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Abstract

Visual processing starts in the outer retina where photoreceptors transform light into
electrochemical signals. These signals are modulated by inhibition from horizontal
cells and sent to the inner retina via excitatory bipolar cells. The outer retina is
thought to play an important role in contrast invariant coding of visual information,
but how the different cell types implement this computation together remains
incompletely understood. To understand the role of each cell type, we developed
a fully-differentiable biophysical model of a circular patch of mouse outer retina.
The model includes 200 cone photoreceptors with a realistic phototransduction
cascade and ribbon synapses as well as horizontal and bipolar cells, all with cell-
type specific ion channels. Going beyond decades of work constraining biophysical
models of neurons only by experimental data, we used a dual approach, constraining
some parameters of the model with available measurements and others by a visual
task: (1) We fit the parameters of the cone models to whole cell patch-clamp
measurements of photocurrents and two-photon glutamate imaging measurements
of synaptic release. (2) We then trained the spatiotemporal outer retina model with
photoreceptors and the other cell types to perform a visual classification task with
varying contrast and luminance levels. We found that our outer retina model could
learn to solve the classification task despite contrast and luminance variance in
the stimuli. Testing different cell type compositions and connectivity patterns, we
found that feedback from horizontal cells did not further improve task performance
beyond that of excitatory photoreceptors and bipolar cells. This is surprising given
that horizontal cells are positioned to mediate communication across cones and
that they add to the model’s number of trainable parameters. Finally, we found
that our model generalized better to out of distribution contrast levels than a linear
classifier. Our work shows how the nonlinearities found in the outer retina can
accomplish contrast invariant classification and teases apart the contributions of
different cell types.
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Figure 1: Training a detailed, data-constrained biophysical model of the mouse outer retina to
solve a classification task: (left) A cone model with phototransduction cascade and ribbon synapse
mechanisms is fit to glutamate and photocurrent recordings. (right) The optimized photoreceptors are
spatially distributed and connected to horizontal cells and readout units by excitatory feedforward
ribbon synapses. Horizontal cells are also connected to cones by feedback connections. The network
is then trained to classify MNIST with varying contrast and luminance.

1 Introduction

The outer retina—the first stage of visual processing—already performs nonlinear processing of visual
stimuli which shapes downstream vision, and hence, behavior. In particular, these nonlinearities are
thought to play an important role in luminance normalization and contrast invariant encoding. Some
of the most prominent nonlinearities in the photoreceptors include the phototransduction cascade,
which translates the absorption of photons to intracellular currents [1], ion channels which govern the
cell’s membrane potential [2–5], and the ribbon synapse where glutamate is released dependent on
the intracellular calcium concentration [6–8]. In addition, horizontal cells provide recurrent feedback
to photoreceptors, further extending the computational capabilities of the outer retina [9].

Previous work has shown that photoreceptors are capable of adapting to drastically different global
luminance levels and that this adaptation is visible in the current produced by the phototransduction
cascade [10]. It has also been suggested that horizontal cell feedback to photoreceptors facilitates
adaptation and contrast enhancement [11]. However, contrast adaptation has been found in bipolar
cell dendrites even without input of horizontal cells and without voltage-gated ion channel activity
in the bipolar cells [12]. Despite all of this experimental evidence, most computational models of
the retina and higher level visual processing either omit the outer plexiform layer or collapse it into
spatiotemporal linear filters, relegating nonlinear processing to later stages [13–17].

Understanding the computations of the outer retina requires models that on the one hand incorporate
all of the mechanisms previously described, and that on the other hand can be optimized to perform
visual processing tasks to constrain parameters that cannot be identified from experimental mea-
surements. However, current biophysically detailed models do not support task-based optimization
of parameters [18]. Alternatively, more abstract models of retinal processing, which can be easily
optimized for task performance, do not capture biophysical mechanisms at the required level of detail
[13, 19–21]. Leveraging newly developed differentiable simulators for biophysical models [22], we
built a detailed model of a spatially extended patch of the outer retina including photoreceptors, hori-
zontal cells and bipolar cells, and all of their biophysical mechanisms outlined above (Fig. 1). Using
backpropagation of error, we optimized biophysical parameters of the photoreceptors to fit whole
cell patch-clamp measurements of photocurrents and two-photon glutamate imaging measurements
of synaptic release. We then fit between 2,000 and 2,900 additional parameters of the model not
constrained by these experimental measurements to enable the network to perform a classification
task. Using this data- and task-constrained model, we then show how the nonlinearities of the outer
retina enable a small network of cells with realistic biophysics to perform contrast invariant encoding
of visual stimuli and decipher the contributions of different cell types.

2 Related work

Few previous works have combined biophysical models with deep learning and optimization tech-
niques [21, 23, 22]. Idrees et al. [21] developed a convolutional neural network with biophysically
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realistic photoreceptors as an input layer [21]. This photoreceptor layer was shown to perform
adaptation that improved prediction primate and rat retinal ganglion cell activity and enabled better
predictions for luminance levels out of the training distribution. Their photoreceptor model, however,
did not include ribbon synapses, and had no biophysical or structural realism beyond the photorecep-
tor layer. They also didn’t test for contrast invariant encoding of visual stimuli. Schröder et al. [14]
developed a differentiable and biophysically realistic model of the inner retina with realistic synapse
dynamics, feedback circuits and trained the model end-to-end, but their work focuses on temporal
processing in the inner retina, and they do not constrain their model by task performance.

Other work has used visual tasks to constrain the parameters of more abstract vision models with
highly simplified neuron models [24, 23, 25]. For example, Lappalainen et al. [23] recovered experi-
mental properties of neurons in the fly visual system by combining connectome-based constraints
and training on an optic flow task, but they used very linear point neurons and simplified synaptic dy-
namics. We are not aware of any biophysical model of the retina whose parameters were constrained
by experimental data and task training, nor of a biophysical model trained to perform a classification
task at different contrast levels.

Finally, several biophysically realistic retina models exist [26–28], but they are not implemented in
frameworks that are amenable to task optimization, and they often lack biophysical mechanisms. Our
model is fully-differentiable, highly-detailed, and implemented in Python, allowing it to interoperate
with the Python machine learning ecosystem for efficient gradient-based optimization.

3 Methods

3.1 A differentiable, biophysically-detailed model of the outer retina

In this section we will provide some background information about our model and its detailed
biophysics. In our model, we use single compartment Hodgkin-Huxley type models [29]. These
model the flow of different ions through voltage modulated channels in the semi-permeable cell
membrane with equations that derive from Ohm’s law,

Iion(V, t) = ḡion ·ma(V, t) · hb(V, t) · (V − Eion), (1)

where V is the voltage across the cell membrane, ḡion the maximal conductance of a specific ion, m
and h the gating variables that model the opening and closing probabilities of the channels, a and b
the number of gates or protein subunits per channel, and Eion is the reversal potential at which there
is no net-flow of ions. Given several of these ionic currents and an external input current Iinput, the
membrane potential V is governed by

C
dV
dt

= Iinput −
∑
ion

Iion, (2)

where C is the capacitance. We model different cell-types by including different ionic currents. We
model the photoreceptor ion currents after Kamiyama et al. [2] as

C
dV
dt

= −(Iphoto + IKv + Ihyper + ICa + IK(Ca) + ICl(Ca) + Ileak). (3)

The current generated by the phototransduction cascade Iphoto is determined by a com-
plex electrochemical signaling pathway triggered by the absorption of photons by pho-
topigments in the outer segments of photoreceptors. Upon photon absorption, a cascade
of intracellular reactions is initiated, ultimately leading to the modulation of ionic cur-
rents across the photoreceptor membrane. We model the phototransduction cascade as

dR
dt

= γS(t)− σR(t) (4)
dP (t)

dt
= R(t)− ϕP (t) + η (5)

dG(t)

dt
=

Smax

1 + (C(t)/KGC)m
− P (t)G(t) (6) Smax =

η

ϕ
Gdark

(
1 +

(
Cdark

KGC

)m)
(7)

Iphoto(t) = kGn(t) (8)
dC(t)

dt
= β

(
Cdark

(Gdark)nk
I(t)− C(t)

)
. (9)
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Table 1: Network architectures

Readout neurons # Horizontal cells Connectivity

Passive 1 Full
Active bipolar cell 1 Full
Active bipolar cell 0 n/a
Active bipolar cell 9 Local
Active bipolar cell 200 One-to-one

Here, equation 4 models the production and decay of opsin. S(t) is the light stimulus and R(t)
the activated opsin molecules. P (t) denotes the second messenger or phosphodiesterase activity; it
increases with opsin activation and decays over time (Eq. 5). G(t) corresponds to the concentration of
cyclic GMP (cGMP), the key second messenger that controls ion channel opening (Eq. 6). Iphoto(t)
is the resulting photocurrent, modeled as a nonlinear function of cGMP concentration (Eq. 8). C(t)
tracks intracellular calcium concentration, which is modulated by the photocurrent and in turn feeds
back to regulate cGMP synthesis (Eq. 9). This feedback system captures the adaptive and nonlinear
response dynamics of cone photoreceptors to varying light intensities [10].

Cone photoreceptors also possess specialized ribbon synapses which enable rapid and continuous
neurotransmitter release in response to graded intracellular voltage changes [8]. The ribbon synapse
facilitates efficient transmission of visual signals to downstream neurons even under high-throughput
conditions. It is organized into discrete vesicle pools that undergo cycles of replenishment, priming,
and exocytosis. We model the dynamics of the ribbon synapse as

dRP
dt

= dmax · Exo(t)− rmax

(
1− IP(t)

IPmax

)
RP(t)

RPmax
(10)

dIP
dt

= rmax

(
1− IP(t)

IPmax

)
RP(t)

RPmax
− imax

(
1− RRP(t)

RRPmax

)
IP(t)

IPmax
(11)

dRRP
dt

= imax

(
1− RRP(t)

RRPmax

)
IP(t)

IPmax
− emax · f(V (t))

RRP(t)

RRPmax
(12)

dExo
dt

= emax · f(V (t))
RRP(t)

RRPmax
− dmax · Exo(t). (13)

In this model RP(t), IP(t), and RRP(t) describe the reserve, intermediate, and readily releasable
pool of vesicles, respectively. Exo(t) indicates the exocytosed vesicles (i.e., neurotransmitter release).
Eq. 10 describes the replenishment of the reserve pool from exocytosed vesicles and its depletion
into the intermediate pool and the priming of vesicles from the intermediate pool into the readily
releasable pool. Eq. 12 & 13 describe the calcium- and voltage-dependent transfer of vesicles from
the readily releasable pool into the synaptic cleft and the dynamics of vesicle release and recycling.
The term f(V (t)) is a sigmoid function of the photoreceptor membrane voltage V (t) capturing the
voltage-dependent probability of vesicle release.

The phototransduction cascade and ribbon synapse together allow the transformation of light stimuli
into graded voltage signals and their rapid encoding into neurotransmitter output, forming the
foundation of early visual processing. With these details, we describe our cone photoreceptors with
26 differential equations, the most detailed computational model of photoreceptors of which we are
aware. We implemented all of the mechanisms in an open source Python library.

We model horizontal cells (HCs) based on dynamics of rabbit HCs [3]. These dynamics are are
defined by

C
dV
dt

= −(IKar
+ IKdr

+ IKto
+ INa + ICa + Ileak). (14)

For the synapses of cones onto HCs, we use the ribbon presynaptic mechanism described above and
an ionotropic post-synaptic mechanism

Isyn = ḡS · Exo(t) · (Vpost − Esyn) , (15)
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Figure 2: Photoreceptor parameters fit to experimental data using our differentiable simulator. a)
Phototransduction cascade parameters were fit using gradient descent to normalized photocurrent
data when exposed to the light stimulus (top). b) Ribbon synapse parameters were fit to glutamate
recordings given a green center flash stimulus (2s) and a UV center flash stimulus (2s). Green traces
show simulations fit to glutamate recordings from the dorsal retina whereas magenta traces show
simulations fit to glutamate recordings from the ventral retina. Scale bars indicate one unit difference
from the baseline. c) Distributions of fitted ribbon synapse parameters for 42 cones based on one and
two dimensional kernel density estimates. d) Spectral selectivity, green vs. UV preference, of 42 data
traces compared to the trained simulations.

where gS is the maximal conductance, Exo(t) is the presynaptic exocytosed glutamate, Vpost is the
postsynaptic membrane voltage and Esyn is the reversal potential.

For the synapses of HCs onto cones, we use the same ionotropic synaptic mechanism (Eg. 15), but
instead of exocytosed glutamate Exo(t), the synaptic state evolves according to a standard model of
ionotropic synapses found in the literature [30]:

ds(t)
dt

=
1

τs
(s∞ − s(t)) s∞ = 1/ (1 + exp ((Vth − Vpre)/∆)) τs = (1− s∞)/k−.

The exact mechanism of feedback from HCs to cones is still debated [9], so we opted for a phe-
nomenological feedback mechanism.

The bipolar cell channel models were obtained from work observing five main membrane currents in
the bipolar cells of several vertebrate species [4]:

C
dV
dt

= −(IKA
+ IKv

+ IK(Ca) + Ihyper + ICa + Ileak). (16)

The calcium dynamics were adapted from other work [5]. For the synapses of cones onto bipolar
cells, we use the ribbon presynaptic mechanism and the ionotropic post-synaptic mechanism (Eq. 15)
such that all bipolar cells are of the OFF subtype, meaning that they hyperpolarize to light-onset.

We evaluated different network configurations for which we varied the number of HCs, connectiv-
ity, and bipolar cell dynamics to elucidate which components are important for contrast invariant
classification. Table 1 lists the different architectures we compare. Local connectivity means that
the HCs are placed on a lattice spanning the diameter of the patch and each is connected to its 50
nearest cones, approximating the cone-HC connection ratio in the mouse retina [31]. The one-to-one
connectivity of the 200 horizontal cells is designed to model a case in which each cone photoreceptor
gets feedback from an electrically isolated segment of horizontal cell.

We implemented all our models in JAX [32], using JAXLEY [22], a toolbox for differentiable bio-
physical simulation. This allows our models to run efficiently on GPU and to use gradient-based
optimization techniques for model parameter fitting. The code for producing and training our models
can be found at https://github.com/berenslab/jaxley-retina.

5

https://github.com/berenslab/jaxley-retina


2400 0 2400

TN axis ( m)

2400

0

2400

D
V

 a
xi

s 
(

m
)

a

0 200

Time (ms)

3

10

G
lu

e
x
o

Trained

Initialized

0 200

Time (ms)

85

55

H
C

 v
ol

ta
ge

 (
m

V
) Trained

Initialized

0 200

Time (ms)

30

10

R
ea

do
ut

 v
ol

ta
ge

 (
m

V
) Others

Readout 6

Initialized

0 15

Avg readout
voltage (mV)

0

6

9

2400 0 2400

TN axis ( m)

2400

0

2400

D
V

 a
xi

s 
(

m
)

b

0 200

Time (ms)

3

10

G
lu

e
x
o

0 200

Time (ms)

85

55

H
C

 v
ol

ta
ge

 (
m

V
)

0 200

Time (ms)

30

10

R
ea

do
ut

 v
ol

ta
ge

 (
m

V
)

0 15

Avg readout
voltage (mV)

0

6

9

30

20

10

A
vg

 c
on

e 
vo

lta
ge

 (
m

V
)

30

20

10
A

vg
 c

on
e 

vo
lta

ge
 (

m
V

)

Activity in network with passive readout neurons

Activity in network with active bipolar cell readout neurons

Figure 3: Neural activity in the biophysical model with 200 photoreceptors and one horizontal cell
connected to all cones trained to classify MNIST with variance in contrast and luminance. a) Activity
in the trained architecture with only a passive leak channel on the readout neurons. b) Activity in the
trained architecture with active bipolar cell channels on the readout neurons.

3.2 Data-constraining parameters of the photoreceptor models

The data used for constraining biophysical parameters of the model included recordings of pho-
tocurrents from six cones when exposed to 16 seconds of noise stimuli with variable mean [10].
Experimental data was normalized by the experimentally-measured dark photocurrent. To normalize
our simulations, we estimated the dark current using model parameters as kGn

dark, where Gdark is
the concentration of cGMP in the dark, n is the cGMP channel cooperativity, and k is a constant for
converting cGMP concentration to current.

We fit the 11 phototransduction cascade parameters of our cone model by cutting the stimuli and
traces into 100 random four second clips, recording the photocurrent state variable in our simulations,
and performing gradient descent with a mean squared error (MSE) loss function. All simulations in
this work were run with a timestep of 0.025 ms for stable dynamics. We used the Adam optimizer
[33] with a learning rate of 0.01 and initialized the parameters following previous work [10]. To
ensure that the parameters stayed bounded during optimization and to stabilize training, we used a
sigmoid transform, similar to Deistler et al. [22]. The exact bounds can be found in Table S1. We
performed leave-one-out cross-validation, leaving the recording from one cone out in each fold to
choose a final parameter set for all cones. The entire training required < 12 h on a NVIDIA A40.

Ribbon synapse parameters were constrained using fluorescence recordings of the glutamate biosensor
iGluSnFR while the cells were exposed to flashes of green and UV light [34]. We used a total of
42 glutamate traces, each with a 1 s green flash followed by a 1 s recovery period and 1 s UV flash
followed by a 1 s recovery period. With frozen phototransduction cascade parameters, we recorded
the exocytosed glutamate state variable in our simulations and fit six of the parameters in the ribbon
synapse model and an additional parameter that scaled the cone’s selectivity for green versus UV light
(α). We again minimized the MSE loss between the simulation and experimentally recorded trace.
We used the Adam optimizer with a learning rate of 0.01 and a stopping criteria of <99% the previous
average loss over ten epochs. We imposed a maximum number of epochs, 400, and the training for
each ribbon synapse typically lasted ∼20 hrs on a NVIDIA GeForce RTX 2080 Ti. We also sigmoid
transformed the parameters to stay within bounds estimated to maintain simulation stability. The
bounds were (10−5, 1) for all rates of vesicle pool movement, (10−5, 5) for k, (−50,−20) for V1/2,
and (0, 1) for the selectivity parameter α. Of the 42 parameter sets obtained, we chose the ten best
fits of glutamate traces from the ventral retina and the ten best fits of glutamate traces from the dorsal
retina for remaining simulations. These were picked as having the lowest MSE while matching the
response characteristics of the data (i.e. not only the mean activity).
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3.3 Task-constraining remaining parameters of the outer retina model

After fitting individual cones to data, we assembled them into a network with varying numbers of
horizontal cells and varying readout neuron models. To test the network’s ability to encode visual
stimuli in a contrast invariant manner, we trained the network to classify MNIST digits with varying
contrasts and luminances. Each network had ten bipolar cell readout neurons, one per digit.

For each digit, a contrast and luminance scaling factor was randomly chosen from the range (0.1, 1.0)
and (0, 0.1), respectively. We then took the digits with contrast and luminance variation and scaled
their intensities to photoisomerization rates up to 40,000 P*/s (photopic) for all digits. We stimulated
cones with the photoisomerization rate associated with the pixel at its location for the first 50 ms
of the simulation, and this signal then traveled to the readout neurons. The average voltage of the
readout neurons over the simulation period was calculated, rectified, and transformed by the softmax
function. The cross-entropy loss of the classification was then minimized via gradient descent. We
trained the conductance parameter of each ribbon synapse and ionotropic horizontal cell-to-cone
synapse in this setup.

For the training, we used the Adam optimizer on an exponential decay schedule with an initial
learning rate of 0.01, a decay rate of 0.9 over 1000 transition steps, and gradient clipping by the
global norm. We set a maximum of five epochs with early stopping at a 99.5% reduction in average
loss over the previous 10 batches. Access to NVIDIA H100 GPUs permitted a batch size of 32 digits.
Training for five epochs on the full MNIST training set and evaluating on the test set required two to
three days depending on the network architecture. This lengthy training time results from integrating
up to 7,652 differential equations for 8,000 timesteps per gradient step.

We applied this training procedure to five different network architectures (Table 1) to study if the
addition of bipolar cell channels and the number and structure of horizontal cell connectivity would
improve classification performance on the held out MNIST test set. Later, we trained the architectures
on the MNIST train split without contrast and luminance distortions and calculated accuracy on the
test split at different contrast levels. We trained the network as before, and the evaluation at different
contrast levels required 2-6 hours of compute time on the NVIDIA H100 GPU.

4 Results

4.1 Biophysical cone models can be fit to experimental data using gradient descent

We first fit the parameters of the phototransduction cascade on the recorded photocurrent data, and
we then fit the parameters of the ribbon synapse model on the glutamate imaging data using gradient-
based optimization (see Sec. 3.2). We found that the photocurrent of the trained simulation fit the
photocurrent data qualitatively well with a mean squared error of 0.0092 and fraction of explained
variance of 0.86 for the held out test cell current recording (Fig. 2a). Adaptation was visible in the
photocurrent data as the reduction in current after the onset of a larger light stimulus. This effect was
not visible at initialization—adaptation only emerged after parameter optimization.

Table 2: Performance of different network architectures on classification of all MNIST digits with
contrast and luminance distortions. All network architectures have 200 cones and the listed horizontal
cell connectivity and readout neuron mechanisms. All network architectures are trained and tested
with the same amount of contrast and luminance variation.

Readout neurons # Horizontal cells Connectivity Test accuracy

Passive 1 Full 0.42
Active bipolar cell 1 Full 0.62
Active bipolar cell 0 n/a 0.63
Active bipolar cell 9 Local 0.64
Active bipolar cell 200 1 to 1 0.64

The trained ribbon synapse model matched the recorded glutamate traces in both the ventral and
dorsal retina (Fig. 2b). Mean squared errors of the best chosen fits ranged from 0.025 to 0.437
and their Pearson correlations from 0.83 to 0.98. The fitted traces typically had the same spectral
selectivity (green vs UV sensitivity) as the traces from the data with only slight deviations (Fig. 2d),
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r = 0.96. Deviations occurred when the traces were noisy or activity was likely influenced by
surrounding cells in the experiment. Parameters were overall well constrained by the data and we did
not find significant correlations between the fitted ribbon synapse parameters (Fig. 2c).

4.2 Outer retina models with and without horizontal cells can perform a visual task despite
contrast and luminance variation

We then assembled 200 of these cones into a network model together with horizontal cells and bipolar
cells with different connectivity patterns (see Table 1), and we trained this network to classify MNIST
digits with contrast and luminance variation. We tested different model architectures with the goal of
inferring which mechanism is most important for task performance. The mechanism that made the
biggest difference in performance turned out to be the set of biophysically realistic bipolar cell ion
channels (Table 2). The addition of horizontal cells, regardless of abundance or connectivity, did not
improve classification accuracy substantially beyond that of cone photoreceptors alone. Notably, this
is despite the fact that they contributed 400-900 additional trainable parameters.

The addition of bipolar cell channels to the readout neurons changed the dynamics of the readout
neurons substantially (Fig. 3) but did not change the dynamics of the cones or horizontal cells
noticeably. The readout neurons do not synapse onto any of the other cells, so no change in the
activity of the other cells was to be expected. We also investigated the learned conductances of the
ribbon synapses from the photoreceptors to each of the bipolar cell readouts. We found that the
spatial patterns in the distribution of conductances somewhat resembled the digit that each readout
encodes, indicating that a contrast invariant representation of each digit was learned by the model
(Fig. 4). The central spot of high conductance weights for readout neuron one likely arose because
ones are often rotated differently but consistently occupy the center of the image.

Readout 0 Readout 1 Readout 2 Readout 3 Readout 4

Readout 5 Readout 6 Readout 7 Readout 8 Readout 9

3

20

lo
g(

g s
)(

S)

Ribbon synapse conductances onto each of the readout neurons

Figure 4: Trained conductances of the photoreceptor ribbon synapses onto each of the readouts in the
architecture with 200 photoreceptors and nine locally connected horizontal cells.

4.3 Mechanistic outer retina models are robust to out-of-training-distribution contrast
changes

For the best performing and most biophysically realistic architecture with 200 photoreceptors and
nine locally connected horizontal cells, we tested whether the biophysical model could gener-
alize to contrast levels outside of its training distribution. To this end, we trained the network
on the MNIST dataset at full contrast, and we then evaluated the model’s performance at lower
contrast levels. As references, we compared our model to a linear classifier with 200 units
fully connected to ten readout units, a linear classifier preceded by adaptive normalization, a
linear classifier preceded by adaptive thresholding, a two-layer multilayer perceptron, and the
biophysical model with its initial parameters (Fig. 5a). These models received the same input
as the photoreceptors and a softmax was applied to the readout activations to classify the digits.
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Figure 5: Biophysical model outperforms linear
classifier on MNIST classifications outside of the
contrast training distribution. a) Test accuracy at
different contrast levels outside of the training dis-
tribution (contrast=1.0) of the biophysical model
and other reference models. Error bars for the lin-
ear classifier and biophysical model across three
random seeds are too small to be visible. b) Activ-
ity of the phototransduction cascade state variables
and photoreceptor voltage for a randomly selected
cone at the different test contrast levels (first three
rows), and glutamate release from three random
cones at the different test contrast levels (bottom
left). Colors match the contrast levels in a. Coef-
ficient of variation across contrast levels for each
state variable, averaged over cones (bottom right)
with standard error of the means all below 0.02.

Remarkably, we found that the biophysical
model’s classification accuracy degraded much
more slowly than that of the linear classifier as
the contrast level moved further out of the train-
ing distribution. However, models that remove
contrast variation in the stimuli via normaliza-
tion or thresholding outperform the biophysical
model across contrast levels. Given that the
shape of their performance curves are similar,
one could suspect that the biophysical model is
performing a similar computation, though in a
biophysically explicable manner. The MPL out-
performs the biophysical model, though it uses
far more trainable parameters to do so, and more
importantly its computations are not tractable.

For our biophysical model, we are able to ex-
plain robustness to out-of-distribution contrast
levels with the evolution of state variables. As
stimuli is processed, we see large variation in
preliminary stages of the phototransduction cas-
cade (activated opsins and phosphodiesterase
activity), but then less variation in the follow-
ing stages where cGMP concentration, calcium
concentration, current, voltage, and glutamate
release are modulated (Fig. 5b).

5 Discussion

Here, we presented a mechanistic model of the
mouse outer retina constrained by both exper-
imental data and task performance. Because
the model contains a high level of biophysical
detail, we were able to analyze how different
nonlinear mechanisms found in the outer retina
contribute to contrast invariant visual coding.
We found architectures with bipolar cell chan-
nels on the readout neurons to perform the best,
but all network architectures were able to learn
the task. Surprisingly, the addition of horizontal
cells did not substantially improve classification
accuracy in the face of contrast variations or gen-
eralization across contrasts, contrary to common
believe and despite an increase in the number
of trainable parameters. This suggests that hor-
izontal cells, which were experimentally found
to modulate cone signals [35, 11, 36], may have
a different role in visual processing. While it is

possible that different training configurations could have elicited more horizontal cell activation, our
study suggests that photoreceptor dynamics, ion channels and ribbon synapses alone are sufficient to
transform a light stimulus into a well-scaled, contrast invariant quantity of glutamate release.

Our fitted parameters generally agree with previous estimates for models of the phototransduction
cascade (Table S1) and yielded traces that looked similar [10], despite the previous work having
trained only a subset of the parameters. Fits of the ribbon synapse parameters could have potentially
been improved further with longer training, but we imposed a maximum number of epochs to reduce
computational cost. An interesting avenue for future work could be the constraining of photoreceptor
parameters with simulation-based-inference as done in previous work [6] and generating simulations
that reflect parameter uncertainty.
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Previous work has shown that a biophysically realistic photoreceptor model improves CNN predic-
tions of retinal ganglion cell activity and enables the CNN to predict activity given stimuli outside
of the network’s luminance training distribution [21]. This is a key example of how inductive bias
introduced by biophysical models can improve the processing of visual information outside of a
model’s training distribution. We extend this work and show that a photoreceptor layer with even
more biophysical detail and other cell types found in the outer retina can accomplish the classification
of images with contrasts it has never seen before.

Limitations of our modeling include the lack of a more detailed horizontal cell to cone synapse. As
previously mentioned, the exact mechanisms of this feedback remain unclear. Some hypotheses
include various combinations of ephaptic feedback, pH-mediated feedback, and GABA reuptake of
horizontal cells [9, 11]. Including a more detailed synapse model would result in a more accurate
estimate of horizontal cell activity and its effect on cone dynamics. Such mechanisms could be
incorporated in our model in future work and used to study the influence of horizontal cell activity on
a variety of computations.

We also did not test the effect of the phototransduction cascade itself on classification at different
contrast levels. It has been shown previously that the phototransduction cascade reduces contrast
sensitivity due to the introduction of noise depending on the global luminance level [37]. Our model
of the phototransduction cascade, however, does not include noise. Future work could study how
the addition of noise to the photocurrents affects classification performance at the different contrast
levels.

The study of how detailed biophysical models perform computational tasks is not yet commonplace.
Biophysical models are often designed and only trained to fit data [26, 38, 14, 21], but then it is not
determined what role different pieces of the model play in any computations, such as our analysis of
different model architectures. Phenomenological models such as CNNs and linear-nonlinear models
are also traditionally fit to data, and some computational insights can be obtained [39, 40], but the
underlying biophysics cannot be explained. Our work is a step towards more detailed biophysical
models that perform visual tasks. These models can explain computations by analysis of underlying
states that map to a wide variety of real physical quantities, as we show for contrast invariant
encoding. In this paradigm, more complex tasks, for example including chromatic information and
other statistics describing the natural environment, could provide further novel insights into retinal
processing.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The model we proposed solves a classification task with contrast variations
well above chance performance, our comparison of model architectures yielded consistent
results for multiple hyperparameter settings, and many versions of our model presented
a higher test accuracy than a linear classifier outside of the contrast training distribution
though we show only one example.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations of our work in the discussion section, especially
improvements to our model that could be made, and we mention limitations in the methods
where applicable.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: Our paper does not present any purely theoretical results or proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our methods section and supplementary materials provide enough detailed
information for the model to be recreated and retrained as we did with the data we used.
Code to run the model will be provided.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a link to the code required to reproduce our results and analysis in
section 3.1.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: How each dataset was used to train each piece of the model and the training
procedure was explained in sections 3.2 and 3.3.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

13



Justification: We ran our experiments with multiple random seeds and found negligible
differences, not even visible on plots. In Fig. 5, error bars are slightly visible for the linear
classifier. Such deterministic biophysical models are very consistent in the results they
produce.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In sections 3.2 and 3.3 we state the GPUs and approximate execution times of
the trainings and experiments. Most of each GPU’s VRAM is used during every training.

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper develops a model of the outer retina to answer basic science
questions about the computational role of different cell types. We do not see any conflict
with the Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We do not see any immediate positive or negative societal impact. In the future,
one could imagine medical applications of our model to better understand disease processes
in the retina.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not see any high risks associated with releasing our model.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Experimental researchers that acquired the retinal datasets used were appropri-
ately cited. Code libraries used were also cited.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All the models implemented as part of the paper will be publicly available.
Some are already publicly available.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: We did not perform research with human subjects.
15. Institutional review board (IRB) approvals or equivalent for research with human

subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Since we only reused already published datasets, no IRB approval was neces-
sary.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were only used for basic code completions and some code suggestions,
but this work was by no means dependent on them.
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A Photoreceptor parameters

Table S1: Comparison of fitted photoreceptor parameters to previous estimates

Parameter Description Chen et al. 2024 Ours Our bounds

σ Opsin decay rate 9.74 14.2 (5, 24)
ϕ PDE decay rate 9.74 12.4 (5, 24)
η PDE dark activation 761 774 (750, 800)
Gdark Dark cGMP concentration 15.9-20 23.5 (12, 25)
k cGMP-to-current factor 0.01 0.015 (0.008, 0.022)
n cGMP channel cooperativity 3 2.88 (2.8, 3.2)
Cdark Dark Ca2+ concentration 1 1.03 (0.8, 1.2)
β Ca2+ extrusion rate 2.64 4.42 (2.5, 10)
m Cooperativity of GC Ca2+ dependence 4 4.10 (3.75, 4.25)
KCG Affinity of GC Ca2+ dependence 0.4 0.348 (0.2, 0.6)
γ Opsin gain 10 10.6 (1, 22)

B Ion Channel Equations

The implementations of all ion channels can be found in the repository https://github.com/
jaxleyverse/jaxley-mech/tree/main.

B.1 Standard form

Gating variables m and h take the following standard form unless otherwise defined.

dm

dt
=

m∞(V )−m

τm(V )

m∞(V ) =
αm(V )

αm(V ) + βm(V )

τm(V ) =
1

αm(V ) + βm(V )

dh

dt
=

h∞(V )− h

τh(V )

h∞(V ) =
αh(V )

αh(V ) + βh(V )

τh(V ) =
1

αh(V ) + βh(V )

B.2 Photoreceptors

Ion channel equations for photoreceptors were found in Kamiyama et al. [2].

IKv = gKvm
3h(V − eK)

αm(V ) =
5(100− V )

e(100−V )/42 − 1

βm(V ) = 9e−(V−20)/40

αh(V ) = 0.15e−V/22

βh(V ) = 0.4125/(e(10−V )/7 + 1)

gKv = 2× 10−3 S/cm2, eK = −74 mV

Ihyper = ghyper(S1 + S2 + S3)(V − ehyper)
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dC1

dt
= βhC2 − 4αhC1

dC2

dt
= 4αhC1 + 2βhS1 − (3αh + βh)C2

dS1

dt
= 3αhC2 + 3βhS2 − (2αh + 2βh)S1

dS2

dt
= 2αhS1 + 4βhS3 − (αh + 3βh)S2

dS3

dt
= αhS2 − 4βhS3

αh(V ) =
8

e(V+78)/14 + 1

βh(V ) =
18

e−(V+8)/19 + 1

ghyper = 3× 10−3 S/cm2, ehyper = −32 mV

ICa = gCam
4h(V − eCa)

αm(V ) =
3(80− V )

e(80−V )/25 − 1

βm(V ) =
10

e(V+38)/7 + 1

h(V ) =
e(40−V )/18)

1 + e(40−V )/18

gCa = 0.7× 10−3 S/cm2

Calcium dynamics also involve the calculation of eCa and Cas as follows.

eCa = −12.5 ∗ log(Cas/Cao)

IEx = Jex · e−(V+14)/70 · Cas − Cae
Cas − Cae +Kex

IEx2 = Jex2 ·
Cas − Cae

Cas − Cae +Kex2

dCas
dt

= −10−6(ICa + IEx + IEx2)

2FV1
− DCaS1(Cas − Caf )

δV1
− Lb1Cas(Bl − Cab,ls)

+ Lb2Cab,ls −Hb1Cas(Bh − Cab,hs) +Hb2Cab,hs

dCaf
dt

=
DCaS1(Cas − Caf )

δV2
− Lb1Caf (Bl − Cab,lf ) + Lb2Cab,lf

−Hb1Caf (Bh − Cab,hf ) +Hb2Cab,hf

dCab,ls
dt

= Lb1Cas(Bl − Cab,ls)− Lb2Cab,ls

dCab,hs
dt

= Hb1Cas(Bh − Cab,hs)−Hb2Cab,hs

dCab,lf
dt

= Lb1Caf (Bl − Cab,lf )− Lb2Cab,lf
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dCab,hf
dt

= Hb1Caf (Bh − Cab,hf )−Hb2Cab,hf

F = 9.648× 104 C/mol, V1 = 3.812× 10−13 dm3, V2 = 5.236× 10−13 dm3, DCa = 6× 10−8

dm2/s, δ = 3× 10−5 dm, S1 = 3.142× 10−8 dm2, Lb1 = 0.4 s−1µM−1, Lb2 = 0.2 s−1,
Hb1 = 100 s−1µM−1, Hb2 = 90 s−1, Bl = 500 µM, Bh = 300 µM, Jex = 20 pA, Jex2 = 20 pA,

Kex = 2.3 µM, Kex2 = 0.5 µM, Cae = 0.01 µM, Cao = 1600 µM.

IK(Ca) = gK(Ca)m
2n(V − eK)

αm(V ) =
15(80− V )

e(80−V )/40 − 1

βm(V ) = 20e−V/35

n(Cas,K1/2) =
Cas

Cas +K1/2

gK(Ca) = 5× 10−3 S/cm2, K1/2 = 0.3 mM, eK = −74 mV.

ICl(Ca) = gCl(Ca)m(V − eCl(Ca))

m(Cas,K1/2) =
1

1 + e(K1/2−Cas)/0.09

gCl(Ca) = 2× 10−3 S/cm2, K1/2 = 0.37 µM, eCl(Ca) = −20 mV.

Ileak = gleak(V − eleak)

gleak = 0.35× 10−3 S/cm2, eleak = −77 mV.

B.3 Horizontal Cells

Ion channel equations for horizontal cells were found in Aoyama et al. [3].

Ileak = gleak(V − eleak)

gleak = 0.5× 10−3 S/cm2, eleak = −80 mV.

INa = gNam
3h(V − eNa)

αm(V ) =
200(38− V )

e(38−V )/25 − 1

βm(V ) = 2000e−(55+V )/18

αh(V ) = 1000e−(V+80)/8

βh(V ) =
800

e(80−V )/75 + 1

gNa = 2.4× 10−3 S/cm2, eNa = 55 mV.

IKdr
= gKdr

m4h(V − eK)

αm(V ) =
0.4(65− V )

e(65−V )/50 − 1

βm(V ) = 4.8e(45−V )/85

αh(V ) =
1500

e(V+92)/7 + 1

βh(V ) = 0.02 +
80

e(V+100)/15 + 1

gKdr = 4.5× 10−3 S/cm2, eK = −80 mV.
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IKto = gKtom
3h(V − eK)

αm(V ) =
2400

1 + e−(V−50)/28

βm(V ) = 80e−V/36

αh(V ) = e−V/60

βh(V ) =
20

e−(V+40)/5 + 1

gKto
= 15× 10−3 S/cm2, eK = −80 mV.

IKar
= gKar

m5(V − eK)

m(V ) =
1

1 + e(V+60)/12

gKar
= 4.5× 10−3 S/cm2, eK = −80 mV.

ICa = gCam
4(V − eCa)

αm(V ) =
240(68− V )

e(68−V )/21 − 1

βm(V ) =
800

e(55+V )/55 + 1

gCa = 3.3× 10−3 S/cm2, eCa = 54.176 mV.

B.4 Bipolar Cells

Ion channels for the bipolar cell readouts use the leak, KV, KA, and hyperpolarization-activated
channels of Usui et al. [4] and the calcium dependent channels of Benison et al. [5]. Calcium
dependent channels come from this second source aimed at modeling retinal ganglion cells to reduce
the computational complexity of the calcium pump.

Ileak = gleak(V − eleak)

gleak = 0.23× 10−3 S/cm2, eleak = −21 mV.

IKV = gKVm
3h(V − eK)

αm(V ) =
400

e−(V−15)/36 + 1

βm(V ) = e−V/13

αh(V ) = 0.0003e−V/7

βh(V ) = 0.02 +
80

e(V+115)/15 + 1

gKv = 2× 10−3 S/cm2, eK = −58 mV.

IKA = gKAm
3h(V − eK)

αm(V ) =
2400

e−(V−50)/28 + 1

βm(V ) = 12e−V/10

αh(V ) = 0.045e−V/13

βh(V ) =
75

e−(V+30)/15 + 1
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gKA = 35× 10−3 S/cm2, eK = −58 mV.

Ihyper = ghyper(S1 + S2 + S3)(V − ehyper)

dC1

dt
= βhC2 − 4αhC1

dC2

dt
= 4αhC1 + 2βhS1 − 3αhC2 − βhC2

dS1

dt
= 3αhC2 + 3βhS2 − 2αhS1 − 2βhS1

dS2

dt
= 2αhS1 + 4βhS3 − αhS2 − 3βhS2

dS3

dt
= αhS2 − 4βhS3

αh(V ) =
3

e(V+110)/15 + 1

βh(V ) =
1.5

e−(V+115)/15 + 1

ghyper = 0.975× 10−3 S/cm2, ehyper = −17.7 mV.

ICaL = gCaLm
2(V − eCa)

αm(V ) =
0.061(V − 3)

1− e−(V−3)/12.5

βm(V ) = 0.058e−(V−10)/15

gCaL = 2× 10−3 S/cm2.

ICaN = gCaNm
2h(V − eCa)

αm(V ) =
0.1(V − 20)

1− e−0.1(V−20)

βm(V ) = 0.4e−(V+25)/18

αh(V ) = 0.01e−(V+50)/10

βh(V ) =
0.1

1 + e−(V+17)/17

gCaN = 1.5× 10−3 S/cm2.

IKCa = gKCa

(
x

1 + x

)
(V − eK)

x =

(
[Ca2+]i
KKCa

)2

gKCa
= 2× 10−3 S/cm2, KKCa

= 0.6× 10−3 mM, eK = −85 mV.
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The calcium pump and equilibrium potential calculation is as follows.

iCa = ICaN + ICaL

Vcell = πr2l

τeff =
τstore

fi

jpump = vpump
[Ca2+]4i

[Ca2+]4i +K4
pump

jchannel =

−10000 · iCa

2FVcell
if − 10000 · iCa

2FVcell
> 0

0 otherwise

[Ca2+]i,∞ = [Ca2+]eq + τstore(jchannel − jpump)

d[Ca2+]i
dt

=
[Ca2+]i,∞ − [Ca2+]i

τeff

eCa =
RT

2F
· 1000 · ln

(
[Ca2+]o
[Ca2+]i

)
r = 1 µm, l = 10 µm, F = 96485.3329 C/mol, T = 279.45 K, R = 8.314 J/(mol·K),

[Ca2+]o = 2.0 mM, [Ca2+]eq = 1× 10−4 mM, τstore = 12.5 ms, Kpump = 1× 10−4 mM,
vpump = 7.2× 10−6 mM/ms, fi = 0.025.
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