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ABSTRACT

As Large Language Models (LLMs) scale up and gain powerful Chain-of-Thoughts
(CoTs) reasoning abilities, practical resource constraints drive efforts to distill these
capabilities into more compact Smaller Language Models (SLMs). We find that
CoTs consist mainly of simple reasoning forms, with a small proportion (≈ 4.7%)
of key reasoning steps that truly impact conclusions. However, previous distillation
methods typically involve supervised fine-tuning student SLMs only on correct
CoTs data produced by teacher LLMs, resulting in students struggling to learn the
key reasoning steps, instead imitating the teacher’s reasoning forms and making
errors or omissions on these steps. To address these issues, drawing an analogy
to human learning, where analyzing mistakes according to correct solutions often
reveals the crucial steps leading to successes or failures, we propose mistakE-
Driven key reasonIng step distillaTion (EDIT), a novel method that further aids
SLMs learning key reasoning steps rather than mere simple fine-tuning. Firstly, to
expose these crucial steps in CoTs, we design specific prompts to generate dual
CoTs data with similar reasoning paths but divergent conclusions. Then, we apply
the minimum edit distance algorithm on the dual CoTs data to locate these key
steps and optimize the likelihood of these steps. Extensive experiments validate
the effectiveness of EDIT across both in-domain and out-of-domain benchmark
reasoning datasets. Further analysis shows that EDIT can generate high-quality
CoTs with more correct key reasoning steps. Notably, we also explore how different
mistake patterns affect performance and find that EDIT benefits more from logical
errors than from knowledge or mathematical calculation errors in dual CoTs1.

1 INTRODUCTION

With the rapid growth in model size and pre-training data, LLMs have demonstrated impressive CoT
reasoning performance in natural language processing (NLP) (Brown et al., 2020; Hoffmann et al.,
2022; Chowdhery et al., 2023; OpenAI, 2023b). However, due to the giant model architecture and
massive parameters (e.g. GPT-3 (Brown et al., 2020) with 175 billion parameters), the deployment of
LLMs in resource-constrained environments becomes challenging.

To address this, researchers (Xu et al., 2023; Jiang et al., 2023b) have explored distilling knowledge
from LLMs into smaller language models (SLMs) via instruction-tuning, as seen in LMs like Alpaca
(Taori et al., 2023) and Vicuna (Chiang et al., 2023). Despite progress, these distilled models often
struggle with complex causal reasoning. To enhance this capability, some studies (Magister et al.,
2023; Ho et al., 2023; Fu et al., 2023; Chen et al., 2024; Zhou & Ai, 2024) explore distilling the CoT
reasoning ability from LLMs of over 100B parameters (Wei et al., 2022a;b) by fine-tuning on CoTs
data annotated by teacher LLMs, known as standard CoTs distillation. Besides, other studies (Hsieh
et al., 2023; Li et al., 2022; Liu et al., 2023) propose distilling CoTs within a multi-task learning
framework by incorporating additional objectives. However, CoTs usually consist mainly of simple
reasoning forms, with a small proportion (≈ 4.7%2) of key reasoning steps that are pivotal moments

1Code can be found at https://anonymous.4open.science/r/eb77sh-F564
2We calculated the edit distance and its average proportion in the overall sequence on the dual CoT dataset

mentioned in our subsequent methods §3.
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On the floor, I see two magenta scrunchiephone chargers, one gold fidget spinner, three gold booklets, three
silver scrunchiephone chargers, two silver booklets, and two magenta booklets. If I remove all the magenta
items from the floor, how many scrunchiephone chargers remain on it?
Op�ons: (A) zero         (B) one         (C) two         (D) three          (E) four          (F) five          (G) six

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items from the floor, we are le- with 2 silver
scrunchiephone chargers. Therefore, the answer is (C).

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items, we are le- with only the silver scrunchiephone
chargers. Therefore, the number of scrunchiephone chargers that remain on the floor is three. Therefore, the
answer is (D).Teacher

Ques�on

Unthinking
Student

Figure 1: Examples of CoTs generated by teacher LLMs and student SLMs on our test dataset.
Simply SFT leads to an "unthinking" student who imitates the teacher’s reasoning forms but makes
errors and omissions in key reasoning steps, where the imitated contents are highlighted in red, and
the key steps are marked with boxes .

in reasoning that significantly influence subsequent thought processes and conclusions. The essence
of the above methods is the simple Supervised Fine-Tuning (SFT) paradigm, where the student
model is trained solely on the teacher’s correct reasoning data. This paradigm may result in students
struggling to learn the key reasoning steps, instead imitating the teacher’s reasoning forms
and making errors or omissions on these steps, as illustrated in Figure 1. Drawing an analogy
to human learning, where analyzing mistakes according to correct solutions often reveals the key
reasoning steps leading to successes or failures, we propose a novel mistakE-Driven key reasonIng
step distillaTion (EDIT). This approach focuses on dual CoTs data, encompassing both positive
and negative examples of teachers’ reasoning. By examining dual CoTs, students can identify and
learn from the crucial reasoning steps, thereby improving their CoTs. Specifically, we first retain
all CoTs data annotated by the teacher, irrespective of correctness. Subsequently, we design two
comprehensive prompts to instruct teachers to produce dual CoTs that share similar intermediate
reasoning steps but lead to divergent conclusions. Finally, we utilize the minimum edit distance
algorithm to locate key reasoning steps in dual CoTs, as shown in Figure 3, and then utilize a
fine-grained loss function to optimize the likelihood of these steps.

Extensive experiments show that the student models distilled by EDIT exhibits higher performance
and generalization than the baselines on both in-domain (IND) and out-of-domain (OOD) benchmark
reasoning datasets. Further analyses indicate that EDIT can generate higher-quality CoTs with more
correct key reasoning steps by auto evaluation and case studies. Notably, we also show EDIT can
benefit more from logical mistake patterns than knowledge or mathematical calculation errors in dual
CoTs, potentially paving the way for future research on the efficient use of mistakes.

Our contributions can be summarized as follows:

1. We reveal a shortfall in the previous distillation methods, where the simple SFT paradigm may
result in students mimicking the teacher’s reasoning forms but making errors or omissions in
key reasoning steps, thus diminishing the versatility of CoTs.

2. We propose mistake-driven key reasoning step distillation, which allows students to learn key
reasoning steps from our specifically designed dual CoTs data, further improving reasoning.

3. Extensive experiments validate the effectiveness of our method across both IND and OOD
datasets, showing that EDIT can reduce errors in key reasoning steps for students.

4. We investigate how different mistake patterns impact EDIT and find that logical errors provide
the more significant benefits than knowledge or mathematical calculation errors.

2 RELATED WORKS

CoT Reasoning. The emergent ability appears in LLMs across a wide range of NLP tasks (Chowdhery
et al., 2023; Wei et al., 2022a). One such ability is CoT reasoning, which involves generating a
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series of intermediate reasoning steps. This ability has been further explored recently with the
release of OpenAI’s o1 model (OpenAI, 2024). While CoT prompting techniques (Wei et al., 2022b)
significantly enhance the problem-solving capabilities of models (Kojima et al., 2022; Wang et al.,
2023b; Huang et al., 2023), it has little effect on smaller models (Wei et al., 2022a). Chung et al.
(2022) suggest that CoT reasoning can be induced in SLMs via instruction tuning on CoTs data. Our
work show that the CoT capabilities of SLMs can be further improved by learning from key reasoning
steps in dual CoTs data.

Knowledge Distillation from LLMs. There has been a lot of work dedicated to distilling knowledge
(Hinton et al., 2015) from powerful proprietary LLMs, e.g. ChatGPT (OpenAI, 2023a) in a black-box
setting. However, most of these works primarily focus on the general ability distillation by instruction
tuning on large and diverse datasets (Peng et al., 2023; Jiang et al., 2023b; Li et al., 2024). In
contrast, we aim to distill the CoT reasoning capabilities from LLMs same as the standard CoTs
distillation (Magister et al., 2023; Ho et al., 2023). Besides, some studies (Li et al., 2022; Hsieh
et al., 2023; Liu et al., 2023) employ LLM’s rationale or self-evaluation output to enhance SLM’s
reasoning in a multi-task learning framework. Fu et al. (2023) fine-tune SLMs on four types of
reasoning data to ensure out-of-distribution generalization. Wang et al. (2023c) distill SLMs by
learning from self-reflection and feedback from LLMs in an interactive multi-round paradigm. Chen
et al. (2024) maximize the mutual information between multi objectives for CoTs distillation. Ranaldi
& Freitas (2024) use in-family and out-family teachers to generate more CoTs for fine-tuning students.
Different from the above works, we assist CoTs distillation with teachers’ mistakes to alleviate the
style imitation of teachers’ reasoning.

Learning from Mistakes. Recent studies use mistake data to enhance the performance of LMs.
Shinn et al. (2023) propose Reflexion that allows the LLM agent to self-reflect from its mistakes.
Wang & Li (2023) introduce a study assistant that collects and retrieves LLMs’ training mistakes to
guide future inferences. Li et al. (2023) propose CoK that corrects potential mistakes in the rationale
by retrieving knowledge to avoid error propagation. However, both of the above methods require
the models to be large enough to have basic CoT reasoning or instruction-following capabilities,
which is almost impossible to occur in vanilla SLMs. Wang et al. (2023a) propose fine-tuning on
counterfactual data to ensure the faithful reasoning of the student model. An et al. (2023) propose
LEMA that fine-tunes language models on corrected mistake data, where the mistakes are collected
from various LLMs e.g. LLaMA2-70B (Touvron et al., 2023), WizardLM-70B (Xu et al., 2023), and
corrected by GPT-4 (OpenAI, 2023b). Additionally, Sun et al. (2024) propose Retrieved In-Context
Principles, which retrieve mistakes to provide customized guidance and improve model performance
during inference. In contrast, we collect the teachers’ mistakes to create a dual CoTs dataset for
further key reasoning steps learning on model distillation.

3 MISTAKE-DRIVEN KEY REASONING STEP DISTILLATION

We present the overview of our proposed method in Figure 2. Concretely, (1) unlike prior works
(Magister et al., 2023; Hsieh et al., 2023) that only focus on correct CoTs annotated by teacher LLMs,
we first retain all CoTs reasoning data, regardless of its correctness. (2) Then based on the previously
retained correct and wrong CoTs, we construct dual CoTs datasets consisting of positive-negative CoT
pairs that follow similar intermediate reasoning steps but lead to divergent conclusions. Specifically,
we design two comprehensive contextual prompts to instruct teacher LLMs to rectify the originally
wrong CoTs and corrupt originally correct CoTs. (3) Finally, we distill the student SLMs by training
on the teacher’s correct CoTs reasoning data and further Key Reasoning Steps Learning (KRSL) on
the dual CoTs datasets.

3.1 COTS ANNOTATED BY LLMS

We utilize CoT Prompting (Wei et al., 2022b) to extract CoTs for a raw dataset D = {(q, a)} from
LLMs, where q is the question and a is the golden answer. Specifically, we first create a CoTs
Extraction Prompt CEP that contains several human-curated question-CoTs pair examples and the
task description, which can be found in Appendix C.1. For each q ∈ D, we extract CoTs as:

CoT ∼ LLM (CEP⊕ q) (1)

3
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Q: ...how many ...?
A: There are ...Therefore, the
answer is (C).

: Original Correct CoTsRaw Dataset

Q: I have two toasters...
A: ...Let’s add the numbers: 2
+ 1 + 1 + 2 + 1 = 8. Therefore,
the answer is 8.

: Original Wrong CoTs

Q: On the table, there are
three pink ...how many ...?
Op.ons：：...

Step1 Annotate CoTs Data

Q: ...how many ...?
A: There are ...Therefore, the
answer is(C).

Q: ...how many ...?
A: There are ...Therefore, the
answer is (D).

: Corrupted CoTs

Answer Hint Prompt

Step2 Dual CoTs Data Genera.on

Teacher LLMs

CoTs Dataset

Q: I have two toasters...
A: ...Let’s add the numbers: 2
+ 1 + 1 + 2 + 1 = 3. Therefore,
the answer is 3.

: Rec.fied CoTs

Q : ..........
A : ..........

Supervised Fine Tuning
Key Reasoning Step Learning

Student SLMs

Step3 Training Student

Q : ..........
A : ..........

Q : ..........
A : ..........

Though8ul
Students

Contras.ve CoTs Prompt

CoTs Extrac.on
Prompt

Figure 2: Overview of our mistake-driven key reasoning step distillation. (1) We first retain all
CoTs data annotated by teacher LLMs (2) and ask teacher LLMs to generate dual CoTs data using
our designed two comprehensive prompts. (3) Then we fine-tune student SLMs on both original
correct and rectified-after CoTs data. Finally, we apply key reasoning step learning on the pre-tuned
student SLMs by identifying the minor difference between the dual CoTs.

where ⊕ means concatenation. Then, we classify the CoTs annotated dataset into two datasets
according to the final answer’s correctness3, same as Zelikman et al. (2022). One is the CoTs-
original correct dataset D+ = {(q, CoT+) | ∀ (q, a) ∈ D, â = a & â ∈ CoT+} and the other is
CoTs-original wrong dataset D− = {(q, CoT−) | ∀ (q, a) ∈ D, â ̸= a & â ∈ CoT−}.

3.2 DUAL COTS GENERATION

We define dual CoTs data as contrasting CoTs that follow similar reasoning steps but reach divergent
conclusions compared to the original. To provide a deeper understanding, we also present several
examples of dual CoTs in Appendix A. In the following, we will introduce how to generate dual
CoTs datasets including D+− contrasting to D+, and D−+ contrasting to D−.

Rectify Wrong CoTs. To generate correct CoTs contrasting with the originally wrong CoTs,
inspired by Rationalization (Zelikman et al., 2022), we design an Answer Hint Prompt AHP that
shares the same examples with CEP but with different organizational structures. The template of
AHP can be found in Appendix C.2. Each example in the context and the final provided question
will be inserted with a hint that tells LLMs the answer first before CoTs. Thus, due to the same
in-context examples and hint answers, teacher LLM can rectify its original wrong CoTs data with
similar reasoning steps but correct answers. For each q ∈ D−, we rectify CoTs as follows and then
have the Rectified CoTs dataset D−+ = {(q, CoT−+)}:

CoT−+ ∼ LLM (AHP⊕ q ⊕ a) (2)

3To support our assumption of CoT correctness, We randomly sample 100 examples to manually check
the logical consistency between the CoT and the final answer and find that the CoTs generated by ChatGPT
generally support the final answer.

4
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On the floor, I see two magenta scrunchiephone chargers, one gold fidget spinner...

According to this ques�on, there are two magenta scrunchiephone chargers and three silver scrunchiephone
chargers on the floor. If we remove all the magenta items from the floor, we are le� with 2 silver
scrunchiephone chargers. Therefore, the answer is (C).

According to this ques�on, there are a total of 5 scrunchiephone chargers on the floor: 2
magentascrunchiephone chargers and 3 silver scrunchiephone chargers. If we remove all the magenta items
from the floor, we remove the 2 magenta scrunchiephone chargers.Therefore, the number of
scrunchiephone chargers remaining on the floor is 3. Therefore, the answer is (D).

Key Steps in
Correct CoTs Data

Key Steps in
Wrong CoTs Data 

Figure 3: Examples of locating key reasoning steps in dual CoTs, where the correct CoT and the
wrong CoT are dual to each other. The identified key steps in correct reasoning and wrong reasoning
are respectively marked in green and red.

Corrupt Correct CoTs. To generate incorrect CoTs contrasting with the originally correct CoTs,
a straightforward approach is to use AHP with incorrect hint answers to prompt LLMs to produce
wrong CoTs. However, in practice, we find that LLMs rarely follow the incorrect hints and still
generate correct CoTs. This may be due to the simplicity of the questions, which fall within the
LLMs’ knowledge range. Additionally, LLMs, having undergone Reinforcement Learning from
Human Feedback (RLHF) (Ouyang et al., 2022), may resist providing unhelpful answers. Therefore,
we design a Contrastive CoTs Prompt (CEP) to entice LLMs to generate incorrect CoTs, leveraging
their strong in-context learning capabilities. The prompt template can be found in Appendix C.3.
Specifically, to ensure high-quality incorrect CoTs, we randomly sample negative examples from D−

and positive examples from D−+, pair them, and place them into the CCP as curated joint in-context
examples. For each q ∈ D+, we corrupt CoTs as follows and then have the corrupted CoTs dataset
D+− = {(q, CoT+−)}:

CoT+− ∼ LLM
(
CCP⊕ q ⊕ CoT+

)
(3)

3.3 TRAINING STUDENT WITH COTS

Surpervised Fine-tuning on Correct CoTs. After preparing the dual CoTs, we first fine-tune
student models on the teachers’ original correct CoTs dataset D+ and rectified CoTs dataset D−+.
The training objective is as follows:

πsft = argmax
π

Eq,CoT∼D+
merge

[log π(CoT | q)] (4)

where the merged correct CoTs dataset D+
merge = D+ ∪ D−+, and πsft denotes the student with the

base inference ability after the initial fine-tuning.

Key Reasoning Steps Learning Inspired by (Guo et al., 2023b) who leverage fine-grained quality
signals to align human preference, we propose a key reasoning steps learning (KRSL) method to
further encourage students to comprehend the reasons behind both correct and wrong CoTs.

Step1. We pair the teacher’s original correct CoTs dataset D+ with its corrupted CoTs dataset D+−,
creating an originally correct dual CoTs dataset D+

dual = {(q, CoT+, CoT+−)}, where CoT+

and CoT+− are dual to each other; similarly, the teacher’s inherently wrong dual CoTs dataset
D−

dual = {(q, CoT−+, CoT−)}. By merging them, we obtain the ultimate dual CoTs datasets
Ddual = D+

dual ∪ D−
dual, which is prepared for the subsequent learning of key reasoning steps.

Step2. Then we employ the minimum edit distance to identify the key steps in both correct reasoning
and wrong reasoning, as shown in Figure 3. In this way, students can identify less frequent text
segments that are inserted or replaced in wrong CoTs compared to correct CoTs, and vice versa.
These text segments are considered key reasoning steps. After that, we assign token-level weights to
facilitate fine-grained learning for correct CoTs and wrong CoTs in Ddual respectively:

ω+
t =

{
α, if CoT+

t is inserted or replaced
0, otherwise

, ω−
t =

{
β, if CoT−

t is deleted or replaced
0, otherwise

. (5)

where α ≥ 0, β ≥ 0 and ω+
t represents the weight of t-th token in the correct CoTs (semantically

same with ω−
t ). We set the weights to zero to ignore the impact of identical tokens in the dual CoTs.
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Step3. Finally, to ensure that the student makes correct decisions on key steps in correct reasoning,
we optimize the student model on these tokens with weighted negative log-likelihood. Conversely,
to prevent the student from making key steps present in wrong reasoning, we optimize the student
model on these steps with weighted positive log-likelihood. The sum of both is taken as the final loss.
The optimization objective is as follows:

max
πsft

Eq,CoT+,CoT−∼Ddual

[
L(πsft, q, CoT+, ω+)− L(πsft, q, CoT−, ω−)

]
(6)

where
L (π, q, CoT, ω) = −

∑
CoTt∈CoT

ωt log π(CoTt | q, CoT<t) (7)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

In-domain (IND) Dataset: BIG-Bench Hard (BBH) (Suzgun et al., 2023) consists of 27 chal-
lenging tasks that span arithmetic, symbolic reasoning, etc. This collection is mainly composed
of multiple-choice questions, along with a minority of open-ended questions. To underscore the
superiority of our method, we divide the BBH dataset for each subtask into a training set (BBH-train)
for distillation and a test set (BBH-test) for in-domain evaluation, following a 4:1 ratio.

Out-of-domain (OOD) Dataset: (1) BIG-Bench Sub (BB-sub) is derived from the BIG-Bench
(BB) (Guo et al., 2023a), which includes 203 tasks covering linguistics, mathematics, common-sense
reasoning, etc. To simplify our evaluation, we refine the selection of tasks from BB by identifying
those associated with keywords such as "multiple-choice" and "reasoning."4 Additionally, we exclude
any tasks that are part of the BBH dataset, narrowing our pool to 61 distinct subtasks. For each
of these subtasks, we randomly sample up to 100 instances, culminating the BB-sub dataset. (2)
AGIEval (Zhong et al., 2023) is a benchmark that assesses LMs on reasoning capabilities using
human exams across various fields, including English, Math, Law, and Logic. We focused on the
English multiple-choice questions within this benchmark to evaluate our method’s effectiveness. (3)
AI2 Reasoning Challenge (ARC) (Clark et al., 2018) comprises ARC-Easy and ARC-Challenge
from middle and high school science exams. ARC-E features simpler questions, while ARC-C
includes more challenging ones. We use their test sets for evaluation. Detailed statistics for all
mentioned benchmarks are provided in Appendix B.6.1. BigBench, AGIEval, and ARC are standard
benchmarks for evaluating LLMs reasoning performance. Specifically, BigBench and AGIEval have
been employed in related works (Fu et al., 2023; Jiang et al., 2023b), and ARC is frequently used in
technical reports for LLaMA3 (AI@Meta, 2024) and GPT-4 (OpenAI, 2023b).

Models & Implementation Details. We employ the widely-used open-source language model,
LLaMA2-7B (Touvron et al., 2023), as our student SLM. For the teacher model, given its performance
and cost-effectiveness, we employ OpenAI’s advanced black-box LLM, ChatGPT, specifically using
the "gpt-3.5-turbo-0613" variant for extracting CoTs with the same manual prompt that is
used in (Suzgun et al., 2023). We employ LoRA (Hu et al., 2022) for parameter-efficient fine-tuning
of the student SLMs. We empirically set α in KRSL as 1.0 and β as 0.025. Our experiments leverage
a mixed-precision training strategy, carried out on 4 × A100 GPUs. We employ vLLM5 (Kwon et al.,
2023) to enhance inference speed, using a greedy decoding method for text generation on a single
A100 GPU. More training details and hyperparameter settings can be found in Appendix B.6.2.

Baselines. We compare EDIT with the following baselines: (1) Teacher & Vanilla Student under
various settings, e.g., Zero-shot (+ CoT) or Few-shot (+ CoT). (2) Std-CoT (Magister et al., 2023),
which is a standard CoTs distillation method that directly fine-tunes student SLMs on CoTs data. (3)
MT-CoT (Li et al., 2022) is a multi-task CoTs distillation strategy that aims to optimize both the
prediction of answers and the learning of CoTs concurrently. (4) SCOTT (Wang et al., 2023a) aims
to bolster the reasoning consistency in the student SLMs by integrating counterfactual data into its
training regimen.

4https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_
tasks/README.md.

5https://github.com/vllm-project/vllm
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Table 1: Results (Accuracy, %) of the main experiment. w/o RWC represents that student models are
distilled without using the rectified teacher’s wrong CoTs in the first step of EDIT and w/o KRSL
denotes that the second step KRSL in EDIT is removed. The improvements of EDIT and its variants,
w/o RWC and w/o KRSL, over the average best baseline are indicated by subscripts. We also provide
results of more commonly used reasoning subtasks in Appendix B.1.

Method Distill? BBH-test BB-sub AGIEval ARC-E ARC-C AVG
In-domain? ✓ ✕ ✕ ✕ ✕

Teacher: ChatGPT (gpt-3.5-turbo)
Zero-shot-CoT ✕ 42.7 44.1 49.5 91.9 81.1 61.9
Few-shot-CoT ✕ 73.1 - - - - -

Student: LLaMA2-7B
Zero-shot ✕ 14.8 15.5 6.9 18.2 13.9 13.9
Few-shot ✕ 15.1 28.5 25.5 25.5 25.4 24.0
Zero-shot-CoT ✕ 10.6 7.7 7.1 18.4 14.8 11.7
Few-shot-CoT ✕ 16.3 25.3 9.9 17.2 17.2 17.2

MT-CoT (Li et al., 2022) ✓ 56.8 30.3 22.0 49.4 38.2 39.3
SCOTT (Wang et al., 2023a) ✓ 42.4 18.8 13.0 45.7 34.1 30.8
Std-CoT (Magister et al., 2023) ✓ 54.2 28.7 21.6 59.6 45.1 41.8

EDIT (ours) ✓ 60.9+6.7 31.1+2.4 25.9+4.3 64.1+4.5 50.5+5.4 46.5+4.7

w/o RWC ✓ 55.1+0.9 30.1+1.4 24.1+2.5 60.3+0.7 44.1−1.0 42.7+0.9

w/o KRSL ✓ 59.7+5.5 30.0+1.3 24.5+2.9 61.9+2.3 45.5+0.4 44.3+2.5

4.2 MAIN RESULTS

We compare EDIT with the baselines across both IND and OOD datasets in Table 1 and illustrate the
results by answering the following research questions.

Can CoT distillation improve the performance of students? From the table, it is evident that the
student SLMs with distillation outperform those that were not distilled. This demonstrates that the
reasoning ability of LLMs can be effectively transferred to SLMs by distilling CoTs.

Can EDIT further enhance the performance of students compared to other distillation methods?
It can be observed that our proposed method EDIT outperforms the distillation baselines on both
IND and OOD datasets, achieving an average improvement of 4.7 % compared to the standard CoT
distillation (Std-CoT), which demonstrates the effectiveness and generalizability of EDIT.

How significant are the improvements in EDIT attributed to the rectified wrong CoTs and the
key steps learning, respectively? Ablation results in the table show that removing the rectified
wrong CoTs (w/o RWC) and removing key reasoning steps learning (w/o KRSL) result in performance
degradation on almost all IND and OOD, emphasizing the importance of both components. On
the one hand, the rectified teachers’ mistakes aid the students in learning diverse ways of thinking.
On the other hand, KRSL directs the student’s attention to crucial steps in the dual CoTs, thereby
improving the reasoning ability of the students. Additionally, we note that although KRSL and DPO
(Rafailov et al., 2023) share very similar learning principles, DPO performed unexpectedly poorly in
this scenario. Detailed experiments and analyses are provided in Appendix B.5.

4.3 ABLATION STUDY

EDIT is universally applicable to SLMs with various sizes. To better adapt to the community’s
varying computational resource requirements, we conduct experiments on models of different sizes,
including TinyLLaMA-1.1B6 (Zhang et al., 2024), LLaMA2-7B and 13B. The results in Figure 4
show that EDIT outperforms the baselines across different model sizes. Particularly on benchmarks
with broader evaluation dimensions such as BB-sub and AGIEval, significant improvements are
observed regardless of the model size. This suggests that the more challenging a task is, the more it

6https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T
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Figure 4: Ablation results on model size for four OOD datasets. The dotted line indicates the
performance of the teacher LLM under the Zero-shot-CoT setting. Due to the space limitation, we
present the results on the IND dataset in Appendix B.2.
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Figure 5: Left: Ablation results on key reasoning steps for the IND (BBH-test) and OOD (others)
datasets. w/o Correct represents that students only learn key reasoning steps in wrong CoTs and w/o
Wrong represents that students only learn key reasoning steps in correct CoTs. Middle: Ablation
results on different student models for the IND and OOD. We compare EDIT with its variants w/o
KRSL and Std-CoT. The results are reported by IND-AVG and OOD-AVG that respectively denote
average accuracy on IND and OOD datasets. Right: Score distribution evaluated by GPT-4 on
BBH-test. We use kernel density estimation to visualize the distribution of CoTs quality scores.

requires genuine reasoning rather than mere imitation, highlighting the benefits that EDIT brings to
student SLMs.

EDIT is universally applicable to SLMs with various architectures. To cater to the community’s
diverse model preferences, we conduct experiments on models of different architectures, including
CodeLLaMA-7B (Touvron et al., 2023), LLaMA3-8B (AI@Meta, 2024), and Mistral-7B-v0.2 (Jiang
et al., 2023a). As shown in Figure 5 (middle), EDIT consistently outperforms its variant w/o KRSL
and the baseline Std-CoT across all model architectures. Notably, the performance gap is significantly
larger for the stronger model, Mistral, indicating that our method provides greater benefits with more
powerful base models.

Correct key reasoning steps have a greater impact than incorrect ones. We conduct an ablation
study on the key reasoning steps in KRSL where students learn exclusively from either the correct or
wrong reasoning steps (referred to §3.3, we set α = 0 or β = 0, respectively). The results shown in
Figure 5 (left) indicate that learning key reasoning steps solely from either correct or wrong CoTs
leads to a decline in performance. This demonstrates that joint learning from both correct and wrong
key reasoning steps is more beneficial for enhancing students’ reasoning capabilities. Furthermore,
we observe a greater performance drop in the absence of key steps in correct CoTs (w/o Correct)
compared to the absence of key steps in wrong CoTs (w/o Wrong), suggesting that key steps from
correct CoTs have a more significant impact on students’ learning.

The quality of dual CoTs data is more important than quantity. We also explore which com-
ponent of the dual CoTs dataset in KRSL plays a more significant role: the originally correct dual
CoTs D+

dual or the inherently wrong dual CoTs D−
dual. From the Table 2, compared to using D+

dual,
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employing D−
dual resulted in superior performance, even with less data, which demonstrates that

D−
dual has higher data quality compared to D−

dual. The dual CoTs constructed from the inherent
wrong CoTs of teachers more effectively highlight the key steps in reasoning.

Table 2: Performance (Accuracy, %) comparison across dual CoTs datasets used in KRSL. The D+
dual

and D−
dual represents that only the originally correct dual CoTs dataset or the inherently wrong dual

CoTs dataset is used in KRSL.

Dataset BBH-test BB-sub AGIEval ARC-E ARC-C AVG

D+
dual (# = 3805) 61.3 31.2 24.4 64.6 48.9 46.1

D−
dual (# = 1402) 60.9 30.8 26.0 63.8 50.5 46.4

Ddual (# = 5207) 60.9 31.1 25.9 64.1 50.5 46.5

5 ANALYSIS

5.1 COST ANALYSIS

Considering that our method utilizes dual CoTs data, which results in twice the amount of training
data compared to the baselines, we implement two additional baseline settings to ensure a fair
comparison and ablate the impact of the increased data size due to dual CoTs: (1) Std-CoT w/
Repeat Sampling. We perform random repeat sampling on the baseline’s original training data until
the volume matches that of EDIT; (2) Std-CoT w/ Dual CoTs. We train the Std-CoT using all data
included in EDIT, adding the marker "[Counterfactual Reasoning]" before the negative
sample’s question to differentiate it from positive reasoning. Results in Table 3 show that while
Std-CoT benefits from additional data, it underperforms compared to EDIT across most tasks. EDIT’s
superiority stems from its method of learning key reasoning steps beyond mere imitation, allowing
students to learn from mistakes. Additionally, Std-CoT with Dual CoTs outperforms that with Repeat
Sampling in OOD tasks by incorporating counterfactual reasoning, reducing overfitting and better
generalizing the reasoning. This supports our view that simple fine-tuning with correct teacher data is
insufficient for true reasoning learning.

Table 3: Results (Accuracy, %) of the cost analysis.

Method Training Data Size BBH-test BB-sub AGIEval ARC-E ARC-C AVG
Std-CoT w/ Repeat Sampling 10414 59.4 30.3 24.0 58.0 42.1 42.8
Std-CoT w/ Dual CoTs 10414 54.8 32.9 25.1 62.2 44.1 43.8
EDIT (ours) 10414 60.9 31.1 25.9 64.1 50.5 46.5

5.2 QUALITY OF GENERATED COTS

Beyond accuracy in reasoning, the quality of CoTs is crucial for interpretable AI. Therefore, we
leveraged the sota LLM, GPT-4, to score the quality of CoTs generated by Std-CoT, EDIT, and
teacher LLMs. The evaluation focused on which CoT best reflects the key reasoning steps in the
problem-solving process, with the prompt template detailed in Appendix C.4. The distribution of the
evaluation scores is shown in Figure 5 (right), where we observe that the score distribution for CoTs
generated by EDIT is closer to that of the teacher compared to Std-CoT. This illustrates that EDIT is
more effective in learning the key reasoning steps, resulting in the production of high-quality CoTs.

5.3 CASE STUDY

To more clearly show the quality of key reasoning steps in generated CoTs, we present 5 cases sampled
from BBH, AGIEval, and ARC, compared with Std-CoT and teachers, as detailed in Appendix B.3.
Tables 19 and 20 show that the reasoning form of the student SLMs distilled by Std-CoT is very
similar to that of the teacher. However, the student SLMs distilled by EDIT exhibit a changed way of
thinking, leading to the correct answers. Table 21 reveals nearly identical reasoning among the three,
yet in the critical reasoning steps 7 and 8, Std-CoT fails to make the correct decisions, whereas EDIT

9
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correctly executes stack operations. Cases from OOD datasets, shown in Tables 22 and 23, indicate
that EDIT can accurately analyze problems and provide more logical reasoning.

5.4 INTEGRATION WITH SELF-CONSISTENCY

In this subsection, we explore the integration of our method with the widely-used CoT reasoning
technique, Self-Consistency (SC). SC improves reasoning performance by generating multiple
reasoning paths and selecting the most consistent answer through majority voting. For SC, we apply
majority voting with 8 sampled reasoning paths, using temperature=0.7 and topp=0.95 for
decoding. As shown in Table 4, nearly all CoT distillation methods, including our method EDIT,
show significant performance improvements when combined with SC. This demonstrates that EDIT
can be effectively integrated with CoT reasoning techniques, providing both flexibility and scalability.

Table 4: Results of Integration with Self-consistency (Accuracy, major vote@8).

Method + Self-consistency BBH-test BB-sub AGIEval ARC-E ARC-C AVG

MT-CoT 56.4 32.2 22.3 68.5 52.8 46.4
SCOTT 41.1 22.0 16.7 56.1 40.6 35.5
Std-CoT 56.3 31.2 25.2 66.2 50.0 45.8
Std-CoT w/ Repeat Sampling 60.4 33.3 24.1 64.4 47.1 45.9
Std-CoT w/ Dual CoTs 58.4 33.6 26.8 64.4 48.2 46.3
EDIT(ours) 62.0 32.0 27.2 70.4 54.1 49.1

5.5 MISTAKE PATTERN MINING

In this subsection, we delve into the influence of various mistake patterns on the EDIT. Based on the
observation of mistake data, we utilize GPT-3.5 to categorize them into four types, including Logical
Errors (LEs), Knowledge Errors (KEs), Mathematical Calculation Errors (MCEs) and Other
Errors (OEs). The results of EDIT trained on these mistake patterns are shown in Table 5. We can
see that KRSL on DLEs consistently outperforms other mistake patterns, with KEs and MCEs having
a relatively smaller impact. This suggests that LEs provide a broader range of reasoning patterns that
are relevant for mathematical, commonsense, and symbolic reasoning. As for KEs and MCEs, since
these types of mistakes are more specific compared to LEs, it is not easy for the model to learn a
general reasoning solution from these mistakes. Therefore, learning the key reasoning steps from
logical reasoning errors is the most effective way among them.

Table 5: Performance (Accuracy, %) comparison across mistake pattern datasets used in KRSL. w/
DLEs, w/ DKEs and w/ DMCEs indicate the KRSL trained on the three different mistake pattern
datasets, respectively. More details can be found in Appendix C.5.

Dataset BBH-test BB-sub AGIEval ARC-E ARC-C AVG

DLEs 60.1 31.0 24.6 63.0 45.8 44.9
DKEs 60.0 30.6 24.2 62.0 46.1 44.6
DMCEs 59.4 30.4 24.4 62.3 45.8 44.5

6 CONCLUSION

In this paper, we propose a novel mistake-driven key reasoning step distillation method to alleviate
student imitation of teachers’ reasoning forms. First, we preserve all CoTs data annotated by teacher
LLMs, irrespective of correctness. Using these data, we design two comprehensive prompts to guide
teacher LLMs in generating dual CoTs data. Finally, we utilize the minimum edit distance algorithm
to identify the key reasoning steps and employ a fine-grained loss function for guided learning.
Extensive experiments demonstrate EDIT’s effectiveness in enhancing student SLMs’ reasoning
capabilities, outperforming baseline methods on both in-domain and out-of-domain benchmark
datasets. We hope our work can make the community attach the importance of learning key reasoning
steps in dual CoTs, collectively advancing the efficiency of CoT reasoning distillation.
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A EXAMPLE OF DUAL COTS

We provide dual CoTs examples with three different mistake patterns including logical errors,
knowledge errors and mathematical calculation errors in Table 6, 7, 8 and mark the correct/wrong
key reasoning steps in different colors. We observe that our carefully crafted prompts for generating
correct CoT and wrong CoT effectively ensure the desired dual CoT characteristics: similar reasoning
steps leading to different conclusions. For instance, subordinating conjunctions in Table 6 like
"however," "despite," and "even though," as well as certain verb and noun phrases, significantly
influence the reasoning process and the conclusion. These elements represent the key reasoning steps
that we aim for the model to learn.

B ADDITIONAL EXPERIMENT

B.1 DETAILED PERFORMANCE ON REASONING SUBTASKS

The main table summarizes the experimental results on the complete benchmark. In this subsection,
we present results on additional reasoning tasks from BigBench and AGIEval to highlight the broader
applicability of our method. As shown in Table 9, our approach consistently surpasses the baseline
models on nearly all subtasks, including key mathematical reasoning benchmarks such as AQuA,
SAT-MATH, GSM8K (Cobbe et al., 2021), and MATH (Hendrycks et al., 2021). Notably, this
performance is achieved despite our training dataset containing only 200 simple math reasoning
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Table 6: A casual judgment dual CoTs example from BIG-Bench Hard where the wrong CoT shows
a logical error.

Question

## Input
Task Description: Answer questions about causal attribution.
Q: How would a typical person answer each of the following questions about causation?
George and his sister Lena reunite at their parentsh́ouse for Thanksgiving. Whereas George just got into medical
school, Lena is unhappy in her marriage and recently lost her job. Over the course of the day, George and Lena
get into a number of heated arguments. Later in the afternoon they play a game of darts. They split the first two
games, and the third game is close until the end. Who will win comes down to George’s last shot. If he hits a high
point region, he wins; if he hits a low point region, Lena wins. George doesn’t care that Lena is having a difficult
time; he really wants to beat her. George has little control over his shots. He tries to aim at the high point region
of the dart board. As he sets up his shot, however, he loses his balance. The dart slips out of his hand and wobbles
toward the board. The dart lands in the high point region. George triumphs in his victory while Lena is sad. Did
George hit the high point region intentionally?
Options:
- Yes
- No
A:

Correct CoT

Here in this question, we are told that "George tries to aim at the high point region of the dart board." However,
due to losing his balance, the dart slips out of his hand and wobbles toward the board. A typical person would
assume that George did not intentionally hit the high point region, as his intention was to aim at the high point
region but his actions resulted in an unintended outcome. Therefore, the answer is No.

Wrong CoT

Here in this question, we are told that George tries to aim at the high point region of the dart board. Despite losing
his balance, the dart lands in the high point region. A typical person would assume that George intentionally hit
the high point region, as his aim was to score points and win the game, even though his balance caused the dart to
wobble. Therefore, the answer is Yes.

Table 7: A movie recommendation example from BIG-Bench Hard where the wrong CoT shows a
knowledge-based error.

Question

## Input
Task Description: Recommend movies similar to the given list of movies.
Q: Find a movie similar to Pulp Fiction, Schindler’s List, Apollo 13, Dances with Wolves:
Options:
(A) Iron Eagle IV
(B) The Shawshank Redemption
(C) Knockin’ on Heaven’s Door
(D) Aguirre The Wrath of God
A:

Correct CoT

- Pulp Fiction (crime, drama; 1994)
- Schindler’s List (biography, drama, history; 1993)
- Apollo 13 (adventure, drama, history; 1995)
- Dances with Wolves (adventure, drama, western; 1990)
These are all famous movies produced in the 1990s. Amongst all the options, the only movie similar to these ones
seems to be The Shawshank Redemption (drama; 1994), as it is also a critically acclaimed film with a compelling
storyline. Therefore, the answer is (B).

Wrong CoT

- Pulp Fiction (crime, drama; 1994)
- Schindler’s List (biography, drama, history; 1993)
- Apollo 13 (adventure, drama, history; 1995)
- Dances with Wolves (adventure, drama, western; 1990)
These are all famous movies produced in the 1990s. Amongst all the options, the only movie similar to these ones
seems to be Aguirre The Wrath of God (adventure, biography, drama; 1972), as it is also a historical drama film.
Therefore, the answer is (D).

examples out of 5207 total samples. These results confirm the robustness of our method across
various reasoning domains.

B.2 ABLATION STUDY ON MODEL SIZE FOR IN-DOMAIN DATASET

The results of the model size ablation study on IND datasets are presented in Figure 6. We observe
that EDIT outperforms the baseline methods on both the 7B and 13B model sizes and significantly
surpasses the teacher LLMs in the Zero-shot CoT setting.

B.3 CASE STUDY

Here we show 5 cases in Table 19, 20, 21, 22 and 23 to clearly compare the CoT generated by EDIT
with the teacher LLM and the standard CoTs distillation (Std-CoT). We utilize ✓ and ✗ to denote
whether the CoT is correct or incorrect, respectively.
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Table 8: A multistep arithmetic dual CoTs example from BIG-Bench Hard where the wrong CoT
shows a mathematical calculation error.

Question

## Input
Task Description: Solve multi-step arithmetic problems.
Q: ((-1 + -6 - -4 + -6) - (-2 * -5 - -1 * 1)) =
A:

Correct CoT

Let’s recall that the order of operations in mathematics is as follows: (1) Parentheses, (2) exponents, (3)
multiplication and division (from left to right), (4) addition and multiplication (from left to right). So, remember
to always compute the expressions inside parentheses or brackets first.
This equation can be written as Ä - B,̈ where A = (-1 + -6 - -4 + -6) and B = (-2 * -5 - -1 * 1).
Let’s calculate A = (-1 + -6 - -4 + -6) = (-1 + (-6) - (-4) + (-6)) = (-1 - 6 + 4 - 6) = (-7 + 4 - 6) = (-3 - 6) = -9.
Let’s calculate B = (-2 * -5 - -1 * 1) = (10 - (-1)) = (10 + 1) = 11.
Then, the final equation is A - B = -9 - 11 = -20. Therefore, the answer is -20.

Wrong CoT

Let’s recall that the order of operations in mathematics is as follows: (1) Parentheses, (2) exponents, (3)
multiplication and division (from left to right), (4) addition and multiplication (from left to right). So, remember
to always compute the expressions inside parentheses or brackets first.
This equation can be written as Ä - B,̈ where A = (-1 + -6 - -4 + -6) and B = (-2 * -5 - -1 * 1).
Let’s calculate A = (-1 + -6 - -4 + -6) = (-1 + -6 - -4 + -6) = (-1 -6 -4 -6) = (-7 -6 -4 -6) = (-13 - 4 -6) = -23.
Let’s calculate B = (-2 * -5 - -1 * 1) = (10 - (-1)) = (10 + 1) = 11.
Then, the final equation is A - B = -23 - 11 = -34. Therefore, the answer is -34.

Table 9: Results on commonly used reasoning subtasks.

Subtasks / Method Source In-domain MT-CoT SCOTT Std-CoT Std-CoT w/ Repeat Sampling Std-CoT w/ Dual CoTs EDIT (Ours)
Date Understanding BBH ✓ 74.0 54.0 82.0 76.0 74.0 80.0
Temporal Sequences BBH ✓ 94.0 66.0 94.0 98.0 86.0 98.0
Multi-Step Arithmetic BBH ✓ 6.0 0.0 8.0 14.0 18.0 18.0
Sports Understanding BBH ✓ 90.0 74.0 90.0 86.0 86.0 90.0
Elementary Math QA BigBench × 10.0 13.0 11.0 14.0 17.0 20.0
Identify Math Theorems BigBench × 9.4 9.4 20.8 18.9 24.5 26.4
StrategyQA BigBench × 50.0 31.0 57.0 50.0 49.0 59.0
AQuA-RAT AGIEval × 15.4 14.6 17.3 23.2 22.8 24.4
SAT-Math AGIEval × 15.5 21.4 20.9 23.6 20.0 24.5
GSM8K GSM8K × 15.3 17.1 15.4 10.9 14.7 17.5
MATH MATH × 4.3 4.1 5.1 5.0 5.0 5.6
AVG 34.9 27.7 38.3 38.1 38.8 42.1

B.4 MISTAKE PATTERN MINING

We ask gpt-3.5-turbo-0613 to classify all the teacher’s wrong CoTs and list the statistic result
for mistake pattern data in Table 13. To fairly assess the influence of different single mistake patterns
(LEs, KEs and MCEs), we ensure consistency in data size and the proportion of challenging problem
data (D−

dual) for each pattern. Since the available data for MCEs is the smallest, we randomly select
356 instances from D+

dual and 56 instances from D−
dual, creating three dual CoT datasets—DLEs,

DKEs, and DMCEs—each with 412 samples. Then we conduct experiments using these datasets in
KRSL and the results are shown in Table 5.

B.5 KRSL V.S. DPO

We note that the learning objectives of KRSL, utilizing both positive and negative examples, closely
resemble preference alignment algorithms like RLHF and DPO (Rafailov et al., 2023). Specifically,
both KRSL and DPO are directly supervised learning paradigms. However, there are key differences:

1. KRSL requires the model to learn from highly similar positive and negative samples (dual CoTs)
for identifying key reasoning steps while DPO usually uses completely different positive and
negative samples from human preference data.

2. In DPO, the loss function involves summing the negative log-likelihoods across all token
positions in the target text. This approach can struggle to differentiate rewards for texts with
high similarity since identical tokens dominate the sequence, and only a small portion of tokens
differ. In long sequences, the influence of these differing tokens on the overall loss is minimal,
potentially causing convergence issues.

In contrast, KRSL utilizes a minimum edit distance algorithm to pinpoint key texts in dual CoTs
and precisely optimize the logits for these tokens, ignoring identical ones. This makes KRSL more
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Figure 6: Ablation study on model size for
the IND dataset (BBH-test). The dotted line
indicates the performance of the teacher LLM
under the Zero-shot-CoT setting.

Table 10: Statistics of AGIEval dataset.

No. Task Size # Choices

1 AQuA-RAT 254 5
2 LogiQA-EN 651 4
3 LSAT-AR 230 5
4 LSAT-LR 510 5
5 LSAT-RC 269 5
6 SAT-Math 220 4
7 SAT-EN 206 4
8 SAT-EN (w/o Psg.) 206 4

suitable for learning from dual CoTs compared to DPO. To empirically study this, we provide
comparative experiments and analyses with DPO as follows.

We compare KRSL with DPO by implementing DPO in the EDIT and training LLaMA2-7B on
complete dual CoTs data using the dpo_trainer implemented in the TRL 7, with the following
settings: learning rate of 1e-5, a cosine learning rate scheduler, a warmup
ratio of 0.3, DPO beta of 0.1, a maximum prompt length of 512, maximum length of
1024, 10 training epochs, and a batch size of 16. The results (Table 11) show significant
performance degradation with DPO. Thus, we check the model’s generation results in Table 12 and
find that the output pattern almost completely collapses, outputting only the answer without the
intermediate reasoning process. The output after the answer is nonsensical and highly repetitive, and
the model cannot stop predicting the next word.

Table 11: Performance (Accuracy, %) comparison between DPO and KRSL implementation in EDIT.

Method BBH-test BB-sub AGIEval ARC-E ARC-C AVG

w/ DPO 10.2 15.4 4.8 5.1 4.9 8.1
w/ KRSL 60.9 31.1 25.9 64.1 50.5 46.5

B.6 DETAILS OF EXPERIMENTAL SETTINGS

B.6.1 DATASET STATISTICS

Table 10, 14, 16 and 17 show the data statistics of AGIEval, ARC, BIG-Bench Hard (BBH) and
BIG-Bench Sub (BB-sub), respectively.

7https://github.com/huggingface/trl
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Table 12: A failure case in EDIT w/ DPO from BIG-Bench Hard.

Question

## Input
Task Description: Select the humorous edit that ’ruins’ the input movie or musical artist name.
Q: Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:
(A) little shoy of horrors
(B) little hop of horrors
(C) little wshop of horrors
(D) ulittle shop of horrors
A:

EDIT w/ DPO

little shop of horrors

Q:Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:
(A) little shoy of horrors
(B) little hop of horrors
(C) little wshop of horrors
(D) ulittle shop of horrors

A:little shop of horrors

Q: Which of the following is a humorous edit of this artist or movie name: ’little shop of horrors’?
Options:...

Table 13: Classification statistics of mistake data patterns.

Mistake Patterns
& Dataset LEs KEs MCEs OEs LEs + KEs LEs +

MCEs KEs + MCEs LEs + KEs + MCEs Total

D+
dual

2618 452 356 51 255 45 26 2 3805
D−

dual
1077 77 56 62 105 22 3 0 1402

Ddual 3695 529 412 113 360 67 29 2 5207

Table 14: Statistics of ARC test dataset.

Task Size # Choices

ARC-E 2376 4-5
ARC-C 1172 4-5

Table 15: Generation configs of students and
teachers.

Arguments Student Teacher

do sample False True
temperature - 0.2
top-p 1.0 1.0
top-k - -
max new tokens 1024 2048
# return sequences 1 1

Table 16: Statistics of BIG-Bench Hard dataset.

No. Task Size # Choices

1 Boolean Expressions 250 2
2 Causal Judgement 187 2
3 Date Understanding 250 6
4 Disambiguation QA 250 4
5 Dyck Languages 250 -
6 Formal Fallacies Syllogisms

Negation
250 2

7 Geometric Shapes 250 11
8 Hyperbaton (Adjective Order-

ing)
250 2

9 Logical Deduction (3 objects) 250 3
10 Logical Deduction (5 objects) 250 5
11 Logical Deduction (7 objects) 250 7
12 Movie Recommendation 250 5
13 Multi-Step Arithmetic 250 -
14 Navigate 250 2
15 Object Counting 250 -
16 Penguins in a Table 146 5

No. Task Size # Choices

17 Reasoning about Colored Ob-
jects

250 18

18 Ruin Names 250 11
19 Salient Translation Error Detec-

tion
250 6

20 Snarks 178 2
21 Sports Understanding 250 2
22 Temporal Sequences 250 4
23 Tracking Shuffled Objects (3 ob-

jects)
250 3

24 Tracking Shuffled Objects (5 ob-
jects)

250 5

25 Tracking Shuffled Objects (7 ob-
jects)

250 7

26 Web of Lies 250 2
27 Word Sorting 250 -

Sum 6511 -
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Table 17: Statistics of BIG-Bench sub dataset. We filter the original dataset by retrieving tasks with
keywords "multiple choice" and randomly sample up to 100 examples per task. Note, the task in
BBH will not be involved in BB-sub.

No. Task Size # Choices

1 abstract_narrative_understanding 100 5
2 anachronisms 100 2
3 analogical_similarity 100 7
4 analytic_entailment 70 2
5 cause_and_effect 100 2
6 checkmate_in_one 100 26
7 cifar10_classification 100 10
8 code_line_description 60 4
9 conceptual_combinations 100 4
10 crass_ai 44 4
11 elementary_math_qa 100 5
12 emoji_movie 100 5
13 empirical_judgments 99 3
14 english_russian_proverbs 80 4
15 entailed_polarity 100 2
16 entailed_polarity_hindi 100 2
17 epistemic_reasoning 100 2
18 evaluating_information_essentiality 68 5
19 fantasy_reasoning 100 2
20 figure_of_speech_detection 59 10
21 goal_step_wikihow 100 4
22 gre_reading_comprehension 31 5
23 human_organs_senses 42 4
24 identify_math_theorems 53 4
25 identify_odd_metaphor 47 5
26 implicatures 100 2
27 implicit_relations 82 25
28 indic_cause_and_effect 100 2
29 intersect_geometry 100 26
30 kanji_ascii 100 5
31 kannada 100 4

No. Task Size # Choices

32 key_value_maps 100 2
33 logic_grid_puzzle 100 3
34 logical_args 32 5
35 logical_fallacy_detection 100 2
36 metaphor_boolean 100 2
37 metaphor_understanding 100 4
38 minute_mysteries_qa 100 4
39 mnist_ascii 100 10
40 moral_permissibility 100 2
41 movie_dialog_same_or_different 100 2
42 nonsense_words_grammar 50 4
43 odd_one_out 86 5
44 parsinlu_qa 100 4
45 physical_intuition 81 4
46 play_dialog_same_or_different 100 2
47 presuppositions_as_nli 100 3
48 riddle_sense 49 5
49 similarities_abstraction 76 4
50 simple_ethical_questions 100 4
51 social_iqa 100 3
52 strange_stories 100 2
53 strategyqa 100 2
54 swahili_english_proverbs 100 4
55 swedish_to_german_proverbs 72 4
56 symbol_interpretation 100 5
57 timedial 100 3
58 undo_permutation 100 5
59 unit_interpretation 100 5
60 vitaminc_fact_verification 100 3
61 winowhy 100 2

Sum 5384 -

B.6.2 HYPERPARAMETERS SETTINGS

In our study, we ensure consistency in the hyperparameter settings across all baselines, including our
proposed EDIT approach, to maintain the fairness of our comparative analysis. Here, we detail the
hyperparameter configurations employed in our experiments.

Training Steps and Batch Size. The number of training steps is determined based on the size of
the training dataset, the batch size, and the number of gradient accumulation steps required. We
maintain a consistent batch size across all baselines to eliminate any performance discrepancies that
could arise from varying batch sizes.

Learning Rate. Our initial exploratory experiments focused on the standard CoTs distillation
method using the LLaMA-2 model. We found that while the batch size had minimal impact on
performance, the learning rate was a critical factor. We tested learning rates of 1e-4, 2e-4, and 3e-4,
observing optimal performance at 2e-4 across the standard CoT and other distillation baselines, as
well as our EDIT approach. Consequently, we set the learning rate to 2e-4 for all methods involved in
our study.

Epochs and Evaluation Strategy. Throughout our training process, we monitored the training loss
curve and noted that it generally plateaued by the 15th epoch, indicating that the models had achieved
convergence. Therefore, we set the number of epochs to 15 for 7B models. The process of determining
the number of epochs for other model sizes followed a similar pattern. To mitigate the potential
risk of overfitting and to ensure our evaluation reflects the most effective model configuration, we
systematically selected checkpoints from the epoch that demonstrated the best performance on the
IND task. These checkpoints were then used to evaluate performance on OOD tasks.

The hyperparameters in training and inference can be found in Table 18 and Table 15 respectively. In
the KRSL, the second phase training in EDIT, the learning rate is empirically set as 5e-6.
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Table 18: Training hyperparameters.

Hyperparameter TinyLLaMA-1.1B LLaMA2-13B LLaMA2-7B / CodeLLaMA-7B / LLaMA3-8B / Mistral-7B-v0.2

gradient accumulation steps 4 8 4
per device batch size 16 8 16
learning rate 2e-4 2e-4 2e-4
epoches 20 15 10
max length 1024 1024 1024
β of AdamW (0.9,0.999) (0.9,0.999) (0.9,0.999)
ϵ of AdamW 1e-8 1e-8 1e-8
γ of Scheduler 0.95 0.95 0.95
weight decay 0 0 0
warmup ratio 0 0 0
rank of LoRA 64 64 64
α of LoRA 32 32 32
target modules q_proj, v_proj q_proj, v_proj q_proj, v_proj
drop out of LoRA 0.05 0.05 0.05

B.6.3 COMPUTATION BUDGET

Our experimental code is based on modifications of Meta’s open-source llama-recipes8, uti-
lizing the FSDP framework and training the model in parallel on four 80GB A100 GPUs. In our
experimental setup, training a 7B model during the SFT stage takes approximately 40 minutes per
epoch. For KRSL, each epoch takes around 90 minutes. With the same settings, training the Mistral
model will see about a 10% increase in training time. We will release our code in the future.

C PROMPT TEMPLATES

C.1 COTS EXTRACTION PROMPT

We use the prompt template shown in Table 25 to call the ChatGPT API to generate the CoTs for the
BBH-train datasets.

C.2 ANSWER HINT PROMPT

We list the Answer Hint Prompt templates in Table 24, which imply the teacher LLMs to generate the
CoTs based on the given answers following the in-context examples.

C.3 CONTRASTIVE COTS PROMPT

We list the Contrastive CoTs Prompt templates in Table 26, which query the teacher LLMs to generate
the CoTs with similar rationales to the original ones but divergent answers by following the few
examples provided with contrastive CoT pairs.

C.4 EVALUATION PROMPT OF COTS QUALITY

We list the evaluation prompt templates of CoTs quality in Table 27.

C.5 MISTAKE PATTERN MINING PROMPT

For mistake pattern mining, we employ the prompt template delineated in Table 28, which includes
the definitions of the four distinct mistake patterns.

8https://github.com/Meta-Llama/llama-recipes
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Table 19: A reasoning about colored objects case from BIG-Bench Hard.

Question:

On the table, there are three pink scrunchiephone chargers, two orange crayons, and two black scrunchiephone
chargers. If I remove all the black items from the table, how many scrunchiephone chargers remain on it?
Options:(A) zero(B) one (C) two (D) three (E) four (F) five (G) six (H) seven (I) eight (J) nine (K) ten (L) eleven
(M) twelve (N) thirteen (O) fourteen (P) fifteen (Q) sixteen

Teacher

According to this question, there are three pink scrunchiephone chargers, two orange crayons, and two black
scrunchiephone chargers on the table. If we remove all the black items from the table, we are left with three pink
scrunchiephone chargers and two orange crayons.

Therefore, the number of scrunchiephone chargers that remain on the table is five.

Therefore, the answer is (F). ✗

Std-CoT

According to this question, there are three pink scrunchiephone chargers, two orange crayons, and two black
scrunchiephone chargers on the table.

If we remove all the black items from the table, we are left with three pink scrunchiephone chargers,
two orange crayons, and two black scrunchiephone chargers.

The number of scrunchiephone chargers remaining on the table is seven.

Therefore, the answer is (H). ✗

EDIT

According to this question, there are a total of 5 scrunchiephone chargers on the table: 3 pink scrunchiephone
chargers and 2 black scrunchiephone chargers. If we remove all the black items, we are left with 3 pink
scrunchiephone chargers.

Therefore, the answer is (D). ✓

Table 20: A movie recommendation case from BIG-Bench Hard.

Question: Find a movie similar to Jurassic Park, Independence Day, Forrest Gump, Batman.
Options: (A) The Firm (B) Roger Dodger (C) Innocent Man (D) An (E) The Silence of the Lambs

Teacher

- Jurassic Park (action, adventure, science-fiction; 1993)

- Independence Day (action, science-fiction, drama; 1996)

- Forrest Gump (comedy, drama, romance; 1994)

- Batman (action, adventure; 1989)

These are all famous Hollywood movies produced in the 1980s and 1990s. Amongst all the options,
the only movie similar to these ones seems to be The Firm (drama, mystery, thriller; 1993), as it is also a popular
movie from the same era.

Therefore, the answer is (A). ✗

Std-CoT

Jurassic Park is an action and adventure movie. Independence Day is an action, science-fiction, and adventure
movie. Forrest Gump is a comedy, drama, and romance movie. Batman is an action, adventure, and crime movie.
The Firm is a crime, drama, and thriller movie. Roger Dodger is a comedy and drama movie. Innocent Man is a
crime, drama, and thriller movie. The Silence of the Lambs is a crime, drama, and thriller movie. Amongst all the
options, the movie similar to Jurassic Park seems to be The Firm.

Therefore, the answer is (A). ✗

EDIT

Issue 1: Is this movie similar to Jurassic Park? Above all the options, the only movie similar to Jurassic Park
seems to be The Silence of the Lambs due to its suspenseful and thrilling nature.

Issue 2: Is this movie similar to Independence Day? Above all the options, the only movie similar to
Independence Day seems to be Roger Dodger due to its sci-fi and action-packed nature.

Issue 3: Is this movie similar to Forrest Gump? Above all the options, the only movie similar to For-
rest Gump seems to be The Firm due to its drama and emotional depth.

Issue 4: Is this movie similar to Batman? Above all the options, the only movie similar to Batman
seems to be An due to its superhero and action-packed nature.

Based on the similarities outlined in Issues 1, 2, 3, and 4, the movie similar to these given movies
seems to be The Silence of the Lambs.

Therefore, the answer is (E). ✓
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Table 21: A dyck languages case from BIG-Bench Hard.

Question:
Correctly close a Dyck-n word. Complete the rest of the sequence, making sure that the parentheses are closed
properly.
Input: < ( ( < > )

Teacher

We should process each input one by one and keep track of the stack configuration.

0: empty stack

1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( ( {

8: ) ; stack: < ( (

Now, we have reached the end. The final stack is "< ( (".

We will need to pop out "(", "(" one by one in that order.

So, we need ")", ")". Therefore, the answer is ) ). ✗

Std-CoT

We should process each input one by one and keep track of the stack configuration.

0: empty stack
7
1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( ( {

8: ) ; stack: < ( ( {

Now, we have reached the end. The final stack is "< ( ( {".

We will need to pop out "{", "(", "<" one by one in that order.

So, we need "}", ")", ">". Therefore, the answer is } ) >. ✗

EDIT

We should process each input one by one and keep track of the stack configuration.

0: empty stack

1: < ; stack: <

2: ( ; stack: < (

3: ( ; stack: < ( (

4: { ; stack: < ( ( {

5: < ; stack: < ( ( { <

6: > ; stack: < ( ( {

7: } ; stack: < ( (

8: ) ; stack: < (

Now, we have reached the end. The final stack is "< (".

We will need to pop out "(", "<" one by one in that order.

So, we need ")", ">". Therefore, the answer is ) >. ✓
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Table 22: A AQuA-RAT case from AGIEval.

Question:
Anna has 4 books. If she decide to arrange the 4 books in every possible combination and moved just one book
every minute, how long would it taken by her ?
Options: (A)22 minutes (B)30 minutes (C)15 minutes (D)24 minutes (E)35 minutes

Teacher

First, Anna has 4 books and she wants to arrange them in every possible combination.

To find the number of possible combinations, we can use the formula for permutations, which is n! (n
factorial), where n is the number of items. In this case, n = 4, so the number of possible combinations is 4! = 4 x 3
x 2 x 1 = 24.

Next, we know that Anna can move just one book every minute. Since there are 24 possible combina-
tions, it will take her 24 minutes to go through all of them.

Therefore, the answer is (D) 24 minutes. ✓

Std-CoT

This question focuses on the time it takes Anna to arrange the 4 books in every possible combination. We know
that Anna moved just one book every minute.

Plugging in the minutes per move: 1 minute
There are 4 books: A, B, C, D
There are (4!) = 4 different combinations: A, B, C, D; B, A, C, D; B, C, A, D; C, A, B, D; D, A, B, C

The total number of minutes it would take Anna to arrange the books in every possible combination is
the sum of the minutes needed for each combination:
(4 minutes) + (4 minutes) + (4 minutes) + (4 minutes) + (4 minutes) = 15 minutes.

Therefore, the answer is (C) 15 minutes. ✗

EDIT

This question asks for the total amount of time it would take Anna to arrange the books in every possible
combination and moved just one book every minute. We first need to calculate the number of possible
combinations: 4! = 24. Then, we need to multiply the number of possible combinations by the number of minutes
per combination: 24 * 1 minute = 24 minutes.

Therefore, the answer is (D) 24 minutes. ✓

Table 23: A case from AI2 Reasoning Challenge.

Question:
Which method is the safest way to watch an eclipse of the Sun?
Options: (A) Turn away after two or three minutes. (B) Look at the Sun through a long telescope. (C) Cast an
image through a pinhole onto a screen. (D) Blink often until your eyes get used to the light.

Teacher

First, it is important to note that directly looking at the Sun during an eclipse can be extremely dangerous and can
cause permanent damage to the eyes.

Option (A) suggests turning away after two or three minutes. However, even a brief exposure to the
Sun during an eclipse can be harmful, so this method is not safe.

Option (B) suggests looking at the Sun through a long telescope. This method is also unsafe because
the intense light from the Sun can damage the telescope and cause harm to the eyes.

Option (C) suggests casting an image through a pinhole onto a screen. This method is a safe and rec-
ommended way to watch an eclipse. By creating a pinhole camera, the image of the Sun is projected onto a
screen, allowing for safe viewing without directly looking at the Sun.

Option (D) suggests blinking often until your eyes get used to the light. This method is not safe as it
does not provide any protection from the harmful rays of the Sun during an eclipse.

Therefore, the answer is (C) Cast an image through a pinhole onto a screen. ✓

Std-CoT
We know that looking directly at the Sun can cause permanent damage to the eyes. Therefore, the sanswer is (C)

casting an image through a pinhole onto a screen. ✓

EDIT

We are told that this question is about the safest way to watch an eclipse of the Sun. Looking at the Sun through a
long telescope is not recommended as it can cause permanent damage to the eyes. Blinking often until your eyes
get used to the light is also not recommended as it can cause eye strain and discomfort.

The only remaining option is to cast an image through a pinhole onto a screen. This method involves
creating a small hole in a card or paper and projecting the Sun’s image onto a surface, such as a wall or a piece of
paper. This method is safe as it does not require direct eye contact with the Sun.

Therefore, the answer is (C). ✓
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Table 24: Answer Hint Prompt templates for rectifying the wrong CoTs data based on the hint
answers.

{Task Description}. Your response should conclude with the format
"Therefore, the answer is".

Q: {Task Example Question No.1}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.2}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
A: Let’s think step by step.

Table 25: CoTs extraction prompt template of gpt-3.5-turbo for generating the CoTs data.

{Task Description}. Your response should conclude with the format
"Therefore, the answer is".

Q: {Task Example Question No.1}
H: {The correct answer is [HINT ANSWER No.1]}
A: Let’s think step by step. {Human-Curated-CoTs No.1}.

Q: {Task Example Question No.2}
H: {The correct answer is [HINT ANSWER No.2]}
A: Let’s think step by step. {Human-Curated-CoTs No.2}.

Q: {Task Example Question No.3}
H: {The correct answer is [HINT ANSWER No.3]}
A: Let’s think step by step. {Human-Curated-CoTs No.3}.

Q: {QUESTION}
H: {The correct answer is [HINT ANSWER]}
A: Let’s think step by step.
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Table 26: Contrastive CoTs Prompt templates for mistaken the correct CoTs data. The examples are
sampled from the teachers’ original wrong CoTs data and its corrected CoTs. In this way, teacher
LLMs can expose the reasoning flaws in problems that were originally solved correctly.

{Task Description}. You need to complete the [Wrong Response] which
requires you to give the
most likely incorrect answer to the [Question] and the rationale for
the incorrect answer.
The incorrect answer and rationale in the [Wrong Response] must be
different from the correct
answer and rationale in the [Right Response].

[Question]: {Task Example Question No.1}
[Right Response]: {Corrected CoT No.1}
[Wrong Response]: {Wrong CoT No.1}

[Question]: {Task Example Question No.2}
[Right Response]: {Corrected CoT No.2}
[Wrong Response]: {Wrong CoT No.2}

[Question]: {Task Example Question No.3}
[Right Response]: {Corrected CoT No.3}
[Wrong Response]: {Wrong CoT No.3}

[Question]: {USER_QUESTION}
[Right Response]: {Corrected CoT}
[Wrong Response]:
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Table 27: Prompt template of GPT-4 for assessing CoTs quality. In the analysis, we use this template
to eval the quality of CoTs generated by Std-CoT, EDIT and the teacher LLM respectively.

[System] You are a helpful and precise assistant for assessing the
quality of the response.

[Question]: {QUESTION}
[Reference Answer]: {ANSWER}

[AI Assistant 1’s Answer Start]
{ASSISTANT1}
[AI Assistant 1’s Answer End]

[AI Assistant 2’s Answer Start]
{ASSISTANT2}
[AI Assistant 2’s Answer End]

[AI Assistant 3’s Answer Start]
{ASSISTANT3}
[AI Assistant 3’s Answer End]

[System] We would like to request your feedback, in the form of
scoring, on which of the
responses from AI Assistant 1, 2 and 3 effectively demonstrates the key
reasoning steps in
solving this question. Key Reasoning Steps refer to certain crucial
steps in the process of
logical reasoning or problem-solving. These steps play a significant
role in the thinking
process and have a notable impact on subsequent reasoning. Each
student will receive an
overall score on a scale of 1 to 10, where a higher score signifies
that the assistant’s
response is more effectively demonstrates the key reasoning steps for
the question.
Please provide a comprehensive explanation, avoiding any potential bias
and ensuring that
the order in which the responses were presented does not affect your
judgment. And then
output three lines indicating the scores for AI Assistant 1, 2 and 3,
respectively.

Output with the following format:
Evaluation evidence: <your evaluation explanation here>
Score of AI Assistant 1: <score>
Score of AI Assistant 2: <score>
Score of AI Assistant 3: <score>
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Table 28: Prompt templates of GPT-3.5 for classifying the mistakes. In the analysis, we use this
template to classify the mistake data used in EDIT.

[System] You are a helpful assistant who is good at identifying types
of reasoning mistakes.
There are now three types of inference errors, as follows:

(a). Logical reasoning errors. This type of error involves the
logical structure of reasoning,
including assumptions, reasoning rules, argument chains, etc. Among
logical errors, students
may make errors such as invalid reasoning, insufficient or incorrect
assumptions, and jumps in
reasoning. Students may make errors in selecting reasoning strategies
or methods. The chosen
method may not be suitable for a specific problem, or may lead to
misleading reasoning.

(b). Knowledge errors in reasoning. This type of error involves
misunderstanding or incomplete
understanding of facts, concepts or knowledge, conceptual confusion,
and cognitive biases.

(c). Numerical calculation errors. This type of error involves
mathematical calculation errors,
which may include incorrect calculations, conversions or errors in the
processing of numerical
values.

(d). Other errors. All other errors that do not belong to the above
three categories.

I will give you a dictionary with the following fields and meanings:
{
"input": reasoning question.
"right_output": the correct answer.
"wrong_output": the wrong answer.

}

You need to first form your own opinion about the problem based on the
reasoning questions and the
correct answers, and then analyze the reasons for the mistakes in the
wrong answers in "Rationale:".
Then give your classification results in "Category:", e.g., (a), (b) or
(c), etc. If an answer
involves errors in multiple categories, you should point them out and
connect them with ’+’ sign
in the category. For example, if an answer involves logical errors and
mathematical calculation
errors, then the category should be a+c.

You must output with the following format:
Rationale: <your analysis process and explanation of the final
classification results>
Category: <only fill in with a or b or c or a+b or a+c or b+c or a+b+c
or d.>
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