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ABSTRACT

The landscape of neural network loss functions is known to be highly complex,
and the ability of gradient-based approaches to find well-generalizing solutions to
such high-dimensional problems is often considered a miracle. Similarly, Bayesian
neural networks (BNNs) inherit this complexity through the model’s likelihood.
In applications where BNNs are used to account for weight uncertainty, recent
advantages in sampling-based inference (SAI) have shown promising results out-
performing other approximate Bayesian inference (ABI) methods. In this work,
we analyze the approximate posterior implicitly defined by SAI and uncover key
insights into its success. Among other things, we demonstrate how SAI handles
symmetries differently than ABI, and examine the role of overparameterization.
Further, we investigate the characteristics of approximate posteriors with sampling
budgets scaled far beyond previously studied limits and explain why the localized
behavior of samplers does not inherently constitute a disadvantage.

1 INTRODUCTION
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Figure 1: Evolution of the approximate posterior
distribution of SAI, illustrated by marginal bivari-
ate densities of two weights (axes, the lighter the
higher the density) for 10 (left) and 10k (right)
chains of posterior samples with 10k and 10M pos-
terior samples visualized respectively.

By treating network weights probabilistically,
Bayesian neural networks (BNNs) enable vari-
ous applications, e.g., quantifying uncertainty,
as a basis for active learning pipelines, im-
proved optimization of the network itself, or
compression approaches (Papamarkou et al.,
2024). BNN research, alas, faces challenges
in posterior inference due to the posterior’s high
complexity (Izmailov et al., 2021) and the over-
parametrization of neural networks, inducing
symmetries that impede performance (see, e.g.,
Wiese et al., 2023; Gelberg et al., 2024).

While BNNs have been extensively studied in
the context of approximate Bayesian inference
(ABI), sampling-based inference (SAI) has only
recently gained more traction due to its im-
proved practical feasibility (see, e.g., Sommer
et al., 2024; 2025). In contrast to ABI methods that come with certain inductive biases, SAI is tasked
with a seemingly impossible idea: Obtaining a set of representative samples from a typically high
dimensional and very complex posterior without approximation assumptions that help mitigating
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non-identifiabilities of the network’s weight mapping. To better understand the challenges and
opportunities related to SAI for BNNs, it is crucial to comprehend the nature of SAI’s (approximate)
posterior. While most sampling approaches are designed to yield samples from the true posterior in
the limit, this is a theoretical property. For BNNs in particular, sampling methods will be much more
of a (local) approximation in comparison to other applications of SAI. It is, however, unclear, to what
extent the posterior obtained by SAI is subject to an (implicit) approximation (cf. Figure 1).

Our Contributions In this work, we study the posterior obtained by SAI from three different
angles: First, we investigate the behavior of SAI and the influence of prior distributions on overpa-
rameterization. Next, we discuss how non-identifiabilities will influence SAI and whether a specific
treatment is necessary to address these. By analyzing the approximate posterior in the limit with
an unprecedentedly large sampling budget, we further find that the posterior induced by recent SAI
methods might be much more well-behaved than previously thought. Finally, we explore the practical
ramifications of our findings, suggesting that local sampler behavior does not hinder the robustness
and superior performance of SAI in real-world applications, and provide detailed guidelines for
optimizing its performance.

2 RELATED WORK AND OPEN QUESTIONS

Characterizing epistemic uncertainty in machine learning is one of the main goals of probabilistic
inference (Hüllermeier & Waegeman, 2021). For neural networks, a Bayesian approach has been
identified as a promising direction early on (Tishby & Solla, 1989; MacKay, 1992). While some
approaches such as Monte Carlo dropout (Gal & Ghahramani, 2016) and deep ensembles (Laksh-
minarayanan et al., 2017) have been shown to relate to the idea of BNNs, most research revolves
around approximate Bayesian methods. Seminal work includes the introduction of probabilistic
backpropagation approaches (Blundell et al., 2015; Hernández-Lobato & Adams, 2015), variational
inference (see, e.g., Blei et al., 2017), Laplace approximation (see, e.g., Ritter et al., 2018; Daxberger
et al., 2021a), as well as local approximations such as linearization (Immer et al., 2021), subnetwork
inference (Daxberger et al., 2021b), or subspace inference (Izmailov et al., 2020; Dold et al., 2024).

Sampling-Based Inference An alternative to approximate approaches is sampling-based inference
(SAI), usually relying on Markov Chain Monte Carlo (MCMC) methods. SAI is often considered a
gold standard (see, e.g., Farquhar et al., 2020) as sampling approaches can be designed to sample
from the true posterior (in the limit). While successful for smaller models or simpler hypotheses, SAI
remains a challenge in high dimensions and is often considered impractical for BNNs (Papamarkou
et al., 2022). With the ulterior goal to characterize the posterior landscape of BNNs (Izmailov et al.,
2021), recent approaches have made progress to allow for better mixing of Markov chains (Sen et al.,
2024), devising strategies for treatment of symmetries (Wiese et al., 2023; Laurent et al., 2024), and
scaling samplers for larger datasets (Chen et al., 2014; Zhang et al., 2020) as well as parameter spaces
(Sommer et al., 2024; 2025).

Challenges in Posterior Characterization The challenges in characterizing the posterior of BNNs
using SAI are related to several factors. Two well-known reasons are the high dimensionality
and multimodality of the parameter space. In addition, overparametrization of the neural network
fθ : X → Y causes non-identifiability w.r.t. its parameters θ ∈ Θ ⊆ Rd. More specifically, for data
D := {(yi,xi)}ni=1 with (yi,xi) ∈ X × Y , non-identifiability usually refers to parameter sets θ in
the weight space Θ of the neural network that lead to the same functional mapping (Hecht-Nielsen,
1990), i.e., ∃θ, θ̃ ∈ Θ,θ ̸= θ̃ : fθ(x) = fθ̃(x)∀x ∈ X .

Symmetries One of the most prominently discussed non-identifiabilities is symmetry (Villar
et al., 2024). Showing functional equivalence of networks when parameters admit an equivalence
relationship, i.e., θ ∼ θ̃ ⇒ fθ(x) = fθ̃(x) is more straightforward (Pourzanjani et al., 2017;
Petzka et al., 2020; Phuong & Lampert, 2020; Bona-Pellissier et al., 2023), while deriving parameter
equivalence from equivalent outputs, i.e., fθ(x) = fθ̃(x) ⇒ θ ∼ θ̃ requires stronger and often
impractical assumptions (Rolnick & Kording, 2020; Phuong & Lampert, 2020; Bona-Pellissier et al.,
2023). Recent work has also identified symmetries as the origin of low-capacity saddle points
(Li et al., 2019; Ziyin et al., 2023). This suggests improvements in model performance and/or
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optimization when removing symmetries from the network (as, e.g., suggested in Ziyin et al., 2025).
Proposals to deal with symmetries include bias sorting (Pourzanjani et al., 2017) or skip connections
(Kurle et al., 2021) to remove permutation invariances, using invariant networks (Cohen & Welling,
2016; Zaheer et al., 2017; Hartford et al., 2018; Maron et al., 2019; Navon et al., 2023), removing
scaling symmetries via regularization (Laurent et al., 2024), or computing a model average over
symmetry orbits (Gelberg et al., 2024). While symmetries are also known to slow down sampling in
SAI (Nalisnick, 2018; Papamarkou et al., 2022; Wiese et al., 2023), only a few papers have studied
symmetries in SAI .

Open Research Questions It remains an open research question to what extent 1) the high-
dimensionality and overparametrization of models change the BNN posterior obtained through
SAI methods and how this, in turn, affects derived uncertainty quantification (UQ) statements.
Overparamatrization also induces non-identifiabilities, making it unclear 2) whether SAI is even able
to navigate such complex landscapes.

Setup In this and the following sections, we will study L-layer perceptrons given by fθ(x) =
⃝L

l=1(ϕ
(l) ◦ h(l))(x), with linear function h(l)(x) = W(l)x + b(l), W(l) ∈ Rdl×dl−1 ,b(l) ∈

Rdl , dl ∈ N for l ∈ {1, . . . , L} =: [L], and monotonic activation function ϕ(l). Due to their
popularity, special emphasis will be placed on ReLU networks with ϕ(l) ≡ ϕ = max(·, 0), l ∈ [L−1].
The vector θ then denotes the flattened and stacked weights and biases with d :=

∑
l∈[L] dl ·(dl−1+1).

If the weight of a layer is a vector, it will be denoted as w(l), and as w(l), if it is a scalar. In the
following, we also will assume a data distribution yi

ind.∼ F(xi,θ) with density p(y|X,θ) =∏
i∈[n] p(yi|xi,θ). We will denote the prior as p(θ) and the posterior as p(θ|X,y). If not stated

differently, we will assume a Gaussian prior θj ∼ N (0, τ2j ) with variance τ2j ≡ τ2 for all θj in θ.

3 THE EFFECT OF OVERPARAMETRIZATION

3.1 UNIVARIATE NARROW BAYESIAN NETWORKS

In the following, we start and try to build an understanding of the effects of high dimensionality
and overparameterization as major drivers of posterior complexity. As an instructive example, we
consider narrow Bayesian neural networks of depth L ≡ d with univariate input and h(l)(x) = w(l)x.
If ϕ(·) = Id(·), fθ is a narrow linear network. Given independent and identically distributed (i.i.d.)
data {(xi, yi)}ni=1 and model assumption yi ∼ N (fθ(xi), σ

2), the Maximum Likelihood solution
θ̂ = ŵ = (ŵ(L), . . . , ŵ(1)) of argminw p(y|x,w) is a set defined by ŵ = {w :

∏
l ŵ

(l) =

(
∑n

i=1 x
2
i )

−1
∑n

i=1 xiyi =: β̂}. It is straightforward to see that this network admits a scaling
symmetry, as we can multiply any of the ŵ(l) by a factor c ∈ R+ and divide another ŵ(l̃), l̃ ̸= l, by
c, which will still be a maximizer of p(y|x,w). By introducing weight decay, we can reduce this
scaling symmetry to a sign-flip symmetry with only |ŵ| = 2L−1 possible solutions (or 2L if L is
even and sgn(β̂) = 1), admitting

ŵpen = {w : w(l) = ±β̂1/L ∧
∏

l ŵ
(l) = sgn(β̂)}. (1)

This is because the two optimization problems

ŵpen := argmin
w

− log p(y|x,w) + ψ∥w∥22 (2)

β̂pen := argmin
β

− log p(y|x, β) + ψL|β|2/L (3)

for regularization parameter ψ ∈ R+ can be shown to have the same minima (see, e.g. Kolb et al.,
2025). Note that as ∥w∥22 will increase linearly with L, the optimization problem requires a smaller
amount of regularization (or weight decay) ψ for increasing L.

The Effect on ABI Using MFVI with a factorized Gaussian q(w|ζ) =
∏

l∈[L] N (w(l)|µl, σ
2
l ) as

an example, the KL divergence KL(q(w)∥p(w|x,y)) is given by∑
l∈[L][log(τ

2/σ2
l )− 1 + (σ2

l + µ2
l )/τ

2]/2.
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Assuming σ2
l ≡ σ2 = τ2, we see a similar result as in the case of Equations (2) and (3): When

keeping τ2 and n fixed and assuming a constant expected likelihood term while increasing L, the
KL divergence in the ELBO increases with

∑
l µ

2
l /(2τ

2). Let ν :=
∏L

l=1 µl. Using the AM-GM
inequality, we know that

∑
l∈[L] µ

2
l ≥ L · |ν|2/L, where the right-hand side corresponds to the

problem’s minimum norm solution µ̂l ≡ |ν|1/L ∀l ∈ [L]. This means that the optimization is
discouraged from choosing any µl different from |ν|1/L as there would otherwise always be a smaller
KL divergence for the same functional output fθ. This has two consequences: 1) The individual
solutions µ̂l will converge to 0 as L increases and 2) if not adapted with L, the prior will become
more and more influential in the objective via the KL divergence. Both observations assume the
(expected) likelihood to remain constant or at least not to grow with L. In a simple model like in this
section, this seems to be a reasonable assumption.

Sampling-based Inference While normally distributed priors can be shown to have a certain
mathematical equivalence to L2-penalties and weight decay, SAI does not seek to find a surrogate
posterior with strong assumptions that best match the true posterior; rather, it aims to approximate
the true posterior without imposing restrictive assumptions. The setting is therefore different from
the previous scenarios. Now assume that for increasing network size d, the likelihood does not
increase—an assumption that can be well justified in the univariate network above since it does not
increase in capacity with more layers L. Then, the prior influence on the posterior will become more
and more dominant for increasing L. This is because the likelihood is bounded while the log-prior
p(θ) ∝ τ−2

∑d
j=1 θ

2
j increases linearly (since d−1 log p(θ) converges to 1 almost surely by the

strong law of large numbers) and hence any non-zero value for β̂ becomes exponentially suppressed.
This, in turn, suggests that the posterior could potentially even become simpler in structure in higher
dimensions when maintaining the model performance. Intuitively, a larger network will have more
flexibility and thereby also more freedom to adhere to the prior distribution.

3.2 INCREASING WIDTH

Moving to a one-hidden-layer network with d1 > 1 units, it is well-known that fθ converges to a
Gaussian process for d1 → ∞. However, this is only the case if the prior is adjusted for the number of
parameters (see, e.g., Neal, 2012). In a BNN setting, it is, however, common practice not to increase
the prior variance for different model sizes and use standard normal or Laplace priors independent
of the network size (Fortuin, 2022; Sommer et al., 2024). This again induces more regularization
toward zero compared to approaches that adapt the variance with parameter size. At the same time,
the flexibility of the network increases, allowing the sampler to more easily adhere to the prior.

Analogous to the univariate narrow network, there is a form of exchangeability of all but the first and
last weight in deep and wide linear networks (Ziyin et al., 2024, Theorem 5.4). Since the capacity of
this network also does not grow with L, we expect a similar behavior as before for all intermediate
layers: A posterior that is increasingly concentrated around zero, with marginals that progressively
resemble the prior. In contrast to before, the first and last layers’ weights have a special role being
connected to the data, and will thus be more influenced by the likelihood. We confirm this hypothesis
also empirically in a later experiment, depicted in Figure 7.

3.3 RELU ACTIVATION AND BIASES

In contrast to linear networks, it is much more difficult to get an intuition of posterior properties when
including non-linearities. To further reaffirm our conjecture, we turn to two-layer neural networks
with ReLU-activation in the hidden layer fθ(x) = w(2)⊤ϕ(W(1)x + b(1)). Such networks have
recently been shown to be “convexifiable” (Mishkin et al., 2022) and, in a non-Bayesian setting, can
be estimated by iterating over possible activation patterns while solving a group lasso problem. In
Appendix D, we discuss the properties of this network in the Bayesian setting.

While not yielding a concave posterior density, we can show that the density is unimodal in the
product of weights u := w(2)⊤W(1) (up to permutations), hence even less sophisticated samplers
should be able to navigate this posterior landscape. Hypothesizing that the shape of the posterior
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should reflect previously found patterns when the network is chosen flexible enough, we conduct SAI
for a small network with 8 hidden neurons and a larger, more flexible one with 64 hidden neurons.

Empirical Findings A selection of resulting uni- and bivariate marginal densities of u are shown
in Figure 8 and Figure 9 in the Appendix. The results confirm our hypothesis of unimodality of the
posterior density of u and, in particular, that with increased dimensions, more force is exerted by
the prior onto the sampler, pulling the otherwise strongly varying distributions (Figure 8, left) for
different sampling runs together and concentrating around the origin (Figure 8, right).

General ReLU Networks In the above example, we found not only u to be unimodal, but the same
also holds for entries in W1 and w2. This can be explained as follows: If the first layer’s activations
are distributed symmetrically around zero and d1 is large enough, all weights in intermediate layers
should have an equal likelihood of being negative or positive. This allows the network to be (more)
compliant with the zero mean prior and therefore a similar picture as in the deep linear network arises
for the intermediate layer’s weights. This in turn requires the biases to regulate the product of weights
and previous layer activations, which should paint a clear picture in the biases’ posteriors. Figure 7
confirms our conjecture, showing more distinct patterns for the first layer weights and biases, whereas
intermediate layers tend to reflect the shape of the prior.

4 NON-IDENTIFIABILITIES

The previous section suggests that high dimensionality, in particular overparametrization, might
potentially even work in favor of SAI (or in general probabilistic methods). However, this says little
about the effectiveness of traversing the posterior, and non-identifiabilities de facto still exist in the
model, even in high dimensions. We will illustrate this for symmetries in the following but also
address other challenges in posterior sampling afterwards.

4.1 SYMMETRIES

While there exists a multitude of different classifications of symmetries, we focus on countable
or discrete and uncountable symmetries. We refer to Appendix A for their definitions and related
literature. A typical example of (the cause of) a countable symmetry is the interchangeability of
neurons within one layer—a permutation symmetry. By swapping the in- and outgoing weights of
two neurons in the same layer, we obtain the same function fθ but modified weights W(l),W(l+1).
For a deep linear network fθ(x) = W(L) · · ·W(l−1)W(l) · · ·W(1)x, it is easy to see that applying
such a permutation using a permutation matrix P ∈ {0, 1}d×d, the network with permuted weights
f̃θ(x) = W(L) · · · (W(l−1)P⊤)(PW(l)) · · ·W(1)x = fθ(x) since P⊤P = Id (P is an orthogonal
matrix). In contrast to permutation symmetries, uncountable symmetries such as (positive) scaling
symmetries result in an infinite amount of equivalent models. This is easy to see, e.g., for the deep
linear network: ∀c ̸= 0, f̃θ(x) = W(L) · · · (W(l−1) · 1/c)(c ·W(l)) · · ·W(1)x = fθ(x). In contrast
to permutation symmetries, uncountable symmetries are connected in weight space. This makes it
much more likely for methods to traverse the (generalized hyperbolic) manifold created by these
symmetries while not providing any functional diversity.

4.2 TREATMENT IN ABI

When trying to approximate the posterior p(w|X,y) using an approximate distribution q(w|ζ) with
parameters ζ ∈ Rz, z ∈ N, a common approach is the minimization of the (reverse) Kullback-
Leibler divergence (KLD): KL(q(w|ζ)∥p(w|X,y)). Being mode-seeking by nature and relying on
stochastic optimization, such an ABI approach therefore ideally solves the problem of permutations
and other countable symmetries implicitly by focusing only on one of multiple modes. In general,
approaches that assume a unimodal distribution around a learned posterior mean or the maximum
a-posteriori (MAP) estimator θ̂ (such as Laplace approximation) will not be affected by axis-mirrored
solutions—at least when considering the uncertainty of a single model optimization run. In contrast
to variational inference (VI) approaches, deep ensembles (DE) can be potentially harmed in their
expressiveness by running into permuted but functionally identical solutions.
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Figure 2: Posterior of the network fθ(x) = w2(w1x)
as characterized by SAI (using multiple chains of the
NUTS sampler) and ABI using mean-field VI with dif-
ferent prior variances τ2. According to Equation (3),
the minimum norm solution is given by w1w2 = 1.

As can be seen in Figure 2, ABI methods
are also often “immune” by nature to un-
countable symmetries such as scaling sym-
metries as their local approximation around
an optimized solution θ̂ and stochastic op-
timization will again focus on one specific
solution. In addition, commonly used ABI
methods can be shown to be scale-invariant.
For example, applying a non-zero prior
with slightly different σ2

j for every parame-
ter θj in a mean-field VI (MFVI, Blei et al.,
2017) approach can be shown to remove
permutation and scaling symmetries with
probability 1 (see Appendix A.1)

While ABI will not always be “immune” as
pointed out by Gelberg et al. (2024) and
apparent in Figure 2, there is explicit treat-
ment of symmetries for these optimization-based methods. Examples include bias sorting (Pourzan-
jani et al., 2017) or the above-described adjustment to the prior distribution, which modifies the
optimization objective as proposed by (Ziyin et al., 2025). These approaches enhance neuron
identifiability and (theoretically) remove permutation symmetries.

4.3 TREATMENT IN SAI

Unlike ABI methods, SAI approaches do not rely on local approximation assumptions, making them
more susceptible to symmetries. For example, a sampler might oscillate between modes created
by parameter permutations, wasting computational resources on transitions rather than exploring
local regions around modes. This raises the question of whether a sampler will remain within a
symmetry-induced manifold at any given time.

Theoretical Considerations While priors in SAI may initially appear to guide solutions toward
minimum norm configurations, as seen in Laurent et al. (2024), this holds only for simple networks
with two weights. Counterexamples emerge in networks with three or more weights (Appendix A.2).
Yet, SAI possesses “built-in protective mechanisms” similar to ABI that prevent it from being trapped
in symmetries. First, because SAI proposes new states probabilistically, it avoids being locked
between countable symmetries (Figure 2) and eventually selects a direction by chance. Second,
uncountable symmetries can be broken by introducing slight variations in regularization across weight
dimensions, akin to using a non-constant diagonal mass matrix in Hamiltonian Monte Carlo (Ziyin
et al., 2025). More generally, since the sampler operates probabilistically, it almost surely does not
remain in symmetry manifolds, as these have a probability measure of zero.

Practical Considerations The previous paragraph explains why samplers might not exactly follow
symmetry manifolds, leaving open the question of whether their existence impairs sampling perfor-
mance. While no definite answer exists and pathological examples or challenging applications can
always be found1, we provide arguments and empirical evidence in the following section showing
that SAI is not notably affected by symmetries or other non-identifiabilities in practice.

4.4 REGIONS OF (ALMOST) ZERO PROBABILITY

Non-identifiability includes regions where fθ learns nothing, resulting in (near) zero likelihood with
nonzero probability mass. This can occur, for example, when a ReLU activation remains inactive
across all data points. In models with bottlenecks or when this affects the output neuron, fθ becomes
non-identifiable. Once a sampler enters such a region, it cannot move, similar to regions of extremely
low probability. To mitigate this, samplers can be warm-started using solutions from a pre-optimized
non-Bayesian network, which has proven highly effective (Sommer et al., 2024).

1This is also the reason for the great variety of samplers, each trying to solve a differently structured problem.
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5 SAMPLING IN PRACTICE

BNN posteriors are highly complex. In Section 3, we argue that in overparameterized models,
the prior can dominate, shaping the posterior. This assumes a well-performing model. Likewise,
Section 4.4 advocates warm-starting the sampling process. To navigate posterior complexities,
we identify three key strategies: 1) warm-starts, 2) multiple chains, and 3) focusing on localized
exploration. The following sections detail their role in addressing non-identifiabilities and other
challenges.

5.1 COUNTABLE SYMMETRIES
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Figure 3: Cumulative LPPD of individual and
ensembled sampler chains, initialized from
functionally equivalent and diverse warm-starts.

To avoid countable symmetries like permutations,
SAI can be designed to prioritize local exploita-
tion, minimizing jumps between symmetrical so-
lutions. Since permuted solutions reside in differ-
ent orthants, transitioning between modes requires
crossing the origin, which is unlikely within a lim-
ited computational budget. Even if two chains ex-
plore the same mode in different orthants, SAI re-
mains largely unaffected. Evidence is provided in
Figure 3, showing that sampling will still provide
functionally diverse models (measured using the
log posterior predictive density, LPPD for short)
when starting 11 chains from permutations of a
12th chain. This experiment suggests a cost-effective alternative to Bayesian Deep Ensembling (BDE)
(e.g., Sommer et al., 2025), requiring only a single pre-trained model while achieving comparable
ensemble performance.

5.2 UNCOUNTABLE SYMMETRIES
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Figure 4: Pairwise squared Wasserstein-2 distances
of the predictive distribution induced by each sam-
ple from a warm-start initialized sampler chain on
the airfoil dataset. Non-significant distances are
depicted in orange.

To analyze how trajectories of a sampler
behave over time and whether the result-
ing samples show signs of functional equiv-
alence, we analyze the predictive distri-
bution for each sample s ∈ [S]. In
two different iterations of the sampler, we
obtain weight sets θ(s),θ(s̃), which yield
predictive distributions p(y|X,θ(s)) and
p(y|X,θ(s̃)). Using a Gaussian assump-
tion for the data distribution, i.e., y|X,θ ∼
N (µ, diag(σ2)), the two weight vectors yield
two distributions N (µ(s), diag((σ2)(s))) and
N (µ(s̃), diag((σ2)(s̃))), respectively. To as-
sess the distance between samples within a
chain, we compute the Wasserstein-2 distance
between their distributions. Large distances
indicate sampled models that are functionally
diverse. Given that both distributions are nor-
mal, the difference y(s) − y(s̃) follows a nor-
mal distribution with mean µ(s) − µ(s̃) and
variance (σ2)(s)+(σ2)(s̃)−2ρ⊙σ(s̃)⊙σ(s̃). To determine if the Wasserstein-2 distances reflect sig-
nificant distributional changes, we compute Z-statistics for each sample pair θ(s),θ(s̃) and compare
them to the 97.5% standard normal quantile, testing at a 5% significance level (see Appendix C.5).
Results in Figure 4 suggest that most sampled models are functionally diverse.
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5.3 LIMITING DISTRIBUTION AND LOCAL APPROXIMATIONS

Beyond near-zero probability regions and symmetry manifolds, Sommer et al. (2024) report discon-
nected modes in the SAI posterior. However, it remains unclear whether these arise intrinsically
or from insufficient sampling. To investigate, we extend their analysis to 10 000 chains with 1000
samples each, compared to their original 12 chains. As shown in Figure 1, the apparent disconnect-
edness in the margins is primarily a result of limited chains as well as the local dynamics of the
sampler rather than an intrinsic property of the posterior. Further analysis of bivariate densities of the
kernel and bias weights across layers (Figure 7 in the Appendix) reveals no evidence of marginally
disconnected modes, while intermediate layers resemble the (shifted) priors. In particular, the kernel
parameters seem to follow a multivariate zero-centered Gaussian-like distribution and first/last layers
exhibit rather distinct roles as hypothesized in Section 3. The results also confirm our conjecture
that the shifted margins of the biases align with ReLU activations centering hidden states. Consult
Appendix C.1 for an extended discussion.

1 10 100 1k 10k

0.60

0.65

0.70

0.75

0.80

#Chains

Cu
m

ul
at

iv
e 

LP
PD

Figure 5: Cumulative LPPD over the number
of chains (standard deviation across 5 random
chain orderings).

Local Exploration is Just Fine Building on our
previous discussion, the effectiveness of SAI is ques-
tionable given its need for extensive sampling to char-
acterize large posterior regions. However, a local
approximation using short-chain ensembles proves
sufficient for UQ, as shown in Figure 5 and our bench-
mark. Results with the MILE sampler (Sommer et al.,
2025) indicate that UQ performance quickly saturates
with fewer chains, which are easily parallelized on
modern hardware. Practically, localization depends
on the number of samples per chain, assuming an op-
timal step size for retaining a stable likelihood. Prior-
itizing local exploration mitigates non-identifiability
issues (e.g., permutation and sign-flip symmetries)
while improving computational efficiency.

Finally, we run a benchmark to demonstrate that SAI
with previous considerations is a viable alternative to ABI. This further supports that properly executed
sampling is effective in practice and not hindered by the intricacies of the posterior landscape. For
this purpose, we compare two prominent ABI methods to different SAI strategies across a range
of regression tasks. We report results in Table 2 (see Appendix C.7) using the root mean squared
error (RMSE) and the LPPD for UQ. In these settings, Laplace achieves good predictive performance
while ranking last in terms of LPPD. In contrast, MFVI provides improved uncertainty quantification
but sacrifices predictive accuracy. DEs with 10 members demonstrate robust performance in both
metrics. BDEs achieve the highest performance among all methods, even with a single chain and
show improved predictive accuracy and UQ when ensembling 10 chains.

6 DISCUSSION, LIMITATIONS AND FUTURE RESEARCH

We analyzed the approximate posterior induced by sampling-based inference for BNNs, focusing
on symmetries, overparameterization, and prior influences. Our theoretical and empirical findings
suggest a well-behaved posterior, supporting SAI as a viable alternative to ABI. Our approach
assumes initialization from multiple well-performing neural networks akin to a DE. DEs have been
shown not to yield a proper characterization of the posterior in general but to provide a mixture of
distributions related to their initialization value and nearby optima instead (Wild et al., 2024). While
BDEs theoretically converge to the true posterior with infinite samples, practical sampling is biased
toward reachable regions when starting from DE solutions. Hence, while our approach may not yield
exact posterior samples, it effectively captures the epistemic uncertainty relevant to practitioners:
Given a reasonably well-performing neural network, how much parameter uncertainty remains in the
model? Put differently, a practitioner would seldom be interested in the subspace of (useless) models
where the posterior is (almost) zero. We primarily considered full-batch sampling, noting that while
stochastic samplers may further mitigate symmetry issues, they require improvements in robustness
and hyperparameter sensitivity for practical use, which is a promising avenue for future research.
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A FURTHER DISCUSSION ON NEURAL NETWORK SYMMETRIES

Following Rolnick & Kording (2020); Phuong & Lampert (2020); Bona-Pellissier et al. (2023);
Laurent et al. (2024), we introduce the most commonly discussed symmetries in the literature:
permutation (discrete), sign-flip (discrete), and scaling (uncountable) symmetries (see Definitions
A.1, A.3 and A.2).

Possibly one if not the most prominently discussed symmetry in neural networks is the permutation
symmetry.

Definition A.1 (Permutation Symmetry). Let π(i), i ∈ [d] be a permutation of the elements in [d],
and P ∈ {0, 1}d×d with elements {δπ(i),j}i,j∈[d] and Kronecker delta function δ. We say a network
fθ contains permutation symmetries if ∃P ̸= Id : fθ(x) ≡ fPθ(x)∀x ∈ X .

Trivially, for any factorized isotropic prior choice the prior is invariant w.r.t. to permutation symmetries.
The challenge with BNNs which previous symmetry removal approaches targeting the breaking
of this invariance have not addressed is the random nature of the weights and biases. Due to their
randomness, the approach by Pourzanjani et al. (2017) to sort the biases is likely ill-defined as the
distributions of the parameters might still overlap, and hence a change of order in the biases might
occur even without an actual neuron permutation taking place.

Further, permutation symmetries can be seen as a special case of a scaling symmetry (cf. Figure 2),
defined as follows:

Definition A.2 (Scaling Symmetry). Let λj ∈ R\{0}, j ∈ [d] and Λ := diag(λ1, . . . , λd). We say a
network fθ contains scaling symmetries if ∃Λ ̸= Id : fθ(x) ≡ fΛθ(x)∀x ∈ X . We further call the
symmetry a positive scaling symmetry if it holds λj > 0∀j ∈ [d].

While permutation symmetries can potentially be connected via scaling symmetry hyperbolas, this is
usually not the case for sign-flip symmetries as this would imply traversing through the origin.

Definition A.3 (Sign-flip Symmetry). Let Σ = diag(ς) with ς ∈ {−1, 1}d. We say a network fθ
contains sign-flip symmetries if ∃Σ ̸= Id : fθ(x) ≡ fΣθ(x)∀x ∈ X .

Sign-flip symmetries are special in that some activation functions are invariant w.r.t. joint sign-flips in
adjacent layers (such as tanh), while others like the ReLU function do not admit sign-flips. Thus in
this case the non-invariance of the likelihood of ReLU networks w.r.t. single sign-flips reduces the
amount of posterior symmetries. The usually deployed symmetric zero-centered priors do not help
in the reduction of symmetries in this setting. We can easily formalize this prior invariance in the
following Proposition.

Proposition A.4. Symmetric zero-centered factorized priors are invariant w.r.t. sign-flips.

Proof. We have

p(Σθ) =
∏
j

p(ςjθj)
(∗)
=
∏
j

p(θj) = p(θ)

where (∗) is due to the symmetry and zero-centeredness of the priors.

Notably, the likelihood of ReLU although non-invariant w.r.t. a single sign-flip can be invariant with
respect to multiple sign-flips. In the context of ReLU networks one can think of sign-flip matrix Σ as
encoding the activation of different paths through the network. So if there are functionally redundant
paths through the network one can find a corresponding matrix Σ to create a symmetric parameter set.

A.1 SCALING SYMMETRIES FOR MFVI

When performing mean-field variational inference with a diagonal Gaussian, it is common to en-
counter symmetrical solutions that can slow or hinder convergence, such as the low-capacity fix
point depicted in Figure 2 on the right. Introducing small, fixed offsets to the mean vector and the
variance parameters of the prior as proposed in Ziyin et al. (2025) helps break these symmetries by
slightly shifting each dimension away from identical configurations and it rescales the regulariza-
tion in different directions. As a result, the optimization is nudged toward distinct, stable modes
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rather than remaining stuck in symmetry axes, thereby improving the quality of the final variational
approximation. This is formally demonstrated in the following analysis.

Proposition A.5. Using an adjusted prior p(θ) = N(θ;θ0,Σ) with θ0 ∼ N(0, σ0) and 1/Σii ∼
U(1 − ϵ, 1 + ϵ) with a small ϵ breaks scaling and permutation symmetries with probability 1 and
ensures better convergence of the MFVI algorithm.

Similar to Ziyin et al. (2025), optimizing the ELBO with the adjusted prior from above results in:

ELBO = Eq(θ)[log p(y | θ)]−DKL(q(θ) ∥ p(θ))
= Eq(θ)[log p(y | θ)− log q(θ) +N (θ;θ0,Σ)]

= Eq(θ)[log p(y | θ)− log q(θ)− (θ − θ0)
TΣ−1(θ − θ0) + constant]

(4)

This formulation is consistent with the “advanced removal” loss function from the paper by Ziyin et al.
(2025) where the term (θ − θ0)

TΣ−1(θ − θ0) encourages the solution to deviate from symmetric
configurations by regularizing the difference from the shifted prior.

A.2 SCALING SYMMETRIES FOR SAI

In this analysis of scaling symmetries for SAI, we focus on parameters θ ∈ Θ with strictly log-
concave factorized (SLCF; Definition A.7) priors p ∈ P defined on Θ ≡ Rd, which are symmetric
around mode(p) = 0. Using strictly log-concave priors allows us to exclude degenerated cases such
as piecewise zero or constant priors, which make general statements about symmetries (even) less
tractable. The symmetry around zero and factorization is arguably one of the most common choices
in Bayesian deep learning, but also encodes prior knowledge obtained in non-Bayesian NN literature,
where weight initialization is typically set to be symmetric around zero without interdependence
between the initialization of different weights. The set of SLCF priors P includes many common
prior distributions used in the literature (Fortuin, 2022) such as the standard Gaussian, Beta, or
Laplace prior. For completeness sake, we formalize the definition of SLCF priors and review the
important properties.

Definition A.6 (Log-concavity). A continuous random variable T is log-concavely distributed on Θ,
a convex subset of Rk, if, for any θj , θi ∈ Θ and any λ ∈ [0, 1],

p(λθj + (1− λ)θi) ≥ [p(θj)]
λ[p(θi)]

1−λ. (5)

Definition A.7 (Strict log-concave distribution). A density p of a distribution is said to be strictly
log-concave (SLC), if ∀ 0 < λ < 1

log p(λθj + (1− λ)θi) > λ log p(θj) + (1− λ) log p(θi). (6)

Strict log-concavity implies that the density p decreases more rapidly than a linear combination of its
values.

It is straightforward to see that this property can be extended to k dimensions when the density
factorizes:

Proposition A.8 (Product of independent strictly log-concave distributions). The product of indepen-
dent strictly log-concave univariate distributions is again strictly log-concave.

Proof. Assume p(θ1), p(θ2) are SLC. Then it holds for p(θ1, θ2):

log p(θ1, θ2) = log(p(θ1) · p(θ2)) = log p(θ1) + log p(θ2). (7)

Since log p(θ1) and log p(θ2) are concave functions, their sum is also concave (since the sum of
concave functions is concave), and hence p(θ1, θ2) is log-concave.

Corollary A.9 (SLCF priors). SLC priors that factorize, i.e., where p(θ1, . . . , θp) =
∏p

j=1 p(θj),
are again SLC.

Proof. This follows directly from Proposition A.8.
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Pairwise analysis Often, scaling symmetries in ReLU networks are studied using an adjacent pair
of weights and without the bias term like w(2)ϕ(w(1)x). The positive symmetric scaling - excluding
permutations - then corresponds to w̃(1) := w(1)c and w̃(2) := w(2)/c with c ∈ R+\{1,w(2)/w(1)}.
For this simple pairwise setting, one can show the non-invariance of the posterior assuming commonly
used priors i.e. that the posterior does not have the defined scaling symmetries. This stems from
the fact that the likelihood component is obviously equivalent but the prior must be different if one
assumes a strictly log-concave prior like a Gaussian or Laplace which is factorized (SLCF). We show
this in the following in Proposition A.10 and would like to emphasize that there is a striking similarity
to min-norm solution analyses.

Proposition A.10. SLCF priors with zero mean are not pairwise invariant w.r.t. positive scaling
when excluding parameter permutation.

Proof. We must prove that
p(θ1) · p(θ2) ̸= p(θ1c) · p(θ2/c) (8)

for c > 0, c /∈ {1, θ2θ1 }, which constitutes the point of parameter permutation that we explicitly
exclude. W.l.o.g., assume θ2 > θ1. We differentiate between two cases, 1 < c < θ2

θ1
and

c ∈ (0, 1) ∪ ( θ2θ1 ,∞).

Case 1: Let 1 < c < θ2
θ1

. Instead of varying c ∈ (1, θ2θ1 ), we can also use a convex combination of θ1
and θ2, i.e., ∃λ ∈ (0, 1) s.t.

p(θ1c) · p(θ2/c) = p(λθ1 + (1− λ)θ2) · p((1− λ)θ1 + λθ2). (9)

Using Definition A.7, we have

log(p(θ1c) · p(θ2/c)) = log(p(λθ1 + (1− λ)θ2) · p((1− λ)θ1 + λθ2))

> λ log p(θ1) + (1− λ) log p(θ2) + λ log p(θ2) + (1− λ) log p(θ1)

= log p(θ1) + log p(θ2) = log(p(θ1)p(θ2))

(10)

and therefore the inequality between scaled priors for 1 < c < θ2
θ1

.
Case 2: Let c ∈ (0, 1) ∪ ( θ2θ1 ,∞). Define the function

ϖ(c) = log p(θ1c) + log p(θ2/c)− log p(θ1)− log p(θ2).

If we can show that ∄c > 0, c /∈ {1, θ2θ1 }, s.t., ϖ(c) = 0, then Eq. 8 is true. For c ∈ (1, θ2θ1 ) this was
already shown in Case 1. We further know that ϖ(1) = 0 and ϖ( θ2θ1 ) = 0. Further, we have

ϖ′(c) =
p′(θ1c)

p(θ1c)︸ ︷︷ ︸
≜∇(θ1c)

·θ1 −
p′ (θ2/c)

p (θ2/c)︸ ︷︷ ︸
≜∇(θ2/c)

·θ2
c2
. (11)

Since p is strictly log-concave, log p is strictly concave, and ∇(x) ≜ ∂ log p(x)/∂x is larger zero for
x < 0 = argmax log p and smaller zero for x > 0 and moreover strictly monotonically decreasing.
Therefore

a) If θ1 = 0, we have p(θ2)
!
= p(θ2/c), which cannot hold for c ̸= 1 since p is strictly

log-concave.

b) If 0 < θ1 < θ2, ∇(θ1c) > ∇(θ2c) and |∇(θ1c)| < |∇(θ2c)| as it is the derivative of a
strictly concave function with 0 origin i.e. ∀x > 0 it holds that ∇(x) < 0 and ∇(·) strictly
monotonically decreasing. Furthermore, for the case that c ∈ (0, 1) we have

θ1c < θ1 < θ2 < θ2c
−1 < θ2c

−2. (12)

With these insights at hand we can show that for c ∈ (0, 1) Eq. 11 must always be positive:
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ϖ′(c) = ∇(θ1c) · θ1 −∇(θ2/c) ·
θ2
c2

= − |∇(θ1c)|︸ ︷︷ ︸
<|∇(θ2c)|

· θ1︸︷︷︸
<θ2c−2

+|∇(θ2/c)| ·
θ2
c2
> 0. (13)

Since ϖ′(1) is already positive by the same argument and ϖ(1) = 0, we know that
ϖ(c) < 0 ∀c ∈ (0, 1).

For c > θ2
θ1

, by using c̃ ≜ θ2
θ1
/c⇔ c = θ2

θ1
/c̃, i.e., rewriting c as a fraction c̃ < 1 of its lower

bound θ2
θ1

Eq. 11 can be rewritten as

ϖ′(c) =
p′(θ2/c̃)

p(θ2/c̃)
· θ1 −

p′ (θ1c̃)

p (θ1c̃)
· θ

2
1 c̃

2

θ2
(14)

=
θ1
θ2

[
∇(θ2/c̃) · θ2 −∇(θ1c̃) · θ1c̃2

]
. (15)

Using θ2 > θ1c̃
2 we can follow the arguments of Eq. 13 to obtain

ϖ′(c) =
θ1
θ2

[
∇(θ2/c̃) · θ2 −∇(θ1c̃) · θ1c̃2

]
. (16)

=
θ1
θ2

− |∇(θ2/c̃)|︸ ︷︷ ︸
>|∇(θ1c̃)|

· θ2︸︷︷︸
>θ1c̃2

+|∇(θ1c̃)| · θ1c̃2


︸ ︷︷ ︸

<0

< 0. (17)

Now a similar argument as before can be used since ϖ(θ2/θ1) = 0 and ϖ′(θ2/θ1) < 0 for
all c > θ2/θ1 ⇔ c̃ < 1. This implies that ϖ′(c) < 0 ∀c > θ2/θ1.

c) If θ1 < θ2 < 0, we have the same result as in b), as roles flip, in particular ∇(θ1c) > ∇(θ2c)
still holds but ∇(·) is strictly positive valued and the negative parameters θ1 and θ2 would
be influencing the argument on ϖ′(·) in the same way as the ∇(·) terms in b).

d) If θ1 < 0 < θ2 and w.l.o.g. assume θ2 > |θ1|, now the same derivation as in b) is applicable.
For the case c ∈ (0, 1) we have again a strictly positive ϖ′(c) as |θ2| > |θ1| with θ1 having
negative and θ2 having positive sign, as well as positive ∇(θ1c) and negative ∇(θ2/c),
for which it holds that |∇(θ1c)| < |∇(θ2/c)|. Analogously one can show the case of
c ∈ ( θ2θ1 ,∞) leveraging the reparameterization of c proposed in b).

General ReLU networks Sadly, this pairwise result does not apply to general ReLU networks. In
the following, we provide a counterexample of the invariance of the prior to positive symmetric scal-
ing. The example is the simple ReLU net from above amended by a bias term: w(2)ϕ(w(1)x+ b(1)).
This implies b̃(1) := b(1)c for the scaling to be symmetric. For this case, one can construct
invariant counterexamples by choosing the classically used N (0, 1) prior for each of the three
weights. One then just has to show that ∃c ∈ R+\{1,w(2)/w(1),w(2)/b(1)} and admissible parame-
ters s.t. p(b(1))p(w(1))p(w(2)) = p(b(1)c)p(w(1)c)p(w(2)/c) holds. We can reframe this as the
setting where for some fixed weights we have to show that there exist positive roots of the function
h(c) = p(b(1))p(w(1))p(w(2)) − p(b(1)c)p(w(1)c)p(w(2)/c) that are not {1, w(2)/w(1), w(2)/b(1)}
i.e. permutations or the trivial root one. Therefore we can simply fix the parameters to some
values w(1) = 0.5, w(2) = 0.8, b(1) = 0.9 and consequently have to find roots that are not in
{1, 1.6, 0.8/0.9 ≈ 0.88}. Calculating the roots of this function h leads to a single non-trivial positive
root at ≈ 0.77 which is visualized in Figure 6. This concludes the counterexample and shows that
there still exist symmetries in simple ReLU networks with biases that are not completely removed by
imposing SLCF priors.

Also, we highlight the assumption about the exclusion of permutations realized via scaling in
Proposition A.10 - in particular across layers. The following example for invariance in the prior holds
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Figure 6: Visualization of the function h(c) for w(1) = 0.5, w(2) = 0.8, b(1) = 0.9 and standard
Normal priors. The non-trivial root is highlighted in red.

even without adding biases to the model. We do this using weights in distant layers that relate as
w(l+1) := w(1) ∗ c and w(l) := w(2)/c with l > 2. Then one trivially gets an invariant factorized
prior if w(1) and w(2) are scaled with c and w(l) and w(l+1) with c−1.

After all, it is evident that the factorization of the prior gives rise to many invariances especially with a
growing number of factors. Thus, we show by counterexample on a simple ReLU network with biases
that for realistic ReLU networks there are irreducible scaling symmetries within the posterior induced
by an invariance of both likelihood and the classic choice of SLCF priors. Nevertheless, it is clear
that SLCF priors reduce the volume of such invariant symmetric manifolds e.g. in Proposition A.10.
Remark A.11. Proposition A.10 sheds new (positive) light on weight priors that have been discussed
controversially by advocates of functional priors in Bayesian deep learning (see, e.g., Tran et al.,
2022). Using SLCF helps to reduce scaling symmetries and harmonizes well in combination with
ReLU networks that preclude sign-flips.

B EXPERIMENTAL SETUP

Software Our software is implemented in Python and mainly relies on the jax (Bradbury et al.,
2018) and BlackJAX (Cabezas et al., 2024) libraries. Our code is available at https://github.
com/EmanuelSommer/sampled-approx-posteriors.

Computing Environment The experiments were conducted on two NVIDIA RTX A6000 GPUs
and an AMD Ryzen™ Threadripper™ PRO 5000WX/3000WX CPU with 64 cores. For most
experiments, 10 chains were sampled in parallel on the CPU, enabling efficient parallelization and
allowing multiple experiments to run concurrently. For larger-scale experiments involving thousands
of chains, 50 chains were sampled in parallel to maximize resource utilization.

Datasets Table 1 summarizes the benchmark datasets utilized in our experiments. If not specified
otherwise, we use a 70% train, 10% validation and 20% test split as well as a fully connected model
architecture with 3 hidden layers, 16 neurons per layer.

Table 1: Benchmark regression datasets overview.

Dataset Size Features Source
Airfoil 1503 5 Dua & Graff (2017)
Bikesharing 17379 13 Fanaee-T (2013)
Concrete 1030 8 Yeh (1998)
Energy 768 8 Tsanas & Xifara (2012)

Performance Evaluation To quantify the quality of the posterior predictive approximation and
thus the UQ capabilities of the models we use the log posterior predictive density (LPPD; Gelman
et al., 2014; Wiese et al., 2023; Sommer et al., 2025) over a test set Dtest, defined as

LPPD =
1

ntest

∑
(y∗,x∗)∈Dtest

log

(
1

K · S

K∑
k=1

S∑
s=1

p
(
y∗|θ(k,s)(x∗)

))
. (18)
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Here, K denotes the number of chains, S the number of samples per chain, and θ(k,s) the parameters
from the s-th sample of the k-th chain. Intuitively, the LPPD quantifies how well the predictive
distribution aligns with the observed labels, with higher values indicating higher density coverage i.e.
improved UQ performance.

In addition, we employ the root mean squared error (RMSE) for regression tasks to check for the
accuracy of point predictions.

C EXPERIMENTAL DETAILS AND FURTHER ANALYSES

C.1 EXPLORING THE LIMITS OF BDES
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Figure 7: Bivariate empirical marginal posterior densities of a 4-hidden layer BNN fitted on UCI
benchmark data (10M posterior samples obtained from 10k independent chains). The rows and
columns show representative densities of randomly selected input, hidden, and output weights.

We extend the limited analysis of Sommer et al. (2024) which only considers at 12 chains to 10k
chains of 1k samples each and also use a more than twice as large fully-connected neural network
(4 hidden layers of 16 neurons each) to perform distributional regression. For this, we use the
recently proposed MILE approach (Sommer et al., 2025) and configure it exactly as suggested by
the authors. Due to the immense computational load of sampling this amount of chains and also
evaluating the posterior samples (compressed the samples roughly amount to 100GB for a single
experiment) we focus on one benchmark dataset, namely, airfoil. We have also conducted a
slightly smaller experiment for the bikesharing dataset with 1k instead of 10k chains, which
confirms the findings of the larger experiment. In our analysis, we focus on two major aspects. First,
we analyze how the performance of the model develops when adding chains to the Bayesian Model
Average (BMA). Second, in the spirit of Sommer et al. (2024) we take a closer look at bivariate
margins of the empirical posterior derived from SAI.

The cumulative performance, which we—focusing on UQ quality—measure with the LPPD, of
adding chains to the BMA obviously depends on the order in which chains are added. Thus, we
consider 5 different orderings and report means and standard deviations of the cumulative LPPD over
chains in Figure 5. The result suggests that with even a rather small amount of chains the performance
saturates quite fast, but slowly increases further until exhibiting a very strong performance for 10k
chains. Parallelizing 10-20 chains on modern hardware is very easy and comes with no considerable
cost overhead over single-chain sampling. This also has very positive implications on memory
requirements and inference time, rendering the approach practically feasible.

Both in Figure 1 and 7 we show representative marginal plots of the above-described experiment on
the airfoil dataset. Thereby we only focus on within-layer margins. For completeness, we will
also include a whole grid of plots that features within and across layer margins in the code repository,
as a large amount of high-resolution densities hinders a smooth rendering of the manuscript. Before
starting the interpretation of the visualizations one should stress that the marginal view is a limited
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perspective on the high-dimensional posterior of interest. From 1, which displays the empirical
marginal posterior approximation for 10 and for 10k chains for two intermediate layer weights
respectively, one can tell that the reported marginal mode disconnectedness in Sommer et al. (2024) is
merely a result of the limited amount of sampling performed. While the more localized approximation
of 10 chains does not cover the margins as continuously as the 10k chains, we know from Figure 5
that the exploration already supports good performance. Figure 7 provides a more nuanced view
of how the different weights in the network act in their margins. One can observe two distinct
patterns, namely differences based on the layer and the role (bias or kernel) of the weight. The distinct
pattern where weights in the input and output connected layers exhibit identifiable roles forming
distinct e.g. multimodal or concentrated margins, and intermediate layer weights exhibit margins
that perfectly align with their (shifted) standard Gaussian prior, is supported by the proof for the
functional arbitrariness of intermediate weights by Ziyin et al. (2024) for linear networks. This is also
in line with Sommer et al. (2024) who provided evidence for increased exploration of the sampler for
intermediate layer weights. Furthermore, the margins of the biases are centered around −1 which
reflects the centering of the ReLU-induced positive hidden states. In the spirit of Fortuin et al. (2022),
which derive proposals for priors from empirical weight distributions, one could consider adjusting
the priors for the biases in ReLU networks accordingly in future work.

C.2 CONVEXIFIABLE NETWORK
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Figure 8: Marginal posterior densities of the Hadamard
product of weights for a ReLU-activated neural network
with 8 (left) and 64 neurons (right) in the hidden layer
on the airfoil dataset, colored by sampler chain.

For the experiments in Figure 8 and 9, we
employed a small fully-connected network
with 8 hidden neurons and a larger one
with 64 hidden neurons on the airfoil
dataset. For posterior sampling, we applied
the NUTS sampler Hoffman & Gelman
(2014) with pre-trained warm-starts, 100
warmup steps and 1000 posterior samples
per chain across 10 chains. The Hadamard
product of the weights was calculated ac-
cording to the derivations in Mishkin et al.
(2022); Kolb et al. (2023). We follow
Kolb et al. (2023) in defining the group
Hadamard product ⊙G of two vectors v ∈
Rd and w ∈ RL as v ⊙G w ≜ (vjwj)j∈G for a given partition G. We apply the group Hadamard
product to our first- and second-layer-weights, where the partition G is given by the incoming weights
of each first layer hidden neuron, resulting in the Hadamard product u, as described in Section 3.3. In
Figure 8 and 9, we plot the resulting densities of a random selection of components of u and observe
unimodality across different sampler chains.

C.3 HYPERBOLIC POSTERIOR ILLUSTRATION

In Figure 2, rescaling symmetries and their handling in SAI and MFVI is illustrated. As a model,
we use a univariate narrow Bayesian network, as described in Section 3.1. We employ the model
on a dataset where the optimal solution is a regression line with slope β̂ = 1. In this simple setting,
we know the hyperbolas that constitute the rescaling symmetry, as the product of both weights w1

and w2 must be equal to 1. In Figure 2 (left), we have depicted the samples obtained by running 12
warm-started NUTS sampler chains with 1000 posterior samples each in blue and samples drawn
from a MFVI run in red. It is to be noted that single NUTS chains are not able to jump from
one hyperbola to the opposing one. As expected, we observe that MFVI is not able to excape the
low-capacity fix point at (0, 0) as we increase the prior strength (decrease the prior variance), as the
stochastic optimization of the ELBO cannot outweigh the drag towards the origin that is exerted by
the prior and the symmetry-mirror w1 = w2 (Ziyin, 2024).

C.4 PERMUTED INITIALIZATIONS

In order to explore the entrapment of the sampler in symmetric solutions while exploring the posterior,
we initialize 10 sampler chains in permuted warm-start parameter configurations that all induce the
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network with 64 hidden neurons on a regression task.
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Figure 10: Chain ensemble performance for a three hidden layer fully connected network with ReLU
activation on the airfoil dataset (zoomed-in illustration of Figure 3).

exact same functional mapping. We use a fully-connected, ReLU-actived network with 3 hidden
layers with 16 neurons each. The MILE sampler (Sommer et al., 2025) is employed for posterior
inference on the airfoil dataset, with a rather small warmup sample budget of 100 samples. In
Figure 3, we observe that the individual sampler chains are nonetheless able to explore the vicinity
of the permuted posterior modes and produce functionally diverse samples, thereby completely
recovering from the point of symmetry. This is further supported by the observation of a considerable
improvement of the cumulative LPPD when ensembling all individual chains. This points towards
the sampler being able to recover functionally diverse parameters along the individual chains, even
though these were initialized in a point of symmetry. In effect, the ensemble LPPD is almost on par
with the one produced by a regularly warm-started BDE.

This finding is interesting for many reasons. First, it underscores the importance of proper chain
initialization with parameter states that already induce a high model likelihood, no matter the
functional diversity induced by this parameter state. Moving towards the typical set, the sampler
benefits from its stochastic components, whereas samples from the typical set then quickly drive up
the LPPD. The cumulative LPPD then increases more slowly, as every new sample contributes less and
less to the Bayesian model average that is formed to approximate the posterior predictive distribution
with a finite sample size. Eventually, the chain performances and the ensemble performance converge
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Figure 11: Squared Wasserstein-2 distance of the predictive distribution induced by individual
samples from four different sampler chains on the airfoil dataset.

towards their respective local approximation of the posterior given the chain or the whole ensemble
of chains, which is plotted separately in Figure 10.

In an alternative illustration, we have depicted the squared Wasserstein-2 distances of the predictive
distributions p(y|X,θ(s)) implied by every sample θ(s) from a chain across 4 different chains and
50 samples in Figure 11. It is clearly visible that the within-chain distance of the implied predictive
distributions is lower compared to the between-chain distance with very similar patterns for both the
chains started using regular warm-starts and permuted warm-starts.

The result also carries the possible practical implication that a diverse set of functionally different
warm-starts as chain initializers might not be crucial for a well-performing Bayesian model average.
This could prove helpful for large architectures, where obtaining warm-start parameters is increasingly
costly.

C.5 COMPUTING WASSERSTEIN DISTANCES FOR UNCOUNTABLE SYMMETRIES

In order to check whether distributions are significantly different, we first estimate the correlation
between two samples using ρ̂ = Cor(µ(s),µ(s̃)). For every possible combination s, s̃ ∈ [S], s ̸= s̃,
we then compute

µD,i = µ
(s)
i − µ

(s̃)
i (19)

and calculate the mean over all observations, which should have distribution

µ̄D := n−1
n∑

i=1

µD,i ∼ N (0, n−1σ2
D), (20)

where
σ2
D = (σ2)(s) + (σ2)(s̃) − 2ρσ(s̃)σ(s̃). (21)

Our test statistic can then be computed as

Z = µ̄D/(
√
nσD) (22)

and compared against the 95% standard normal quantile (1.96) to highlight values where one would
reject the hypothesis that the estimated distributions are equivalent.
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C.6 INFLUENCE OF THE PRIOR STRENGTH

As discussed in the main sections, typical SAI applications fix a common prior variance across the
network. To the best of our knowledge, it is not common to increase variances with increased network
depth as analogies to regularized optimization might imply. In order to provide empirical evidence
that a constant variance irrespective of the network depth works well, we perform a small benchmark,
where Figure 12 in depicts the resulting LPPD and RMSE performances, confirming that a standard
Gaussian distribution is a well-working choice with little changes when altering the network size. An
extend discussion of prior choice follows below.
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Figure 12: Average LPPD and RMSE ranks (± standard deviation across 3 train-test splits) of varying
scale parameters for the zero-centered Gaussian priors. The different model sizes are differentiated
by color. Better ranks (i.e. 1>2) correspond to better performance of the prior scale for the given
model size.

The standard isotropic Gaussian remains the most widely used prior in Bayesian neural networks.
It is the default in industry standard software like fortuna (Detommaso et al.) and is shown to
lead to high performing results in works like Sommer et al. (2025). While Fortuin et al. (2022)
argue that heavy tailed priors are superior for fully-connected BNNs, the isotropic assumption is
rarely challenged. As discussed in Section 4 and illustrated in Figure 2, the scale and thus the prior’s
strength is related to the likelihood of scaling symmetries to appear in the posterior. At first glance
it might seem intuitive that for changing dimensionality of the problem the prior’s pull towards the
origin has to be adjusted based on the dimension. While the optimization literature would suggest a
looser regularization for increased overparameterization to be sufficient, the opposite argument can
be made for smaller scales in light of taming the functional explosion of deep networks. To grasp
the effects of increased dimensionality and prior scale we have conducted roughly 100 experiments
assessing the practical performance of SAI on 3 distinct tasks. For three benchmark regression
datasets (airfoil, bikesharing, energy) we fitted four fully-connected BNNs with 1 up to
4 hidden layers of 16 hidden neurons. We repeated this for various prior scales of a zero-centered
isotropic Gaussian and report the average and standard deviation of RMSE and LPPD ranks in Figure
12. The results confirm that regardless of the number of model parameters the isotropic standard
Gaussian is a robust choice for attaining good performance. Also, small deviations do not seem to
harm BNN performance, but with both much smaller and much larger variance, clear deterioration
in performance is visible, which indicates that neither a systematic adjustment of the prior scale
proportional to the dimensionality nor to the inverse direction is required.

Another naı̈ve approach to not worry about the scale parameter would be to leverage common neural
network initialization strategies to set the prior scale layerwise and depending on the architecture.
One common representative of such initializations is the Glorot initialization (Glorot & Bengio, 2010)
which specifies the scale parameter as

σ =
√
2/(nin + nout). (23)

In the above considered architectures most kernels have nin = nout = 16 leading to a scale of 0.25
rather constantly over the network. As we can see in Figure 12 this scale level is however not
suboptimal, as the scale is too small. This is the case for most popular network initialization schemes.
Thus in this setting we can not find evidence that deviating from the isotropic prior assumption in
favor of layerwise adjustments in the spirit of network initializations is beneficial in terms of model
performance.
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C.7 UCI BENCHMARK

Table 2: Mean RMSE (↓) and LPPD (↑) results (± standard deviation across 3 train-test splits) for a
3 hidden-layer BNN on regression tasks. Brackets denote ensemble members/chains.

Dataset Laplace MFVI DE (10) BDE (1) BDE (10)

L
PP

D

Airfoil −1.056± 0.003 −0.975± 0.004 −0.293± 0.096 0.016± 0.293 0.665± 0.062
Bikesharing −1.046± 0.001 −0.990± 0.005 −0.223± 0.181 −0.060± 0.096 0.226± 0.043
Concrete −1.131± 0.036 −0.998± 0.007 −0.510± 0.189 0.042± 0.056 0.080± 0.061
Energy −1.046± 0.004 −0.945± 0.002 1.561± 0.101 1.947± 0.047 2.204± 0.024

R
M

SE

Airfoil 0.237± 0.013 0.276± 0.009 0.269± 0.016 0.184± 0.016 0.152± 0.014
Bikesharing 0.252± 0.006 0.318± 0.018 0.253± 0.015 0.262± 0.018 0.229± 0.016
Concrete 0.482± 0.100 0.350± 0.025 0.297± 0.032 0.270± 0.034 0.258± 0.037
Energy 0.065± 0.008 0.126± 0.007 0.050± 0.001 0.041± 0.003 0.032± 0.002

For the UCI benchmark presented in Section 5.3 and Table 2, we fit classical mean regression to
the different tasks corresponding to the datasets described in Table 1. In the process, we always
use a fully-connected feed-forward neural network with 3 hidden layers of size 16 each resulting in
about 700 total model parameters. If sampling from the posterior is done we use 1000 samples per
ensemble member (chain). We describe the configuration of the employed methods one by one:

• For the Laplace approximation (LA), we utilize a JAX-based implementation to first train
MAP solutions using the Adam optimizer with decoupled weight decay (Loshchilov &
Hutter, 2019) for 10 000 epochs with a learning rate of 0.005 to then carry out last-layer
LA with a generalized Gauss Newton Hessian approximation and closed-form predictive
approximation as detailed in Daxberger et al. (2021a). The variance of the predictive
distribution is calculated according to Daxberger et al. (2021a) with a small additional noise
variance term.

• For mean-field variational inference (MFVI), we utilize a Gaussian posterior approxima-
tion with independence assumption. We optimize the evidence lower bound (ELBO) for
5000 epochs with the Adam optimizer and a learning rate of 0.005. The variance of the
predictive distribution is calculated as the variance over the the predictions made with 100
samples from the fitted approximate posterior with a small additional observation noise
term.

• As the recently proposed Microcanonical Langevin Ensemble (MILE) approach provides
both an optimized Deep Ensemble (DE) and a Bayesian Deep Ensemble (BDE), we
follow the suggested setup of Sommer et al. (2025) i.e. the DE is optimized with the Adam
optimizer with decoupled weight decay with (memberwise) early stopping and the sampling
then uses the proposed auto-tuning strategy of MILE comprising 50k steps before then
providing 1k samples (after the thinning of 10k samples).

Each method is evaluated using three distinct train-test splits to assess the robustness of its perfor-
mance.

D CONVEXIFIABLE NETWORK FROM A BAYESIAN PERSPECTIVE

Pilanci & Ergen (2020) showed that the the optimal value(s) of the optimization problem of a
one-hidden-layer ReLU-activated fully-connected neural network without bias, which is regularized
with weight decay, can be recovered from an equivalent reformulation of the optimization problem
as a group-ℓ1-regularized optimization problem. This result relies on “enumerating” all possible
activation states of a single neuron in the hidden layer on a fixed dataset X ∈ Rn×p, namely,
DX = {D = diag(1(Xv ≥ 0) : v ∈ Rp)}. Since learning with all possible activation patterns of
such a network on a fixed dataset is computationally infeasible in most cases, Mishkin et al. (2022)
propose a sub-sampling approach, where they only sample a subset of all possible activation patterns,
D̃, and are still able to find optimal points to the optimization problem using proximal-gradient
solvers. It is notable that this is analogous to the posterior sampling process in a Bayesian neural
network framework. In our context, the computation of ReLU neurons is inherently tied to the
posterior sampling process, implicitly generating their associated activation patterns.
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From this perspective, given S posterior samples, we can express D̃ as

D̃ =
{

diag(1(W (1)x(s) ≥ 0), ∀ℓ ∈ [L])
}S

s=1
.

Compared to the experiment in Mishkin et al. (2022), where the size of D̃ is limited to 100, our
approach allows for generating a significantly larger number of activation patterns, resulting in
greater expressiveness. In the next step, we apply the group Hadamard parameterization map (GHPP,
Kolb et al., 2023) described above and denoted by K to the sampled weights that implicitly include
numerous possible ReLU activation patterns.
Lemma D.1. Let f(W1,w2) be the log posterior up to constants and use independent zero mean
Gaussian priors with variance τ2 for every weight. Further, define X as vertically stacked observa-
tions xi and y as vector of targets for a regression task. Then f(W1,w2) majorizes g(u) under the
map K(W⊤

1 ,w
⊤
2 ) = W⊤

1 w⊤
2 = u.

Proof.

f(W⊤
1 ,w

⊤
2 ) =

1

2σ2
∥
∑

Di∈D̃

DiXW⊤
1iw

⊤
2i − y∥22 +

1

2τ2

∑
Di∈D̃

∥W⊤
1i ∥22 + |w⊤

2i|2

(AM-GM)
≥ 1

2σ2
∥
∑

Di∈D̃

DiXW⊤
1iw

⊤
2i − y∥22 +

1

τ2

∑
Di∈D̃

∥W⊤
1i ∥2 · |w⊤

2i|

=
1

2σ2
∥
∑

Di∈D̃

DiXW⊤
1iw

⊤
2i − y∥22 +

1

τ2

∑
Di∈D̃

∥W⊤
1iw

⊤
2i∥2

=
1

2σ2
∥
∑

Di∈D̃

DiXui − y∥22 +
1

τ2

∑
Di∈D̃

∥ui∥2

= g(u),

where equality in the AM-GM inequality holds if and only if ∥W1i∥22 = |w2i|2.

As a direct consequence, we have the following:
Corollary D.2. The distribution of u (up to permutations) is unimodal.

This results from Lemma D.1 and the fact that we can apply Theorem 2.10 in Kolb et al. (2023),
which shows that f and g must share the same global and local optimal values.

E RESULTS FOR UNIVARIATE NETWORKS

E.1 DERIVATIONS OF RESULTS FROM SECTION 3.1

We start by analyzing the negative log density of the unconstrained posterior:

− log p(w|y,x) ∝ 1

2σ2

n∑
i=1

(yi −
∏L

l=1 w
(l)xi)

2 + 1
2τ2

∑L
l=1 w

(l)2. (24)

Using the AM-GM inequality we obtain

− log p(w|y,x) ∝ 1

2σ2

n∑
i=1

(yi −
∏L

l=1 w
(l)xi)

2 + 1
2τ2

∑L
l=1(w

(l))2 (25)

≥ 1

2σ2

n∑
i=1

(yi −
∏L

l=1 w
(l)xi)

2 + 1
2τ2L

∏L
l=1 |w(l)| (26)

:=
1

2σ2

n∑
i=1

(yi − βxi)
2 +

1

2τ2
L|β|2/L =: g1(β) + g2(β) =: g(β) (27)
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In particular, applying Theorem 2.10 from Kolb et al. (2023), we know that − log p(w|y,x) and
g(β) have matching local and global minima. Multiplying by −1 and exponentiating both terms does
not change this property.

2-Layer Networks For L = 2, it is easy to see that g(β) is convex as g corresponds to the Lasso
problem. As a consequence, we know that there is one global posterior mode for w, which coincides
with the maximum of −g(β), given by

β̂ =

{
0 if |

∑n
i=1 xiyi| ≤ 1/τ2

sgn(
∑n

i=1 xiyi) ·
(
|
∑n

i=1 xiyi| − 1/τ2
)

if |
∑n

i=1 xiyi| > 1/τ2
.

The posterior of β does not have an analytical form but can be simulated from by using a Laplace
prior. However, since identity in equation 26 only holds for (w(l))2 ≡ |β|2/L, the posterior density
of w only needs to coincide in the mode and must be unimodal due to the matching optima theorem,
but is not necessarily convex.

Networks with L > 2 For L > 2, g(β) is not convex anymore and hence the log posterior is not
necessarily unimodal anymore. Due to the exchangeability of all w(l), we, however, know that for
β̂ = argminβ g(β), one mode of p(w|y,x) is located at w(l) = (β̂)1/L, for l ∈ [L]. When fixing n
and starting to increase the network’s overparametrization, i.e., increasing L, we observe a trade-off
between prior and likelihood. Assuming r2i := (yi − βxi)

2 ≪ ∞ and ∂β/∂L = 0, we have that
g1(β)/g2(β) → 0 as L → ∞. This is because the likelihood term stays constant for increasing L
while |β|2/L approaches 1 in the limit. In other words, for increasing L, the likelihood term will have
less and less influence on the posterior while the prior will become more and more influential.
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