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ABSTRACT

We introduce the Time Series Optimized Transformer for Observability (Toto),
a foundation model designed for time series forecasting with a focus on observ-
ability metrics. Toto features a novel proportional factorized attention mecha-
nism and a Student-T mixture model head, enabling it to efficiently handle high-
dimensional, sparse, and non-stationary data. Trained on one trillion time series
data points, including 75% proprietary observability data, Toto demonstrates state-
of-the-art zero-shot performance on standard benchmarks such as electricity and
weather forecasting. Furthermore, it significantly outperforms existing models in
observability-specific tasks, making it an ideal solution for real-time system mon-
itoring and anomaly detection. Toto’s architectural innovations make it a versatile
tool for both general-purpose forecasting and domain-specific applications, setting
a new benchmark for scalability and accuracy in time series analysis.

1 INTRODUCTION

We present Toto, a time series forecasting foundation model specifically designed to handle the
complexities of observability data. It leverages a novel transformer-based architecture to deliver
state-of-the-art accuracy and performance. Toto is trained on a massive dataset of diverse time
series data, enabling it to excel in zero-shot predictions. Our model is tailored to allow compute
and memory-efficient scalability to very large data volumes, thereby providing robust solutions for
high-frequency and high-dimensional data commonly encountered in observability metrics.

We detail the following key contributions:

Figure 1: Toto is a novel foundation model for multivariate time series forecasting that achieves
state-of-the-art zero-shot accuracy. Key contributions include: A. A large-scale pretraining dataset
of observability data combined with open time-series datasets; B. A novel attention mechanism that
enables computationally efficient modeling of both time and space interactions; and C. A novel
probabilistic prediction head that allows Toto to approximate a wide range of output distributions.
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• Proportional factorized space-time attention: We introduce an advanced attention mech-
anism that allows for efficient grouping of multivariate time series features, reducing com-
putational overhead while maintaining high accuracy.

• Student-T mixture model head: This novel use of a probabilistic model that robustly gen-
eralizes Gaussian mixture models enables Toto to more accurately capture the complex dy-
namics of time series data and provides superior performance over traditional approaches.

• Domain-specific training data: In addition to general multi-domain time series data,
Toto is specifically trained on a large-scale dataset of observability metrics, encompassing
unique characteristics not present in open-source datasets. This targeted training ensures
enhanced performance in observability metric forecasting.

1.1 OBSERVABILITY DATA

Observability data encompasses a comprehensive array of metrics collected to monitor and optimize
the performance and reliability of modern infrastructure and applications (Li et al., 2020). These
metrics are essential for providing insights into the health and performance of systems and include:

• Infrastructure metrics: Data related to hardware and system performance, such as mem-
ory usage, CPU load, disk I/O, and network throughput.

• Application performance indicators: Metrics that capture the performance and behavior
of applications, including hit counts, error rates, and latency.

Observability data is typically gathered from a variety of sources, including on-premise systems,
cloud services, and third-party tools. The integration of these diverse data sources enables a holistic
view of system performance, but also introduces several challenges for time series forecasting:

1. High temporal resolution: Observability data often requires high-resolution timestamps,
capturing data at intervals of seconds or minutes to detect rapid changes and anomalies.

2. Sparsity and zero-inflation: Many observability metrics are sparse, characterized by nu-
merous zero values due to the monitoring of infrequent events, such as system errors or
rare performance issues.

3. Extreme dynamic range and skewed distributions: Metrics can exhibit wide dynamic
ranges and heavy-tailed distributions, especially in latency measurements where occasional
extreme values occur.

4. Dynamic and non-stationary nature: The monitored systems are dynamic, undergoing
frequent changes due to software updates, infrastructure scaling, feature toggles, and vary-
ing user behaviors, all of which contribute to non-stationary data patterns.

5. High-cardinality multivariate data: Observability data often involves high-dimensional
metrics, segmented by various attributes like service type, region, or instance. This results
in a large number of time series, each with potentially limited historical data.

6. Historical anomalies: Historical data can contain anomalies and outliers resulting from
past performance issues or incidents, complicating the forecasting process.

Effectively forecasting observability data requires advanced time series models that can manage
these complexities. Traditional forecasting methods often fall short due to their inability to scale
and adapt to the dynamic, high-dimensional nature of observability data. Therefore, there is a need
for innovative models that can capture intricate patterns and dependencies, ultimately enhancing the
ability to proactively detect and mitigate performance issues in real-time systems.

1.2 TRADITIONAL MODELS

Historically, time series forecasting has relied on classical models such as ARIMA, exponential
smoothing, and basic machine learning techniques (Hyndman & Athanasopoulos, 2021). While
foundational, these models necessitate individual training for each metric, presenting several lim-
itations (Fildes et al., 1998). The need to develop and maintain separate models for each metric
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impedes scalability, especially given the extensive range of metrics in observability data. More-
over, these models often fail to generalize across different types of metrics, leading to suboptimal
performance on diverse datasets (Stevenson, 2007; Christodoulos et al., 2010).

1.3 RECENT WORK

Neural models, particularly those based on transformer architectures, have shown promise for im-
proving the accuracy of time series forecasts. These models have demonstrated state-of-the-art
performance on benchmark datasets (Nie et al., 2023), frequently surpassing traditional models in
both accuracy and robustness. Their capacity to process high-dimensional data efficiently (Lin et al.,
2021) makes them ideal for applications involving numerous time series metrics with varying char-
acteristics, such as observability. However, in the full-shot setting, continuous retraining and tuning
to adapt to evolving data patterns create a significant operational burden for observability use cases.
This scaling limitation has hindered the adoption of deep learning–based methods for time series
analysis, even as they show promise in terms of accuracy (Salinas et al., 2020).

Even more recently, a number of time series “foundation models” have been released (Das et al.,
2024; Ansari et al., 2024; Woo et al., 2024; Garza & Mergenthaler-Canseco, 2023; Rasul et al.,
2023; Gruver et al., 2023). By pre-training on extensive, multi-domain datasets, these large models
achieve impressive zero-shot prediction capabilities, significantly reducing the need for constant
retraining.

1.4 ATTENTION MECHANISMS

To address the unique challenges of time series data, and particularly to adapt transformer architec-
tures for multivariate time-series forecasting, several works have implemented modifications to the
attention mechanism. These strategies have included:

• Concatenating variates along the time dimension and computing full self-attention between
every space/time location, as in the “any-variate attention” used by Woo et al. (2024).
This can capture every possible space and time interaction, but it is costly in terms of
computation and memory usage.

• Assuming channel independence, and computing attention only in the time dimension as
in Nie et al. (2023). This is efficient, but throws away all information about space-wise
interactions.

• Computing attention only in the space dimension, and using a feed-forward network in the
time dimension (Ilbert et al., 2024; Liu et al., 2024).

• Computing “factorized attention,” where each transformer block contains a separate space
and time attention computation (Zhang & Yan, 2023; Rao et al., 2021; Arnab et al., 2021).
This allows both space and time mixing, and is more efficient than full cross-attention.
However, it doubles the effective depth of the network.

In Section 2.4, we propose a novel approach that allows for both space and time interactions, while
reducing the computational cost and improving overall scalability.

1.5 PROBABILISTIC OUTPUTS

Practitioners who rely on time series forecasting typically prefer probabilistic predictions. A com-
mon practice in neural time series models is to use an output layer where the model regresses the
parameters of a probability distribution. This allows for prediction intervals to be computed using
Monte Carlo sampling (Salinas et al., 2020).

Common choices for an output layer are Normal (Salinas et al., 2020) and Student-T (Das et al.,
2023; Rasul et al., 2023), which can improve robustness to outliers. Moirai (Woo et al., 2024)
allows for more flexible residual distributions by proposing a novel mixture model incorporating a
weighted combination of Gaussian, Student-T, Log-Normal, and Negative-Binomial outputs.

However, real-world time series can often have complex distributions that are challenging to fit, with
outliers, heavy tails, extreme skew, and multimodality. In order to accommodate these scenarios, we
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Figure 2: Toto architecture. Input time series of L steps (univariate example used for simplicity here)
are first embedded using the patch embedding layer which produces. They then pass through the
transformer stack, which contains F identical segments. Each segment of the transformer consists
of one space-wise transformer block followed by N time-wise blocks. The flattened transformer
outputs are projected to form the parameters of the Student-T mixture model (SMM) head. The final
outputs are the forecasts for the input series, shifted P steps (the patch width) into the future.

introduce an even more flexible output likelihood in Section 2.5 based on a Student-T mixture model
(Peel & McLachlan, 2000).

2 MODEL ARCHITECTURE

2.1 TRANSFORMER DESIGN

We build upon the ideas discussed above to define a novel architecture that efficiently models mul-
tivariate time series data.

Transformer models for time series forecasting have variously used encoder-decoder (Zhou et al.,
2020; Wu et al., 2021; Ansari et al., 2024), encoder-only (Nie et al., 2023; Woo et al., 2024; Liu
et al., 2024), and decoder-only architectures (Rasul et al., 2023; Das et al., 2024). For Toto, we
employ a decoder-only architecture (Fig. 2). Decoder architectures have been shown to scale well
(Radford & Narasimhan, 2018; Radford et al., 2019), and allow for arbitrary prediction horizons.
The causal next-patch prediction task also simplifies the pre-training process.
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Figure 3: The patch embedding takes as input a multivariate time series of M variates by L time
steps. It divides each variate along the time dimension into patches of size P and projects these
linearly into an embedding space of latent dimension D. This results in an output of size M× L

P ×D
which is fed to the transformer decoder.

We utilize techniques demonstrated to yield performance and efficiency improvements in contem-
porary transformer literature, including pre-normalization (Xiong et al., 2020), RMSNorm (Zhang
& Sennrich, 2019), and SwiGLU feed-forward layers (Shazeer, 2020).

2.2 INPUT/OUTPUT SCALING

As in other time series models, we perform instance normalization on input data before passing it
through the patch embedding, in order to make the model generalize better to inputs of different
scales (Kim et al., 2022). We scale the inputs to have zero mean and unit standard deviation. The
output predictions are then rescaled back to the original units.

2.3 INPUT EMBEDDING

Time series transformers in the literature have used various approaches for creating input embed-
dings. We use non-overlapping patch embeddings (Cordonnier et al., 2020; Dosovitskiy et al., 2021;
Nie et al., 2023) (Fig. 3) of size P = 32, to project input time-series containing L = 4096 points to
embeddings of size 128×D per variate, where D = 512 is the embedding dimension.

2.4 ATTENTION MECHANISM

Observability metrics are often high-cardinality, multivariate time series. Therefore, we designed
our model to natively handle multivariate forecasting by analyzing relationships both in the time
dimension (“time-wise” interactions) and in the channel dimension (“space-wise” interactions).

In order to model both space and time-wise interactions, we adapt the traditional multi-head atten-
tion architecture (Vaswani et al., 2017) from one to two dimensions. We follow the intuition that
for many time series, the time relationships are more important or predictive than the space relation-
ships. As evidence, we observe that even models that completely ignore space-wise relationships
(such as PatchTST (Nie et al., 2023) and TimesFM (Das et al., 2024)) can still achieve competitive
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performance on multivariate datasets. However, other studies (e.g. Woo et al. (2024)) have shown
clear benefit to including space-wise attention in ablation studies.

We therefore propose a novel variant of factorized attention, which we call “Proportional Factorized
Space-Time Attention.” We use a mixture of alternating space-wise and time-wise attention blocks.
As a configurable hyperparameter, we can change the ratio of time-wise to space-wise blocks, thus
allowing us to devote more or less compute budget to each type of attention. For our base model,
we selected a configuration with one space-wise attention block for every two time-wise blocks.
This method allows for reduced computational complexity when compared to a traditional attention
scheme (see Section A.1).

2.5 PROBABILISTIC PREDICTION

In order to produce probabilistic forecasts across the wide range of output distributions present in
observability data, we employ a method based on Gaussian mixture models (GMMs), which can ap-
proximate any density function (Goodfellow et al., 2016). We find that fitting GMMs leads to numer-
ical instability in training, so we utilize a Student-T mixture model (SMM) of K distributions. This
model robustly generalizes GMMs (Peel & McLachlan, 2000), and has previously shown promise
for modeling heavy-tailed financial time series (Meitz et al., 2018; WONG et al., 2009). The model
predicts K Student-T distributions (where K is a hyperparameter) for each time step, as well as a
learned weighting. Formally, the SMM is defined by:

p(x) =

K∑
k=1

πkt(x | µk, τ, νk) (1)

where πk∈K are nonnegative mixing coefficients which sum to 1 for the kth Student’s t-distribution
t with νk degrees of freedom, mean µk, and scale σk. t(x | µ, σ, ν) is defined as:

t(x | µ, τ, ν) =
Γ
(
ν+d
2

)
Γ
(
ν
2

)
(νπ)d/2|τ |1/2

(
1 +

1

ν
(x− µ)T τ−1(x− µ)

)− ν+d
2

(2)

When we perform inference, we draw samples from the mixture distribution at each timestamp, then
feed each sample back into the decoder for the next prediction. This allows us to produce prediction
intervals at any quantile, limited only by the number of samples; for more precise tails, we can
choose to spend more computation on sampling (Fig. 4).

As a decoder-only model, Toto is pre-trained on the next-patch prediction task. We minimize the
negative log-likelihood of the next predicted patch with respect to the distribution output of the
model, defined by the objective function:

NLL = − log

(
16∑
k=1

πkt(x | µk, τ, νk)

)
(3)

Additionally, we utilize a dual softmax function on output logits for the mixing coefficients (Cheng
et al., 2021), which has been demonstrated to improve training stability with highly heterogeneous
data.

We train the model using the AdamW optimizer (Loshchilov & Hutter, 2019). The hyperparameters
used for Toto are detailed in Table A1, with 103 million total parameters. In Section A.2, we perform
an ablation study on the impact of various model components.

3 TRAINING DATA

We trained Toto with a dataset of approximately one trillion time series points. Of these, roughly
three-quarters are anonymous observability metrics from an observability platform. The remaining
points come from the LOTSA dataset (Woo et al., 2024), a compilation of publicly-available time
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Figure 4: Example of Toto's 96-step zero-shot forecasts on the ETTh1 dataset, showing multivariate
probabilistic predictions. Solid lines represent ground truth, dashed lines represent median point
forecasts, and shaded regions represent 95% prediction intervals.

series datasets across many different domains. Additionally, we include synthetically generated time
series data which we found to improve model performance.

3.1 OBSERVABILITY DATASET

An observability platform ingests more than a hundred trillion events per day. However, much of
this data is sparse, noisy, or too granular or high in cardinality to be useful in its raw form. To
curate a high-quality dataset for efficient model training, we sample queries based on quality and
relevance signals from dashboards, monitor alerts, and notebooks. This provides a strong signal that
the data resulting from these queries is of critical importance and sufficient quality for observability
of real-world applications.

Observability metrics are accessed using a specialized query language supporting filters, group-bys,
time aggregation, and various transformations and postprocessing functions. We consider groups
returned from the same query to be related variates in a multivariate time series (Fig. A1). After we
retrieve the query results, we discard the query strings and group identifiers, keeping only the raw
numeric data.

Handling this vast amount of data requires several preprocessing steps to ensure consistency and
quality. We describe the details of preprocessing and data augmentation in Section A.3.1.

3.2 SYNTHETIC DATA

We use a synthetic data generation process similar to TimesFM (Das et al., 2024) to supplement our
training datasets, improving the diversity of the data and helping to teach the model basic structure.
The procedure used to generate synthetic data is detailed in Section A.3.2.

4 RESULTS

To evaluate predictions, we sequentially divide a time series into context and forecast segments.
We input the context segment into Toto and autoregressively generate output patches by sampling
from the Student-T mixture model distribution. We forecast a number of steps equal to the nearest
multiple of the patch size, then truncate the predictions to the desired length. In order to keep
inference time consistent, we vary the number of samples generated based on the cardinality and
length of the dataset, with a minimum of 100 samples. We take the median sample at each time
step as the final point prediction. This prediction is then compared against the ground-truth forecast
segment for evaluation.

We report experimental results for a pre-trained Toto model in Section 4.1 and Section 4.2.
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Zero Shot Full Shot

Dataset Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM* iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer
ETTh1 MAE 0.389 0.424 0.438 0.469 0.426 0.448 0.450 0.455 0.522 0.507 0.452 0.647 0.460

MSE 0.363 0.400 0.434 0.510 - 0.454 0.458 0.469 0.529 0.541 0.456 0.747 0.440

ETTh2 MAE 0.261 0.379 0.382 0.376 0.410 0.407 0.497 0.407 0.684 0.550 0.515 0.723 0.449
MSE 0.170 0.341 0.345 0.354 - 0.383 0.414 0.387 0.942 0.611 0.559 0.954 0.437

ETTm1 MAE 0.375 0.409 0.388 0.389 0.388 0.410 0.406 0.400 0.495 0.419 0.407 0.481 0.452
MSE 0.372 0.448 0.381 0.390 - 0.407 0.400 0.387 0.513 0.419 0.403 0.486 0.448

ETTm2 MAE 0.319 0.341 0.321 0.320 0.334 0.332 0.333 0.326 0.611 0.404 0.401 0.537 0.349
MSE 0.272 0.300 0.272 0.276 - 0.288 0.291 0.281 0.757 0.358 0.350 0.571 0.305

Electricity MAE 0.246 0.320 0.274 0.273 - 0.270 0.295 0.304 0.334 0.344 0.300 0.365 0.327
MSE 0.157 0.233 0.188 0.188 - 0.178 0.193 0.216 0.244 0.252 0.212 0.268 0.214

Weather MAE 0.284 0.267 0.261 0.275 - 0.278 0.287 0.281 0.315 0.320 0.317 0.363 0.360
MSE 0.256 0.242 0.238 0.259 - 0.258 0.259 0.259 0.259 0.271 0.265 0.292 0.309

Mean MAE 0.312 0.357 0.341 0.350 - 0.357 0.378 0.362 0.493 0.424 0.399 0.519 0.400
MSE 0.265 0.328 0.315 0.330 - 0.328 0.336 0.333 0.541 0.409 0.374 0.533 0.359

Table 1: Comparison of different models with Toto on the LSF benchmark datasets. Results are
averaged across prediction lengths of 96, 192, 336, and 720 steps. For Toto, we use a stride of 512
steps and a historical context window of 512 steps. For other models, we use the results reported in
Woo et al. (2024) and Das et al. (2024). Metrics for each prediction length are available in Table A3.
*TimesFM only reports values for MAE on ETTh1, ETTh2, ETTm1, and ETTm2.
Key: Best results, Second-best results.

4.1 LSF BENCHMARKS

To assess general-purpose time series forecasting performance, we use the Long Sequence Fore-
casting (LSF) benchmark datasets (ETTh1, ETTh2, ETTm1, ETTm2, Electricity, and Weather) (Wu
et al., 2021). For Toto, we used a historical context window of 512 time steps and took the median of
200 samples. Following standard practice, we report normalized Mean Absolute Error (MAE) and
Mean Squared Error (MSE), fitted on a training split, in order to be able to compare performance
across different datasets. We compared Toto's performance with the reported results of other recent
zero-shot foundation models (Woo et al., 2024; Das et al., 2024), as well as full-shot time series
forecasting models (Liu et al., 2024; Wu et al., 2023; Nie et al., 2023; Zhang & Yan, 2023; Das
et al., 2023; Zeng et al., 2023; LIU et al., 2022; Zhou et al., 2022). We evaluate with forecast lengths
of 96, 192, 336, and 720 time steps, in sliding windows with stride 512, and average the results. We
display these results in Table 1.

Toto demonstrates exceptional performance across a variety of benchmark datasets, excelling in
zero-shot scenarios. In the LSF datasets, Toto consistently outperforms other models in terms of
MAE and MSE. For example, on the ETTh1 dataset, Toto achieves an MAE of 0.389 and an MSE
of 0.363, outperforming all zero-shot models, including the previously reported Moirai series and
TimesFM. Macro-averaging across the six LSF datasets, Toto achieves an MAE of 0.312 and MSE of
0.265, again exceeding Moirai's reported zero-shot performance as well as the reported performance
of the full-shot models.

While Toto generally excels, there are areas where its performance is closely matched by other mod-
els. In full-shot scenarios, models like PatchTST, Crossformer, and FEDformer show competitive
results. For example, on the Electricity dataset, while Toto achieves a leading zero-shot MAE of
0.246 and MSE of 0.157, iTransformer and TimesNet also show strong performance, indicating that
these models can catch up when additional training data is available.

4.2 OBSERVABILITY BENCHMARK

We created a benchmark using anonymous observability data to assess performance across vari-
ous observability metrics. To ensure a representative and realistic sample, we sampled data based
on quality and relevance signals from dashboards, monitor alerts, and notebooks. This benchmark
comprises 983,994 data points from 82 distinct multivariate time series, encompassing 1,122 vari-
ates.

We analyzed summary statistics of the series in our benchmark to identify characteristics that make
observability time series challenging to forecast. The categories and their definitions are as follows:

• Sparse: Series with a low density of observations, indicating infrequent recording of data
or rare events.

8
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Metric Toto Chronos-T5Tiny Chronos-T5Mini Chronos-T5Small Chronos-T5Base Chronos-T5Large MoiraiSmall MoiraiBase MoiraiLarge TimesFM
sMAPE 0.672 0.809 0.788 0.800 0.796 0.805 0.808 0.742 0.736 1.246

sMdAPE 0.318 0.406 0.391 0.401 0.393 0.396 0.418 0.370 0.365 0.639

Table 2: Performance of Toto and other zero-shot models on the observability benchmark dataset.
Key: Best results, Second-best results.

• Extreme right skew: Series with a distribution heavily skewed to the right, characterized
by a few very high values and many lower values.

• Seasonal: Series exhibiting regular and recurring patterns, often linked to daily, weekly, or
yearly cycles.

• Flat: Series with minimal variability, showing little to no change over time.

To assess the prediction of other zero-shot models on the observability Benchmark, we follow sam-
pling procedures delineated in their respective manuscripts. In short, for Chronos models, we gen-
erate 20 samples and take the median prediction. For Moirai models, we take the median of 100
samples and set the patch size to “auto”. TimesFM only produces point predictions of the mean, so
we use those directly. Since TimesFM and Chronos only support univariate forecasting, we process
each variate independently. Moirai, on the other hand, like Toto, makes joint predictions for each
group of related variates. For Toto, we utilize the same evaluation procedure we used on the LSF
benchmarks.

The relative proportion of these cases are displayed in Table A4. The evaluation results (Table 2)
demonstrate that Toto outperforms the other models.

Because observability data can have extreme variation in both magnitude and dispersion, we select
symmetric mean absolute percentage error (sMAPE) as a scale-invariant performance metric (Arm-
strong, 1985). We also report symmetric median absolute percentage error (sMdAPE), a robust
version of sMAPE (Hyndman & Koehler, 2006) that minimizes the influence of the extreme outliers
present in observability data. With the lowest sMAPE of 0.672 and sMdAPE of 0.318, Toto proves
to be the most accurate for forecasting observability time series data.

These results suggest that current open datasets may not provide sufficient information to extrapolate
to the specific nuances of observability data, highlighting the importance of training on more relevant
data as demonstrated by Toto's superior performance.

5 CONCLUSIONS

Toto demonstrates state-of-the-art performance across both public and proprietary benchmarks. By
leveraging a proportional factorized attention mechanism and a Student-T mixture model, Toto
achieves impressive results in both zero-shot and full-shot settings, showcasing its scalability and
flexibility in handling complex, high-dimensional data.

Despite its success, there are areas where further refinement is possible. Future work could involve
integrating additional input modalities or exploring new attention mechanisms to enhance scalability
and accuracy.

With its demonstrated robustness and ability to manage observability data at scale, Toto not only
advances time series forecasting but also opens new pathways for real-time system monitoring and
infrastructure optimization, setting the stage for further innovations in the field.

6 IMPACT STATEMENT

In developing Toto, we followed a structured approach to ensure responsible development, focusing
on identifying, assessing, and mitigating potential risks associated with the use of our model. Given
that Toto is not intended for mass distribution and specifically generates time series forecasts for
observability data, the potential harms are considerably lower compared to more general-purpose
models. Our primary focus was ensuring the accuracy, reliability, and security of the forecasts

9
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generated by Toto, which are crucial for maintaining and optimizing infrastructure and application
performance.

We carefully analyze the potential for Toto to produce incorrect or misleading forecasts that could
impact decision-making processes in critical systems. Additionally, we consider the implications
of Toto's performance across diverse datasets, ensuring it can generalize well without introducing
significant errors.

7 FUTURE DIRECTIONS

Many exciting areas of exploration remain for further study. Some future research questions that
particularly intriguing include:

• Multi-modal inputs: Incorporate additional input modalities such as query metadata and
captions to enhance forecast performance.

• Autonomous troubleshooting agents: Creating AI agents for troubleshooting and incident
response by integrating modality-specific foundation models like Toto to improve their
reasoning and planning capabilities with telemetry data.

• Conversational interfaces: Align time series forecasting models with LLMs to develop
conversational agents capable of interpreting and reasoning about time series data.

• Model enhancements and scaling: Explore ways to improve and scale model performance
through optimizations such as new types of input embeddings, attention mechanisms, and
examining alternative variate groupings to capture richer interactions.
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Robert Fildes, Michèle Hibon, Spyros Makridakis, and Nigel Meade. Generalising about univariate
forecasting methods: further empirical evidence. International Journal of Forecasting, 14:339–
358, 9 1998. ISSN 01692070. doi: 10.1016/S0169-2070(98)00009-0.

Azul Garza and Max Mergenthaler-Canseco. Timegpt-1, 2023.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Nate Gruver, Marc Anton Finzi, Shikai Qiu, and Andrew Gordon Wilson. Large language models are
zero-shot time series forecasters. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=md68e8iZK1.

R. J Hyndman and A. B. Koehler. Another look at measures of forecast accuracy. International
Journal of Forecasting, 22, 2006.

Rob J Hyndman and George Athanasopoulos. Forecasting: Principles and Practice. OTexts, 3rd
edition, 2021. URL https://otexts.com/fpp3/.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Pal-
panas, and Ievgen Redko. SAMformer: Unlocking the potential of transformers in time series
forecasting with sharpness-aware minimization and channel-wise attention. In Forty-first Interna-
tional Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=8kLzL5QBh2.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.
net/forum?id=cGDAkQo1C0p.

Ze Li, Qian Cheng, Ken Hsieh, Yingnong Dang, Peng Huang, Pankaj Singh, Xinsheng Yang, Qing-
wei Lin, Youjiang Wu, Sebastien Levy, and Murali Chintalapati. Gandalf: an intelligent, end-to-
end analytics service for safe deployment in cloud-scale infrastructure. In Proceedings of the 17th
Usenix Conference on Networked Systems Design and Implementation, NSDI’20, pp. 389–402,
USA, 2020. USENIX Association. ISBN 9781939133137.

Tianyang Lin, Yuxin Wang, Xiangyang Liu, and Xipeng Qiu. A survey of transformers. CoRR,
abs/2106.04554, 2021. URL https://arxiv.org/abs/2106.04554.

Minhao LIU, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia LAI, Lingna Ma, and Qiang Xu.
SCINet: Time series modeling and forecasting with sample convolution and interaction. In Al-
ice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neu-
ral Information Processing Systems, 2022. URL https://openreview.net/forum?id=
AyajSjTAzmg.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. 2024. URL https:
//openreview.net/forum?id=JePfAI8fah.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Mika Meitz, Daniel P. A. Preve, and Pentti Saikkonen. A mixture autoregressive model based on
student’s t–distribution. Communications in Statistics - Theory and Methods, 52:499 – 515, 2018.
URL https://api.semanticscholar.org/CorpusID:73615847.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=md68e8iZK1
https://otexts.com/fpp3/
https://openreview.net/forum?id=8kLzL5QBh2
https://openreview.net/forum?id=8kLzL5QBh2
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://arxiv.org/abs/2106.04554
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=AyajSjTAzmg
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://api.semanticscholar.org/CorpusID:73615847


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. 2023. URL https://openreview.net/
forum?id=Jbdc0vTOcol.

D. Peel and G.J. McLachlan. Robust mixture modelling using the t distribution. Statistics and
Computing, 10(4):339–348, 2000.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

Roshan M Rao, Jason Liu, Robert Verkuil, Joshua Meier, John Canny, Pieter Abbeel, Tom Sercu,
and Alexander Rives. Msa transformer. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 8844–8856. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/rao21a.html.

Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Arian Khorasani, George Adamopoulos,
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A APPENDIX

A.1 MODEL ARCHITECTURE

After the patchwise embedding layer, we have inputs of shape X ∈ RB×M× L
P ×D, where B is the

batch dimension, M is the number of variates per batch item, L
P is time steps divided by patch width,

and D is the model embedding dimension.

Time-wise attention. We parallelize along the time dimension by reshaping the input tensor:

X ∈ RB×M× L
P ×D → Xtime ∈ R(B×M)× L

P ×D

This allows for attention to be calculated independently in parallel per variate, giving a complexity
of:

O(M × (
L

P
)2 ×D)

In the time-wise attention blocks, we use causal masking and rotary positional embeddings (Su et al.,
2021) with XPOS (Sun et al., 2022) in order to autoregressively model time-dependent features.

Space-wise attention. We similarly parallelize along the time dimension by reshaping the input
tensor:

X ∈ RB×M× L
P ×D → Xspace ∈ R(B× L

P )×M×D

We calculate attention in parallel for each time step, with complexity:

O(
L

P
×M2 ×D)

In the space-wise blocks, we use full bidirectional attention (without causal masking) in order to
preserve permutation invariance of the covariates, with a block-diagonal ID mask to ensure that
only related variates attend to each other. This masking allows us to pack multiple independent
multivariate time series into the same batch, in order to improve training efficiency and reduce the
amount of padding.

Computational complexity. Each transformer block in our model contains N timewise attention
layers and 1 spacewise layer. The complexity for full self-attention over N + 1 layers, where inter-
actions can occur across all variates and sequence positions, would be of complexity:

O

(
(N + 1)×M2 ×

(
L

P

)2

×D

)
(A1)

This reflects the quadratic dependence on both the sequence length L
P and the variate dimension M ,

with linear dependence on the embedding dimension D. However, by utilizing factorized attention,
we can reduce the computational complexity of the attention calculation to:

O

(
N ×M ×

(
L

P

)2

×D +
L

P
×M2 ×D

)
=

O
(
D × L

P
×M ×

(
N × L

P
+M

)) (A2)
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We demonstrate that factorized space-wise attention is asymptotically smaller in computational com-
plexity than full self-attention (see Equation A1 and Equation A2). When comparing a model with
full self-attention, we can assume N and D are fixed. Therefore:

O

(
M ×

(
L

P

)2

+
L

P
×M2

)
< O

(
M2 ×

(
L

P

)2
)

which reduces to:

O
(
M +

L

P

)
< O

(
M × L

P

)
Thus, by factorizing attention into time-wise and space-wise components, the computational com-
plexity is reduced, especially for large numbers of variates M or long sequences L

P , making it more
scalable than full self-attention.

A.1.1 HYPERPARAMETERS

Hyperparameter Value
Embedding Dimension 512
MLP Dimension 2048
# Layers 24
# Heads 8
# Variates 32
(β1, β2) (0.9, 0.95)
Weight Decay 0.01
Spacewise Layer Cadence 3
Patch Size 32
# Student-T Mixture Model Components 16
Initial Learning Rate 0.001
Annealing Schedule Cosine
Batch Size 192
Warmup Steps 5000
Total Train Steps 193000

Table A1: Hyperparameters for Toto

A.2 ABLATIONS

In this ablation study, we compare several versions of the Toto model using Negative Log Likelihood
(NLL) loss on the validation set of our observability dataset. In addition to the full Toto model, we
train separate variants with:

1. No space-wise attention (Time-wise Attention layers only)

2. No Student-T mixture model (instead, we replace the output with a single Student-T distri-
bution)

3. No observability data (instead, we train only on the full LOTSA dataset with synthetic data)

All models (except the “no observability data” model) were trained on a scaled down dataset with
620B points, with the number of training steps proportionally reduced to 117,000 steps. For each
model, we report the NLL at its minimum during training and present the relative performance as
a percentage decrease in comparison to the full Toto model. Table A2 presents the performance of
each model variant, showing the percentage increase in NLL relative to the full Toto model (lower
percentages indicate worse performance).
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Model NLL (% Increase Relative to Toto)
Toto (baseline) 0%
No Space-wise Attention 4.37%
Single Student-T 11.48%
No Observability Data 14.21%

Table A2: Percentage increase in NLL relative to the full Toto model.

We observe that the full Toto model achieves the lowest NLL at its best validation point, serving
as the baseline. The ”No Space-wise Attention” variant shows a 4.37% increase in NLL, while the
”Single Student-T” and ”No observability Data” variants show larger decreases in performance, with
NLL increases of 11.48% and 14.21%, respectively. These results indicate that space-wise attention,
the Student-T mixture model, and the inclusion of observability -specific data are essential for op-
timal model performance. The percentage differences highlight the impact of these components on
the model’s ability to effectively model the underlying data distribution.

A.3 TRAINING DATA PREPROCESSING

A.3.1 OBSERVABILITY DATASET

Initially, we apply padding and masking techniques to align the series lengths, making them divisible
by the patch stride. This involves adding necessary left-padding to both the time series data and the
ID mask, ensuring compatibility with the model's requirements.

Various data augmentations are employed to enhance the dataset's robustness. We introduce random
time offsets to prevent memorization caused by having series always align the same way with the
patch grid. After concatenating the observability and LOTSA datasets for training, we also imple-
ment a variate shuffling strategy to maintain diversity and representation. Specifically, we randomly
combine variates from either observability , LOTSA, and/or synthetic data with a probability of
10%, thus creating new, diverse combinations of data points. To sample the indices when mixing in
this fashion, we employ a normal distribution with a standard deviation of 1000, favoring data points
that were closer together in the original datasets. This Gaussian sampling ensures that, while there is
a preference for adjacent data points, significant randomness is introduced to enhance the diversity
of the training data. This approach improves the model's ability to generalize across different types
of data effectively.

Figure A1: Example metric query in the observability platform. The metric name (1) determines
which metric is being queried. The filter clause (2) limits which contexts are queried, in this case
restricting the query to the prod environment. The space aggregation (3) indicates that the average
metric value should be returned for each unique combination of the group-by keys. The time ag-
gregation (4) indicates that metric values should be aggregated to the average for each 60-second
interval. The query results will be a multivariate time series with 1-minute time steps, and with
separate individual variates for each unique service, datacenter tuple.
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A.3.2 SYNTHETIC DATA

We simulate time series data through the composition of components such as piecewise linear trends,
ARMA processes, sinusoidal seasonal patterns, and various residual distributions. We randomly
combine five of these processes per variate, introducing patterns not always present in our real-world
datasets. The generation process involves creating base series with random transformations, clipping
extreme values, and rescaling to a specified range. By making synthetic data approximately 5% of
our training dataset, we ensure a wide range of time-series behaviors are captured. This diversity
exposes our models to various scenarios during training, improving their ability to generalize and
effectively handle real-world data.

A.4 RESULTS

A.4.1 LSF BENCHMARKS

Zero Shot Full Shot

Dataset Prediction Length Metric Toto MoiraiSmall MoiraiBase MoiraiLarge TimesFM iTransformer TimesNet PatchTST Crossformer TiDE DLinear SCINet FEDformer
96 MAE 0.366 0.402 0.402 0.398 0.398 0.405 0.402 0.419 0.448 0.464 0.400 0.599 0.419

MSE 0.307 0.375 0.384 0.380 - 0.386 0.384 0.414 0.423 0.479 0.386 0.654 0.376
192 MAE 0.368 0.419 0.429 0.434 0.424 0.436 0.429 0.445 0.474 0.492 0.432 0.631 0.448

ETTh1 MSE 0.329 0.399 0.425 0.440 - 0.441 0.436 0.460 0.471 0.525 0.437 0.719 0.420
336 MAE 0.399 0.429 0.450 0.474 0.436 0.458 0.469 0.466 0.546 0.515 0.459 0.659 0.465

MSE 0.396 0.412 0.456 0.514 - 0.487 0.491 0.501 0.570 0.565 0.481 0.778 0.459
720 MAE 0.424 0.444 0.473 0.568 0.445 0.491 0.500 0.488 0.621 0.558 0.516 0.699 0.507

MSE 0.419 0.413 0.470 0.705 - 0.503 0.521 0.500 0.653 0.594 0.519 0.836 0.506

96 MAE 0.197 0.334 0.327 0.325 0.356 0.349 0.374 0.348 0.584 0.440 0.387 0.621 0.397
MSE 0.093 0.281 0.277 0.287 - 0.297 0.340 0.302 0.745 0.400 0.333 0.707 0.358

192 MAE 0.231 0.373 0.374 0.367 0.400 0.400 0.414 0.400 0.656 0.509 0.476 0.689 0.439
ETTh2 MSE 0.135 0.340 0.340 0.347 - 0.380 0.402 0.388 0.877 0.528 0.477 0.860 0.429

336 MAE 0.260 0.393 0.401 0.393 0.428 0.432 0.541 0.433 0.731 0.571 0.541 0.744 0.487
MSE 0.160 0.362 0.371 0.377 - 0.428 0.452 0.426 1.043 0.643 0.594 1.000 0.496

720 MAE 0.355 0.416 0.426 0.421 0.457 0.445 0.657 0.446 0.763 0.679 0.657 0.838 0.474
MSE 0.294 0.380 0.394 0.404 - 0.427 0.462 0.431 1.104 0.874 0.831 1.249 0.463

96 MAE 0.328 0.383 0.360 0.363 0.345 0.368 0.375 0.367 0.426 0.387 0.372 0.438 0.419
MSE 0.306 0.404 0.335 0.353 - 0.334 0.338 0.329 0.404 0.364 0.345 0.418 0.379

192 MAE 0.353 0.402 0.379 0.380 0.374 0.391 0.387 0.385 0.451 0.404 0.389 0.450 0.441
ETTm1 MSE 0.328 0.435 0.366 0.376 - 0.377 0.374 0.367 0.450 0.398 0.380 0.439 0.426

336 MAE 0.389 0.416 0.394 0.395 0.397 0.420 0.411 0.410 0.515 0.425 0.413 0.485 0.459
MSE 0.390 0.462 0.391 0.399 - 0.426 0.410 0.399 0.532 0.428 0.413 0.490 0.445

720 MAE 0.429 0.437 0.419 0.417 0.436 0.459 0.450 0.439 0.589 0.461 0.453 0.550 0.490
MSE 0.463 0.490 0.434 0.432 - 0.491 0.478 0.454 0.666 0.487 0.474 0.595 0.543

96 MAE 0.270 0.282 0.269 0.260 0.263 0.264 0.267 0.259 0.366 0.305 0.292 0.377 0.287
MSE 0.200 0.205 0.195 0.189 - 0.180 0.187 0.175 0.287 0.207 0.193 0.286 0.203

192 MAE 0.315 0.318 0.303 0.300 0.309 0.309 0.309 0.302 0.492 0.364 0.362 0.445 0.328
ETTm2 MSE 0.269 0.261 0.247 0.247 - 0.250 0.249 0.241 0.414 0.290 0.284 0.399 0.269

336 MAE 0.319 0.355 0.333 0.334 0.349 0.348 0.351 0.343 0.542 0.422 0.427 0.591 0.366
MSE 0.264 0.319 0.291 0.295 - 0.311 0.321 0.305 0.597 0.377 0.369 0.637 0.325

720 MAE 0.374 0.410 0.377 0.386 0.415 0.407 0.403 0.400 1.042 0.524 0.522 0.735 0.415
MSE 0.354 0.415 0.355 0.372 - 0.412 0.408 0.402 1.730 0.558 0.554 0.960 0.421

96 MAE 0.212 0.299 0.248 0.242 - 0.240 0.272 0.285 0.314 0.329 0.282 0.345 0.308
MSE 0.124 0.205 0.158 0.152 - 0.148 0.168 0.195 0.219 0.237 0.197 0.247 0.193

192 MAE 0.232 0.310 0.263 0.259 - 0.253 0.289 0.289 0.322 0.330 0.285 0.355 0.315
Electricity MSE 0.138 0.220 0.174 0.171 - 0.162 0.184 0.199 0.231 0.236 0.196 0.257 0.201

336 MAE 0.249 0.323 0.278 0.278 - 0.269 0.300 0.305 0.337 0.344 0.301 0.369 0.329
MSE 0.155 0.236 0.191 0.192 - 0.178 0.198 0.215 0.246 0.249 0.209 0.269 0.214

720 MAE 0.291 0.347 0.307 0.313 - 0.317 0.320 0.337 0.363 0.373 0.333 0.390 0.355
MSE 0.211 0.270 0.229 0.236 - 0.225 0.220 0.256 0.280 0.284 0.245 0.299 0.246

96 MAE 0.223 0.212 0.203 0.208 - 0.214 0.220 0.218 0.230 0.261 0.255 0.306 0.296
MSE 0.180 0.173 0.167 0.177 - 0.174 0.172 0.177 0.158 0.202 0.196 0.221 0.217

192 MAE 0.267 0.250 0.241 0.249 - 0.254 0.261 0.259 0.277 0.298 0.296 0.340 0.336
Weather MSE 0.235 0.216 0.209 0.219 - 0.221 0.219 0.225 0.206 0.242 0.237 0.261 0.276

336 MAE 0.291 0.282 0.276 0.292 - 0.296 0.306 0.297 0.335 0.335 0.335 0.378 0.380
MSE 0.252 0.260 0.256 0.277 - 0.278 0.280 0.278 0.272 0.287 0.283 0.309 0.339

720 MAE 0.356 0.322 0.323 0.350 - 0.349 0.359 0.348 0.418 0.386 0.381 0.427 0.428
MSE 0.356 0.320 0.321 0.365 - 0.358 0.365 0.354 0.398 0.351 0.345 0.377 0.403

Table A3: Performance metrics for various models. Key: Best results, Second-best results.

A.4.2 OBSERVABILITY BENCHMARK

Case %

Sparse 12.20
Extreme Right Skew 17.07
Seasonal 80.49
Flat 1.22

Table A4: Breakdown of observability dataset based on case, computed based on the average char-
acteristics of variates in each multivariate series. Note that these do not add to 100% because time
series may fall into multiple categories.
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