to a geometric perspective. It is helpful to recall the learning theoretic concept of the version
space. A version space consists of all “surviving” hypotheses that are consistent with the labeled examples
observed so far. In our case, our version space denoted as WV will be initialised the same as /. Now as
each datapoint comes along, the label y gives us an (inaccurate) sign of w*TA¢(x, 2'), indicating whether
the vector «w* that we are searching for is above, on, or below the hyperplane defined by its normal vector
Ag(z). Then the version space can update accordingly. For example, when m = 3, the initial version space
(hypothesis class) is depicted as the triangle {w* + w? + w3 —1 =00 < w',w?, w3 < 1} in Figure 1,
with the true parameter labeled as w*. Then suppose we receive a noiseless datapoint labeled with y < 0,
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Figure 1: From the label we know w* is below the hyperplane of Ay (z, z').

we can infer w* is below the segment AB drawn as in Figure 1 since that is the space Ay(z, «') is normal
to.

Thus, we require that the incoming datapoints shrink the version space into a e-radius ball centred at w*. The
difficulty with respect to es is exactly that we don’t have any control over the incoming datapoints. Hence
we will see in the following section that active learning is much more advantageous.

4  ACTIVE LEARNING

Thus far, we have noted that passive learning is typically quite challenging, especially when responses to
pairwise comparison queries are noisy and there is no precise noise model assumption. This has led to
more recent investigations into active learning in RLHF (Liu et al. |2024; |Guo et al) 2024; Das et al.|
2024; Muldrew et al., 2024). While these models are motivated by the practice of large language models
(LLMs), they do not generalize to all random utility models (RUMs). In this section, we demonstrate that
the active learning approach in this setting differs qualitatively from passive learning, yielding stronger and
more efficient learnability results.

Our investigation falls under the umbrella of an interactive approach, which is considered a more efficient
framework than pool and stream-based sampling techniques (Ling & Dul [2008}; |Alabdulmohsin et al., 2015;
Wang & Singh, 2016} |Chen et al., 2017). A common argument against query synthesis methods is that the
artificial queries we thereby generate are uninterpretable. However, there is evidence that generating highly
informative artificial training instances for tasks like text classification is feasible (Schumann & Rehbein)
2019; |Piedboeuf & Langlais| 2022)). Although more empirical tricks may need to be developed to apply
active learning approaches practically, these can in general save considerable annotation labor. We structure
our investigation in the same way as the passive learning case, considering first the problem of learning to
predict responses to pairwise preference queries (the e; error model), and subsequently dealing with the
more challenging problem of estimating utility parameters.

4.1 PREDICTING PAIRWISE PREFERENCES

Just as in the passing learning setting, the positive results for active learning of linear utilities from pairwise
comparisons in the e; sense follow directly from known results for learning halfspaces. In the noise-free
case, Alabdulmohsin et al. (2015)) and|Chen et al.| (2017) provide efficient learning algorithms through query
synthesis. [Zhang & Li|(2021)), in turn, address the setting with Tsybakov noise. Consequently, we focus on
the more challenging problem of estimating utility parameters in the active learning setting. We tackle this
problem next.
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4.2 ESTIMATING UTILITY PARAMETERS

Continuing from our discussion in Section the goal in active learning is to ensure that in each step we
query the most informative comparison pair inside the current version space in order to reduce the size of the
version space as fast as possible. We first establish an efficient algorithm for this in the noise-free setting, and
subsequently in the case with query noise. Here, a key challenge is the ability to invert the embedding ¢(x).
Since our focus is on query or sample complexity, our results hold whether or not computing an inverse
of ¢ (or, equivalently, a zero of ¢(x) — v for a given v) is efficient (note that we do not need uniqueness);
however, this does, of course, impact computational complexity of the algorithms. In special cases, such as if
¢(x) = x, orif ¢(x) is affine (where an inverse can be computed using linear programming), computational
complexity is polynomial as well, and more generally, we can in practice use gradient-based methods (such
as Newton’s method) to approximately find a zero of ¢(x) — v.

Specifically, we aim to enclose the true weight w* within a m — 1 dimensional hypercube with side length

\/%, such that the longest possible distance between the hypercube’s center and any point in the cube is
the half diagonal ¥2=1 . _2¢_ — ¢ Then, by picking the center of the cube, we can ensure the error is

2 vVm—1
bounded as e; < e. Thus, our algorithm runs like a binary search on each of the m — 1 dimensions. In order

to shrink the length of the searching space in each dimension, we recursively select the query (z,z’) with
difference Ay(x, 2") being (approximately) the normal vector of the hyperplane halving the original space
along that dimension. If there is no noise, our algorithm can bound the estimation error with probability 1.
If noise exists, we make each query more times, and take the majority vote as the true comparison label.

Pseudocodes of the algorithms are deferred to Appendix [C]and [D} where we also prove their sample effi-
ciency.

Theorem 7. Suppose ¢ = 0 and we can approximate the inverse of ¢ with g?fl up to arbitrary precision,

ie. ||p(¢~ (x)) — #||os < cfor any constant c. Then for any ¢, there is an active learning algorithm that
NG
e
Theorem 8. For a fixed Q with corresponding c.d.f. F, suppose we can approximate the inverse of ¢ with
1 up to arbitrary precision, i.e. ||¢p(¢~(z)) — z||oo < c for any constant c, then there exists an active
learning algorithm that outputs 1 with e (4, ) < € with probability at least 1 — 0 after O(m log())

queries where py = F(\/n%) > 1/2.

returns a linear hypothesis G with es (G, u) < € after asking the oracle O(mlog(*==)) queries.

The efficiency result in Theorem thus depends on the noise c.d.f. F/(z). In the case of the logistic noise
model based on the Bradley-Terry distribution, this leads to a better sample complexity than the passive
learning model of Zhu et al. (inequality (3)). The derivation is provided in Appendix [D] along with a
simple numerical illustration(2)) showcasing the sample complexity gap between passive and active learning
approaches.

5 RELATED WORK

Learning Utility Models from Pairwise Comparisons: The fundamental framework that we build on is
random utility model learning, in which utility information is provided indirectly through ranking (e.g., pair-
wise) comparisons (Marschakl, |1974;|Bradley & Terryl|1952; Xial |2019). Previously, “learning to rank” (Liu
et al., 2009) has been extensively explored for the application of information retrieval. These algorithms can
be grouped into three approaches: pointwise, pairwise, listwise. Our first learning goal is most similar to
their pairwise learning goal, as it involves producing pairwise comparisons of candidates, and our second
learning goal aligns with their pointwise learning goal, as it involves estimating the utility (or relevance de-
gree in the information retrieval’s context) of a single point. However, their learning inputs are usually not
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pairwise comparisons. On the other hand, there is a branch of work on learning with pairwise comparisons
(Xu et al.; [2017; Zeng & Shen| [2022)). Unlike our setting, they typically assume comparison data as addi-
tional information rather than the single data source. The limited work in the same setting all focuses on
a finite set of alternatives (Bong & Rinaldo, [2022; [Li & Zhang| [2023} Shah et al., [2015; Negahban et al.|
2018; Jamieson & Nowakl |2011). Even though we can recast our model into the one studied in these paper
as sparse ~one-hot” features, they do not face the generalization challenge we address.

Reinforcement Learning from Human Feedback Unlike the traditional social choice community’s set-up,
the recent practice of RLHF concerns itself with the generalization problem. However, their attention has
largely been limited to the Bradley-Terry model, which is just a special case within our broader consideration.
Indeed, in the passive learning set-up, the specific model has been considered by Zhu et al.| (2023)). As for
active learning, few empirical studies have demonstrated the advantage of online human feedback (Muldrew
et al [2024; |Guo et al.| 2024). However, our work remains the first theoretical treatment of the subject. In
particular, we unify the framework of computational social choice with the RLHF practice.

PAC Learning of Halfspaces With Noise: Common models of noise in random utility models have the
property that the closer the pair’s difference is to the halfspace defined by the linear utility function, the
higher the chance that this comparison is flipped. This kind of noise has been previously studied as boundary-
consistent noise in (Du & Cai, 2015} [Zhang et al.| |2021; Zhang & L1, 2021)). The possibility of an arbitrarily
small difference between noise and % makes learning very challenging, even for learning halfspaces (Balcan
& Haghtalab, 2020). Consequently, proposals for tractable learning often rely on assumptions regarding
distributions of noise. The spectrum of such noise models starts from the easiest version called random
classification noise (RCN) (Angluin & Laird, [1988)) to the other end of malicious noise (Kearns & Li, |1988)
and agnostic learning (Kearns et al., [1992; Klivans & Kothari, [2014; Danielyl 2016; [Diakonikolas et al.}
2020). Additionally, active learning has been proposed as a solution to reduce the number of samples
the learner needs to query before approximately learning the concept class with high probability. While
active learning requires exponentially fewer labeled samples than PAC-learning for simple classes such as
thresholds in one dimension, it fails in general to provide asymptotic improvement for broad classes such as
halfspaces (Dasguptal, 2005).

Robust Parameter Estimation: Learning a linear classifier has also been a classical problem beyond learn-
ing theory, with empirical risk minimisation the most popular paradigm (Vapnik, |1991), with a range of tools
including Bayes classifiers, perceptron learning, and support vector machines (SVM). Most directly related
is the connection between robustness (to input noise) and regularization in SVM (Xu et al.,|2009). However,
this robustness is with respect to input noise, whereas our consideration is noise in pairwise comparison
responses (outputs).

6 CONCLUSION AND LIMITATIONS

We presented a theoretical investigation into the learnability of linear utility functions from pairwise compar-
ison queries. Our results consider both the passive and active learning problems, as well as two objectives:
the first involving prediction and the second concerned with estimation. Overall, we find that estimation is
generally more challenging than prediction, and active learning enables qualitatively better sample complex-
ity in this case. There are several directions to extend our work. For example, one could aim to generalize
our results to list-wise comparisons as described in|Zhao & Xia|(2019). Specific to active learning, especially
related to LLM and RLHF, we acknowledge the challenges of query synthesis and the issue of inverting the
embedding ¢(x). We believe that both theoretical and empirical follow-up work are crucial in Al alignment,
with active learning being a particularly important area of focus.

10
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APPENDIX

A  PROOF OF THEOREM /4]

Proof. Since Py is (3, L, R, U, B)-well-behaved over (¢(z), ¢(z')), we consider a special 3-dimensional

subspace V' with its basis being v} = (W*, W*), us = (03,03),us = (U3, 03), where v3,03 are two orthonor-

mal vectors lying on the hyperplane defined by our utility parameter «w*. Since u";'*Tv‘é = u";'*TU‘;Z, =0l =
0, these three vectors are linearly independent and form a basis.

13


https://arxiv.org/abs/2102.05312

Under review as a conference paper at ICLR 2025

Recall that for any point (z) = (¢(x),p(z’)) viewed as in the product space X2, its projected co-
ordinates in V is calculated as 7(z)y = (i T7T(gc))|‘ul‘| + (u3 ﬂ(m))ﬁ + (u‘;’),Tw(x))HZf;H

(i (), un (@), ust w(x)).
First, by the subexponential concentration property, for any fixed & > 0, Prr(z)~p, (|u’§T7r(sc)| > h) <

exp(1 ~ h/B), and Prre)p, (1" (@) = h) < exp(1 ~ h/B). So with probability at most 2 exp(1 -
h/ ), the second or the third coordinate of the projection is not within [—h, h].

Next, by the anti-concentration property, the p.d.f. of the projection 7(x)y is bounded by a constant
~v(m(x)) < U. Hence the total probability of the projection m(x)y’s first coordinate between [—h, h] is
Proayep, (\unA¢(a;,x')| < h) < [h ot Udtydtadts +2 exp(1—h/B) = SUR? +exp(1—h/B).
Since for any ¢(z) < 1, exp(¢p(z)) < 1+ ¢(x) + ¢(z)?, and 1 — h/B < 1, exp(l — h/B) <
1+ (1= h/B)+ (1= h/B)* So Pry~p, (|uETA¢(x,x’)| < h) < p1(h) has a degree-3 polyno-
mial upper bound.

Now, consider a 1 — D projection of this subspace through Proj(¢(z), ¢(z')) = ¢(z') — ¢(z). We get
Proj(V) = {(&*" Ag(x,2), 5" Ag(x,2), 7" Ag(x,2'))}. Due to the triangle and Cauchy-Schwartz in-
equality, [i7* Ay(z,2')| = [0 ¢(z') — @ ¢(z)| < [0* ¢(2')| + | ¢(z)| < 20y n(z)|. Hence,

the probability of the first coordinate of P(V), i.e. the margin u7*TA¢(x, ') being between [—v/2h, v/2h]
has a polynomial upper bound:

Pr <|w Ay(z,2")] < fh) < 1)3r (|u3Tﬂ(x)| > h) < p1(h).

Ag(m,a')~Py w(x)~Pgy

Because Pra, (z,01)~p;, (n(Ag(z,2") > 5 —t) = Pra, (e ~P, <|w Ag(z,2')| < F7(5 —t)), as
long as F‘l(l — t) has a polynomial upper bound ps(t), we could establish another polynomial upper

Fl(3-t) p2(t)
bound Pra, o)y (107 Ao(e, )| < F7HE =) < pr(*=5=) < pi(22) € poly(2).

In other words, we could bound Pra,z,2/)~7, (\M*TA,;g(x, )| < F7Y(3 - t)) < AtT-% by taking the

leading coefficient of p; (22 \2/@) being A, and % being the degree of p;(p2(t)) + 1. Our noise model

satisfies the (o, A)—Tsybakov noise condition, and the algorithm in|Diakonikolas et al.[(2021) applies. [
Proposition 9. The inverse of the c.d.f. for the Bradley-Terry model satisfies F~ (z) < poly(x) on (0, 3.

Proof. The inverse of the standard logistic function F'(x) = is the logit function F~1(x) =

1
1+exp(—x)
logit(z) = In(7%; ). Because the derivative of the logit function — 1m2 is monotonically decreasmg from oo

to 4 on (0, 2], the logit function is concave. Hence, it is bounded above by its gradient at x = 5, which is

4z — 2. We have found a polynomial upper bound for F~*(z) < 4z — 2 for z € (0, 3]. O
Proposition 10. The inverse of the c.d.f. for the Thurstone-Mosteller model satisfies F~'(z) < poly(z) on
(0.3)

Proof. The inverse of the standard Gaussian c.d.f function F(z) = 2(1 + erf(%)) is F~1(x) =

V/2erf ™ (22 — 1), where erf is the error function. As the derivative of this function is v/27 exp(erf ! (2z —

14
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1)2), which is monotonically decreasing on (0, %], the function is concave and bounded above by the gradi-
entatz = 3, whichis 27 (2 — ). Hence F~!(z) = V2erf (22 — 1) < V27 (z — L forz e (0,3]. O

B PROOF OF THEOREM 3]

Proof. Recall that Pr(z’ > x) = F(U_J'*TA(z,(x,x')) =1- F(—zZi*TA¢(x,x’)) =1—Pr(x = 2’). First,
we show the strong convexity of the loss function

(W) = — %Zlog (1(y" =1)-Pr(2’ = z) + 1(y* = 0) - Pr(a’ < z))
i=1

= 23 oy (1 = 1) FQ Ag(w, ') + 10 = 0) - F(—a" Ay (,27)

Its gradient and Hessian are

. 1| i F' (6T Ay(z, 2’ i F'(—wTAg(x, o’ ,
V(W) = — n ; (l(y =1)- F((fLUTA(ZS((x,x’)))) +1(y" =0) - F((—QETAj((%CC’)))))] Ay(z,2")
o IO FT Ay a))? — F (T Ay (7)) - F(T Ay (x, 7))
Vile) =, ;“(y =u ) F(wTAgf,(af, 2/))? ¢
/ wT T 1,/ 2 _ _wT x 1,/ . _wT T I/

F(—wTAy(z,2"))?

By assumption, we have F’(2)? — F”(z) - F(z) >~ > 0. Then we can derive strong convexity of £:

oTV20(w)v > L||Xv||2 forall v,
n
where X has Ay(z;) as its i-th row, yielding

% - Sy D o Y - N
(@) = 6(") = (VU@ 0 = @) > || X (@ —07)|[3 = || — 0[5

Since i is the optimal for £,
() — 0(") — (V) 0 — 0*) < —(VO(E"), & — ).
Then as R -
[(VE(w™), & — a*)| < [[VU@)||(gqxny -1 [[0 — @[ 4a1,
we now would like to bound the term ||V £(0*)|| (s ar)-1-
Note the gradient V/(w*) can be viewed as a random vector V' € R™ with independent component:

F@ Ay (@) PO A (.
v Py R ET Aale)

F' (& Ag(z,a") T NS
P T oy P F(—w* Ag(xy))
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We know that F(wT Ay(x;)) + F(—w? Ap(z;)) = Pr(z’ = z) + Pr(z = 2/) = 1, taking the
derivative of this equation, we can conclude that the expected value is zero E[V] = F'(@7 Ay(x;)) +
F'(—tT Ay(x,2')) = 0.

F (T Ay (1))

And because F is the c.d.f., and F’ is the p.d.f, by definition F’(z) < F(z), and FETA ) < 1,

F(—dT Ay (x,2"))

FoaTag@y) < L

Hence all the variables V; are 1-sub-Gaussian, and the Bernstein’s inequality in quadratic form applies (see
e.g. Hsu et al.| (2012) (Theorem 2.1)) implies that with probability at least 1 — 4,

. d+log(1/d
||V e(w )H(zz-i-)\])fl =VTMV <Cy - T(/):

where C is some universal constant and M = 5 X (S + X)) 71 X7T .

Furthermore, let the eigenvalue decomposition of X7 X be UAUT. Then we can bound the trace and oper-
ator norm of M as

1
Tr(M) =—5Tr(U(A/n+ M)TWOTUAUT) < %
1
Tr(M?) =—Tr(U(A/n+ M)TYUTUAUTYU (A /0 + M) TUTUAUT) < %
1
HMHO;D :)\maw( ) < E

This gives us,

i = | IV ry 16— 3]

d+log(1/d), = .
<o DB G

Solving the above inequality gives us,

2, Sy d+log(1/6
& — @*||s; < C - #

C ALGORITHM

C.1 PROOF OF THEOREM[7]

Proof. Consider Algorithm[T} it runs binary search on each of the m — 1 d1mens1ons The goal is to shrink
the version space into a m — 1 dimensional hypercube with side length 2 //m — 1. As the longest poss1ble

\/ -1, 2e

distance between its centre and any point in the cube is the half diagonal T

the centre of the cube will suffice the bounded error e; < €.

= g, returning o as
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Algorithm 1 Noise-Free Active Learning

Input: dimension of the instance space m, error bound ¢
Output: 4 with es(d,u) < e

1: Initialize the Cartesian coordinate system C; for R™
2: Initialise the version space W = {« € R™ | & > 0, ||W||; = 1}
3: Initialize a separate m — 1 dimensional Cartesian coordinate system Cs for W
4: hypercube < [|
5: fori=1,...,m—1do
6:  Let s be the length of the version space WV along the i-th axis of Co
7 while s > 2¢/y/m — 1do
8: Let h_£)7 hy be two m — 2-dimensional hyperplanes tangent to the top and bottom of WV along the
i-th aqxis of Cy
9: Let hy be the m — 2-dimensional hyperplane cutting through the middle of W along the i-th axis
of CQ
10: Let ¥ be the outward pointing normal vector of the m — 1-dimensional hyperplane in R" consisting
of h; and the origin of Cy
11: Define 2 = 0, and compute 2’ = ¢~ (¢(0) + v)
12: Let /2 be the m — 2 hyperplane in R™ as the intersection between )V and the m — 1 hyperplane
normal to ¢(z’) — ¢(x)
13: Ask the oracle about (z, 2")
14: if the label y = 1 then
15: bounds < {ho, h}
16: W < the half of WV between th and h
17: else Lo
18: bounds < {h, ha}
19: W < the half of W between / and h;
20: end if
21: s+ s/2

22:  end while

23:  hypercube.append(bounds)
24: end for

25: return the center of hypercube

In order to shrink the length of the version space in each dimension, we recursively select the query (x, 2")
with difference Ay (x,x’) being the normal vector of the hyperplane (approximately) halving the original
space along that dimension. Let us call the halving hyperplane ¥. Now we generate a pair with Ag(z,2’) =

B¢~ (4(0) + T)) — ¢(0). Suppose the width of the version space WV along the current axis is s. By our
presumption, we can bound the error [|¢(¢~ ! (¢(0) + 7)) — (¢(0) + 0)||oc = [|[Ag (2, 2") — T]|oc < 75

Depending on the noise-free signal, we can cut out at least % — % = % of the space. Since the original

version space has its length bounded by 1, in order to reduce it to 2 //m — 1 through binary search, we

need to repeat O(log(¥2=1)) times for each dimension. And there will be O(log(¥2=1)(m — 1)) queries
in total. D
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D ALGORITHM[Z

D.1 PSEUDOCODE FOR ALGORITHM 2]

Algorithm 2 Active Learning with Noise

Input: dimension of the instance space m, error bound
Output: ¢ with es(4,u) < e
1: Initialize the Cartesian coordinate system C; for R™

2: Initialise the version space W = {w € R™ | w > 0, ||w||; = 1}

3: Initialize a separate m — 1 dimensional Cartesian coordinate system Co for W

4: hyperplanes < |]

5: po « F(e/vV/m —1)

6: fori=1,....,m—1do

7. Let d be the length of the current version space WV along the i-th axis of Cy

8:  whiled > 2¢/v/m —1do

9: Let hg, ho be two m — 2-dimensional hyperplanes tangential to the top and bottom of W along the

i-th axis of Co

10: Let h; be the m — 2-dimensional hyperplane cutting through the middle of W along the i-th axis
of CQ

11: Let v be the outward pointing normal vector of the m — 1-dimensional hyperplane in R™ consisting
of hy and the origin of C;

12: Letz = 0,2’ = ¢~ 1(¢(0) + v), and h be the m — 2 hyperplane in R™ as the intersection between
W and the m — 1 hyperplane normal to ¢(z') — ¢(z)

13: forj=1,...,Tdo

14: Ask the oracle about (z, z")

15: Update St accordingly

16: end for

17: if |S —T/2| > T(pyp — 1/2)/2 and St > T/2 then

18: bounds < {hg, h}

19: W < the half of VW between hg and h

20: d<+d/2

21: elseif |Sp — T/2| > T(pyp — 1/2)/2 and St < T'/2 then

22: bounds < {h, ha}

23: W < the half of WV between h and hy

24: d <« dj/2

25: else

26: hyperplane < h

27: break

28: end if

29:  end while
30: if hyperplane is undefined then

31: hyperplanes.add(the hyperplane with equal distance to the bounds)
32:  else

33: hyperplanes.add(hyperplane)

34: endif

35: end for

36: return an intersection point of the whole hyperplanes
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D.2 PROOF OF THEOREM(g]

Proof. The high-level procedure of Algorithm [2]is as follows: for every query we constructed in Algorithm
[[] we repeat the query 7" times. Let us denote the sum of a query’s labels after 7" repetitions by Sp. If the

majority of the labels is ambiguous, i.e., |ST — %| < M then we know o is close enough to the
hyperplane determined by our query with high probability. Otherwise, we opt to trust the majority vote and
halve the search space until the distance between our two hyperplanes is smaller than our required length.
We finish after looping through every dimension.

Now we start calculating the upper bound of times we need to ask every turn. Without loss of generality,
we assume that the true label of the query is 1. Then the expected value E(St) > T'/2. If we have made
any query cutting through the final hypercube that we want to construct with side length \/%, the highest

[

chance of getting a true label will be pg = F( \/nﬁ) > 1/2 since its margin with respect to w* could only
be even smaller than —==

|

First, we would like to verify that if we have witnessed [Sp — 2| < M, with high probability
we have already queried a hyperplane within a small margin to w*. By Hoeffiding’s inequality, we have

Pr (\IE(ST) ~ Sy > w) < exp(—Lee=1/2%) g6 with probability at least 1 — exp(— L@o=1/2%)
[E(ST) — S7| < w. Then the triangle inequality gives us |[E(S7) — Z| = |E(St) — St + St —
LI < [E(Sr) — Sr|+ |50 — | < T(p(’;l/z) + T(p“;/z) = T(py — %) with probability at least 1 —
eXp(—M). In other words, with high probability, 2 < E(S7) < T'(po). Since E(Sr) is determined

by the distance between the query and w*, we deduce that the current query satisfies a small margin as
wanted, hence we can stop.

Next, we would like to confirm the majority is the true label with high confidence if we have witnessed
a majority vote with significance, i.e., when |St — %| > M. Recall again with our true label
being 1, E(Sy) > % The probability of witnessing a false majority is Pr (ST = % < —M) =
Pr(% - 5p > Teopt/2) < pr (E(Sp) - Sp = TE712)) < exp(— T2 since B(S7) — S >
T

5 — St.

V=1

2¢e

From Theorem (7| we know we will need O(log(
the cumulative confidence is to satisfy

)(m — 1)) accurate query labels through votes. So

OUes(E) (m=1) 5 1 _ 5

1

where ¢ is the success rate for each query on a different hyperplane. Therefore g > (1 —§) ©Ues( 5= (m=1)

_ T(po—1/2)* )
!

And for each turn we just need exp( < 1 — gq. By a simple calculation, we get the sufficient
1

number of repetitions from 7' > T = — 7555 log(1 — (1 — §) O Be)m=1)),
Our final sample complexity is O(Tym log(¥2—) = O((W log(3)))- O

Vm—1
D.3 SAMPLE COMPLEXITY FOR ACTIVE LEARNING OF BRADLEY-TERRY MODEL

Corollary 1. For the standard logistic function F(x) = the sample complexity of learning es is

1
P
polynomial in (% , log( % ), m).
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Proof. The sample complexity is O( O(W
Vm=T 5

1
Flo==)- D)% Toa(3) o +

exp(——=)?log(%)) = O(exp(—==)?log(%)). Observe that for any m > 2and 0 < ¢ < 1, == > 0,

YT vt 2 - 1 1 1 1 vl
yieldinge < 1 < exp(\/nfi_l) < exp(\/%) , implying Wlog(g) < < log(5). Therefore, the
sample complexity for logistic noise is in O(2 log(5)). O

Ccomparing this result with the passive learning result from inequality (3), whose sample complexity is
O(% log(%) + ™), our sample complexity bound is evidently better because it doesn’t have the second term

-
D.4 NUMERICAL ILLUSTRATION

In order to illustrate the sample complexity gap between passive and active learning, we conducted the
following experiment. First, we assume that the pairwise preference labels are generated according to the
Bradley-Terry model. For passive learning, we apply the robust logistic regressor directly on the dataset
with the pairs’ difference A4 (xz, 2') scatter around the orthogonals of the ground truth weight &* ; for active
learning, we implemented and ran our active learning algorithm 2] directly.

The plot demonstrates clearly that active learning could achieve better accuracy and higher confidence with
much fewer samples.
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Figure 2: Sample Complexity Comparison Between Passive and Active Learning.

20



	Introduction
	Preliminaries
	Passive Learning
	Predicting Pairwise Preferences
	Estimating Utility Parameters

	Active Learning
	Predicting Pairwise Preferences
	Estimating Utility Parameters

	Related Work
	Conclusion and Limitations
	Proof of Theorem 4
	Proof of Theorem 5
	Algorithm  1
	Proof of Theorem 7

	Algorithm 2
	Pseudocode for Algorithm 2
	Proof of Theorem 8
	Sample complexity for active learning of Bradley-Terry Model
	Numerical Illustration


