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Abstract

The creation of a quality summarization dataset001
is an expensive, time-consuming effort, requir-002
ing the production and evaluation of summaries003
by both trained humans and machines. The004
returns to such an effort would increase sig-005
nificantly if the dataset could be used in addi-006
tional languages without repeating human anno-007
tations. To investigate how much we can trust008
machine translation of summarization datasets,009
we translate the English SummEval dataset to010
seven languages and compare performances011
across automatic evaluation measures. We ex-012
plore equivalence testing as the appropriate sta-013
tistical paradigm for evaluating correlations be-014
tween human and automated scoring of sum-015
maries. We also consider the effect of transla-016
tion on the relative performance between mea-017
sures. We find some potential for dataset reuse018
in languages similar to the source and along019
particular dimensions of summary quality.020

1 Introduction021

A large summarization dataset includes thousands022

of texts and human-written summaries (for exam-023

ple, CNN/Daily Mail (Hermann et al., 2015)). In024

order to make it applicable for wider research, it025

may also contain machine-generated summaries026

by many models, accompanied by human and ma-027

chine evaluations of the quality of the generated028

summaries (Fabbri et al., 2021). The human an-029

notation alone is a complicated effort, requiring030

careful planning and setup (Kryscinski et al., 2020;031

Tang et al., 2021; Iskender et al., 2021).032

What purpose do the human annotations serve?033

Their main utility is serving as a benchmark for034

automated evaluation measures. Researchers de-035

sign measures to closely approximate human judg-036

ment in order to increase the pace of summarization037

model improvement. As summarization resources038

grow for English-language models, it becomes in-039

creasingly important to consider whether we can040

repurpose these datasets for use in other languages 041

as well. 042

Given a method that could produce flawless 043

translations, the original human annotations quite 044

clearly remain useful, as the relative rankings of 045

the summaries would be invariant. In this sce- 046

nario, comparing automated measures in another 047

language with the English human scores produces 048

valid conclusions. 049

In reality, translation will introduce some distor- 050

tions - both mild and extreme - that can spoil the 051

utility of the original annotations. While a "uni- 052

form" distortion over all texts would preserve the 053

relations among evaluations measures, this too is 054

an unrealistic assumption as translation will cor- 055

rect and simplify some texts, introduce errors into 056

others, and push components of text quality like 057

relevance, coherence, and fluency in different direc- 058

tions (Fomicheva et al., 2021; Freitag et al., 2021). 059

We are left to ask how to determine whether it 060

is still practical to rely on the original human an- 061

notations for at least some quality measures and 062

alternate languages? 063

In this paper, we seek to address this question 064

through two quantitative explorations of automated 065

evaluation measures under translation. First, we de- 066

termine how often the correlation between a given 067

measure and the original human annotations re- 068

mains equivalent under translation. Second, we 069

consider if one automated measure aligns more 070

closely with human judgment than another in En- 071

glish, how often their relative positions are main- 072

tained after the translation. We conduct this inves- 073

tigation using the SummEval dataset (Fabbri et al., 074

2021), the largest corpus of English-language hu- 075

man annotated text summaries widely available. 076

We translate this dataset from English to seven lan- 077

guages and evaluate the correlations between au- 078

tomated summary evaluation measures and human 079

annotations. Using equivalence tests, we show that 080

some aspects of summary quality ranking are pre- 081
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served under translation for languages with similar082

alphabets and grammars to English. While we find083

some reasons for optimism about the potential for084

dataset reuse, our work clearly demonstrates that085

more research is needed to make translated datasets086

useful for a diverse set of languages.087

2 Data and Models088

We focus our analysis on the portion of SummEval1089

that includes human annotations. It consists of090

100 texts, each accompanied by 11 human-written091

reference summaries and 17 machine-generated092

summaries produced by different models. Each093

machine-generated summary is annotated by three094

experts and five crowd workers using a 5-point095

scale for four quality measures: coherence, consis-096

tency, fluency, and relevance. For simplicity, we097

create a composite rating by averaging the expert098

scores for each quality of a given text-summary099

pair.100

We translate all 100 source texts, 1100 human101

reference summaries, and 1700 machine-generated102

summaries into seven languages, French, German,103

Italian, Spanish, Afrikaans, Hindi, and Russian, us-104

ing translation models trained and uploaded to the105

Hugging Face Model Hub by Helsinki-NLP2 and106

accessed via the transformers library (Wolf et al.,107

2020). The specific models used for translation are108

named ‘opus-mt-L1-L2’, where one of L1 or L2 is109

‘en’ (English), and the other is one of the languages110

‘af’, ‘de’, ‘es’, ‘fr’, ‘hi’, ‘it’, or ‘ru’.111

We used ‘bert-base-multilingual-cased’ as the112

underlying model for BLANC and ESTIME.113

While other choices of underlying model could114

produce higher correlations with human annota-115

tions in English, this multilingual model was se-116

lected to provide a more uniform performance117

across languages. BERTScore relies on ‘bert-base-118

multilingual-cased’ for all languages except En-119

glish, for which it uses the model ‘roberta-large’3.120

ESTIME embeddings were taken from the 10th121

transformer block layer instead of the final 12th122

layer. We followed Vasilyev and Bohannon (2021),123

where it was shown that for the larger model ‘bert-124

large-uncased-whole-word-masking’ the 21st layer125

delivers the better performance than the 24th and126

final layer.127

In each language version of the dataset, we128

1https://github.com/Yale-LILY/SummEval
2https://huggingface.co/Helsinki-NLP
3https://github.com/Tiiiger/bert_score

score machine-generated summaries with a few 129

common or promising automated evaluation mea- 130

sures that could be applied to all eight languages. 131

We calculate the following truly automated (not 132

needing human written reference summaries) mea- 133

sures: Jensen-Shannon (Louis and Nenkova, 2009), 134

ESTIME (Vasilyev and Bohannon, 2021)4 and 135

BLANC (Vasilyev et al., 2020)5. We also calcu- 136

late the following reference-based automatic eval- 137

uation measures: BLEU (Papineni et al., 2002), 138

BERTScore-F16 (Zhang et al., 2020), and ROUGE 139

(Lin, 2004) as ROUGE-1,2,L7. We use the same 140

original human annotations provided by the Sum- 141

mEval dataset as annotations in each of the seven 142

translated languages. 143

We calculate correlations between automated 144

evaluation measures in each language and the hu- 145

man annotations on the original English dataset. 146

We seek to answer whether these correlations are 147

reasonably independent of the language. In other 148

words, can we rely on such correlations to pro- 149

vide consistent judgement of evaluation measures 150

in other languages? 151

3 Comparisons within Measures 152

3.1 Simple Correlations 153

It has become standard in the summarization lit- 154

erature to judge the performance of an automated 155

measure by the correlation of its scores with human 156

evaluation of summaries (e.g. Zhang et al. (2020), 157

Deutsch et al. (2021)). Figure 1 shows Spearman’s 158

ρ and Kendall’s τ correlation coefficients between 159

the expert human evaluations and the automated 160

measures run on the English summaries found in 161

the SummEval dataset. 162

The correlations are consistently weak, indicat- 163

ing that the measures rely on different features 164

than human evaluations of a summary. ESTIME, 165

BERTScore, and Jensen-Shannon all demonstrate 166

somewhat higher correlations in at least some mea- 167

sures of quality, perhaps reflecting a more nuanced 168

approach to summary scoring. 169

Automated evaluation of summarization mod- 170

els is still an evolving field. While most measures 171

disagree with human judgment often, they are still 172

widely used as points of comparison across model 173

4https://github.com/PrimerAI/blanc/tree/master/estime
5https://github.com/PrimerAI/blanc
6https://github.com/Tiiiger/bert_score
7https://github.com/google-research/google-

research/tree/master/rouge
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Figure 1: Spearman’s ρ and Kendall’s τ correlations of expert human scores (coherence, consistency, fluency,
relevance) with automated evaluation measures for the original English summaries. Note: JS (Jensen-Shannon) and
ESTIME correlations are negated.
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Figure 2: Spearman’s ρ and Kendall’s τ correlations between automated evaluation measures in English and in
translated languages German (DE), French (FR), Spanish (ES), Italian (IT), Afrikaans (AF), Hindi (HI), and Russian
(RU).

outputs. Therefore, it remains highly relevant to174

determine whether translation preserves the judg-175

ments rendered by the automated measures.176

We may consider an evaluation measure to be177

useful under translation if the scores it assigns to178

summaries are consistent across languages, perhaps179

in absolute value but at least in the rank ordering180

of summaries. Therefore such a measure would ex-181

hibit high correlation between its values on English182

summaries and those for the summaries translated183

to other languages. Figure 2 shows Spearman’s ρ184

and Kendall’s τ correlation coefficients between185

the automated measures run on the English corpus186

and each translated corpus.187

For a given measure, the correlations across lan-188

guages are generally much stronger than those be-189

tween automated measures and human evaluations190

in English seen in Figure 1. For languages with191

the strongest correlations to the English measures,192

this result provides some promise that translation193

might introduce minimal additional noise, meaning194

the evaluation measure provides consistent signal 195

across languages. 196

The reference-based measures generally show 197

stronger correlations (ρ > 0.6, τ > 0.5) between 198

English and German, French, Spanish, Italian, and 199

Afrikaans translations. For Russian and Hindi, 200

they show weaker correlations, drastically so for 201

ROUGE measures. Among the reference-free mea- 202

sures, Jensen-Shannon and BLANC demonstrate 203

similar patterns of performance. These results at 204

least suggest that measures may prove useful when 205

translating datasets to languages with similar ori- 206

gins (here Italic or Germanic languages). However, 207

ESTIME shows weak correlations across languages 208

with a smaller drop in correlation between Western 209

European derived languages and Hindi and Rus- 210

sian. 211

3.2 Significance Tests 212

Given the promising results in Section 3.1, we 213

seek to test whether correlations between an au- 214
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Figure 3: Results of tests of equivalence for each automated measure (y-axis), language (x-axis), and quality
measure (coherence, consistency, fluency, relevance). Blue squares indicate p-value ≤ 0.05 while red highlights
indicate the result remained significant after applying Benjamini-Yekutieli correction for FDR control. Left: Results
for TOST with standard deviation margin of equivalence. Right: Results for TOST with constant 0.05 margin of
equivalence.

tomated measure and the original expert scores are215

statistically invariant when run on the English and216

translated summaries. Since human evaluations217

are split into four qualities - coherence, consis-218

tency, fluency, relevance - we consider correlations219

separately along each measure. For example, we220

look to answer whether the correlation between221

English BLANC scores and English expert scores222

for relevance is equivalent to the correlation be-223

tween German BLANC scores and English expert224

scores for relevance. We consider this a natural test225

of an automated measure’s utility after translation,226

as we hope measures will reflect human judgment227

in a consistent and predictable manner across lan-228

guages.229

Since we are interested in demonstrating a lack230

of statistical difference between two correlations,231

ρ1 and ρ2, we cannot use a typical hypothesis test232

with null hypothesis H0 : ρ1 = ρ2. Such a test233

would only suggest equivalence by failing to reject234

the null hypothesis, which could simply occur due235

to a lack of statistical power.236

Instead, we turn to equivalence tests, a paradigm237

which effectively reverses null and alternative hy-238

potheses, ie. H0 : ρ1 ̸= ρ2. We explore two such239

tests, Two One-Sided Tests (TOST) and Anderson-240

Hauck tests, and call for additional research to stan-241

dardize their use for summarization evaluation.242

3.3 Two One-Sided Tests (TOST) 243

In the TOST procedure (Schuirmann, 1987), we 244

must set a margin of equivalence, ∆E , within 245

which we consider two test statistics to be equiva- 246

lent. Then for two correlations, ρ1 and ρ2, we have 247

null and alternative hypotheses: 248

H0 : ρ1 − ρ2 < −∆E or ρ1 − ρ2 > ∆E 249

H1 :−∆E < ρ1 − ρ2 < ∆E 250

While in a field like medicine, the margin might 251

be well defined by a chemical process, we lack a 252

strong prior for choosing a relevant margin. We 253

explore several options and consider the sensitiv- 254

ity of p-values to our choices when evaluating the 255

validity of the tests’ conclusions. 256

The Kendall rank correlation differences con- 257

sidered do not follow a normal distribution, and 258

we use bootstrap resampling (Efron and Tibshi- 259

rani, 1993) to generate an empirical distribution. 260

For a given translation language, automated eval- 261

uation measure, and quality measure, we sample 262

across (text, summary, and reference summary) 263

tuples. (Note for reference-based summaries - 264

BERTScore, BLEU, and ROUGE - a more com- 265

plete bootstrap procedure would account for the 266

stochasticity present in the choice of reference sum- 267

maries themselves. We provide an illustrative ex- 268

ample in Appendix B.) 269
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While permutation-based tests have been shown270

to have higher power in summarization evalua-271

tion than bootstrap resampling (Deutsch et al.,272

2021), permutation tests assume null hypothesis273

H0 : ρ1 = ρ2 and are not simply adapted to our274

case. We apply a multiple testing correction to275

the p-values calculated due to the large number of276

tests considered. We use the Benjamini-Yekutieli277

procedure (Benjamini and Yekutieli, 2001) to ac-278

count for dependence among correlation measures279

and control the false discovery rate (FDR) at level280

α = 0.05.281

We consider several relevant equivalence mar-282

gins with different trade-offs. We try a "constant283

margin" of 0.05 across all measures and qualities;284

a "standard deviation margin" using the standard285

deviations for correlations between individual ex-286

perts and an automated measure; and a "maximum287

difference margin" calculated as the largest abso-288

lute difference in correlations between individual289

experts and an automated measure. Under the con-290

stant margin, 56% of correlations are equivalent291

before FDR correction and 31% after. Under the292

max difference margin, 42% of correlations are293

equivalent before correction and 28% after. Finally,294

under the standard deviation margin, 17% of tests295

are equivalent before and 8% after correction.296

We present the full results of the TOST proce-297

dure with a standard deviation margin in the left298

panel and a constant margin in the right panel of299

Figure 3. While both panels demonstrate inter-300

esting patterns of equivalence, we focus on the301

standard deviation margin as it is tailored to each302

language-measure pair, relies on a less arbitrary303

value of expected variation under equivalence, and304

is more conservative than the other margins con-305

sidered. The max difference and constant margins306

found much higher rates of equivalence under trans-307

lation.308

Examining the results, we can note a few clear309

patterns. First, as seen under the simple correlation310

analysis, the Italic and Germanic languages have311

a higher number of significant results than Hindi312

or Russian. We may still consider using translated313

summarization datasets from English to languages314

considered "close." However, there are few signifi-315

cant results in the fluency or consistency qualities.316

Therefore the automated measures may only be317

useful under translation along specific dimensions318

of quality. Looking at the correlations in English319

between automated measures and expert judgments320

in Figure 1, fluency and consistency also tend to 321

have much lower correlations than coherence and 322

relevance. 323

Additionally, the choice of equivalence mar- 324

gin has a consequential impact on results. Fig- 325

ure 4a shows how the number of significant p- 326

values changes in response to an increasing mar- 327

gin of equivalence. Given the apparent sensitivity 328

to changes in the margin, further research is war- 329

ranted into how the performance of translation and 330

summarization systems relates to the correlations 331

measured here.
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Figure 4: Measuring the impact of margins of equiva-
lence on the TOST results.

332

Therefore, the lack of significance for the fluency 333

and consistency qualities can be attributed to both 334

the capabilities of the automated measures and how 335

the standard deviation margin varies across qual- 336

ities. We already expect from Figure 1 that mea- 337

sures may be capturing a large amount of noise for 338
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fluency and consistency and would fare poorly un-339

der translation, resulting in fewer equivalent results.340

However, the amount of inter-rater disagreement341

also plays a significant role in determining equiva-342

lence by expanding or contracting the margins. Fig-343

ure 4b highlights the differences in standard devia-344

tion margins for each quality across automated mea-345

sures. Consistency and fluency had smaller margins346

with tighter distributions, with median margins of347

0.012 and 0.019 and inter-quartile ranges (IQRs)348

of 0.007 and 0.008 respectively. By contrast, co-349

herence and relevance had median margins 0.049350

and 0.028 with IQRs 0.015 and 0.026 respectively.351

Thus human annotators showed stronger agreement352

on consistency and fluency, presenting a higher353

threshold for equivalence after translation.354

3.4 Anderson-Hauck Tests355

While TOST provides a non-parametric route to-356

wards equivalence testing, we consider an addi-357

tional parametric test that may improve statistical358

power. The Anderson-Hauck test is an equivalence359

testing procedure for dependent correlation coef-360

ficients which uses an approximate non-central t-361

distribution to calculate p-values (Anderson and362

Hauck, 1983). Prior comparisons with TOST363

demonstrated that Anderson-Hauck can trade some364

additional Type-I error for higher power (Counsell365

and Cribbie, 2015).366

We consider the same margins of equivalence367

and apply Benjamini-Yekutieli for FDR control at368

level α = 0.05. A similar pattern emerges when369

considering results under different margins, and370

under the standard deviation margin we reject the371

null hypothesis in under 1% of tests.372

The pattern of equivalence is largely the same as373

that found under TOST but with greater sparsity of374

significant results. Ultimately while the tests hint375

towards the ability to reuse summarization datasets376

in similar languages to English, we are only able377

to detect equivalence in a minority of cases. Our378

analysis relies predominantly on the TOST results379

since it does not rely on distributional assumptions380

for the differences in correlations and has a more381

robust literature to follow.382

4 Comparisons between Measures383

While our statistical tests focus on the absolute cor-384

relation between automated and human scores, we385

can instead consider the automated measures rela-386

tive to one another. If one measure correlates better387

than another with human scores in the original En- 388

glish dataset, would it still be better in a translated 389

(non-English) dataset? Additionally, we can return 390

the dataset back to English to get a sense of the 391

distortion introduced by the translation process. 392

To estimate the consistency with which one mea- 393

sure dominates another, we turn to bootstrap resam- 394

pling of the summary evaluations. We select 10,000 395

bootstrap samples from the 1700 text-summary- 396

references tuples. Let P represent the fraction of 397

samples in which one measure is better than an- 398

other for a given measure-measure pair; we con- 399

sider a pair "resolved" if one measure outperforms 400

another in at least 97.5% of all the resamplings, ie. 401

P ≥ 0.975 in the original English dataset. Using 402

Kendall rank correlations, the number of resolved 403

measure-measure pairs is 64% for relevance, 61% 404

for coherence, 56% for consistency, and 42% for 405

fluency. With a baseline reading of how stable the 406

measure rankings are in English, we can ask what 407

happens with these resolved pairs when the dataset 408

is translated. 409
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Figure 5: Result of bootstrapping: average shift in prob-
ability P of one measure being better than another, when
the evaluation data are translated to another language (x-
axis) and then translated back to English (y-axis). The
average is taken over all measure-measure pairs that had
P ≥ 0.975 in English.

For most languages and qualities the shift of P 410

is less than 0.1, the largest is 0.25 (consistency, 411
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Hindi). Many resolved measure-measure pairs412

become unresolved after translation, though no413

shift is drastic enough to reverse which measure414

ranks higher in a majority of samples (i.e. crossing415

P = 0.5). Figure 5 suggests that in most cases our416

conclusion about comparing two measures will not417

change with translation.418

Along its x-axis, Figure 5 shows how much419

on average the fraction P changes (increases or420

decreases) after translation for resolved measure-421

measure pairs, where the average is over a given422

language and quality measure.423

A round-trip translation returns each summary424

to its source language, allowing us to more effec-425

tively isolate the effect of translation quality on the426

consistency of automated measures. The dashed427

line y = x seen in Figure 5 represents points where428

the round-trip translation causes an equally-sized429

shift as the forward translation. We note that the430

observed shifts are mostly under the diagonal - the431

shifts caused by translation are to some degree re-432

versed when we return to English.433

While the shifts for round-trip translations are on434

average smaller than for one-way, they demonstrate435

that translation is far from perfect and introduces436

enough noise to be detected by the summarization437

evaluation measures. Notably, the points above the438

diagonal come from Hindi, Russian and Afrikaans439

round-trip translation. This confirms our intuition440

that a translation to languages more distant from441

English is more risky for the survival of the sum-442

mary evaluation. We hope further research may443

reveal additional ways to use the round-trip transla-444

tion for the criteria of survival.445

5 Discussion446

The results presented significant differences among447

automated summarization measures and their rela-448

tionships to the four quality measures. We seek to449

build an intuition for these findings and make use of450

qualitative exploration to ground our understanding451

We can review the scores for the 1700 sum-452

maries in reduced dimensions using principal com-453

ponents analysis (PCA). Figure 6 shows each 1700-454

dimensional vector projected onto the first two455

principal components, which collectively explain456

38.5% of the variance. There are four vectors of457

human expert scores, corresponding to the quality458

measures coherence, consistency, fluency, and rele-459

vance, averaged over the three individual experts.460

Each automated measure (for example, ROUGE-2)461

coherence
consistency

fluency

relevance

Languages
English
Afrikaans
German
Spanish
French
Hindi
Italian
Russian

Measures
BLANC
ESTIME
Jensen-Shannon
BERTScore
BLEU
ROUGE-L
ROUGE-2
Experts

Figure 6: PCA plot of summary quality scores. All
scores were transformed to ranks before PCA, to reduce
subjectivity of the respective scales. Note the human ex-
pert scores in black squares exist for the English dataset
only.

produced eight 1700-dimensional vectors, one for 462

each language. 463

PCA can be used to disentangle the sources 464

of divergence among evaluation measures under 465

translation. The plot helps highlight the relative 466

strength of translation over the summarization eval- 467

uation methods themselves. If machine translation 468

added significant noise to the summaries, we would 469

expect the relative position of language-specific 470

scores in Figure 6 to be inconsistent across evalua- 471

tion measures. Instead, we generally observe tight 472

clusters for each evaluation measure with shared 473

relative positions among the languages (at least 474

when ignoring Hindi and Russian). 475

This pattern reflects the "stability" of evaluation 476

measures undergoing translation found in Section 4. 477

The PCA recasts translation as a shift in geometric 478

space; across measures, the location occupied by 479

each language is a similar vector shift from its cor- 480

responding English point. The exercise in round- 481

trip translation is an indicator of reversibility for 482

this geometric shift. The qualities and languages 483

that occupy the bottom of Figure 5 are most un- 484

changed by the translation process. On the other 485

hand, measures like ESTIME that break this pat- 486

tern highlight the non-uniformity of the distortion 487

introduced by translation and indicate that it may 488

be more prudent to rely on measures where the 489

distortion is consistent and predictable. 490
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This closer look at the effects of translation also491

helps disentangle the sources of noise that degraded492

the correlations studied in Section 3. A measure493

like ESTIME shows strong correlation with the494

human evaluations of consistency and fluency in495

English, but its unusual response to translation is a496

strong explanatory factor for why its relationships497

to human annotations were not found to be equiva-498

lent in other languages. Consistency also tends to499

show larger shifts in measure-measure pair rank-500

ings in Figure 5, adding another reason that transla-501

tion would cause greater degradation to ESTIME’s502

performance. Similarly, among the Germanic and503

Italic languages, relevance and fluency appear to504

be least affected by translation. Any lack of equiv-505

alence found for these qualities is then more likely506

to be caused by the abilities of the automated mea-507

sures rather than the caliber of translation. Compar-508

isons within and between measures can serve as a509

guide for how much to trust an automated measure510

under translation and where sources of noise may511

arise.512

We note a few curious observations from Figure513

6 in Appendix A.514

6 Conclusion515

In this paper, we probed how well automated eval-516

uations of summaries remain consistent on texts517

translated to other languages. We focused on the518

SummEval dataset and considered its translation to519

French, German, Italian, Spanish, Afrikaans, Hindi,520

and Russian.521

To answer whether English human annotations522

can be trusted in other languages, at least for spe-523

cific qualities, we explored tests of equivalence as524

a gauge of consistency after translation. We found525

that translation can preserve correlations of eval-526

uation metrics with the English human scores for527

coherence or relevance but could not conclude the528

same for fluency or consistency.529

A complete answer to our query is a challenging530

task, since moving to another language affects not531

only the dataset, but also the measures themselves.532

While definitely proving that the original human533

annotations cannot be reused is likely impossible,534

our results suggest that there are clear differences in535

performance based on the choice of target language,536

automated measure, and notion of quality.537

We call for additional research into summary538

evaluation metrics that can survive translation, as539

it offers a relatively simple path towards extending540

NLP capabilities for lower resource languages. Fu- 541

ture work could identify how changes in the margin 542

of equivalence equate to deterioration of model per- 543

formance. Additionally, this line of research could 544

be extended to a larger selection of languages and 545

automated evaluation measures. 546
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stette, Lasse Espeholt, Will Kay, Mustafa Suleyman, 583
and Phil Blunsom. 2015. Teaching machines to read 584
and comprehend. In Advances in Neural Information 585
Processing Systems 28, pages 1693–1701. Curran 586
Associates, Inc. 587

Neslihan Iskender, Tim Polzehl, and Sebastian Möller. 588
2021. Reliability of human evaluation for text sum- 589
marization: Lessons learned and challenges ahead. 590
In Proceedings of the Workshop on Human Evalua- 591
tion of NLP Systems (HumEval), pages 86–96. Asso- 592
ciation for Computational Linguistics (2021). 593

8

https://doi.org/10.1080/03610928308828634
https://doi.org/10.1080/03610928308828634
https://doi.org/10.1080/03610928308828634
https://doi.org/10.1080/03610928308828634
https://doi.org/10.1080/03610928308828634
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1214/aos/1013699998
https://doi.org/https://doi.org/10.1111/bmsp.12045
https://doi.org/https://doi.org/10.1111/bmsp.12045
https://doi.org/https://doi.org/10.1111/bmsp.12045
https://doi.org/https://doi.org/10.1111/bmsp.12045
https://doi.org/https://doi.org/10.1111/bmsp.12045
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00417
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
https://doi.org/10.1162/tacl_a_00373
http://arxiv.org/abs/2108.121973
http://arxiv.org/abs/2108.121973
http://arxiv.org/abs/2108.121973
http://arxiv.org/abs/2104.14478
http://arxiv.org/abs/2104.14478
http://arxiv.org/abs/2104.14478
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/afdec7005cc9f14302cd0474fd0f3c96-Paper.pdf
https://aclanthology.org/2021.humeval-1.10
https://aclanthology.org/2021.humeval-1.10
https://aclanthology.org/2021.humeval-1.10


Wojciech Kryscinski, Bryan McCann, Caiming Xiong,594
and Richard Socher. 2020. Evaluating the factual con-595
sistency of abstractive text summarization. In Pro-596
ceedings of the 2020 Conference on Empirical Meth-597
ods in Natural Language Processing, pages 9332–598
9346. Association for Computational Linguistics.599

Chin-Yew Lin. 2004. ROUGE: A package for automatic600
evaluation of summaries. In Proceedings of Work-601
shop on Text Summarization Branches Out, pages602
74–81. Association for Computational Linguistics.603

Annie Louis and Ani Nenkova. 2009. Automatically604
evaluating content selection in summarization with-605
out human models. In Proceedings of the 2009 Con-606
ference on Empirical Methods in Natural Language607
Processing, pages 306–314. Association for Compu-608
tational Linguistics.609

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-610
Jing Zhu. 2002. BLEU: a method for automatic eval-611
uation of machine translation. In Proceedings of the612
40th Annual Meeting of the Association for Compu-613
tational Linguistics (ACL), pages 311–318, Philadel-614
phia. Association for Computational Linguistics.615

Donald J. Schuirmann. 1987. A comparison of the two616
one-sided tests procedure and the power approach for617
assessing the equivalence of average bioavailability.618
Journal of Pharmacokinetics and Biopharmaceutics,619
15:657–680.620

Xiangru Tang, Alexander R. Fabbri, Ziming Mao, Grif-621
fin Adams, Borui Wang, Haoran Li, Yashar Mehdad,622
and Dragomir Radev. 2021. Investigating crowd-623
sourcing protocols for evaluating the factual consis-624
tency of summaries. arXiv, arXiv:2109.09195.625

Oleg Vasilyev and John Bohannon. 2021. Estime: Es-626
timation of summary-to-text inconsistency by mis-627
matched embeddings. In Proceedings of the 2nd628
Workshop on Evaluation and Comparison of NLP629
Systems, pages 94–103. Association for Computa-630
tional Linguistics.631

Oleg Vasilyev, Vedant Dharnidharka, and John Bohan-632
non. 2020. Fill in the BLANC: Human-free quality633
estimation of document summaries. In Proceedings634
of the First Workshop on Evaluation and Compari-635
son of NLP Systems, pages 11–20. Association for636
Computational Linguistics.637

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien638
Chaumond, Clement Delangue, Anthony Moi, Pier-639
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-640
icz, Joe Davison, Sam Shleifer, Patrick von Platen,641
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,642
Teven Le Scao, Sylvain Gugger, Mariama Drame,643
Quentin Lhoest, and Alexander Rush. 2020. Trans-644
formers: State-of-the-art natural language processing.645
In Proceedings of the 2020 Conference on Empirical646
Methods in Natural Language Processing: System647
Demonstrations, pages 38–45. Association for Com-648
putational Linguistics (2020).649

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. 650
Weinberger, and Yoav Artzi. 2020. BERTScore: 651
Evaluating text generation with bert. arXiv, 652
arXiv:1904.09675v3. 653

A Observations from PCA 654

The locations of the measures in Figure 6 after 655

translation largely remain close to the original En- 656

glish version, except Hindi and Russian points. The 657

locations show interesting patterns. The reference- 658

based measures, based on hard (ROUGE, BLEU) 659

or soft (BERTScore) overlap of tokens between 660

the summary and the human-written reference sum- 661

maries, are in the same top left quadrant with re- 662

spect to the human scores. The reference-free mea- 663

sures BLANC and Jensen-Shannon are on the op- 664

posite side. It is natural for both BLANC and 665

Jensen-Shannon to be on the relevance side of 666

the human scores: BLANC estimates how well 667

a text can be reconstructed from its summary, and 668

Jensen-Shannon considers the Kullback–Leibler di- 669

vergence between the summary and the text. For 670

ESTIME, however, as for a consistency-oriented 671

measure, it makes sense to be on the consistency 672

and fluency side of the human scores, rather than 673

on the relevance side. 674

For most measures, the translated scores are of- 675

ten closer to the expert evaluations than the English 676

scores. Strangely, it is especially true for Hindi 677

and, in the case of ROUGE, for Russian. One pos- 678

sible explanation is that the translation simplifies 679

the phrases and the choice of words, thus mak- 680

ing it easier for some evaluation measures, at least 681

along some dimensions. The pattern associated 682

with ESTIME is distinct from other measures: the 683

non-English scores for ESTIME are almost always 684

further away from the human scores. This sug- 685

gests that maybe ESTIME is sensitive enough to 686

require a higher quality translation. We cannot 687

blame the underlying multilingual model, because 688

both BLANC and BERTScore use the same model. 689

B Bootstrap with Reference-Summaries 690

Throughout the paper we used bootstrapping with 691

resampling of the (text, summary, references) tu- 692

ples, where the references are the reference sum- 693

maries needed by some measures (BERTScore, 694

BLEU, ROUGE). For each text in SummEval (Fab- 695

bri et al., 2021), there are 11 reference summaries, 696

and a full bootstrap for the reference-based mea- 697

sures should also include a resampling of the refer- 698

ence summaries themselves. 699
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The impact of this added source of randomness700

can be seen by constructing confidence intervals701

for the estimated correlation between an evaluation702

measure and human scores. When we add resam-703

pling over reference summaries, confidence inter-704

vals widen and require more time and resources705

to compute. In Table 1 we illustrate the widen-706

ing of the confidence interval on an example using707

BERTScore correlations with SummEval human708

expert scores (in the original English SummEval709

dataset). We ran 500K reference summaries resam-710

plings, recomputing scores and correlations. The711

BERTScore is a peculiar and convenient case for712

bootstrap resampling of reference summaries, be-713

cause the score is defined as a max score over the714

scores taken individually for each reference sum-715

mary (Zhang et al., 2020).716

Kendall’s τ Spearman’s ρ
low high widen low high widen

coherence 0.245 0.307 0.011 0.345 0.428 0.015
consistency 0.041 0.117 0.002 0.052 0.148 0.003
fluency 0.062 0.135 0.004 0.080 0.175 0.006
relevance 0.246 0.310 0.026 0.338 0.424 0.035

Table 1: The columns ’low’ and ’high’ are the confi-
dence boundaries from bootstrap without resampling
reference summaries, for BERTScore correlations with
expert human scores (coherence, consistency, fluency,
relevance). The column ’widen’ is the widening of the
confidence interval as a result of adding the resampling
of the reference summaries to the bootstrap resampling.
Kendall’s Tau correlation is Tau-c. The confidence
boundaries are for 0.025 and 0.975 percentiles. The
bootstrapping used 500K resamplings.

The low and high correlation values are given in717

the table for bootstrap without resampling of ref-718

erence summaries, as corresponding to 0.025 and719

0.975 percentiles of the distribution. The ’widen’720

column in the table shows how much the confi-721

dence interval (’high minus low’) changed after in-722

cluding resampling of the 11 reference summaries723

into the bootstrapping. Some quality measures724

are especially affected by the change, with confi-725

dence intervals for Kendall correlation widening726

by 40% for relevance and by 17% for coherence727

(for Spearman’s correlations, correspondingly, 42%728

and 18%). Notice that the relevance and coherence729

are exactly the qualities in which BERTScore is730

reported as a strong measure (Vasilyev and Bohan-731

non, 2021).732
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