
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AMBIGUITY IN LLMS IS A CONCEPT MISSING PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Ambiguity in natural language is a significant obstacle for achieving accurate
text to structured data mapping through large language models (LLMs), which
affects the performance of tasks such as mapping text to agentic tool calling
and text-to-SQL queries. Existing methods to ambiguity handling either rely on
the ReACT framework to obtain correct mappings through trial and error, or on
supervised fine-tuning to bias models toward specific tasks. In this paper, we adopt
a different approach that characterizes representation differences of ambiguous
text in the latent space and leverages these differences to identify ambiguity before
mapping them to structured data. To detect sentence-level ambiguity, we focus on
the relationship between ambiguous questions and their interpretations. Unlike
distances calculated by dense embeddings, we introduce a new distance measure
based on a path kernel over concepts. With this measurement, we identify patterns
to distinguish ambiguous from unambiguous questions. Furthermore, we propose
a method for improving LLM performance on ambiguous agentic tool calling
through missing concept prediction. Both achieve state-of-the-art results.

1 INTRODUCTION

Question answering using large language models (LLMs) often fails when user questions are ambigu-
ous. A growing strand of work like (Min et al., 2020; Stelmakh et al., 2022) shows that a surprising
fraction of their “errors” can be traced back, not due to lack of knowledge in LLM, but to ambiguity
in the user’s question itself. This ambiguity does not just mean that the question does not provide
enough information, but also that the question has ambiguous semantics, i.e., multiple interpretations.

Existing studies focus more on pragmatic or lexical ambiguity, ambiguity handling in these studies
either exploits the ReACT(Yao et al., 2023) framework to produce correct mappings through trial and
error, or supervised fine tuning to guide models to produce biased mappings to improve on certain
tasks(Saparina & Lapata, 2025). Kamath et al. (2024) attempt to use LLMs to detect ambiguity of
sentences whose meaning changes with the relative scope of quantifiers, negation, or modals. They
show that powerful LLMs trained on the most comprehensive datasets, such as GPT-4 sometimes
default to a non-preferred semantic reading, and that success of disambiguating text varies sharply
with different phrasing, which indicates disambiguation can not be easily solved by LLMs themselves.
The ambiguity detection results in (Saparina & Lapata, 2024) also confirm this observation. On the
other hand, there is limited research on representational differences of ambiguous text. In this work,
we study the representation of ambiguous text in the latent space and leverage the differences to
identify ambiguity.

As an ambiguous utterance has multiple interpretations, studying the distribution of interpretations is
a natural way for ambiguity detection (Stengel-Eskin et al., 2023). Figure 1 provides an example of
the relationships between the ambiguous query q and its corresponding two interpretations, denoted
by i1 and i2. Ideally, a good distance measurement may uncover the pattern of the triplet associated
with an ambiguous utterance. Unfortunately, current distance measurement by dense embedding
vectors(Karpukhin et al., 2020) cannot give us such a measurement. The distances computed by
dense vectors focus more on the semantics of individual words than on the structure of the entire
sentence, which is not sensitive to the ambiguity caused by the structure of the sentence, particularly
when some concepts are missing in the sentence.

In our study, we observe that the ambiguity is often associated with missing concepts in the input
utterances. With the recent progress on LLM interpretability (Bricken et al., 2023; Templeton et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

𝒒

𝒊𝟏 𝒊𝟐

𝒒′

𝒊′𝟏 𝒊′𝟐𝐷(𝑖′1, 𝑖′2)

𝒒"

𝒊"𝟏

𝒊"𝟐

Ambiguous Unambiguous Unambiguous

Figure 1: An example to show the difference of the distance measurement on triplets for am-
biguous question (q, i1, i2) and two kind of unambiguous question (q′, i′1, i′2), (q′′, i′′1 , i′′2). For
similar queries ambiguous q and unambiguous q′, q′′, we expect (D(q, i1),D(q, i2),D(i1, i2)) >

(D(q′, i′1),D(q′, i′2),D(i′1, i
′
2)) and |D(q, i1) − D(q, i2)| ≪ |D(q′′, i′′1) − D(q′′, i′′2)| (the overline

means average).

2024), the human-understandable concepts embodied in a utterance can be extracted together with
their representation in the latent space through a sparse autoencoder (SAE). This inspires us to design
methods to learn the concept differences of multiple interpretations of the input utterance in the latent
space to identify ambiguity. We further leverage a kernel method (Domingos, 2020) to develop a
distance metric for such latent concept comparison. We turn SAE into a kernel machine to measure the
similarity between the concept representations of different interpretations of an ambiguous utterance.
The computing is done through the integral of gradient values in a path kernel for each concept
extracted by SAE. To make the similarity measurement focus on the target semantic patterns, we
filter out concepts irrelevant to input utterances. By doing this, we successfully discover the pattern
of ambiguous questions.

Once ambiguous utterances are identified, incorporating additional information can improve their
mapping to structured data. When the structured data requires intermediate such as SQL generation
to access, users often need to be asked to clarify the utterances and provide additional information.
When the structured data are finite and well-defined, e.g., tools defined within an agentic framework,
this additional information can be obtained from the concepts embodied in the data. We exploit the
difference of concepts between ambiguous queries and target structured data, and design a missing
concept prediction model to assist the mapping. We show in the experiments that our method achieves
the best API calling performance on Gorilla(Patil et al., 2024) TensorFlow Hub bench.

In summary, our work make the following contributions:

1. We observed that ambiguity arises from missing concepts in the latent space of LLMs
(Section 3.1 and 3.2). Using this insight, we designed a new distance measure that enhances
interpretability and targets specific semantic patterns.

2. We identify patterns to distinguish ambiguous from unambiguous questions with this mea-
surement.

3. We propose a new framework to enhance the performance of LLMs in handling ambiguous
agentic tool calls by predicting missing concepts.

2 PRELIMINARY

Path Kernel. Path kernels are used to measure how similarly a model at two data points varies during
learning. Here we refer to the explanation for kernel machine from (Domingos, 2020), a kernel
machine predicts

y = g
(∑

i

ai K(x, xi) + b
)
,

with the kernel K measuring the similarity between data points. Gradient-descent training (learning
rate ε→0) implies that the final predictor behaves like a path kernel machine:

Kpath(x, x
′) =

∫
c(t)

∇wy(x)·∇wy(x
′) dt,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where c(t) is the parameter trajectory during training. The more aligned the gradients of y at x and
x′, the larger the kernel value, thus the variations of x and x′ are more similar during training.

Sparse autoencoder (SAE). Neurons in modern language models often behave such that the same
unit fires for several unrelated concepts. A leading hypothesis (Superposition Hypothesis) is (Elhage
et al., 2022): the model stores many more features than it has neurons by packing them into an
over-complete set of directions in activation space. Recovering those directions is therefore a natural
route to mechanistic interpretability. The work by Anthropic shows that a sparse auto-encoder (SAE)
trained directly on a layer’s activations can do exactly this, yielding thousands of highly interpretable,
near-monosemantic concepts(Bricken et al., 2023).

Let H(x) ∈ Rd denote the hidden-state (e.g. residual-stream) vector produced by an LLM for a
token sequence x. The goal is to learn a dictionary {di}ni=1 ⊂ Rd such that every activation can be
reconstructed from a sparse combination of these directions:

H(x) ≈ b +

n∑
i=1

fi
(
H(x)

)
di (1)

in which, b ∈ Rd is a learned bias that captures the mean activation. fi(H) is a gate that de-
cides whether feature i is present; the ReLU promotes non-negativity and sparsity: fi(H) =
ReLU

(
⟨wi,H⟩+ benc

i

)
; di is the decoder vector that take the feature back into the original space.

After training, each dictionary row di corresponds to a concept. These recovered concepts are Sparse
(only a handful activate per token), Linear (they live directly in the model’s latent space), and
Monosemantic (each gate corresponds to one dominant pattern); as a result, they can be inspected,
clamped, and ablated far more easily than raw neurons.

Ambiguity in NLP. Ambiguity has been studied across various NLP tasks including machine
translation (Pilault et al., 2023), natural language inference (Liu et al., 2023), question answering (Kim
et al., 2024; Sun et al., 2023), and semantic parsing (Mu et al., 2024; Saparina & Lapata, 2025).
Recent approaches leverage LLMs to detect ambiguities by sampling multiple candidate solutions and
resolving ambiguities through clarification questions or by prompting alternative interpretations. For
instance, Mu et al. (2024) samples multiple outputs from an LLM and examines their consistency to
identify potential ambiguities. When inconsistencies are detected, the LLM is prompted to generate
targeted clarification questions. However, due to the inherent biases of LLMs, the sampled solutions
may lack diversity, making some ambiguities difficult to detect. To address this limitation, Saparina
& Lapata (2025) generates an initial set of default interpretations using an LLM, which are then
augmented using a specialized infilling model that requires supervised training. Our work instead
examines ambiguity in the latent concept space.

3 METHODOLOGY

In this section, we first define the ambiguity resolution problem as a missing concept problem (3.1).
We then show the effect of adding missing concepts(3.2), followed by describing our ambiguity
detection method (3.3). Finally we describe how we predict missing concepts in the context of agentic
tool calling (3.4).

3.1 AMBIGUITY RESOLUTION AS A MISSING CONCEPT PROBLEM

LLMs often bias towards generating one interpretation among many for an ambiguous utterance (Sapa-
rina & Lapata, 2025). Prompting LLMs to produce multiple interpretations and directly comparing
their semantics do not help ambiguity detection. To show LLMs do not produce different interpreta-
tions for an ambiguous utterance, we extract a sentence from the AMBROSIA dataset (Saparina &
Lapata, 2024) and prompt Llama-3.3-70B-Instruct(Meta AI, 2024) to generate two interpretations for
this sentence.

These two interpretations in fact have the same meaning. To trigger the generation of diverse
interpretations, we exploit special tokens’ role in steering LLMs’ responses. When we insert

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Ambiguous Question (𝒒):

Interpretation 1: Show all gate agents who speak Spanish and all pilots who speak Spanish.

Interpretation 2: Show all gate agents and pilots who speak Spanish.

Show all Spanish-speaking gate agents and pilots.

Llama

"[MASK]" in the original sentence, the Llama model produces two interpretations aligned with the
ground-truth:

Interpretation 1: Show all Spanish-speaking gate agents and all pilots.

Interpretation 2: Show all Spanish-speaking gate agents and all Spanish-speaking pilots.

Perturbed Question (𝒒′) : Show all Spanish-speaking gate agents and [MASK] pilots.

Llama

Note that while "[MASK]" has no semantic meaning by itself, its presence in this position increases
the sentence’s uncertainty. To understand what changes are triggered by the "[MASK]" token in the
concept space that make the model produce different interpretations. We use a sparse-autoencoder
(SAE)(Goodfire, 2025) trained on the outputs of 50 layer of this Llama model to track the new
concepts after the "[MASK]" token is inserted. We get the following key concept from the SAE:

"Start of new paragraph or point in explanatory text".

To verify the new interpretation is indeed triggered by this concept, we individually clamp the
activation value of this concept (increase it to 10) while keeping the original input sentence unchanged
(without inserting the "[MASK]" token). We obtain the following interpretations:

Interpretation 1: In addition to showing all Spanish-speaking gate agents, show all pilots.

Interpretation 2: Show all gate agents and pilots who are Spanish-speaking.

Ambiguous Question (𝒒): Show all Spanish-speaking gate agents and pilots.

Llama
Individually activate the concept: “Start of new paragraph or point in explanatory text”

These interpretations match the ground-truth, which indicates an LLM can be steered to generate
diverse interpretations for ambiguous utterances. We further show in the experiments that injecting
examples in the prompt can effectively “remind” the model the missing concepts, therefore trigger the
generation of diverse interpretations (see Appendix B.1 for examples). With the diverse interpretations
of ambiguous inputs, we can then detect such ambiguity.

However, a naive approach of using the distances of dense vectors of generated interpretations to
detect ambiguity does not work well. We use the following example to elaborate this. We denote the
top two interpretations of the input utterance q as i1 and i2. By using the output of the last hidden
layer of Llama-3.3-70B-Instruct for the three sentences separately, we obtain the dense vectors of the
triplets (v(q), v(i1), v(i2)):

Interpretation 1 (𝒊𝟏) : In addition to showing all Spanish-speaking gate agents, show all pilots.

Interpretation 2 (𝒊𝟐): Show all gate agents and pilots who are Spanish-speaking.

Perturbed Question (𝒒′) : Show all Spanish-speaking gate agents and [MASK] pilots.

𝐷(𝑞′, 𝑖1) > 𝐷(𝑖1, 𝑖2) > 𝐷(𝑞′, 𝑖2) Llama:

Although the "[MASK]" token activates additional concepts of the Llama model and makes it generate
diverse interpretations, these additional concepts do not lead to sufficient changes in the dense vectors
for ambiguity detection. The distance between v(q′) and v(i1) is 0.17 and the distance between v(q′)
and v(i2) is 0.092, while the distance between v(i1) and v(i2) is 0.13. It is difficult to leverage the
distance contrast in the triplet to derive a threshold to classify q as ambiguous as the distance between
interpretations can be arbitrarily smaller. We have done experiments with advanced embedding
models and they do not have satisfactory sensitivity for distinguishing ambiguity patterns either.

However, we notice that q′ and i1 activated some concepts in common, which inspires us to utilize the
concept differences of the triplet in the latent space to detect pattern of ambiguity. We show that such
distance measure can produce sufficient sensitivity for ambiguity detection. The distances measured
using our method are as follows: D(q′, i1) = 0.039; D(q′, i2) = 0.027; D(i1, i2) = 0.043, meaning

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the distance between interpretations is larger than their distances to the query. This property produces
a sensitive metric for ambiguity detection. We explain the proposed distance metric in Section 3.3.

3.2 EFFECT OF ADDING MISSING CONCEPTS INTO THE LATENT SPACE

Entropy/Ambiguity is larger

Figure 2: Entropy/ambiguity change with
missing concepts added.

To further explore the relationship between semantic
ambiguity (uncertainty in LLMs) and missing con-
cepts, we use semantic entropy(Kuhn et al., 2023) to
measure the ambiguity of query semantics (see Ap-
pendix A for algorithm details). We compute the se-
mantic entropy produced by LLama-3.3-70B-Instruct
(Meta AI, 2024) on 1) 20 ambiguous questions; 2) the
same 20 questions with random concepts activated;
and 3) the same 20 questions with missing concepts
activated.Figure 2 shows that without any additional
concept activated, the semantic entropy is close to
zero, indicating the LLM produces a single interpreta-
tion on the input. This explains the semantic entropy
of queries produced by Llama alone cannot detect
ambiguity. With the missing concepts activated, the interpretations become diverse, evidenced by
the increase of semantic entropy of queries. Activating random concepts also increases the semantic
entropy because the noise introduced leads to diverse semantics, but the increase is less significant
than that caused by adding target missing concepts.

This explains the effect of background knowledge on semantic ambiguity. For example, for this
question: “Who won the war between ethiopia and italy?”, if the LLM lacks the context of Italo-
Ethiopian War, it does not know where the ambiguity is. Once the LLM retrieves the context of
Italo-Ethiopian War from external sources, the concept space is enriched with the “First War” or the
“Second War”, which in turn increases the semantic entropy of the question.

This also explains why fine-tuning works on ambiguity resolution. Fine-tuning can be seen as learning
to activate the missing concepts and therefore increase the semantic entropy of ambiguous queries.

3.3 REPRESENTATION-BASED AMBIGUITY DETECTION

Our solution (see Figure 3) is to use the path kernel with a sparse autoencoder (SAE) as the kernel
machine for calculating distances between data points.

SAE as Kernel Machine. We consider SAE as y, the input sentences are x and x′, their hidden states
on LLM’s layer where the SAE trained on are H(x) and H(x′). Therefore, we have

K
(
x, x′) =

∫
c(t)

(
∇wSAE(H(x))

)
·
(
∇wSAE(H(x′))

)
dt (2)

Here, we denote the SAE on the given concept dictionary as fSAE, where fSAE(H(x)) =
(f1(H(x)), . . . , fN (H(x)))⊤, (f(H) in Equation 1). The i-th activation is then simply fi(x).

fSAE(H(x)) = ReLU
(
We(H(x)− bd) + be

)
∈ RN , (3)

where We is the weight matrix of the encoder and bd,be are a pre-encoder and an encoder bias,
respectively.

Not all N concepts are necessary for the path kernel calculation. To obtain the variation for input
sentences x and x′, we only need to focus on the target concepts. Accordingly, we apply a mask M
on the features used in gradient computation when calculating the path kernel:

K(x, x′) =

∫
c(t)

∇wfmask
SAE

(
H(x)

)
· ∇wfmask

SAE

(
H(x′)

)
dt, (4)

fmask
SAE

(
H(x)

)
= M ◦

[
ReLU

(
We

(
H(x)− bd

)
+ be

)]
(5)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where M is the concept mask (explained below) and ◦ is hadamard product.

Determining Unmasked/Target Concepts. Semantic distances between two sentences are typically
measured using the cosine similarity of their dense vectors generated by large embedding models
(Muennighoff et al., 2022). However, this distance measurement is not sensitive to the semantic
distinctions we want.

In interpretation generation, we use concept embodied examples (see Appendix B.1) for trig-
gering the generation of diverse interpretations. To ensure our distance calculation captures the
semantic meaning of sentences, we distill the concepts activated by their semantics and restrict
the path kernel computation to these concepts. The distillation process involves three steps:

𝒙

LLM

Activation at target layer

𝑯(𝒙)

𝒙′

LLM

Activation at target layer

𝑯(𝒙′)

For each state in path states

SAE activations 𝒚 SAE activations 𝒚′

Compute gradients

Loop

Accumulate 𝑲 values

and

Figure 3: The workflow of the path kernel
calculation with SAE.

1. Collect the concepts activated by the example
triplet sentences by LLM with SAE.

2. Remove the concepts activated by each individual
token ti in the example triplet sentences from the
set of concepts recorded in step 1.

3. Include the remaining concepts in the mask vector
M , which are considered valid:

M = {f(H(x))} \ {f(H(t1), . . . ,H(tn)} (6)
Here x is the example sentence and t1, . . . , tn are
the tokens in the sentence.

Path State Approximation. We use a path kernel to
characterize relationship of the obtained latent repre-
sentations of concepts. Path states are the snapshots
of a model’s parameters saved after each optimization
step during training or fine-tuning. For a pre-trained
SAE we usually only have the final weights, so the original series of path states cannot be reconstructed
exactly. When re-training is impossible or costly, we can replace the unknown gradient-descent path
with a straight-line interpolation in parameter space.

Let
Θ = {θk}Pk=1,Θ

(0) = {θ(0)k }
P
k=1,Θ

∗ = {θ∗k}Pk=1

be, respectively, the parameter set, the (zero) initialization, and the final pre-trained weights.

By choosing n interpolation steps and define αj =
j

n−1 , j = 0, 1, . . . , n−1., the j-th intermediate
snapshot is then

Θ(j) = (1− αj)Θ
(0) + αj Θ

∗, θ
(j)
k = (1− αj) θ

(0)
k + αj θ

∗
k

Collecting them gives the full set of path states:

{Θ(0), Θ(1), . . . , Θ(n−1)}.

Here, α increases linearly from 0 to 1, forming a straight-line path. Although this sequence does
not follow the true gradient-descent dynamics, it provides a simple, deterministic path that is often
adequate for estimating a path kernel.

Distance Measurement. The path kernel measures how similar two data points are according to
the model based on their changing trajectories along the paths. To convert the (unnormalized) path
kernel K(·, ·) into a proper distance metric between data points x and x′, we apply the following two
standard normalizations:

D1(x, x
′) = 1− K(x, x′)√

K(x, x)K(x′, x′)
, (7)

D2(x, x
′) =

√
K(x, x) + K(x′, x′)− 2K(x, x′), (8)

We show in the experiments that both D1 and D2 can identify ambiguity and can be used for serving
different objectives.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 PREDICTING MISSING CONCEPTS TO MITIGATE AMBIGUITY

In Section 3.1, we argue that the ambiguity problem arises from concepts missing in LLM’s latent
space, and thus distance measurements should be sensitive to this. Based on this hypothesis, we
propose using path kernels with SAE to measure distances between questions and their interpretations.
As shown in our experiments, this method reveals patterns that distinguish ambiguous questions from
unambiguous ones. Motivated by this, we investigate whether ambiguity can be exploited to reduce
incorrect responses and better align outputs with training data. To this end, we introduce a framework
- within the context of tool calling - that retrieves data chunks by training a concept predictor on
labeled data.

As illustrated in Figure 4, instead of using dense embedding vectors to retrieve API calls (as in
(Karpukhin et al., 2020)), we first collect the concepts activated by questions and documents on LLM
by its SAE. We then use the trained concept predictor to predict missing concepts in input questions.
Finally, we rank API calls using union joint based on concept matching. Appendix C.1 presents
examples of ambiguous questions in tool calling, while Appendix C.2 illustrates concept matching in
this context.

For efficiency, we use LightGBM (Ke et al., 2017) to train the concept predictor. For each concept
activated by the training data and documents, the predictor is trained to determine whether it is
missing from the input question:

p
(
y = 1 | x

)
= σ

(T∑
t=1

η ft(x)
)

=
1

1 + exp
(
−
∑T

t=1 η ft(x)
) (9)

Concepts invoked
by documents

Question

SAE

Concepts invoked by question

Top-k Retrieval

0

0
1
2
3

999

Structural Data

Ranked List

1. Entry 0;
2. Entry 887;
3. Entry 3;
… …………

…

Union joint

Predictor

Predicted exist concepts

Concept Extractor

LLM

Figure 4: Tool calling framework based on missing concept prediction in ambiguous questions.

4 EXPERIMENTS

In this section, we conduct three sets of experiments:

1. Ambiguity detection by the proposed distance metrics: We investigate whether the distances be-
tween questions and their interpretations can distinguish ambiguous questions from unambiguous
ones.

2. Ambiguity sensitivity improvement of LLMs: We show if adding missing concepts can improve
LLM’s self-judgment on ambiguous questions. (see Appendix B.3)

3. Ambiguity resolution on agentic tool calling: We investigate whether predicting missing concepts
in ambiguous questions can reduce the number of incorrect responses.

4.1 AMBIGUITY DETECTION

Experiment Settings. To evaluate the effectiveness of our method for ambiguity detection by distance
differences, we conduct experiments primarily on AMBROSIA (Saparina & Lapata, 2024) 1, a bench-
mark designed for parsing ambiguous questions into database queries across multiple domains. The

1We also use another ambiguous dataset ASQA (Stelmakh et al., 2022), reported in Appendix B.3.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

benchmark consists of 1,277 ambiguous questions, each paired with human-provided unambiguous
interpretations and corresponding SQL queries (2,965 in total), spanning 846 multi-table databases
across 16 distinct domains. It includes three types of ambiguity—scope ambiguity, attachment
ambiguity, and vagueness—and goes beyond earlier datasets that assume a single “correct” query,
offering a rigorous evaluation yardstick for models that must both detect ambiguity and enumerate all
valid SQL programs.

We first prompt LLMs to generate interpretations for the ambiguous questions in the dataset. Specifi-
cally, we use LLama-3.3-70B-Instruct (Meta AI, 2024) for this task (see Appendix B.1 for a prompting
example). For each ambiguous question, we generate two interpretations, i1 and i2. These interpre-
tations are then treated as unambiguous questions and are each further prompted to generate their
own interpretations. As a result, for both ambiguous and unambiguous questions, we obtain two
interpretations each, forming a triplet (q, i1, i2).

Next, we compute the distances between the original question and its interpretations on AMBROSIA:
D(q, i1), D(q, i2), and D(i1, i2). These distances are calculated using both our path kernel-based
method and traditional dense vector-based methods. For comparing with both Embedding model and
Generation models, we use SFR-Embedding-Mistral (Meng et al., 2024) and LLama-3.3-70B-Instruct
to generate dense embeddings, with distances computed as follows:

D(x,x′) = 1− E(x) ·E(x′)

∥E(x)∥ ∥E(x′)∥
(10)

We further analyze the computed distances using the following two ways:

1. We compute the average of the three distances (by Equation 7) - D1(q, i1), D1(q, i2), D1(i1, i2)) -
and plot the distribution of these mean values to show patterns.

2. We normalize the distances (by Equation 8) using the ratios D2(q, i1)/D2(i1, i2) and
D2(q, i2)/D2(i1, i2), and plot these normalized values to reveal potential patterns.

The results from dense vector-based methods serve as baselines for comparison.

Results. Figure 5 presents the results using our path kernel-based method (with SAE), as well as
two dense vector-based methods: one using SFR-Embedding-Mistral and the other using LLama-3.3-
70B-Instruct. The horizontal axis shows the average distance assigned to each sample, computed as
(D1(q, i1),D1(q, i2),D1(i1, i2)), for both ambiguous questions and unambiguous questions in the
AMBROSIA dataset. Moving along the x-axis from left to right corresponds to increasing average
distance.

The vertical axis represents the absolute frequency, i.e., the raw number of observations falling into
each of the 40 equal-width histogram bins. Superimposed on the histogram bars are kernel density
curves, scaled so that their peaks align with the same frequency units. This allows for a direct visual
comparison between the smooth density estimates and the discrete histogram counts.

As shown in the figure, our method results in fewer overlapping samples (27.5%) between ambiguous
and unambiguous questions compared to the dense vector-based methods. Specifically, when using
the x-coordinate of the intersection point of the red and blue density curves as a threshold for
distinguishing ambiguous from unambiguous questions, the detection accuracies are as follows: Path
kernel-based method (with SAE): 86.25%, Dense vector method with SFR-Embedding-Mistral: 70%,
and Dense vector method with LLama-3.3-70B-Instruct: 77.75%. As a comparison, the Zero-shot
accuracy of the Llama3-70B is 46.31%. We also visualise the distance relationship in Appendix B.2.

4.2 AGENTIC TOOL CALLING

Experiment Settings. We evaluate our tool-calling framework (Figure 4) on the Gorilla dataset (Patil
et al., 2024). This multi-faceted benchmark contains about 1.6K ML-oriented API call templates
sourced from HuggingFace, TorchHub, and TensorHub. The dataset includes training and test sets, as
well as API collections that support retrieval-augmented generation (RAG). We analyzed the API call
results (including both the API calls and their domains) and found that ambiguity is a major factor
contributing to performance degradation. See Appendix C.1 for an illustrative example.

We evaluate the performance of our framework on the Gorilla dataset using several baselines: the
Gorilla base model (7B), the Gorilla fine-tuned model (fine-tuned on the TensorFlow Hub API

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

27.5%

Average Distance

44.5%60%

Average Distance Average Distance

Our method (accuracy: 86.25%) SFR-Embedding-Mistral (accuracy: 70%) Llama-3.3-70B-Instruct (accuracy: 77.75%)

Figure 5: Distribution of average distances calculated using the path kernel method with SAE, and
dense vector-based methods with SFR-Embedding-Mistral and LLama-3.3-70B-Instruct. A smaller
overlapping area indicates a stronger ability to distinguish ambiguous from unambiguous questions.

dataset), and versions of fine-tuned Gorilla with BM25 and GPT-based retrievers. As the Gorilla
base model is relatively small, for fair comparison, we also use a 7B model, Mistral-7B(The Mistral
AI Team) with its sparse-autoencoder(Tyler Cosgrove) to implement our method. Additionally, we
include SFR-Embedding-Mistral (Meng et al., 2024) as a baseline 2.

To predict the missing concepts in queries, we train a LightGBM model. We then evaluate the
performance of our framework on the test data by using the predicted concepts to retrieve relevant
API calls from the API collections. Considering the extra computational cost introduced by the sparse
autoencoder (SAE), we do not retrieve all the concepts activated by the query. Instead, we select the
top 50%, 30%, and 20% of the activated concepts, ranked by their activation values.

SFR-Embedding-Mistral
Gorilla base

Gorilla_FT_0_shot

Gorilla_FT_bm25

Gorilla_FT_gpt_index

Concept Retrieval (50%)

Concept Retrieval (30%)

Concept Retrieval (20%)0

10

20

30

40

50

60

70

80

90

100

Su
cc

es
s r

at
e

(%
)

56.25%

33.58%

83.79%

34.30%

52.40%

82.41% 79.51%
75.73%

39.10%

8.76%

54.59%

2.19%
5.99%

55.81%
51.60%

42.73%

API Retrieval Performance
Domain
API call

Figure 6: API bench Retrieval Results. Our methods are highlighted in red.

Results. Figure 6 shows the performance of our concept retrieval method compared to the baselines
on the Gorilla TensorFlow Hub API bench. We evaluate the accuracy of identifying the correct API
domains and retrieving the correct API calls. The red highlight shows the performance of our method,
demonstrating that when using the top 50% of activated concepts, our approach achieves the highest
accuracy in retrieving API calls. Accuracy of retrieving the correct domain is only slightly lower than
Fine-tuned 0-shot Gorilla. We note that even when using only the top 20% of concepts (reduce the
computational cost introduced by SAE), our method still outperforms all retrieval based baselines.

5 CONCLUSION

In this paper, we designed a novel concept-based method for ambiguity resolution in LLMs. Our
method distilled concepts from ambiguous utterances and their associated interpretations, inferred the
pattern of their difference in the latent space and leveraged the difference for ambiguity resolution.
We demonstrated that out method outperformed baselines on the text-to-SQL task. We also gave a
new method to improve LLMs’ agentic tool calling performance through missing concept prediction.
The method outperformed the SOTA in APIBench.

2SFR-Embedding-Mistral is ranked among the top 5 models on the MTEB leaderboard (Muennighoff et al.,
2022).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Pedro Domingos. Every model learned by gradient descent is approximately a kernel machine. arXiv
preprint arXiv:2012.00152, 2020.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

Goodfire. Llama-3.3-70B-Instruct-SAE-l50. https://huggingface.co/Goodfire/
Llama-3.3-70B-Instruct-SAE-l50, 2025. Accessed: 2025-05-14.

Gaurav Kamath, Sebastian Schuster, Sowmya Vajjala, and Siva Reddy. Scope ambiguities in large
language models. Transactions of the Association for Computational Linguistics, 12:738–754,
2024.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick SH Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP
(1), pp. 6769–6781, 2020.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30, 2017.

Hyuhng Joon Kim, Youna Kim, Cheonbok Park, Junyeob Kim, Choonghyun Park, Kang Min Yoo,
Sang-goo Lee, and Taeuk Kim. Aligning language models to explicitly handle ambiguity. In
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, 2024.
URL https://aclanthology.org/2024.emnlp-main.119/.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances for
uncertainty estimation in natural language generation. arXiv preprint arXiv:2302.09664, 2023.

Alisa Liu, Zhaofeng Wu, Julian Michael, Alane Suhr, Peter West, Alexander Koller, Swabha
Swayamdipta, Noah Smith, and Yejin Choi. We’re afraid language models aren’t modeling
ambiguity. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, 2023. URL https://aclanthology.org/2023.emnlp-main.51/.

Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou, and Semih Yavuz. Sfr-
embedding-mistral:enhance text retrieval with transfer learning. Salesforce AI Research Blog,
2024. URL https://www.salesforce.com/blog/sfr-embedding/.

Meta AI. Llama-3.3-70b-instruct. https://huggingface.co/meta-llama/Llama-3.
3-70B-Instruct, December 2024. Accessed: 2025-05-12.

Sewon Min, Julian Michael, Hannaneh Hajishirzi, and Luke Zettlemoyer. Ambigqa: Answering
ambiguous open-domain questions. arXiv preprint arXiv:2004.10645, 2020.

Fangwen Mu, Lin Shi, Song Wang, Zhuohao Yu, Binquan Zhang, ChenXue Wang, Shichao Liu, and
Qing Wang. Clarifygpt: A framework for enhancing llm-based code generation via requirements
clarification. Proc. ACM Softw. Eng., 1(FSE), 2024. URL https://doi.org/10.1145/
3660810.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and Nils Reimers. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316, 2022.

10

https://huggingface.co/Goodfire/Llama-3.3-70B-Instruct-SAE-l50
https://huggingface.co/Goodfire/Llama-3.3-70B-Instruct-SAE-l50
https://aclanthology.org/2024.emnlp-main.119/
https://aclanthology.org/2023.emnlp-main.51/
https://www.salesforce.com/blog/sfr-embedding/
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://doi.org/10.1145/3660810
https://doi.org/10.1145/3660810

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544–126565, 2024.

Jonathan Pilault, Xavier Garcia, Arthur Bražinskas, and Orhan Firat. Interactive-chain-prompting:
Ambiguity resolution for crosslingual conditional generation with interaction. In Proceedings of
the 13th International Joint Conference on Natural Language Processing and the 3rd Conference
of the Asia-Pacific Chapter of the Association for Computational Linguistics (Volume 1: Long
Papers), 2023. URL https://aclanthology.org/2023.ijcnlp-main.31/.

Irina Saparina and Mirella Lapata. AMBROSIA: A benchmark for parsing ambiguous questions
into database queries. In The Thirty-eight Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?id=
IlFk5U9cEg.

Irina Saparina and Mirella Lapata. Disambiguate first parse later: Generating interpretations for
ambiguity resolution in semantic parsing. arXiv preprint arXiv:2502.18448, 2025.

Ivan Stelmakh, Yi Luan, Bhuwan Dhingra, and Ming-Wei Chang. Asqa: Factoid questions meet
long-form answers. arXiv preprint arXiv:2204.06092, 2022.

Elias Stengel-Eskin, Kyle Rawlins, and Benjamin Van Durme. Zero and few-shot semantic parsing
with ambiguous inputs. arXiv preprint arXiv:2306.00824, 2023.

Weiwei Sun, Hengyi Cai, Hongshen Chen, Pengjie Ren, Zhumin Chen, Maarten de Rijke, and
Zhaochun Ren. Answering ambiguous questions via iterative prompting. In Proceedings of the
61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
2023. URL https://aclanthology.org/2023.acl-long.424/.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

The Mistral AI Team. Mistral-7B-v0.1. https://huggingface.co/mistralai/
Mistral-7B-v0.1. Accessed: 12 May 2025.

Tyler Cosgrove. Mistral-7B-sparse-autoencoder-layer16. https://huggingface.co/
tylercosgrove/mistral-7b-sparse-autoencoder-layer16. Accessed: 12 May
2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

11

https://aclanthology.org/2023.ijcnlp-main.31/
https://openreview.net/forum?id=IlFk5U9cEg
https://openreview.net/forum?id=IlFk5U9cEg
https://aclanthology.org/2023.acl-long.424/
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://transformer-circuits.pub/2024/scaling-monosemanticity/index.html
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/tylercosgrove/mistral-7b-sparse-autoencoder-layer16
https://huggingface.co/tylercosgrove/mistral-7b-sparse-autoencoder-layer16

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A ALGORITHM: MEASURING SEMANTIC ENTROPY BY LLM

Definition A.1 (Semantic Entropy). Given a prompt x, let S be the set of possible sequences (texts)
and let C be a partition of S into semantic equivalence classes (meanings) c ∈ C. The language model
induces a distribution p(s | x) over sequences s ∈ S, which pushes forward to a distribution over
meanings,

p(c | x) =
∑
s∈c

p(s | x).

The semantic entropy of the model at x is the Shannon entropy of this meaning distribution:

SE(x) = −
∑
c∈C

p(c | x) log p(c | x) = −
∑
c∈C

(∑
s∈c

p(s | x)

)
log

(∑
s∈c

p(s | x)

)
. (11)

At a high level the semantic entropy estimation involves three steps (Algorithm 1):

1. Generation. Given a prompt x, sample N sequences s1, . . . , sN ∼ p(· | x) from the LLM.
2. Clustering. Embed each sequence zi = E(si) and group the embeddings into semantic

equivalence classes C = {C1, . . . , C|C|} via a clustering method C (cosine + agglomerative
with threshold). Let ℓi denote the class label of si and Ck = {i : ℓi = k}.

3. Entropy estimation. Estimate the class masses p(Ck | x) and compute entropy over
meanings.

Algorithm 1: Measuring Semantic Entropy (Monte-Carlo class-average)
Input: Prompt x; num of samples N ; generator G; embedder E ; clustering procedure C
Output: semantic entropy Hsem, cluster probs {pk}, labels {ℓi}
// 1) Generate N samples and (optional) scores
for i← 1 to N do

yi, si ← G(x) ; // yi: text, si: (avg) sequence log-prob

// 2) Embed and cluster by meaning
Zi ← E(yi) for i = 1..N ;
ℓ1, . . . , ℓN ← C(Z1, . . . , ZN) ; // e.g., cosine + agglomerative
// 3) Estimate cluster probabilities
Let K be the number of distinct clusters among {ℓi};
if using counts then

nk ←
∑N

i=1 1[ℓi = k]; pk ← nk

N for k = 1..K;

else
// probability-weighted
// Stabilize weights with log-sum-exp

m← maxi si; w̃i ← exp(si −m); wi ← w̃i∑N
j=1 w̃j

;

pk ←
∑N

i=1 wi · 1[ℓi = k] for k = 1..K;
// 4) Ensure numerical safety (clip and renormalize)
ε← 10−12;
pk ← max(pk, ε); pk ← pk∑K

j=1 pj
for k = 1..K;

// 5) Calculate semantic entropy

Hsem ← −
∑K

k=1 pk logb pk (default b = 2 for bits);
return Hsem, {pk}, {ℓi};

B AMBIGUITY DETECTION: PROMPT EXAMPLES AND ADDITIONAL RESULTS

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.1 FEW-SHOT EXAMPLES USED IN PROMPTS TO INJECT CONCEPTS

Here we provide an example showing how concept-embodied examples can guide an LLM to generate
diverse interpretations (Figure 7).

Example_1 = "question: What brands of agricultural machinery are available in each machinery
store\n
interpretations:
1. Which brands of machinery are equally available in all agricultural machinery stores?\n
2. For each agricultural machinery store, show which brands of machinery are available?\n"

Example_2 = "question: List the price of products sold in every duty-free shop.\n
interpretations:
1. For each duty-free shop, list the prices of all the products they sell.\n
2. What is the price of each product that is sold in all duty-free shops.\n"

instruction = f"Below question is ambiguous, and it has 2 interpretations. Please you generate
these 2 interpretations for this question. Here are two examples: Example 1: {Example_1}
Example 2: {Example_2} Now please generate 2 interpretations for below question. Don't answer
it is ambiguous or not, only answer the 2 interpretations. \n**Question**: " + question +
"\n**interpretations**:\n1. "

Figure 7: An example to prompt LLM to generate diverse interpretations.

B.2 DISTANCE RELATIONSHIP

In Figure 8, we normalize the distances (Equation 8) for the distances between q, i1, i2 using the ratios
D2(q, i1)/D2(i1, i2) and D2(q, i2)/D2(i1, i2), and plot these normalized values to reveal potential
patterns. In this case, no concept mask is applied during distance calculation. Our goal is to examine
distance patterns when using equation 8 with all activated concepts valid. For clarity, we visualize
100 samples for each case. We find that compared to unambiguous questions, interpretations for
ambiguous questions are more concentrated and more symmetrically distributed in their distances to
the questions.

Unambiguous Query Ambiguous Query

Figure 8: Normalized distances (Equation 8) for the distances between questions and their interpreta-
tions using the ratios D2(q, i1)/D2(i1, i2) and D2(q, i2)/D2(i1, i2), compared to unambiguous and
ambiguous questions’ distance triplets cluster to the center of the map.

Figure 9 shows the results of the baselines, we can see that distance calculations with dense vectors
generated by both generation and embedding models cannot show the symmetric pattern of ambiguous
questions and their interpretations. As such, we can not distinguish each data point is ambiguous or
not by their measurements.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Unambiguous Query Ambiguous Query

(a) Llama-3.3-70B-instruct model

Unambiguous Query Ambiguous Query

(b) SFR-Embedding-Mistral model

Figure 9: Normalized distances for the baselines.

B.3 AMBIGUITY SENSITIVITY IMPROVEMENT OF LLMS WITH MISSING CONCEPT ADDITION

To demonstrate the connection between targeted concepts and ambiguity resolution, we conducted
experiments with LLaMA3-70B on questions involving scope ambiguity. Below is an example (an
ambiguous question and its interpretations):

Ambiguous question: ”What brands of machinery are available in each machinery store?”;
Interpretation 1: ”Which brands of machinery are equally available in all machinery stores?”;
Interpretation 2: ”For each machinery store, show which brands of machinery are available.”

As the missing concepts were found to correlate with tokens like “For,” “each,” “Which,” “What,”
“all,” “?”, and “common”, we first identified the concepts invoked by these tokens, and then manually
increased the activation values of these concepts to 1.0. As results in table 1 show, we found that
the accuracy of ambiguity detection on unambiguous questions increased from 39.8% to 60.5%. In
contrast, when the same number of random concepts were activated instead, the accuracy dropped to
just 0.2%. Although this will result in a 16.4% decrease in the ambiguous question detection accuracy,
the overall accuracy will increase from 46.31% to 54.61%. This indicates that only targeted concept
activation helps identify ambiguity, whereas randomly activating concepts only bring interference.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 1: Effect of concept activation on ambiguity detection and overall accuracy.

Metric Baseline Targeted activation Random activation vs. baseline
Unambiguous accuracy 39.8% 60.5% 0.2% +20.7 pp (targeted)
Ambiguous accuracy 59.3% 42.8% — −16.4 pp (targeted)
Overall accuracy 46.31% 54.61% — +8.30 pp (targeted)

Notes. “pp” = percentage points. Unambiguous questions and ambiguous questions in dataset are unbalanced.

C AGENTIC TOOL CALLING: PROMPT AND CONCEPT MATCHING EXAMPLES

C.1 AMBIGUOUS PROMPT EXAMPLES

{"domain": "Image classification",
 "framework": "TensorFlow Hub",
 "functionality": "Image classification using pre-trained model",
 "api_name": "imagenet_mobilenet_v2_100_224_classification",
 "api_call":
"hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4')",
 "api_arguments": {"url":
"https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4"},
 "python_environment_requirements": {"tensorflow": ">=2.0.0", "tensorflow_hub": ">=0.12.0",
"numpy": ">=1.19.5", "PIL": ">=8.3.2"},
 "performance": {"dataset": "ImageNet", "accuracy": "71.8%"},
 "description": "A pre-trained image classification model using MobileNetV2 architecture on
ImageNet dataset with 100% depth and 224x224 input size.”

The API assistant searched:
{"domain": "Image object detection",
 "framework": "TensorFlow Hub",
 "functionality": "Detect objects in images",
 "api_name": "model_id",
 "api_call": "hub.load('https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2')",
 "api_arguments": ["model_id"],
 "python_environment_requirements": ["tensorflow", "tensorflow_hub"],
 "performance": {"dataset": "COCO", "accuracy": "0.320"},
 "description": "A pre-trained TensorFlow Hub model for detecting objects in images using the Single Shot
MultiBox Detector (SSD) architecture with MobileNet V2 as the base network."}

Instruction: “Find out what's in the image taken by a wildlife photographer, so we can determine
the main subject of the picture.\n###Input: An image taken by a wildlife photographer.”

Instruction: “Find out what's in the image taken by a wildlife photographer, so we can determine
the object of the picture.\n###Input: An image taken by a wildlife photographer.”

The API assistant searched:
{"domain": "Image feature vector",
 "framework": "TensorFlow Hub",
 "functionality": "Feature extraction",
 "api_name": "model_id",
 "api_call":
"hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4')",
 "api_arguments": {"model_id": "string", "input_shape": "tuple", "trainable": "boolean"},
 "python_environment_requirements": ["tensorflow", "tensorflow_hub"],
 "performance": {"dataset": "ImageNet", "accuracy": "Top-1 accuracy"},
 "description": "A pre-trained image feature vector model for image classification and transfer
learning, based on MobileNetV2 architecture."}

Ground truth

Figure 10: An example illustrating ambiguity in agentic tool calling (from the Gorilla dataset, using
the Gorilla model as the API assistant). The red highlight marks differences in the instructions. Minor
changes to the instruction can steer the LLM’s answer, and may even shift the domain of the returned
API.

C.2 A CONCEPT MATCHING EXAMPLE

Figure 11 illustrates how the concepts that involve which activated by the input question and which
predicted by pre-trained predictor are matched to those in the structured API document through the
union joint operator.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Question: "We want to develop a simple application where users can take a photo of any object and find the description of it.
Help us with creating a model that extracts features from the object's image.\\n"

API Data
{"domain": "Image feature vector",
 "framework": "TensorFlow Hub",
 "functionality": "Feature extraction from images",
 "api_name": "imagenet_mobilenet_v2_100_224_feature_vector",
 "api_call": "hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4')",
 "api_arguments": {"input_shape": "[224, 224, 3]",
 "output_shape": "[1280]"}, "python_environment_requirements": {
 "tensorflow": ">=2.0.0", "tensorflow_hub": ">=0.12.0"},
 "performance": {"dataset": "ImageNet", "accuracy": "71.9%"},
 "description": "A pre-trained image feature vector model using MobileNet V2 architecture with 100% depth and 224x224
input size. It
 can be used for image classification, object detection, and other image-based tasks.“
 "example_code": ”
 import tensorflow as tf
 import tensorflow_hub as hub
 model = tf.keras.Sequential([
 hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4’,
 input_shape=(224, 224, 3), trainable=False), tf.keras.layers.Dense(10, activation='softmax’)])",
}}

Extracted Concepts
1. Text Embedding,
2. TensorFlow Hub,
3. Universal Sentence Encoder,
4. Text Classification,
5. Natural Language Processing,
6. Keras Layer,
7. Image Feature Extraction,
8. MobileNetV2,
9. Sentence Embedding,
10. Text Preprocessing
11.………………….

Union Joint:
get similarity

Figure 11: An example for getting similarity for extracted concepts by union joint.

D LIMITATIONS

Our method was evaluated on limited datasets. While results on both ambiguity and API datasets
demonstrate its effectiveness, these datasets cover only a subset of known ambiguity scenarios, leaving
it unclear whether our interpretation-generation method generalizes to other types of ambiguity in
natural language. Investigating this question is left for future work.

E COMPUTING RESOURCES

Our experiments were conducted on four NVIDIA H100 GPU node, each with 96GB memory.

16

	Introduction
	Preliminary
	Methodology
	Ambiguity Resolution as a Missing Concept Problem
	Effect of adding missing concepts into the latent space
	Representation-based Ambiguity Detection
	Predicting Missing Concepts to Mitigate Ambiguity

	Experiments
	Ambiguity Detection
	Agentic Tool Calling

	Conclusion
	Algorithm: Measuring Semantic Entropy by LLM
	Ambiguity Detection: Prompt examples and Additional Results
	Few-shot Examples used in Prompts to Inject Concepts
	Distance Relationship
	Ambiguity sensitivity improvement of LLMs with missing concept addition

	Agentic Tool Calling: Prompt and Concept Matching Examples
	Ambiguous Prompt Examples
	A Concept Matching Example

	Limitations
	Computing Resources

