
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPERMODEL: RETHINKING DNN TRAINING AND
TESTING WITH OPEN-STYLE SKILL ACQUISITION AND
DYNAMIC INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Current DNN model building suffers from two serious problems: forgetting and
doomed test cases. In this paper, we propose an open-style skill acquisition ap-
proach, which is the opposite of a currently closed-style training scheme with
recent features/patterns often overwriting previous ones to minimize the overall
loss in backpropagation (the forgetting problem). Testing is also drastically dif-
ferent and is conducted as optimally selecting the best available skills (nodes and
connections in DNNs) from the training model specific to a testing sample in or-
der to maximize its probability to be correctly processed (the doomed test case
problem). We validate our approach with multiple datasets and achieve significant
performance improvement over SOTA methods.

Keywords: Machine Learning, Generalization, Deep Neural Network, Continual Learning, Life-
long Learning, Catastrophic Forgetting, Ensemble Modeling

1 INTRODUCTION

Modern DNN modeling consists of a training phase and a testing phase (Goodfellow et al., 2016).
During training, first a fixed DNN architecture is selected based on data characteristics (e.g., modal-
ity, size), computation budget, and other factors such as incorporation of appropriate inductive bias.
Once a model is selected, its architecture including number of layers and parameters will remain
fixed through training and testing. Then a training set is divided into batches, and a loss is calculated
after each batch, which will be used to update weights with backpropagation. When loss converges,
training is finished, and the DNN model is fully built and passed to testing phase. The model will
remain completely fixed during testing, and produce an evaluation measure with a testing set. In this
paper, we will focus on the following two issues in current learning setting: forgetting of learned
skills and doomed test cases.

Forgetting of learned skills. Forgetting of learned skills in human learning is usually not by choice,
instead more due to aging, disease, and other factors. For DNNs, we use “forgetting” to denote that
a set of model parameters — skill (formally defined in Methodology section) — that once were
able to correctly classify a sample (either from a training set or testing set) are overwritten/updated
during backpropagation, and can not correctly classify this sample any more. In the extreme case
of catastrophic forgetting (Jagielski et al., 2022) (Kirkpatrick et al., 2017), when a neural network
is trained with a sequence of tasks, weights learned in one task will be overwritten when updating
the network to learn the next task. Besides catastrophic forgetting, there exists a subtle yet more
common forgetting that has been reported in literature Toneva et al. (2019). In this case, forgetting
occurs in standard batch-based DNN training for one task, and includes two scenarios. Firstly, within
a batch forgetting occurs by choice (although a forced choice) because the overall training objective
is to minimize the total loss of a whole batch. If one update of weights results in a larger difference
between correctly predicted samples and incorrect ones, this update will be taken. The logic is that it
is worth sacrificing a few previously correctly predicted samples to achieve a lower loss for the whole
batch. The second scenario of forgetting occurs between batches, which is due to the usual choice of
stochastic gradient descent (SGD) over gradient descent (GD) in current batch-based DNN training
scheme . To speed up convergence and lower memory space requirement, batch-based SGD is the
popular DNN choice over whole set-based GD. SGD usually can achieve a good approximation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

of true (e.g., based on the whole training set) gradients, which makes it a reasonable choice for
backpropagation. However, from the viewpoint of forgetting, SGD brings a serious problem. If we
treat a neural network as a system of equations, weights {wk}will be variables in this system. Given
a labeled sample s = [x1, x2,, xn, y], where xi is a feature, y is the sample label, s will become
an equation in this system. DNN training becomes to find a solution for this system of equations. If
each time we only take a subset of equations from this system, even if we can find a perfect solution
{wk} for one subset/batch, this perfect solution will be (at least partially) overwritten/forgotten in
next subset/batch that contains totally different equations/samples. Increasing the number of epochs
will not solve this problem.

Doomed test cases. As forgetting is training-related, in testing we focus on a problem we call
“doomed” test cases. With the progress on better estimating confidence of a prediction (please
refer to Related work section and Methodology section for details), often we know a prediction is
very likely to be wrong due to its low confidence. However, since a DNN model is fixed during
testing, nothing can be done, and running the same model one more time will produce the same
low-confidence prediction. There is no obvious choice if trying to change prediction as other output
nodes will have even lower softmax/confidence.

We think that the two problems above are related and can be addressed by incorporating human-like
learning characteristics to train and test DNNs. In human learning, once a skill (e.g., recognize
the horse in George Stubbs’s famous Whistlejacket painting) is acquired, it may be revised for
improvement, but it is unlikely to be overwritten/forgotten in order to accommodate a new skill.
Instead, skills are accumulated into a skill set. To achieve this in DNNs, one possibility is not to
use all available learning capacity and resource (e.g., neurons and connections in a neural network)
each time to learn a skill (e.g., correctly classify a sample). Learning of a sample ideally should
use a just-enough subset of neurons and connections, not all available ones. When a new sample
arrives and can not be correctly predicted with current skill (neurons and connections) set, a new
subset of neurons and connections in reserve should be taken in and trained to correctly classify this
new sample and saved as a new skill in the skill set. open-style learning, where training becomes
a process of building a skill set, not producing a fixed/unchangable model. Accordingly testing
procedure will become a dynamic process of choosing suitable skills to confidently classify a specific
test sample. If one selection of skills does not reach the confidence threshold, a different subset
of skills should be chosen to improve prediction confidence to the threshold or until choices are
exhausted. More specifically, this paper proposes a new open-style deep learning model called
Supermodel, which is different from standard DNN modeling process in the following aspects:

• During training, useful groups and patterns of nodes and their connections will be collected
and saved into a “super” network called Supermodel, which will be treated as a knowledge
base or skill set.

• During testing, a test sample will be input to Supermodel and trigger/activate certain neu-
rons and connections. When a prediction is made, its confidence is assessed. If the confi-
dence is above a threshold, we output the prediction. If not, we propose a static masking
method and a dynamic masking method to actively select suitable skills (e.g., neurons and
connections) and try to improve prediction confidence.

With this open-style learning, our contributions are:

• Skill proposed in this paper is a new component for a DNN besides commonly used archi-
tectural components (e.g., layer, node), and may offer new insights into various aspects of
DNN modeling.

• Most DNN-based ensemble methods do not break model boundary and merge networks.
Skill directly connected to model performance (not like a layer or node) is more versatile
and can be selected case-by-case to achieve optimal outcome.

• Besides outperforming SOTA ensemble methods, using commonly available base models
Supermodel performs well comparing with the best systems on leaderboard.

In next section, we will present related work. Then in the Methodology section, we will discuss our
new training and testing procedure with more details on confidence and two skill selection/masking
methods. We evaluated our approach with multiple datasets, backbones, and various settings in
Experiment section, and conclude in the last section.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORKS

Continual learning and catastrophic forgetting. A key challenge for general AI is how to accom-
modate learning of a large sequence of tasks involving different objectives, datasets, and modalities.
With current DNN modeling scheme, catastrophic forgetting occurs when weights in a DNN well-
trained for one task are updated/forgotten during training on data from a new task. Kirkpatrick
et al. (2017) proposed to slow down the updating of weights important to previous tasks to reduce
forgetting. Sarnen et al. (2020) combines Adversarial Direction with Elastic Weight Consolida-
tion. Similar ideas have been applied to GNN Liu et al. (2021) and Reinforcement Learning Gai
et al. (2024) recently. However, current methods that rely on identifying important parameters and
slowing down their updates often face conflicts because the closed-style modeling process reuses
the same parameters across tasks when old and new tasks require contradictory parameter updates.
Expansion-based methods Veniat et al. (2021); Yu et al. (2024); Mendez & EATON (2021); Yoon
et al. (2023) address this by adding new nodes and modules during training time when a domain shift
or new task is detected. However, how to select suitable parts of a model to deal with a task remains
an open challenge. Instead, we propose an open-style method, training separate DNNs to cover
distinct subsets of data and merging them into a Supermodel, which only keeps distinct features and
patterns in a skill base.

Ensemble learning. Traditional ensemble methods integrate predictions of multiple models di-
rectly to improve overall performance via bagging, boosting, stacking, Bayesian model averaging
and combination Opitz & Maclin (1999); Ganaie et al. (2022). In deep learning, recent ensemble
methods Mohammed & Kora (2022)Dang et al. (2025)Li et al. (2021)Benton et al. (2021) started to
break down model boundaries and merge multiple DNNs into one DNN model through some direct
process such as weight averaging Zou et al. (2021); Shin et al. (2021), Hadamard product of weight
matrices Wen et al. (2020)von Oswald et al. (2021), which inevitably leads to loss or damaging of
useful patterns/features obtained in training. In contrast, our Supermodel saves all useful patterns
and adaptively selects suitable ones during testing for optimal prediction.

3 METHODOLOGY

Figure 1: Supermodel architecture: training phase and testing phase in our open-style deep learning
model

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

As shown in Figure 1, our deep learning architecture Supermodel includes a training phase that
collects useful skills into a skill set/knowledge base, and a testing phase that selects and applies
suitable skills on a test sample to improve its prediction confidence until a threshold is reached or
choice/computation budget is exhausted.

3.1 TRAINING: COLLECTING A DIVERSE SKILL SET

The goal of training phase in the Supermodel deep learning architecture is to collect a large amount
of diverse skills (see Definition 1). We define a skill as:

Definition 1 (Skill) In a neural network N , a skill s consists of a node n ∈N and all n’s incoming
connections {cn}.

Now following Figure 1, we will discuss the 3 steps in the training procedure: obtaining multiple
models, pruning, and collecting distinct skills to build Supermodel.

3.1.1 BUILDING DIVERSE BASE MODELS

Model diversity is important for ensemble learning Kunapuli (2023).Similarly in Supermodel, we
need collect distinct skills from a set of diverse base models. Here is the model building procedure:
(1) Standard DNN training to obtain the first base model; (2) Recursively use incorrect training
samples to train and obtain next model. During each iteration, if a skill is found to have already
existed in previous model, weights in this skill will be reset to force generation of new distinct skills;
(3) iterate until the number of incorrect samples is less than a threshold or computation budget is
exhausted. Multiple diverse models can be effectively built in this way. Details and pseudocode for
this procedure is provided in Appendix.

One general concern with ensemble learning is the high computation cost to obtain multiple models.
We give a detailed analysis on time complexity in Appendix. Empirically we found our approach
is not more expensive than other ensemble learning methods (e.g., requiring a large number of base
models). Moreover, Supermodel should be viewed as a knowledge base (not like a single-use model)
that can be shared and reused by many tasks and applications, so the higher computation cost is well
justified.

3.1.2 PRUNING.

A DNN often has a lot of redundancy. Many pruning methods have been developed, which can
usually achieve 80%-90% pruning ratio with only a minor drop on model performance. Pruning
can help remove trivial and unimportant skills. Moreover, since we want to collect distinct skills,
skills with sparse connections are easier to compare and save only new skills into Supermodel. In
experiments we choose GRASP pruning method Wang et al. (2020).

3.1.3 COLLECTING DISTINCT SKILLS TO BUILD SUPERMODEL

With N pruned models obtained in last step, we compare skills in each layer of each model to skills
of corresponding layer in current Supermodel. Two skills are considered similar if their incoming
connections come from the same lower-layer nodes and the weight difference between each pair of
corresponding connections is less than a threshold τ . Distinct skills are added into Supermodel. It is
worth noting that skills in convolution layers can be compared and added in the same way as skills in
full-connection layers in Supermodel with the parameter sharing scheme. For skills in convolution
layers, we consider the accumulated score of connections sharing the same weight and examine them
just like regular connections. A detailed Algorithm with the procedure to collect distinct skills from
pruned base models and build a Supermodel skill set is presented in the appendix (Algorithm3).

3.2 TESTING: CONFIDENCE-GUIDED PREDICTION ASSESSING AND SKILL SELECTING

During testing, since no class labels are available, Supermodel depends on confidence of a prediction
to determine whether currently applied skills work well (e.g., above a confidence threshold) on a
test sample. If not, Supermodel will re-select skills to improve the prediction confidence. We will
discuss various confidence measures first, then present two skill selection algorithms.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2.1 CONFIDENCE

Estimation of prediction confidence is useful to many ML applications Pearce et al. (2021). Several
measures can be produced directly from softmax layer, such as class probability, negative entropy,
and margin . Softmax uncertainty measures may be overconfident or even arbitrary Mukhoti et al.
(2021) because of its inability to estimate epistemic uncertainty, and only achieve modest success
on OOD tests Pearce et al. (2021). In the experiments since data is mostly IID, we adopt softmax
as the confidence measure due to its accuracy on IID data and computation efficiency. Several more
reliable measures have been proposed recently, such as calibrated confidence combining density and
softmax entropy Mukhoti et al. (2021), correctness ranking loss Mukhoti et al. (2021), which can be
adopted in OOD cases.

3.2.2 STATIC SKILL SELECTION

Algorithm 1 Static skill selection in testing phase
Require: Supermodel with weights W , number of classes M , testing samples X , confidence

threshold α
Ensure: final classification result Y

1: for i from 1 to M do
2: Maski ← J . Here J is an all-one matrix of the same size as W
3: for all samples in class i do
4: m← ∂confi/∂W
5: for each element j in m do
6: if j ≤ 0 then
7: Maskij ← 0
8: end if
9: end for

10: end for
11: end for
12: for each xi in X do
13: if max confidence conf > α then
14: yi ← class label with max confidence
15: else
16: D ← descending sort confidence class indices
17: for each class j in D do
18: recompute confidence of class j Conf ′

j with W ←W ⊙Maskj . Here⊙ is element-
wise multiplication.

19: if conf ′
j > α then

20: yi ← j
21: break
22: end if
23: end for
24: end if
25: if yi is not assigned then
26: yi ← class label with max confidence in Conf ′

27: end if
28: end for

Algorithm 1 presents our static skill selection algorithm, where “static” refers to producing a mask
for each class during training time. A mask is a binary matrix of the same size as model weight
matrix and is applied on the level of individual weights (e.g., indicate that a weight is on or off with
1 or 0). Mask matrix is initialized with all 1′s. Then for each training sample in a class, we calculate
the partial derivative of confidence on each weight in Supermodel. If derivative is 0 or negative,
we change the mask value corresponding to this weight to 0, so this weight will not be used in the
mask for this class. In this way, we generate a static mask for each class. During testing phase, if
a testing sample generates a confident prediction, we output this prediction directly. Otherwise, we
apply masks of classes with high confidences. If one of these class masks improves the prediction

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

for this sample above a confidence threshold, we output this prediction. Otherwise, we output the
prediction with the highest confidence.

3.2.3 DYNAMIC SKILL SELECTION

Algorithm 2 Dynamic skill selection in testing phase
Require: Supermodel with weights W , number of classes M , testing samples X , confidence

threshold α, backpropagation threshold β
Ensure: final classification result Y

1: for each Xi in X do
2: if max confidence conf > α then
3: Yi ← max confidence class index
4: Mem← Yi

5: else
6: count← 0
7: while max confidence conf ≤ α and count < β do
8: confs = Smooth−Max(conf)
9: backpropagate and update W with confs as loss

10: recompute max confidence conf
11: count← count+ 1
12: end while
13: if max confidence conf > α then
14: Yi ← max confidence class index
15: else
16: Yi ←Mem
17: end if
18: end if
19: end for

Static masks are generated during training phase, which does not incur extra cost in testing phase.
However, it lacks of flexibility needed for challenging test samples. Hence we further develop a
dynamic procedure that selects skills during testing phase. Since labels are not available during
testing, we use confidence to replace loss in an objective function and try to maximize:

max(c1, ..., cn) (1)

where ci is the confidence of each output node for a test sample. The objective is to maximize the
max confidence. Since max function is not differentiable, we maximize its smooth approximation
instead Lange et al. (2014):

Smooth−Max(c1, ..., cn) =

∑n
i=1 cie

ci∑n
i=1 e

ci
(2)

Other options exist, such as maximizing entropy of confidence values. Standard backpropagation
is applied until confidence of the most confident output node is above a threshold or computation
budget is exhausted. In this way we try to select the best skills we own to make a prediction with as
high confidence as possible for otherwise “doomed”/difficult test samples.

4 EXPERIMENTS

Since this paper focuses on one task/dataset, we choose the following SOTA ensemble methods
for comparison: Snapshot Ensemble (SSE) Huang et al. (2017), Fast Geometric Ensembling (FGE)
Garipov et al. (2018), Diversified Ensemble Neural Network (DEns) Zhang et al. (2020), Colle-
gial Ensembles (CE) Littwin et al. (2020), MC-Dropout(MC-Drop) Gal & Ghahramani (2016),
BatchEnsemble (Batch-E) , NativeEnsemble (Native-E) Wen et al. (2020). For a comprehensive
evaluation, three backbone DNNs (VGG16, WRN-28-10, ResNet-164) and three commonly used

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Cifar100 Improve- Cifar10 Improve-
Backbone Model Accu. ment Accu. ment

over over
base base

model model

VGG16

Base model 72.6 0 93.25 0
SSE 73.6 1.00 93.43 0.18
FGE 74.3 1.70 93.52 0.27
DEns 70.48 -2.12 93.56 0.31
Supermodel 89.33 16.73 94.33 1.08
Supermodel-s 89.84 17.24 94.36 1.11
Supermodel-d 90.06 17.46 94.39 1.14

WRN-28-10

Base model 80.8 0 96.18 0
SSE 82.1 1.30 96.27 0.09
FGE 82.3 1.50 96.35 0.17
CE-101×10d 82.56 1.76 96.35 0.17
CE-3×58d 81.25 0.45 96.13 -0.05
CE-2×98d 81.68 0.88 96.01 -0.17
Supermodel 88.75 7.95 96.44 0.26
Supermodel-s 89.98 9.18 96.72 0.54
Supermodel-d 89.95 9.15 96.79 0.61

ResNet-164

Base model 78.5 0 95.28 0
SSE 79.1 0.60 95.34 0.06
FGE 79.8 1.30 95.46 0.18
Supermodel 88.93 10.43 96.33 1.05
Supermodel-s 89.40 10.90 96.66 1.38
Supermodel-d 89.48 10.98 96.71 1.43

Table 1: Experiment results with three backbones: VGG16, WRN-28-10, ResNet-164 on CIFAR10
and CIFAR100. Results on SSE, FGE, DEns, CE, MC-Drop, Batch-E, Native-E are taken from the
original papers respectively.

benchmark datasets (CIFAR10, CIFAR100, ImageNet) are selected. Detailed settings including
hyperparameters are provided in Appendix.

4.1 RESULTS

Table 1 shows the main experiment results using three backbone networks: VGG16, WRN-28-10,
ResNet-164 on CIFAR10 and CIFAR100 datasets comparing with SOTA ensemble learning meth-
ods. We include three variations of our method: (1) Supermodel: use the constructed Supermodel
directly as a regular DNN; (2) Supermodel-s: apply static mask algorithm presented in Algorithm 1
on Supermodel to statically select suitable skills; (3) Supermodel-d: apply dynamic mask algorithm
presented in Algorithm 2 on Supermodel to dynamically select suitable skills. All three variations
of Supermodel significantly improves the performance over baseline models and outperforms the
existing SOTA models. One interesting finding is that Supermodel can make up the constraints
of learning capacity in base models. For example, VGG19 and ResNet-164 base models achieves
lower accuracy than WRN-28-10, which may indicate that they contain less effective skills, but the
performance difference of a single model can be eliminated by skills collected from multiple diverse
models.

4.2 DISCUSSION

4.2.1 COMPARISON WITH A DNN OF THE SAME WIDTH AND NUMBER OF PARAMETERS.

Since supermodel collects distinct skills (e.g., nodes and connections) from multiple base models,
one natural question is:

Is the performance improvement due to a wider network with more parameters?

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Method Sparsity Accuracy
Base model 100 88.77

Pruned base model 14.6 87.53
Supermodel-d 14.6 89.98

Table 2: Comparison with WRN-28-10 of the
same width and number of parameters.

Method Base model Accuracy Improve
accuracy ment

ResNet-50 on ImageNet
SSE 76.13 76.67 0.54
FGE 76.13 76.69 0.56
Supermodel 78.15 85.94 7.79

WRN-28-10 on CIFAR100
Supermodel 87.26 92.93 5.67

Table 3: Results on ImageNet to assess scalabil-
ity and impact of stronger base models.

We built a fully connected WRN-28-10 (“Base model” in Table 2) of the same width (e.g., same
number of nodes) as our Supermodel, and tested its accuracy on CIFAR100. Then we prune connec-
tions in this base model to 14.6%, which is at the same sparsity level as our Supermodel. Supermodel
outperforms both models as shown in Table 2 even though the base model contains around 7 times
more connections.

4.2.2 DETAILED PERFORMANCE CHANGES IN SKILL COLLECTION PROCESS

As Supermodel construction process includes multiple iterations of model training and skill collec-
tion, Table 4 shows performance changes in each iteration. For WRN-28-10, it takes 6 iterations
for training accuracy to reach 100%, that is, all training samples are correctly classified by at least
one of the 6 models trained in these 6 iterations. Accuracy union is the union of accuracy of these
6 models on testing set. As long as a testing sample can be correctly classified by at least 1 of
these 6 models, it will be counted in the union accuracy. Accuracy union can be considered as an
upper bound for an ensemble learning method. At each iteration, as more skills are collected, the
performance of Supermodel consistently improves as well.

WRN-28-10
Training Accu. Super Super Super

accuracy union model model-s model-d
1 0.8542 0.8079 0.7924 0.8029 0.8089
2 0.7462 0.8417 0.8290 0.8351 0.8425
3 0.6122 0.8882 0.8750 0.8819 0.8843
4 0.4276 0.9015 0.8835 0.8905 0.8915
5 0.9724 0.9073 0.8914 0.8943 0.8957
6 1.0000 0.9118 0.8975 0.8998 0.8983

ResNet-164
Training Accu. Super Super Super

accuracy union model model-s model-d
1 0.8427 0.7885 0.7724 0.7785 0.7715
2 0.8819 0.8853 0.8628 0.8703 0.8722
3 1.0000 0.9025 0.8893 0.8940 0.8939

VGG16
Training Accu. Super Super Super

accuracy union model model-s model-d
1 0.7822 0.7264 0.7139 0.7224 0.7214
2 0.6214 0.8425 0.8334 0.8395 0.8417
3 0.8917 0.8824 0.8756 0.8761 0.8792
4 1.0000 0.9066 0.8933 0.8984 0.8999

Table 4: Detailed performance changes in skill collection process on CIFAR100.

4.2.3 SCALABILITY ASSESSMENT WITH IMAGENET

One ultimate goal of a classifier is the performance. Although Supermodel outperforms SOTA
ensemble methods, to evaluate scalability of Supermodel and its performance on large datasets,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

we conducted an experiment on ImageNet using ResNet-50 as base model. As shown in Table 3,
Supermodel outperforms SSE and FGE, and achieves 85.94% accuracy.

Furthermore to assess the impact of base models, we choose a base model introduced by Ramé et al.
(2021) which is trained with 3 original WRN-28-10 model with extra mixing mechanism on samples.
This stronger WRN-28-10 base model achieves 87.26% accuracy on CIFAR100. Detailed perfor-
mance changes in skill collection process are provided in a table in Appendix. With the building
procedure described above, Supermodel with dynamic selection achieves 92.93% accuracy, which
ranks at the 8th place according to CIFAR100 leaderboard https://paperswithcode.com/sota/image-
classification-on-cifar-100 and is 3.09% below the best performing model EffNet-L2. With these
results it is reasonable to assume that Supermodel has significant potential for further improvement
by adopting even stronger base models.

4.2.4 EXPERIMENT WITH NAS METHOD

As discussed above, different from existing ensemble methods, Supermodel does generate a new
stand-alone model, which is the objective of a Neural Architecture Search (NAS) approach. How-
ever, Supermodel is agnostic and applies to pre-designed DNN models as well as models generated
from NAS methods. In this section we adopted a DNN model generated by a SOTA NAS method -
DARTS Liu et al. (2018) as a base model. The experiment results in Table 5 show that Supermodel
achieves consistent improvement with an already-strong model generated by the SOTA NAS method
DARTS.

Backbone Method Accuracy

DARTS (1st order)

baseline 0.9692
supermodel 0.9728
supermodel-s 0.9733
supermodel-d 0.9732

DARTS (2nd order)

baseline 0.9725
supermodel 0.9744
supermodel-s 0.9745
supermodel-d 0.9749

Table 5: Results with DARTS on CIFAR10.

Backbone Model Accuracy

WRN-28-10
Supermodel-10 95.54

Supermodel-10adjust 96.22
Supermodel 96.79

Table 6: Impact of diversity of base models on
CIFAR-10.

4.2.5 IMPACT OF DIVERSITY OF BASE MODELS.

A set of diverse base models are important for ensemble learning methods. We conducted an exper-
iment with three ways to generate base models. As shown in Table 6, Supermodel-10 combines 10
randomly initialized WRN-28-10 models trained with standard SGD process. Following Garipov
et al. (2018) using varied learning rate in training, we train 10 separate models, and Supermodel-
10adjust combines these models. Supermodel uses our standard training procedure described in
previous section. Results in Table 5 show that Supermodel is stable and not sensitive to base models
obtained with different training schemes, which indicates its broad potential application in practice.

5 CONCLUSION

In this paper we present a different point of view on DNN training and testing. In our proposed
approach Supermodel, DNN training takes an open style and is conducted as a process to acquire
diverse skills and build a skill set called Supermodel. During testing, suitable skills are selected
statically according to class-based masks or dynamically with backpropagation to produce a high-
confidence prediction. With experiments on multiple backbones and datasets, Supermodel outper-
forms current SOTA methods.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Gregory Benton, Wesley Maddox, Sanae Lotfi, and Andrew Gordon Gordon Wilson. Loss surface
simplexes for mode connecting volumes and fast ensembling. In International Conference on
Machine Learning, pp. 769–779. PMLR, 2021.

Truong Dang, Tien Thanh Nguyen, Alan Wee-Chung Liew, and Eyad Elyan. Event classification
on subsea pipeline inspection data using an ensemble of deep learning classifiers. Cognitive
Computation, 17(1):10, 2025.

Sibo Gai, Shangke Lyu, Hongyin Zhang, and Donglin Wang. Continual reinforcement learning for
quadruped robot locomotion. Entropy, 26(1), 2024.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Malik, Muhammad Tanveer, and Ponnuthurai N
Suganthan. Ensemble deep learning: A review. Engineering Applications of Artificial Intelli-
gence, 115:105151, 2022.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson. Loss
surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information pro-
cessing systems, 31, 2018.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv preprint arXiv:1704.00109, 2017.

Matthew Jagielski, Om Thakkar, Florian Tramer, Daphne Ippolito, Katherine Lee, Nicholas Carlini,
Eric Wallace, Shuang Song, Abhradeep Thakurta, Nicolas Papernot, et al. Measuring forgetting
of memorized training examples. arXiv preprint arXiv:2207.00099, 2022.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Gautam Kunapuli. Ensemble methods for machine learning. Simon and Schuster, 2023.

Mandy Lange, Dietlind Zühlke, Olaf Holz, Thomas Villmann, and Saxonia-Germany Mittweida.
Applications of lp-norms and their smooth approximations for gradient based learning vector
quantization. In ESANN, pp. 271–276, 2014.

Xingjian Li, Haoyi Xiong, Zeyu Chen, Jun Huan, Cheng-Zhong Xu, and Dejing Dou. “in-network
ensemble”: Deep ensemble learning with diversified knowledge distillation. ACM Transactions
on Intelligent Systems and Technology (TIST), 12(5):1–19, 2021.

Etai Littwin, Ben Myara, Sima Sabah, Joshua Susskind, Shuangfei Zhai, and Oren Golan. Collegial
ensembles. Advances in Neural Information Processing Systems, 33:18738–18748, 2020.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Huihui Liu, Yiding Yang, and Xinchao Wang. Overcoming catastrophic forgetting in graph neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 8653–
8661, 2021.

Jorge A Mendez and ERIC EATON. Lifelong learning of compositional structures. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=ADWd4TJO13G.

10

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://openreview.net/forum?id=ADWd4TJO13G
https://openreview.net/forum?id=ADWd4TJO13G

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ammar Mohammed and Rania Kora. An effective ensemble deep learning framework for text clas-
sification. Journal of King Saud University-Computer and Information Sciences, 34(10):8825–
8837, 2022.

Jishnu Mukhoti, Andreas Kirsch, Joost Van Amersfoort, PH Torr, and Yarin Gal. Deterministic
neural networks with inductive biases capture epistemic and aleatoric uncertainty. arXiv preprint
arXiv:2102.11582, 2, 2021.

David Opitz and Richard Maclin. Popular ensemble methods: An empirical study. Journal of
artificial intelligence research, 11:169–198, 1999.

T Pearce, A Brintrup, and J Zhu. Understanding softmax confidence and uncertainty. arxiv 2021.
arXiv preprint arXiv:2106.04972, 2021.

Alexandre Ramé, Rémy Sun, and Matthieu Cord. Mixmo: Mixing multiple inputs for multiple
outputs via deep subnetworks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 823–833, 2021.

Fioni Sarnen, Suyanto Suyanto, and Rita Rismala. Lifelong learning for dynamic churn prediction.
In 2020 International Conference on Data Science and Its Applications (ICoDSA), pp. 1–5. IEEE,
2020.

Sungho Shin, Yoonho Boo, and Wonyong Sung. Sqwa: Stochastic quantized weight averaging for
improving the generalization capability of low-precision deep neural networks. In ICASSP 2021-
2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
8052–8056. IEEE, 2021.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Bengio,
and Geoffrey J. Gordon. An empirical study of example forgetting during deep neural network
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=BJlxm30cKm.

Tom Veniat, Ludovic Denoyer, and MarcAurelio Ranzato. Efficient continual learning with modular
networks and task-driven priors. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=EKV158tSfwv.

Johannes von Oswald, Seijin Kobayashi, Joao Sacramento, Alexander Meulemans, Christian Hen-
ning, and Benjamin F Grewe. Neural networks with late-phase weights. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
C0qJUx5dxFb.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. arXiv preprint arXiv:2002.07376, 2020.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: an alternative approach to efficient
ensemble and lifelong learning. arXiv preprint arXiv:2002.06715, 2020.

Jaehong Yoon, Sung Ju Hwang, and Yue Cao. Continual learners are incremental model generalizers.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 40129–40146. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/v202/yoon23b.html.

Jiazuo Yu, Yunzhi Zhuge, Lu Zhang, Ping Hu, Dong Wang, Huchuan Lu, and You He. Boosting
continual learning of vision-language models via mixture-of-experts adapters. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 23219–23230, 2024.

Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. Advances
in Neural Information Processing Systems, 33:16001–16011, 2020.

Xiuguo Zou, Jiahong Wu, Zhibin Cao, Yan Qian, Shixiu Zhang, Lu Han, Shangkun Liu, Jie Zhang,
and Yuanyuan Song. An atmospheric visibility grading method based on ensemble learning and
stochastic weight average. Atmosphere, 12(7):869, 2021.

11

https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=BJlxm30cKm
https://openreview.net/forum?id=EKV158tSfwv
https://openreview.net/forum?id=C0qJUx5dxFb
https://openreview.net/forum?id=C0qJUx5dxFb
https://proceedings.mlr.press/v202/yoon23b.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

6 APPENDIX

Algorithm 3 Training procedure to collect distinct skills and build Supermodel skill set
Require: N pruned models A1, A2, ..., AN , network depth d, skill similarity threshold τ
Ensure: Supermodel Net

1: assign each input node a unique index, I0 is the set of node indices for input layer 0
2: l← 1
3: Net ← an empty neural network with the same number of input nodes as a pruned model. All

pruned models have the same number of input nodes since they work on the same dataset.
4: while l ≤ d do
5: for each skill si in layer l of each pruned model do
6: assign a unique index Ei = {{ci1, ci2, ..., cik}, {wi1, wi2, ..., wik}} to si, where
{ci1, ci2, ..., cik} ∈ (Il−1)

k and {wi1, wi2, ..., wik} is the weights of incoming connections
{ci1, ci2, ..., cik}

7: if {ci1, ci2, ..., cik} come from the same nodes in layer l− 1 as incoming connections of
a skill in Net layer l, and ∀j the difference between each pair of corresponding wij is less than
τwij then

8: si is discarded
9: else

10: si is added to Net layer l
11: end if
12: end for
13: l← l + 1
14: end while

12

	Introduction
	Related Works
	Methodology
	Training: collecting a diverse skill set
	Building diverse base models
	Pruning.
	Collecting distinct skills to build Supermodel

	Testing: confidence-guided prediction assessing and skill selecting
	Confidence
	Static skill selection
	Dynamic skill selection

	Experiments
	Results
	Discussion
	Comparison with a DNN of the same width and number of parameters.
	Detailed performance changes in skill collection process
	Scalability assessment with ImageNet
	Experiment with NAS method
	Impact of diversity of base models.

	Conclusion
	Appendix

