
Learning-Augmented Online Bipartite Fractional
Matching

Davin Choo∗§

Harvard John A. Paulson School Of Engineering And Applied Sciences
Harvard University

Boston, Massachusetts, USA
davinchoo@seas.harvard.edu

Billy Jin† §

Daniels School of Business
Purdue University

West Lafayette, Indiana, USA
jin608@purdue.edu

Yongho Shin‡ §

Institute of Computer Science
University of Wrocław

Wrocław, Poland
yongho@cs.uni.wroc.pl

Abstract

Online bipartite matching is a fundamental problem in online optimization, ex-
tensively studied both in its integral and fractional forms due to its theoretical
significance and practical applications, such as online advertising and resource
allocation. Motivated by recent progress in learning-augmented algorithms, we
study online bipartite fractional matching when the algorithm is given advice in the
form of a suggested matching in each iteration. We develop algorithms for both the
vertex-weighted and unweighted variants that provably dominate the naïve “coin
flip” strategy of randomly choosing between the advice-following and advice-free
algorithms. Moreover, our algorithm for the vertex-weighted setting extends to the
AdWords problem under the small bids assumption, yielding a significant improve-
ment over the seminal work of Mahdian, Nazerzadeh, and Saberi (EC 2007, TALG
2012). Complementing our positive results, we establish a hardness bound on the
robustness-consistency tradeoff that is attainable by any algorithm. We empirically
validate our algorithms through experiments on synthetic and real-world data.

1 Introduction

Online bipartite matching is a fundamental problem in online optimization with significant applica-
tions in areas such as online advertising [MSVV07, FKM+09], resource allocation [DJSW19], and
ride-sharing platforms [DSSX21, FNS24]. In its classical formulation [KVV90, AGKM11], the input
is a bipartite graph where one side of (possibly weighted) offline vertices is known in advance, while
the other side of online vertices arrives sequentially one at a time. When an online vertex v arrives,
its incident edges are revealed, and the algorithm irrevocably decides whether to match v and, if so,
to which currently unmatched neighbor. The objective is to maximize the total weight of the matched
offline vertices. Algorithms for online bipartite matching are often evaluated by their competitive
ratio: An algorithm is ρ-competitive if it always outputs a matching whose (expected) total weight is

∗Part of work done while the author was affiliated with the National University of Singapore, Singapore.
†Work done while the author was at the University of Chicago Booth School of Business, USA.
‡Part of work done while the author was affiliated with Yonsei University, South Korea.
§Equal contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



at least ρ times the weight of the best matching in hindsight. In a seminal paper, [KVV90] proposed
the RANKING algorithm and showed it is (1 − 1/e)-competitive for the unweighted setting. This
competitive ratio is best-possible, and was later extended to the vertex-weighted case by [AGKM11].

Online bipartite matching has also been studied in the fractional setting, where edges can be fraction-
ally chosen, provided that the total fractional value on the edges incident to any vertex does not exceed
one [WW15, HPT+19, HTWZ20, HHIS24]. Fractional matching is important both theoretically and
practically. It naturally models settings where online arrivals are divisible or offline vertices have
large capacities [KP00, MSVV07, BJN07, FKM+09, MNS12, DHK+16, FN24], and it forms the
basis for designing integral algorithms using rounding techniques [FSZ16, BNW23, NSW25]. For
fractional vertex-weighted online bipartite matching, the BALANCE algorithm of [BJN07] gets a
competitive ratio of (1− 1/e), which is best-possible and matches the ratio in the integral case.

The main challenge in online bipartite matching is that irrevocable decisions must be made with-
out knowledge of future arrivals. Uncertainty in the arrival sequence is typically modeled either
adversarially or stochastically. The adversarial model assumes no structure and measures worst-case
performance, but can be overly pessimistic. On the other hand, the stochastic model assumes arrivals
are drawn from a known distribution [FMMM09], but such distributions are often estimated and may
be inaccurate. These models thus represent two extremes, each with practical limitations. A middle
ground is offered by algorithms with predictions, or learning-augmented algorithms [MNS12, LV21],
which incorporates advice – derived from data, forecasts, or experts – of unknown quality. The perfor-
mance is typically measured in terms of its robustness (guaranteed performance regardless of advice
quality) and consistency (performance when advice is accurate) [LV21, KPS18].5 In online bipartite
matching, an algorithm is r-robust if its competitive ratio is at least r, and c-consistent if it achieves at
least a c-fraction of the total weight from following the advice (see Definition 4). A natural baseline
is the COINFLIP algorithm, which randomly chooses between robustness- and consistency-optimal
strategies. For matching, its tradeoff curve is the line segment between (1− 1/e, 1− 1/e) and (0, 1) in
the vertex-weighted case, or (1/2, 1) in the unweighted case [JM22].

This paper investigates the robustness-consistency tradeoff of online bipartite matching under the
learning-augmented framework, building on prior work including [MNS07, MNS12, ACI22, JM22,
SE23, CGLB24]. Particularly relevant are the works of Mahdian et al. [MNS07, MNS12] and Spaeh
and Ene [SE23]. Mahdian et al. studied the AdWords problem (introduced in [MSVV07]), with advice
in the form of a recommendation assigning each online impression to a specific offline advertiser.
They proposed a learning-augmented algorithm under the small bids assumption that outperforms the
naïve COINFLIP strategy, but only over part of the robustness range. Meanwhile, [SE23] generalized
this result to Display Ads and the generalized assignment problem [FKM+09]. However, as shown
in Fig. 1, neither of these algorithms dominate COINFLIP across the full robustness spectrum. This
raises a natural question: Does there exist a learning-augmented algorithm for online bipartite
matching that dominates COINFLIP across the entire range of robustness?

1.1 Our contributions

We answer the above question affirmatively by presenting learning-augmented algorithms for both
vertex-weighted and unweighted online bipartite fractional matching whose robustness-consistency
tradeoffs Pareto-dominate that of COINFLIP across the entire range of robustness (see Fig. 1).

Motivated by [MNS07, MNS12, SE23], we take the advice to be a feasible fractional matching that
is revealed in an online fashion: upon arrival of each online vertex v, the algorithm is given as advice
fractional matching values for each neighboring edge of v. Moreover, as in [MNS07, MNS12, SE23],
our algorithms are parameterized by a tradeoff parameter λ ∈ [0, 1] that represents how closely we
follow the advice. At the extremes, our algorithms blindly follow the advice when λ = 1 and revert
to BALANCE when λ = 0.

For the vertex-weighted setting, we present an algorithm LEARNINGAUGMENTEDBALANCE (LAB)
with the following guarantees:

Theorem 1. For any tradeoff parameter λ ∈ [0, 1], LEARNINGAUGMENTEDBALANCE is an r(λ)-
robust and c(λ)-consistent algorithm for vertex-weighted online bipartite fractional matching, where

r(λ) := 1− eλ−1 −
(
eλ−1 − λ

)
ln(1− λe1−λ)− λ(1− λ) and c(λ) := 1 + λ− eλ−1.

5A third property, smoothness, requires graceful degradation with advice quality [EADL24]. See Section 2.

2



0 0.5 0.63
Robustness r

0.63

0.73

1

C
on

si
st

en
cy
c

LAB (Sect 3)

[MNS07, MNS12]

[SE23]

CoinFlip

Our UB (Sect 5)

UB of [JM22]

(a) Vertex-weighted setting and AdWords under
small bids assumption

0.5 0.63
Robustness r

0.63

0.73

1

C
on

si
st

en
cy
c

PAW (Sect 4)

LAB (Sect 3)

CoinFlip

Our UB (Sect 5)

UB of [JM22, CGLB24]

(b) Unweighted setting

Figure 1: Robustness-consistency tradeoffs of previous works and our results.

This algorithm is based on BALANCE where the penalty function is modified to be advice-dependent.
To analyze this algorithm, we adopt the standard primal-dual analysis of online bipartite matching
and first prove its performance when the advice is integral. We then prove that the robustness and
consistency are minimized when the advice is integral, yielding the same guarantees for the general
fractional advice case.

We further show that LAB extends to the AdWords problem under the small bids assumption, yielding
a significant improvement over [MNS07, MNS12].
Theorem 2. Consider the small bids assumption where the maximum bid-to-budget ratio is bounded
by some sufficiently small ε > 0. For any tradeoff parameter λ ∈ [0, 1], there exists an r(λ) · (1−
3
√
ε ln(1/ε))-robust and c(λ) · (1− 3

√
ε ln(1/ε))-consistent algorithm for AdWords with advice,

where r(λ) and c(λ) are the same as in Theorem 1.

To achieve this result, we first extend LAB to the fractional AdWords setting while preserving its
robustness and consistency, and then employ a reduction from [FN24] to reduce the integral AdWords
problem to the fractional problem with small loss under the small bids assumption.

Observe in Fig. 1 that the robustness-consistency tradeoff of LAB lies below the linear tradeoff of
COINFLIP in the unweighted setting: the top-left endpoint of the tradeoff for LAB is (r, c) = (0, 1),
whereas in the unweighted setting COINFLIP can be implemented to be 1/2-robust even when c = 1.
This happens because any maximal matching in an unweighted graph is automatically 1

2 -robust. To
beat COINFLIP in the unweighted setting, a tighter analysis of LAB would be required but this proved
difficult using our current analysis framework for LAB, even when the advice is integral. Instead,
we present another algorithm called PUSHANDWATERFILL (PAW) for the unweighted setting with
integral advice that circumvents the aforementioned challenge in the analysis.
Theorem 3. For any tradeoff parameter λ ∈ [0, 1], PUSHANDWATERFILL is r(λ)-robust and
c(λ)-consistent for unweighted online bipartite fractional matching with integral advice, where

r(λ) := 1−
(
1− λ+ λ2

/2
)
eλ−1 and c(λ) := 1− (1− λ) eλ−1.

PAW is based on the unweighted version of BALANCE, also known as WATERFILLING, with one
additional step at each iteration where it first increases the fractional value of the currently advised
edge until the “level” of the advised offline vertex reaches the tradeoff parameter λ. We analyze PAW
using primal-dual but with a different construction of dual variables from LAB.

We complement our algorithmic results by presenting an upper bound on the robustness-consistency
tradeoff of any learning-augmented algorithm for the unweighted setting with integral advice in

3



Section 5, improving upon the previous upper bound results [JM22, CGLB24] (see Fig. 1). Note
that this result implies the same impossibility for more general problems including the vertex-
weighted setting and the AdWords problem. To obtain our hardness result, we construct two adaptive
adversaries — one for robustness and the other for consistency. The construction of these adversaries
is inspired by the standard upper-triangular worst-case instances [KVV90], while we modify this
construction to make the two adversaries have the same behavior until the first half of the online
vertices are revealed. Due to this modification, the two adversaries are indistinguishable until the
halfway point of the execution while inheriting the difficulty from the standard worst-case instances.
We then identify a set of conditions characterizing the behavior of Pareto-optimal algorithms on
our hardness instance and solve a factor-revealing LP to upper bound the best possible consistency
subject to the constraint on the robustness to be r, for each r ∈ [1/2, 1− 1/e].

Lastly, we implemented and evaluated our proposed algorithms LAB and PAW in Section 6 against
advice-free baselines on synthetic and real-world graph instances, for varying advice quality parame-
terized by a noise parameter γ, where larger γ indicates poorer advice quality. As predicted by our
analysis, the attained competitive ratios of both LAB and PAW begin at 1 under perfect advice and
smoothly degrades as the γ increases. Unsurprisingly, for sufficiently large γ, the worst case optimal
advice-free algorithm BALANCE outperforms both LAB and PAW.

Full proofs, further related work, and code are provided in the supplementary material. Environment
numberings are made to be consistent with the full version, but may not appear sequentially here.

2 Preliminaries

Online bipartite matching. In the vertex-weighted online bipartite fractional matching problem,
we have a bipartite graph G = (U ∪ V,E) and a weight wu ≥ 0 for each u ∈ U . If wu = 1 for
every u ∈ U , then the problem is called unweighted. The vertices in U are the offline vertices, and
their weights are known to the algorithm from the very beginning. On the other hand, the vertices
in V are the online vertices, and arrive one by one. Whenever v ∈ V arrives, its neighborhood
N(v) := {u ∈ U | (u, v) ∈ E} is revealed. Since the online vertices arrive sequentially, we use the
notation t ≺ v to mean that t arrives earlier than v. Similarly, for each offline vertex u ∈ U , we also
use N(u) := {v ∈ V | (u, v) ∈ E} to denote the neighborhood of u.

We use the analogy of waterfilling to describe the behavior of the algorithm. When v ∈ V arrives and
its neighborhood N(v) is revealed, the algorithm decides at that moment the amount xu,v of water to
send from v to each u ∈ N(v) subject to the constraints that:

• the total amount of water supplied from v does not exceed 1, i.e.,
∑

u∈N(v) xu,v ≤ 1;

• each offline vertex u ∈ U can hold at most 1 unit of water, i.e.,
∑

t∈N(u):t⪯v xu,t ≤ 1.

This decision is irrevocable, meaning that, {xu,v}u∈N(v) cannot be modified in the subsequent
iterations. Let x ∈ RE be the final solution of the algorithm. Note that x is a fractional matching in
the hindsight graph G. The weight of this solution is defined to be

∑
(u,v)∈E wuxu,v . The objective

of this problem is to maximize the weight of the solution.

Advice. Each online vertex v ∈ V arrives with a suggested allocation {au,v}u∈N(v), where we
assume a = {au,v : (u, v) ∈ E} ∈ RE is a feasible fractional matching in the hindsight graph G.

Performance measures. Denote the value of the final output of an algorithm by ALG, the value of an
optimal solution in the hindsight instance by OPT, and the value obtained by the advice by ADVICE.
We can then formally define the robustness and consistency of a learning-augmented algorithm.
Definition 4 (Robustness and Consistency). For some r ∈ [0, 1], we say an algorithm is r-robust if
E[ALG] ≥ r ·OPT for any instance of the problem. On the other hand, for some c ∈ [0, 1], we say
an algorithm is c-consistent if E[ALG] ≥ c · ADVICE for any instance of the problem.

Notice that, when we define the error of the advice to be η := ADVICE/OPT ∈ [0, 1], the consistency
implies the smoothness of the algorithm since we have E[ALG] ≥ cη · OPT.

Primal-dual analysis. To prove the robustness and consistency of our algorithms, we adopt the
standard primal-dual analysis for online bipartite matching [DJK13]. Observe that, for vertex-
weighted bipartite matching, the primal and dual LPs are formulated as follows:

4



max
∑

(u,v)∈E wuxu,v

s.t.
∑

v∈N(u) xu,v ≤ 1, ∀u ∈ U,∑
u∈N(v) xu,v ≤ 1, ∀v ∈ V,

xu,v ≥ 0, ∀(u, v) ∈ E;

min
∑

u∈U αu +
∑

v∈V βv

s.t. αu + βv ≥ wu, ∀(u, v) ∈ E,

αu ≥ 0, ∀u ∈ U,

βv ≥ 0, ∀v ∈ V.

The following lemma is the cornerstone of the primal-dual analysis.
Lemma 5 (see, e.g., [DJK13, FHTZ22]). Let x ∈ RE

+ be a feasible fractional matching output by an
algorithm. For some ρ ∈ [0, 1], if there exists (α, β) ∈ RU

+ × RV
+ satisfying

• (reverse weak duality)
∑

(u,v)∈E wuxu,v ≥
∑

u∈U αu +
∑

v∈V βv and

• (approximate dual feasibility) αu + βv ≥ ρ · wu for every (u, v) ∈ E,

we have ALG ≥ ρ · OPT.

3 Vertex-weighted matching with advice

We now present our algorithm LEARNINGAUGMENTEDBALANCE (LAB) for vertex-weighted online
bipartite matching with advice and provide a proof sketch showing that it achieves the robustness-
consistency tradeoff stated in Theorem 1. Detailed pseudocode is given in Appendix A and a full
analysis is provided in the supplementary material.

Algorithm description. Given a tradeoff parameter λ ∈ [0, 1], we define f0 : [0, 1] → [0, 1] and
f1 : [0, 1]→ [0, 1] as follows, where W is the Lambert W function:

f0(z) := min{ez+λ−1, 1}, and f1(z) :=


eλ−1−λ
1−z , if z ∈ [0, λe1−λ),

−λ
W (−λe1−λ−z)

, if z ∈ [λe1−λ, 1),

1, if z = 1,

(1)

Based on these functions, we define f : [0, 1]2 → [0, 1] such that

f(A,X) :=

{
f1(X), if A > X,

max{f0(X −A), f1(X)}, if A ≤ X.
(2)

For clarity, let us describe LAB as a continuous process. Upon the arrival of each online vertex v ∈ V
along with the advice {au,v}u∈N(v), define Au :=

∑
t∈N(u):t⪯v au,t as the total advice-allocated

amount to each offline vertex u ∈ N(v), up to and including v. LAB then continuously pushes an
infinitesimal unit of flow from v to the neighbor u ∈ N(v) maximizing wu(1− f(Au, Xu)), where
Xu is the total amount allocated to u by the algorithm right before it starts pushing this infinitesimal
unit of flow. This continues until v is fully matched (i.e. one unit of flow is pushed) or all neighbors
are saturated.

First, we give intuition for the algorithm. For an online vertex v and an offline neighbor u ∈ N(v),
the amount allocated from v to u should depend on three factors. Firstly, a higher wu should lead to
larger xu,v. Secondly, the more u is filled, the less desirable it is to allocate to it further, preserving
capacity for future vertices. Thirdly, vertices favored by the advice should receive more allocation.

The classical BALANCE algorithm handles the first two factors by choosing the offline vertex with
the highest potential value wu(1 − g(Xu)) via a convex increasing penalty function g(z) = ez−1.
To incorporate the third factor, LAB introduces an advice-aware penalty function f(A,X) that also
depends on the total advice allocation A; see Fig. 2. This function is increasing in X (penalizing
already-filled vertices) and decreasing in A (lower penalty for vertices recommended by the advice),
thereby encouraging alignment with the advice.

The penalty function f used by our algorithm is defined in Eq. (2) based on the functions f0 and f1
from Eq. (1). While f0 and f1 are derived from the primal-dual analysis, and their exact forms are not
crucial for intuition, the structure of f admits a natural interpretation. Intuitively, if an offline vertex

5



u has received less allocation than the advice suggests (i.e., Au > Xu), then the penalty function
treats u as if it were already saturated under the advice. Conversely, if u has been filled beyond the
advised amount (i.e., Au ≤ Xu), then the penalty effectively treats the excess allocation Xu −Au as
if it were added despite the advice indicating u should be unmatched.

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(z

),
f 1

(z
)

f0

f1

(a) f0, f1 with λ = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(z

),
f 1

(z
)

f0

f1

(b) f0, f1 with λ = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
z

0.0

0.2

0.4

0.6

0.8

1.0

f 0
(z

),
f 1

(z
)

f0

f1

(c) f0, f1 with λ = 0.5

0 λ λe1−λ 1
A

0.0

0.2

0.4

0.6

0.8

1.0

X

(d) f with λ = 0.1

0 λ λe1−λ 1
A

0.0

0.2

0.4

0.6

0.8

1.0

X

(e) f with λ = 0.3

0 λ λe1−λ 1
A

0.0

0.2

0.4

0.6

0.8

1.0

X

(f) f with λ = 0.5

Figure 2: f0, f1, and f with λ ∈ {0.1, 0.3, 0.5}. (a)-(c) depict the function values of f0 and f1 with
respect to z ∈ [0, 1]. (d)-(f) depict the contour plots with respect to A ∈ [0, 1] and X ∈ [0, 1]: the
brighter the color is, the closer to 1 the function value is.

Sketch of analysis. We use the primal-dual framework (Lemma 5). We initialize all dual variables to
0. When an online vertex v ∈ V arrives, let A(v)

u be the amount allocated to u by the advice up to and
including v. Similarly, let X(v)

u be the amount allocated to u by the algorithm up to and including v.
Let xu,v be the amount allocated by the algorithm in this iteration.

Then, we update the dual variables as follows:

• αu ← αu + xu,v · wuf(A
(v)
u , X

(v)
u ) for every u ∈ N(v), and

• βv ← maxu∈N(v){wu(1− f(A
(v)
u , X

(v)
u ))}.

For the reverse weak duality, the following lemma follows directly from this construction:
Lemma 9. The value of the algorithm is equal to the objective value of (α, β) in the dual LP.

Note that the dual variable βv is defiend to be the value of the highest potential neighbor after v has
sent its allocation while the dual variables αu are updated so as to satisfy Lemma 9.

We now argue the approximate dual feasibility. As a first step, we consider the special case where the
advice is integral. In this case, we can simplify the robustness and consistency expressions by noting
that A(v)

u ∈ {0, 1} for all u ∈ U and v ∈ V .
Lemma 12. When advice is integral, the algorithm is r-robust and c-consistent where

r = min
X∈[0,1]

min

{∫ X

0

f0(z)dz + (1− f0(X)),

∫ X

0

f1(z)dz + (1− f1(X))

}

c = min
X∈[0,1]

min
Y ∈[0,X]

{∫ Y

0

f0(z)dz + (X − Y ) · f1(X) + (1− f1(X))

}

6



In addition, the expressions on the RHS above evaluate to exactly r(λ) and c(λ) in Theorem 1,
respectively.

To complete the analysis, one can show that robustness and consistency remain unchanged even for
the more general fractional advice setting: robustness is determined entirely by f1, while consistency
follows from reducing any fractional instance to an equivalent integral case.

Remark. By tweaking the above analysis and using the reduction technique of [FN24], we can obtain
an algorithm for AdWords under the small bids assumption with guarantees given in Theorem 2. For
the details, see the supplementary material.

4 Unweighted matching with integral advice

In this section, we introduce and analyze a new algorithm tailored to the unweighted setting with
integral advice, which we call PUSHANDWATERFILL (PAW). To motivate why we need a new
algorithm, it is worth noting that our theoretical guarantees of LAB are dominated by COINFLIP in
the unweighted setting; see Fig. 1. This suggests that our previous analysis is not tight for unweighted
instances. However, since that analysis was independent of the vertex weights, we find it challenging
to improve it for the unweighted setting, even when we are given integral advice. As such, we propose
PAW for the setting of unweighted matching with integral advice. In the following, we assume the
advice is integral and represent it as a function A : V → U ∪ {⊥}, where A(v) is the advised match
for v ∈ V , and A(v) = ⊥ indicates that v is advised to remain unmatched. Detailed pseudocode is
given in Appendix A and a full analysis is provided in the supplementary material.

Algorithm description. As before, we describe PAW as a continuous-time process. Define the
level of an offline vertex u ∈ U as the total amount of water it has received so far. Upon arrival of
online v ∈ V , with neighborhood N(v) and advice A(v), the algorithm proceeds in two phases:

Phase 1 (Push): Push flow into A(v) until its level reaches λ.
Phase 2 (Waterfill): Distribute any remaining flow from v across N(v) via the standard waterfilling.

Sketch of analysis. As in the analysis of LAB, we use a primal-dual framework to characterize the
robustness and consistency of PAW. The dual variable construction differs from the vertex-weighted
case and relies on a continuous and non-decreasing function g : [0, 1]→ [0, 1] such that g(1) = 1.
We call such a function a splitting function.

The dual variables (α, β) are initialized to zero, and are updated as follows. When an online vertex v
sends an infinitesimal amount dz of flow to a neighbor u ∈ N(v) whose current level is du, split this
dz into g(du) dz and (1− g(du)) dz. Then, we increase αu by g(du) dz and βv by (1− g(du)) dz.

Since g(du) ∈ [0, 1], both α and β remain nonnegative. Moreover, by construction, the reverse weak
duality in Lemma 5 holds with equality: every infinitesimal unit of flow is split exactly into two
values contributing to αu and βv, respectively. Thus, to analyze the robustness and consistency of
PAW, it suffices to identify splitting functions g such that the resulting (α, β) is approximately dual
feasible, maximizing the respective performance parameter ρ in Lemma 5. To this end, we identify
the following two splitting functions gr and gc, tailored for robustness and consistency, respectively:

gr(z) :=

{
eλ−1(z + 1− λ), ∀z ∈ [0, λ),

ez−1, ∀z ∈ [λ, 1]
and gc(z) :=

{
eλ−1, ∀z ∈ [0, λ),

ez−1, ∀z ∈ [λ, 1].

These functions lead to the robustness and consistency bounds in Theorem 3.

5 Upper bound on robustness-consistency tradeoff

In this section, we present an upper bound result for the unweighted setting with integral advice.
We define two adversaries,R and C, which target robustness and consistency, respectively, against
any fractional matching algorithmM. For a given positive integer n, both adversaries construct a
bipartite instance with a set U of 2n offline vertices and a set V of 2n online vertices. See Fig. 6
for an illustration of the upper bound instance. Detailed pseudocodes of these adversaries and a full
analysis are provided in the supplementary material.

7



u1

u2

u3

u4

u5

u6

v1

v2

v3

Common Phase

v4

v5

v6

Robustness Phase

v4

v5

v6

Consistency Phase

Figure 6: An illustration of the hardness construction. The instance begins with the common phase,
which is the same in both adversaries. After the common phase, the instance can proceed in one of
two ways, designed to be hard for robustness or consistency, respectively.

The two adversaries behave identically during the first n iterations, as follows: In the first iteration
(t = 1), they present the first online vertex v1 toM, with v1 connected to all offline vertices in U .
The advice A(v1) is chosen arbitrarily. For each subsequent iteration t = 2, . . . , n, the adversary
presents online vertex vt, which is adjacent to the neighbors N(vt−1) of the previous vertex vt−1,
excluding two vertices: the previous advice A(vt−1) and the offline vertex that has been filled the
least so far byM.

Starting from iteration t = n + 1, the behaviors of the two adversaries diverge. The robustness
adversaryR continues on the vertices advised to be matched so far as in the classical setting of online
fractional bipartite matching without advice: each online vertex is adjacent to the same neighbors as
the preceding one, except for the offline vertex that has been filled the least so far byM. In contrast,
the consistency adversary C simply presents a matching to the offline vertices that were advised to be
unmatched in the first n iterations, allowing the algorithm to fully saturate them.

We formulate a factor-revealing LP that upper bounds the consistency ratio c of any algorithmM
against C while ensuring the algorithm is r-robust against R, for any r ∈ [1/2, 1 − 1/e]. To this
end, we assume thatM satisfies the following conditions:M saturates each online vertex unless its
neighbors are all saturated and, in the common phase,M pushes the same amount to the neighbors
except the advised offline vertex at each iteration. We prove these conditions are without loss of
generality. The LP is formulated as follows:

maximize c

subject to xt + (2n− 2t+ 1) · xt ≤ 1, ∀t ∈ {1, . . . , n},
dt =

∑t−1
i=1 xi + xt, dt =

∑t
i=1 xi, ∀t ∈ {1, . . . , n},

dt ≤ dt+1, ∀t ∈ {1, . . . , n− 1},∑n
i=t yi,t ≤ 1, ∀t ∈ {1, . . . , n},

ℓ
(t)
i = di +

∑t
s=1 yi,s, ∀t ∈ {1, . . . , n}, ∀i ∈ {t, . . . , n},

ℓ
(t)
i ≤ ℓ

(t)
i+1, ∀t ∈ {1, . . . , n},∀i ∈ {t, . . . , n− 1},∑n

t=1(dt + dt) +
∑n

t=1

∑n
i=t yi,t ≥ 2nr,∑n

t=1 dt + n ≥ 2nc,

0 ≤ xt, xt, dt, dt, yi,t, ℓ
(t)
i ≤ 1, ∀t ∈ {1, . . . , n}, ∀i ∈ {t, . . . , n}.

6 Experiments

We experimented on synthetic random graphs and real-world graphs. Each plot is generated by
letting each algorithm solve 10 instances for 10 different noise parameter values. Source code
implementations and experimental scripts are given in the supplementary material.

8



6.1 Graph instances

We experimented on two families of synthetic graphs – Erdős-Rényi (ER) and Upper Triangular
(UT), and 6 real-world graphs from the Network Data Repository [RA15]. For n ∈ {100, 200, 300}
and edge probability p ∈ {0.1, 0.2, 0.5}, ER(n, p) graphs are generated with n offline and n online
vertices, with each possible bipartite edge existing independently with probability p. For n ∈
{100, 200, 300}, each UT(n) graph consists of n offline vertices and n online vertices, where the
i-th online vertex is connected to the last n − i + 1 offline vertices. Meanwhile, we pre-process6

real-world graphs in a similar manner to [BKP20] to obtain random bipartite graphs: first, shuffle
all n vertices indices in the real-world graph, take the first ⌊n/2⌋ as the offline vertices and the next
⌊n/2⌋ as online vertices and only keep the bipartite crossing edges. For weighted instances, each
offline vertex is given a random weight between 0 and 1000.

6.2 Advice generation

For each graph G with n vertices and a given noise parameter γ ∈ [0, 1], we generate a noisy
prediction Ĝγ of G as follows: each online vertex v retains a random (1 − γ) fraction of its true
neighbors and gains a random γ fraction of its non-neighbors. Thus, when γ = 0, the prediction is
exact (Ĝ0 = G), and when γ = 1, it corresponds to the complement graph (Ĝ1 = G).

To generate the advice for the t-th arriving online vertex (for t ∈ [n]), we solve a linear program that
maximizes the (weighted) matching objective. This is done subject to two components: the actual
decisions made for the first t − 1 arrivals in the true graph G, and a noisy prediction of the future
arrivals from time t+ 1 to n, based on Ĝγ . Importantly, the current arrival at time t is not included in
the noisy future but is instead the decision variable of interest. In more detail, the advice at time t is
generated by perturbing the true future subgraph (i.e., the part of G involving vertices t+ 1 to n) to
create a noisy forecast. We then solve for the optimal decision at time t that maximizes the matching
value, given the past decisions up to t− 1 (in G) and the predicted future (in Ĝγ). Since we use the
true graph up to and including time t, this process ensures that the advice at each time step is always
feasible and based on a valid optimization problem over a fully specified n-vertex instance.

6.3 Benchmarked algorithms

The two baselines are GREEDY and BALANCE. The former greedily matches the online vertex with
its highest weighted available offline neighbor while the latter fractionally matches based on the
penalty function g(z) = exp(z− 1). In the unweighted setting, BALANCE is equivalent to the classic
WATERFILLING algorithm. Note that both GREEDY and BALANCE are independent of any predictions,
so they achieve constant performance for any noise parameter γ ∈ [0, 1]. We also implemented
and benchmarked our LAB and PAW algorithms, which take as inputs λLAB and λPAW respectively.
Note that we only run PAW for unweighted instances. Recall from Theorems 1 and 3 that LAB and
PAW have different consistency values with respect to their parameters: the consistency of LAB is
1 + λLAB − exp(λLAB − 1) while the consistency of PAW is 1 − (1 − λPAW) exp(λPAW − 1). To
compare between them at the same consistency value, we set λPAW = 1+W (λLAB−exp(λLAB−1)).
Since BALANCE already achieves a competitive ratio of 1− 1/e ≈ 0.632, we consider consistency
ratios of {0.7, 0.8, 0.9, 1.0} when running LAB and PAW. For consistency ratio of 0.7, we set
λLAB ≈ 0.11 and λPAW ≈ 0.51. For consistency ratio of 0.8, we set λLAB ≈ 0.29 and λPAW ≈ 0.74.
For consistency ratio of 0.9, we set λLAB ≈ 0.52 and λPAW ≈ 0.89. For consistency ratio of 1.0, we
set λLAB = 1 and λPAW = 1.

6.4 Qualitative takeaways

Fig. 7 illustrates a subset of our empirical results. As predicted by our analysis, the competitive
ratio attained by both LAB and PAW degrades as the noise parameter γ increases. In particular,
when γ = 0 (i.e., perfect advice), both LAB and PAW achieve a competitive ratio of 1 when
λLAB = λPAW = 1. As γ grows large, the advice becomes increasingly uninformative, and it
is unsurprising that the advice-free algorithm BALANCE eventually outperforms both learning-
augmented algorithms, with the crossing point depending on the underlying graph instance.

6Such a pre-processing step is necessary because these real-world graphs are not bipartite to begin with.

9



Figure 7: Subset of empirical results: ER(300, 0.2), UT(300), and 2 real-world graphs (socfb-
Caltech36, econ-beause). See the supplementary material for our full set of experiments.

Interestingly, across all our experiments — including those in the appendix — we consistently observe
a phenomenon where there appears to exist a critical noise level γ∗ such that the competitive ratios of
all runs of LAB and PAW (across different λ values) converge and coincide with that of BALANCE.
This suggests that at γ∗, the advice becomes effectively uncorrelated with the input, causing the
behavior of LAB and PAW to resemble that of BALANCE regardless of the weighting parameter
λ. While we do not currently have a theoretical explanation for this convergence, it is a compelling
empirical observation that may point to deeper structure in the robustness-consistency tradeoff and
warrants further investigation in future work.

7 Conclusion and Open Problems

We studied the robustness-consistency tradeoffs of learning-augmented algorithms for online bipartite
fractional matching. We proposed and analyzed two algorithms, LAB and PAW, and established an
improved hardness result.

In our current work, PAW relies on integral advice while LAB can accommodate fractional advice.
While it is a natural question to ask if there can be a unified algorithm and analysis, our current
analytical framework is unable to do so. The analysis of LAB is agnostic to the weights, making it
unclear how to demonstrate an improved tradeoff in the unweighted case. Meanwhile, the analysis of
PAW crucially relies on the integrality of the advice, and we were unable to obtain a comparable
bound in the fractional case. We do not rule out the possibility of a unified analysis, and we view this
as a compelling direction for future work. We do not rule out the possibility of a unified analysis and
view this as an intriguing direction for future work.

Besides unifying the two variants, there are serveral other natural open and interesting research
directions. Firstly, it would be interesting to develop a theoretical explanation for the crossing point
phenomenon observed in our experiments; see the discussion in Section 6.4. Another direction would
be to close the gap between our algorithmic results and the impossibility bounds. Progress on this
front could come from an analytic proof of the impossibility result, as well as a tight analysis of LAB
in the unweighted setting. Finally, it would be interesting to extend our framework to broader variants
of online matching, including Display Ads, the generalized assignment problem [FKM+09, SE23],
and the multi-stage setting [FN24].

10



Acknowledgments and Disclosure of Funding

This research/project is supported by the National Research Foundation, Singapore under its AI
Singapore Programme (AISG Award No: AISG-PhD/2021-08-013). This work was partly supported
by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded
by the Korea government (MSIT) (No. RS-2021-II212068, Artificial Intelligence Innovation Hub).
This work was partly supported by an IITP grant funded by the Korean Government (MSIT) (No.
RS-2020-II201361, Artificial Intelligence Graduate School Program (Yonsei University)). Supported
by NCN grant number 2020/39/B/ST6/01641.

References
[ACI22] Anders Aamand, Justin Chen, and Piotr Indyk. (Optimal) Online Bipartite Matching

with Degree Information. Advances in Neural Information Processing Systems, 35:5724–
5737, 2022.

[AGKM11] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-
weighted bipartite matching and single-bid budgeted allocations. In Proceedings of
the twenty-second annual ACM-SIAM symposium on Discrete Algorithms, pages 1253–
1264. SIAM, 2011.

[BJN07] Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In European Symposium on Algorithms, pages 253–
264. Springer, 2007.

[BKP20] Allan Borodin, Christodoulos Karavasilis, and Denis Pankratov. An experimental study
of algorithms for online bipartite matching. Journal of Experimental Algorithmics
(JEA), 25:1–37, 2020.

[BNW23] Niv Buchbinder, Joseph Naor, and David Wajc. Lossless online rounding for online
bipartite matching (despite its impossibility). In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2030–2068. SIAM,
2023.

[CGLB24] Davin Choo, Themis Gouleakis, Chun Kai Ling, and Arnab Bhattacharyya. Online bi-
partite matching with imperfect advice. International Conference on Machine Learning,
235:8762–8781, 2024.

[DHK+16] Nikhil R Devanur, Zhiyi Huang, Nitish Korula, Vahab S Mirrokni, and Qiqi Yan. Whole-
page optimization and submodular welfare maximization with online bidders. ACM
Transactions on Economics and Computation (TEAC), 4(3):1–20, 2016.

[DJK13] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. Randomized primal-dual
analysis of ranking for online bipartite matching. In Proceedings of the twenty-fourth
annual ACM-SIAM symposium on Discrete algorithms, pages 101–107. SIAM, 2013.

[DJSW19] Nikhil R Devanur, Kamal Jain, Balasubramanian Sivan, and Christopher A Wilkens.
Near optimal online algorithms and fast approximation algorithms for resource alloca-
tion problems. Journal of the ACM (JACM), 66(1):1–41, 2019.

[DSSX21] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu. Allocation
problems in ride-sharing platforms: Online matching with offline reusable resources.
ACM Transactions on Economics and Computation (TEAC), 9(3):1–17, 2021.

[EADL24] Alex Elenter, Spyros Angelopoulos, Christoph Dürr, and Yanni Lefki. Overcoming
brittleness in pareto-optimal learning augmented algorithms. In The Thirty-eighth
Annual Conference on Neural Information Processing Systems, 2024.

[FHTZ22] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam. Edge-
weighted online bipartite matching. Journal of the ACM, 69(6):1–35, 2022.

11



[FKM+09] Jon Feldman, Nitish Korula, Vahab Mirrokni, Shanmugavelayutham Muthukrishnan,
and Martin Pál. Online ad assignment with free disposal. In International workshop on
internet and network economics, pages 374–385. Springer, 2009.

[FMMM09] Jon Feldman, Aranyak Mehta, Vahab Mirrokni, and Shan Muthukrishnan. Online
stochastic matching: Beating 1-1/e. In 2009 50th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 117–126. IEEE, 2009.

[FN24] Yiding Feng and Rad Niazadeh. Batching and optimal multistage bipartite allocations.
Management Science, 2024.

[FNS24] Yiding Feng, Rad Niazadeh, and Amin Saberi. Two-stage stochastic matching and
pricing with applications to ride hailing. Operations Research, 72(4):1574–1594, 2024.

[FSZ16] Moran Feldman, Ola Svensson, and Rico Zenklusen. Online contention resolution
schemes. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 1014–1033. SIAM, 2016.

[HHIS24] Hadi Hosseini, Zhiyi Huang, Ayumi Igarashi, and Nisarg Shah. Class fairness in online
matching. Artificial Intelligence, 335:104177, 2024.

[HPT+19] Zhiyi Huang, Binghui Peng, Zhihao Gavin Tang, Runzhou Tao, Xiaowei Wu, and Yuhao
Zhang. Tight competitive ratios of classic matching algorithms in the fully online model.
In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 2875–2886. SIAM, 2019.

[HTWZ20] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. Fully online
matching II: Beating ranking and water-filling. In 2020 IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pages 1380–1391. IEEE, 2020.

[JM22] Billy Jin and Will Ma. Online bipartite matching with advice: Tight robustness-
consistency tradeoffs for the two-stage model. Advances in Neural Information Pro-
cessing Systems, 35:14555–14567, 2022.

[KP00] Bala Kalyanasundaram and Kirk R Pruhs. An optimal deterministic algorithm for online
b-matching. Theoretical Computer Science, 233(1-2):319–325, 2000.

[KPS18] Ravi Kumar, Manish Purohit, and Zoya Svitkina. Improving online algorithms via ML
predictions. Advances in Neural Information Processing Systems, 31, 2018.

[KVV90] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-
line bipartite matching. In Proceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 352–358, 1990.

[LV21] Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned
advice. Journal of the ACM (JACM), 68(4):1–25, 2021.

[MNS07] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Allocating online adver-
tisement space with unreliable estimates. In Proceedings of the 8th ACM conference on
Electronic commerce, pages 288–294, 2007.

[MNS12] Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization with
uncertain information. ACM Transactions on Algorithms (TALG), 8(1):1–29, 2012.

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. AdWords and
generalized online matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

[NSW25] Joseph Naor, Aravind Srinivasan, and David Wajc. Online dependent rounding schemes
for bipartite matchings, with applications. In Proceedings of the 2025 Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 3116–3154. SIAM, 2025.

[RA15] Ryan Rossi and Nesreen Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the AAAI conference on artificial intelli-
gence, pages 4292–4293, 2015.

12



[SE23] Fabian Spaeh and Alina Ene. Online ad allocation with predictions. Advances in Neural
Information Processing Systems, 36:17265–17295, 2023.

[WW15] Yajun Wang and Sam Chiu-wai Wong. Two-sided online bipartite matching and
vertex cover: Beating the greedy algorithm. In International Colloquium on Automata,
Languages, and Programming, pages 1070–1081. Springer, 2015.

13



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the abstract and Section 1.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Section 7, we discuss a gap left open by our algorithmic and impossibility
results.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide proof sketches of our theoretical results in Sections 3 to 5. Full
analyses are given in the supplementary material.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Section 6. Source code implementations and experimental scripts are
given in the supplementary materials.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide source code to our experiments in the supplementary materials.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 6.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: See Section 6 and, in particular, Fig. 7. Full set of experimental results is given
in the supplementary material.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

14



Justification: We provide such information in the supplementary material.
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper conforms with the NuerIPS Code of Ethics.

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The main contribution of this paper is investigating the theoretical aspects of
online bipartite fractional matching under the learning-augmented framework.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly cited the original owners in the paper and supplementary material.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]

15

https://neurips.cc/public/EthicsGuidelines


A Pseudocodes of our algorithms

Algorithm 1: Learning-Augmented Balance Algorithm (LAB)
Input: Offline vertices U , tradeoff parameter λ ∈ [0, 1]
Data: Online vertices V , edges E, and fractional advice a ∈ RE

Output: Fractional matching x ∈ RE

1 foreach u ∈ U do
2 Xu ← 0 // Amount allocated by algorithm
3 Au ← 0 // Amount allocated by advice
4 foreach arrival of v ∈ V with neighbors N(v) and advice {au,v}u∈N(v) do
5 foreach u ∈ N(v) do
6 Au ← Au + au,v // Accumulate advice
7

8 Find the smallest ℓ ≥ 0 such that
∑

u∈N(v) xu,v ≤ 1, where
xu,v := min{z ∈ [0, 1−Xu] | wu · (1− f(Au, Xu + z)) ≤ ℓ} // e.g. via binary search

9
10 foreach u ∈ N(v) do
11 Xu ← Xu + xu,v // Accumulate actual fractional matching
12

13 return x

Algorithm 2: Push-and-Waterfill Algorithm (PAW)
Input: Offline vertices U , trade-off parameter λ ∈ [0, 1]
Data: Online vertices V , edges E, and integral advice A : V → U ∪ {⊥}
Output: Fractional matching x ∈ RE

1 foreach u ∈ U do
2 du ← 0 // Level of u
3 foreach arrival of v ∈ V with neighbors N(v) and advice A(v) do
4 (Phase 1): Push to advised neighbor A(v), up to τ = max{0, λ− dA(v)} amount
5 if A(v) ∈ N(v) then
6 τ ← max{0, λ− dA(v)}
7 xA(v),v ← τ
8 dA(v) ← dA(v) + τ
9 else

10 τ ← 0
11 (Phase 2): Waterfill the remaining 1− τ
12 Find the largest ℓ such that

∑
u∈N(v) max{0, ℓ− du} ≤ 1− τ

13 ℓ← min{ℓ, 1}
14 foreach u ∈ N(v) do
15 xu,v ← xu,v +max{0, ℓ− du}
16 du ← du +max{0, ℓ− du}
17 return x

16


	Introduction
	Our contributions

	Preliminaries
	Vertex-weighted matching with advice
	Unweighted matching with integral advice
	Upper bound on robustness-consistency tradeoff
	Experiments
	Graph instances
	Advice generation
	Benchmarked algorithms
	Qualitative takeaways

	Conclusion and Open Problems
	Pseudocodes of our algorithms

