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ABSTRACT

Ambiguity in natural language is a significant obstacle for achieving accurate
text to structured data mapping through large language models (LLMs), which
affects the performance of tasks such as mapping text to agentic tool calling
and text-to-SQL queries. Existing methods to ambiguity handling either rely on
the ReACT framework to obtain correct mappings through trial and error, or on
supervised fine-tuning to bias models toward specific tasks. In this paper, we adopt
a different approach that characterizes representation differences of ambiguous
text in the latent space and leverages these differences to identify ambiguity before
mapping them to structured data. To detect sentence-level ambiguity, we focus on
the relationship between ambiguous questions and their interpretations. Unlike
distances calculated by dense embeddings, we introduce a new distance measure
based on a path kernel over concepts. With this measurement, we identify patterns
to distinguish ambiguous from unambiguous questions. Furthermore, we propose
a method for improving LLM performance on ambiguous agentic tool calling
through missing concept prediction. Both achieve state-of-the-art results.

1 INTRODUCTION

Question answering using large language models (LLMs) often fails when user questions are ambigu-
ous. A growing strand of work like (Min et al., 2020; Stelmakh et al., 2022) shows that a surprising
fraction of their “errors” can be traced back, not due to lack of knowledge in LLM, but to ambiguity
in the user’s question itself. This ambiguity does not just mean that the question does not provide
enough information, but also that the question has ambiguous semantics, i.e., multiple interpretations.

Existing studies focus more on pragmatic or lexical ambiguity, ambiguity handling in these studies
either exploits the ReACT(Yao et al., 2023) framework to produce correct mappings through trial and
error, or supervised fine tuning to guide models to produce biased mappings to improve on certain
tasks(Saparina & Lapata, 2025). Kamath et al. (2024) attempt to use LLMs to detect ambiguity of
sentences whose meaning changes with the relative scope of quantifiers, negation, or modals. They
show that powerful LLMs trained on the most comprehensive datasets, such as GPT-4 sometimes
default to a non-preferred semantic reading, and that success of disambiguating text varies sharply
with different phrasing, which indicates disambiguation can not be easily solved by LLMs themselves.
The ambiguity detection results in (Saparina & Lapata, 2024) also confirm this observation. On the
other hand, there is limited research on representational differences of ambiguous text. In this work,
we study the representation of ambiguous text in the latent space and leverage the differences to
identify ambiguity.

As an ambiguous utterance has multiple interpretations, studying the distribution of interpretations is
a natural way for ambiguity detection (Stengel-Eskin et al., 2023). Figure 1 provides an example of
the relationships between the ambiguous query q and its corresponding two interpretations, denoted
by i1 and i2. Ideally, a good distance measurement may uncover the pattern of the triplet associated
with an ambiguous utterance. Unfortunately, current distance measurement by dense embedding
vectors(Karpukhin et al., 2020) cannot give us such a measurement. The distances computed by
dense vectors focus more on the semantics of individual words than on the structure of the entire
sentence, which is not sensitive to the ambiguity caused by the structure of the sentence, particularly
when some concepts are missing in the sentence.

In our study, we observe that the ambiguity is often associated with missing concepts in the input
utterances. With the recent progress on LLM interpretability (Bricken et al., 2023; Templeton et al.,
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Figure 1: An example to show the difference of the distance measurement on triplets for am-
biguous question (q, i1, i2) and two kind of unambiguous question (q′, i′1, i′2), (q′′, i′′1 , i′′2 ). For
similar queries ambiguous q and unambiguous q′, q′′, we expect (D(q, i1),D(q, i2),D(i1, i2)) >

(D(q′, i′1),D(q′, i′2),D(i′1, i
′
2)) and |D(q, i1) − D(q, i2)| ≪ |D(q′′, i′′1) − D(q′′, i′′2)| (the overline

means average).

2024), the human-understandable concepts embodied in a utterance can be extracted together with
their representation in the latent space through a sparse autoencoder (SAE). This inspires us to design
methods to learn the concept differences of multiple interpretations of the input utterance in the latent
space to identify ambiguity. We further leverage a kernel method (Domingos, 2020) to develop a
distance metric for such latent concept comparison. We turn SAE into a kernel machine to measure the
similarity between the concept representations of different interpretations of an ambiguous utterance.
The computing is done through the integral of gradient values in a path kernel for each concept
extracted by SAE. To make the similarity measurement focus on the target semantic patterns, we
filter out concepts irrelevant to input utterances. By doing this, we successfully discover the pattern
of ambiguous questions.

Once ambiguous utterances are identified, incorporating additional information can improve their
mapping to structured data. When the structured data requires intermediate such as SQL generation
to access, users often need to be asked to clarify the utterances and provide additional information.
When the structured data are finite and well-defined, e.g., tools defined within an agentic framework,
this additional information can be obtained from the concepts embodied in the data. We exploit the
difference of concepts between ambiguous queries and target structured data, and design a missing
concept prediction model to assist the mapping. We show in the experiments that our method achieves
the best API calling performance on Gorilla(Patil et al., 2024) TensorFlow Hub bench.

In summary, our work make the following contributions:

1. We observed that ambiguity arises from missing concepts in the latent space of LLMs
(Section 3.1 and 3.2). Using this insight, we designed a new distance measure that enhances
interpretability and targets specific semantic patterns.

2. We identify patterns to distinguish ambiguous from unambiguous questions with this mea-
surement.

3. We propose a new framework to enhance the performance of LLMs in handling ambiguous
agentic tool calls by predicting missing concepts.

2 PRELIMINARY

Path Kernel. Path kernels are used to measure how similarly a model at two data points varies during
learning. Here we refer to the explanation for kernel machine from (Domingos, 2020), a kernel
machine predicts

y = g
(∑

i

ai K(x, xi) + b
)
,

with the kernel K measuring the similarity between data points. Gradient-descent training (learning
rate ε→0) implies that the final predictor behaves like a path kernel machine:

Kpath(x, x
′) =

∫
c(t)

∇wy(x)·∇wy(x
′) dt,

2
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where c(t) is the parameter trajectory during training. The more aligned the gradients of y at x and
x′, the larger the kernel value, thus the variations of x and x′ are more similar during training.

Sparse autoencoder (SAE). Neurons in modern language models often behave such that the same
unit fires for several unrelated concepts. A leading hypothesis (Superposition Hypothesis) is (Elhage
et al., 2022): the model stores many more features than it has neurons by packing them into an
over-complete set of directions in activation space. Recovering those directions is therefore a natural
route to mechanistic interpretability. The work by Anthropic shows that a sparse auto-encoder (SAE)
trained directly on a layer’s activations can do exactly this, yielding thousands of highly interpretable,
near-monosemantic concepts(Bricken et al., 2023).

Let H(x) ∈ Rd denote the hidden-state (e.g. residual-stream) vector produced by an LLM for a
token sequence x. The goal is to learn a dictionary {di}ni=1 ⊂ Rd such that every activation can be
reconstructed from a sparse combination of these directions:

H(x) ≈ b +

n∑
i=1

fi
(
H(x)

)
di (1)

in which, b ∈ Rd is a learned bias that captures the mean activation. fi(H) is a gate that de-
cides whether feature i is present; the ReLU promotes non-negativity and sparsity: fi(H) =
ReLU

(
⟨wi,H⟩+ benc

i

)
; di is the decoder vector that take the feature back into the original space.

After training, each dictionary row di corresponds to a concept. These recovered concepts are Sparse
(only a handful activate per token), Linear (they live directly in the model’s latent space), and
Monosemantic (each gate corresponds to one dominant pattern); as a result, they can be inspected,
clamped, and ablated far more easily than raw neurons.

Ambiguity in NLP. Ambiguity has been studied across various NLP tasks including machine
translation (Pilault et al., 2023), natural language inference (Liu et al., 2023), question answering (Kim
et al., 2024; Sun et al., 2023), and semantic parsing (Mu et al., 2024; Saparina & Lapata, 2025).
Recent approaches leverage LLMs to detect ambiguities by sampling multiple candidate solutions and
resolving ambiguities through clarification questions or by prompting alternative interpretations. For
instance, Mu et al. (2024) samples multiple outputs from an LLM and examines their consistency to
identify potential ambiguities. When inconsistencies are detected, the LLM is prompted to generate
targeted clarification questions. However, due to the inherent biases of LLMs, the sampled solutions
may lack diversity, making some ambiguities difficult to detect. To address this limitation, Saparina
& Lapata (2025) generates an initial set of default interpretations using an LLM, which are then
augmented using a specialized infilling model that requires supervised training. Our work instead
examines ambiguity in the latent concept space.

3 METHODOLOGY

In this section, we first define the ambiguity resolution problem as a missing concept problem (3.1).
We then show the effect of adding missing concepts(3.2), followed by describing our ambiguity
detection method (3.3). Finally we describe how we predict missing concepts in the context of agentic
tool calling (3.4).

3.1 AMBIGUITY RESOLUTION AS A MISSING CONCEPT PROBLEM

LLMs often bias towards generating one interpretation among many for an ambiguous utterance (Sapa-
rina & Lapata, 2025). Prompting LLMs to produce multiple interpretations and directly comparing
their semantics do not help ambiguity detection. To show LLMs do not produce different interpreta-
tions for an ambiguous utterance, we extract a sentence from the AMBROSIA dataset (Saparina &
Lapata, 2024) and prompt Llama-3.3-70B-Instruct(Meta AI, 2024) to generate two interpretations for
this sentence.

These two interpretations in fact have the same meaning. To trigger the generation of diverse
interpretations, we exploit special tokens’ role in steering LLMs’ responses. When we insert
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Ambiguous Question (𝒒):

Interpretation 1: Show all gate agents who speak Spanish and all pilots who speak Spanish.

Interpretation 2: Show all gate agents and pilots who speak Spanish.

Show all Spanish-speaking gate agents and pilots.

Llama

"[MASK]" in the original sentence, the Llama model produces two interpretations aligned with the
ground-truth:

Interpretation 1: Show all Spanish-speaking gate agents and all pilots.

Interpretation 2: Show all Spanish-speaking gate agents and all Spanish-speaking pilots.

Perturbed Question (𝒒′) : Show all Spanish-speaking gate agents and [MASK] pilots.

Llama

Note that while "[MASK]" has no semantic meaning by itself, its presence in this position increases
the sentence’s uncertainty. To understand what changes are triggered by the "[MASK]" token in the
concept space that make the model produce different interpretations. We use a sparse-autoencoder
(SAE)(Goodfire, 2025) trained on the outputs of 50 layer of this Llama model to track the new
concepts after the "[MASK]" token is inserted. We get the following key concept from the SAE:

"Start of new paragraph or point in explanatory text".

To verify the new interpretation is indeed triggered by this concept, we individually clamp the
activation value of this concept (increase it to 10) while keeping the original input sentence unchanged
(without inserting the "[MASK]" token). We obtain the following interpretations:

Interpretation 1: In addition to showing all Spanish-speaking gate agents, show all pilots.

Interpretation 2: Show all gate agents and pilots who are Spanish-speaking.

Ambiguous Question (𝒒): Show all Spanish-speaking gate agents and pilots.

Llama
Individually activate the concept: “Start of new paragraph or point in explanatory text” 

These interpretations match the ground-truth, which indicates an LLM can be steered to generate
diverse interpretations for ambiguous utterances. We further show in the experiments that injecting
examples in the prompt can effectively “remind” the model the missing concepts, therefore trigger the
generation of diverse interpretations (see Appendix B.1 for examples). With the diverse interpretations
of ambiguous inputs, we can then detect such ambiguity.

However, a naive approach of using the distances of dense vectors of generated interpretations to
detect ambiguity does not work well. We use the following example to elaborate this. We denote the
top two interpretations of the input utterance q as i1 and i2. By using the output of the last hidden
layer of Llama-3.3-70B-Instruct for the three sentences separately, we obtain the dense vectors of the
triplets (v(q), v(i1), v(i2)):

Interpretation 1 (𝒊𝟏) : In addition to showing all Spanish-speaking gate agents, show all pilots.

Interpretation 2 (𝒊𝟐): Show all gate agents and pilots who are Spanish-speaking.

Perturbed Question (𝒒′) : Show all Spanish-speaking gate agents and [MASK] pilots.

𝐷(𝑞′, 𝑖1) > 𝐷(𝑖1, 𝑖2) > 𝐷(𝑞′, 𝑖2) Llama:

Although the "[MASK]" token activates additional concepts of the Llama model and makes it generate
diverse interpretations, these additional concepts do not lead to sufficient changes in the dense vectors
for ambiguity detection. The distance between v(q′) and v(i1) is 0.17 and the distance between v(q′)
and v(i2) is 0.092, while the distance between v(i1) and v(i2) is 0.13. It is difficult to leverage the
distance contrast in the triplet to derive a threshold to classify q as ambiguous as the distance between
interpretations can be arbitrarily smaller. We have done experiments with advanced embedding
models and they do not have satisfactory sensitivity for distinguishing ambiguity patterns either.

However, we notice that q′ and i1 activated some concepts in common, which inspires us to utilize the
concept differences of the triplet in the latent space to detect pattern of ambiguity. We show that such
distance measure can produce sufficient sensitivity for ambiguity detection. The distances measured
using our method are as follows: D(q′, i1) = 0.039; D(q′, i2) = 0.027; D(i1, i2) = 0.043, meaning
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the distance between interpretations is larger than their distances to the query. This property produces
a sensitive metric for ambiguity detection. We explain the proposed distance metric in Section 3.3.

3.2 EFFECT OF ADDING MISSING CONCEPTS INTO THE LATENT SPACE

Entropy/Ambiguity is larger

Figure 2: Entropy/ambiguity change with
missing concepts added.

To further explore the relationship between semantic
ambiguity (uncertainty in LLMs) and missing con-
cepts, we use semantic entropy(Kuhn et al., 2023) to
measure the ambiguity of query semantics (see Ap-
pendix A for algorithm details). We compute the se-
mantic entropy produced by LLama-3.3-70B-Instruct
(Meta AI, 2024) on 1) 20 ambiguous questions; 2) the
same 20 questions with random concepts activated;
and 3) the same 20 questions with missing concepts
activated.Figure 2 shows that without any additional
concept activated, the semantic entropy is close to
zero, indicating the LLM produces a single interpreta-
tion on the input. This explains the semantic entropy
of queries produced by Llama alone cannot detect
ambiguity. With the missing concepts activated, the interpretations become diverse, evidenced by
the increase of semantic entropy of queries. Activating random concepts also increases the semantic
entropy because the noise introduced leads to diverse semantics, but the increase is less significant
than that caused by adding target missing concepts.

This explains the effect of background knowledge on semantic ambiguity. For example, for this
question: “Who won the war between ethiopia and italy?”, if the LLM lacks the context of Italo-
Ethiopian War, it does not know where the ambiguity is. Once the LLM retrieves the context of
Italo-Ethiopian War from external sources, the concept space is enriched with the “First War” or the
“Second War”, which in turn increases the semantic entropy of the question.

This also explains why fine-tuning works on ambiguity resolution. Fine-tuning can be seen as learning
to activate the missing concepts and therefore increase the semantic entropy of ambiguous queries.

3.3 REPRESENTATION-BASED AMBIGUITY DETECTION

Our solution (see Figure 3) is to use the path kernel with a sparse autoencoder (SAE) as the kernel
machine for calculating distances between data points.

SAE as Kernel Machine. We consider SAE as y, the input sentences are x and x′, their hidden states
on LLM’s layer where the SAE trained on are H(x) and H(x′). Therefore, we have

K
(
x, x′) =

∫
c(t)

(
∇wSAE(H(x))

)
·
(
∇wSAE(H(x′))

)
dt (2)

Here, we denote the SAE on the given concept dictionary as fSAE, where fSAE(H(x)) =
(f1(H(x)), . . . , fN (H(x)))⊤, (f(H) in Equation 1 ). The i-th activation is then simply fi(x).

fSAE(H(x)) = ReLU
(
We(H(x)− bd) + be

)
∈ RN , (3)

where We is the weight matrix of the encoder and bd,be are a pre-encoder and an encoder bias,
respectively.

Not all N concepts are necessary for the path kernel calculation. To obtain the variation for input
sentences x and x′, we only need to focus on the target concepts. Accordingly, we apply a mask M
on the features used in gradient computation when calculating the path kernel:

K(x, x′) =

∫
c(t)

∇wfmask
SAE

(
H(x)

)
· ∇wfmask

SAE

(
H(x′)

)
dt, (4)

fmask
SAE

(
H(x)

)
= M ◦

[
ReLU

(
We

(
H(x)− bd

)
+ be

)]
(5)
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where M is the concept mask (explained below) and ◦ is hadamard product.

Determining Unmasked/Target Concepts. Semantic distances between two sentences are typically
measured using the cosine similarity of their dense vectors generated by large embedding models
(Muennighoff et al., 2022). However, this distance measurement is not sensitive to the semantic
distinctions we want.

In interpretation generation, we use concept embodied examples (see Appendix B.1) for trig-
gering the generation of diverse interpretations. To ensure our distance calculation captures the
semantic meaning of sentences, we distill the concepts activated by their semantics and restrict
the path kernel computation to these concepts. The distillation process involves three steps:

𝒙

LLM

Activation at target layer

𝑯(𝒙)

𝒙′

LLM

Activation at target layer

𝑯(𝒙′)

For each state in path states 

SAE activations 𝒚 SAE activations 𝒚′

Compute gradients   

Loop

Accumulate 𝑲 values

and

Figure 3: The workflow of the path kernel
calculation with SAE.

1. Collect the concepts activated by the example
triplet sentences by LLM with SAE.

2. Remove the concepts activated by each individual
token ti in the example triplet sentences from the
set of concepts recorded in step 1.

3. Include the remaining concepts in the mask vector
M , which are considered valid:

M = {f(H(x))} \ {f(H(t1), . . . ,H(tn)} (6)
Here x is the example sentence and t1, . . . , tn are
the tokens in the sentence.

Path State Approximation. We use a path kernel to
characterize relationship of the obtained latent repre-
sentations of concepts. Path states are the snapshots
of a model’s parameters saved after each optimization
step during training or fine-tuning. For a pre-trained
SAE we usually only have the final weights, so the original series of path states cannot be reconstructed
exactly. When re-training is impossible or costly, we can replace the unknown gradient-descent path
with a straight-line interpolation in parameter space.

Let
Θ = {θk}Pk=1,Θ

(0) = {θ(0)k }
P
k=1,Θ

∗ = {θ∗k}Pk=1

be, respectively, the parameter set, the (zero) initialization, and the final pre-trained weights.

By choosing n interpolation steps and define αj =
j

n−1 , j = 0, 1, . . . , n−1., the j-th intermediate
snapshot is then

Θ(j) = (1− αj)Θ
(0) + αj Θ

∗, θ
(j)
k = (1− αj) θ

(0)
k + αj θ

∗
k

Collecting them gives the full set of path states:

{Θ(0), Θ(1), . . . , Θ(n−1)}.

Here, α increases linearly from 0 to 1, forming a straight-line path. Although this sequence does
not follow the true gradient-descent dynamics, it provides a simple, deterministic path that is often
adequate for estimating a path kernel.

Distance Measurement. The path kernel measures how similar two data points are according to
the model based on their changing trajectories along the paths. To convert the (unnormalized) path
kernel K(·, ·) into a proper distance metric between data points x and x′, we apply the following two
standard normalizations:

D1(x, x
′) = 1− K(x, x′)√

K(x, x)K(x′, x′)
, (7)

D2(x, x
′) =

√
K(x, x) + K(x′, x′)− 2K(x, x′), (8)

We show in the experiments that both D1 and D2 can identify ambiguity and can be used for serving
different objectives.

6
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3.4 PREDICTING MISSING CONCEPTS TO MITIGATE AMBIGUITY

In Section 3.1, we argue that the ambiguity problem arises from concepts missing in LLM’s latent
space, and thus distance measurements should be sensitive to this. Based on this hypothesis, we
propose using path kernels with SAE to measure distances between questions and their interpretations.
As shown in our experiments, this method reveals patterns that distinguish ambiguous questions from
unambiguous ones. Motivated by this, we investigate whether ambiguity can be exploited to reduce
incorrect responses and better align outputs with training data. To this end, we introduce a framework
- within the context of tool calling - that retrieves data chunks by training a concept predictor on
labeled data.

As illustrated in Figure 4, instead of using dense embedding vectors to retrieve API calls (as in
(Karpukhin et al., 2020)), we first collect the concepts activated by questions and documents on LLM
by its SAE. We then use the trained concept predictor to predict missing concepts in input questions.
Finally, we rank API calls using union joint based on concept matching. Appendix C.1 presents
examples of ambiguous questions in tool calling, while Appendix C.2 illustrates concept matching in
this context.

For efficiency, we use LightGBM (Ke et al., 2017) to train the concept predictor. For each concept
activated by the training data and documents, the predictor is trained to determine whether it is
missing from the input question:

p
(
y = 1 | x

)
= σ

( T∑
t=1

η ft(x)
)

=
1

1 + exp
(
−
∑T

t=1 η ft(x)
) (9)

Concepts invoked 
by documents

Question

SAE

Concepts invoked by question

Top-k Retrieval

0

0
1
2
3

999

Structural Data

Ranked List

1. Entry 0;
2. Entry 887;
3. Entry 3;
…  …………

…

Union joint

Predictor

Predicted exist concepts

Concept Extractor

LLM

Figure 4: Tool calling framework based on missing concept prediction in ambiguous questions.

4 EXPERIMENTS

In this section, we conduct three sets of experiments:

1. Ambiguity detection by the proposed distance metrics: We investigate whether the distances be-
tween questions and their interpretations can distinguish ambiguous questions from unambiguous
ones.

2. Ambiguity sensitivity improvement of LLMs: We show if adding missing concepts can improve
LLM’s self-judgment on ambiguous questions. (see Appendix B.3)

3. Ambiguity resolution on agentic tool calling: We investigate whether predicting missing concepts
in ambiguous questions can reduce the number of incorrect responses.

4.1 AMBIGUITY DETECTION

Experiment Settings. To evaluate the effectiveness of our method for ambiguity detection by distance
differences, we conduct experiments primarily on AMBROSIA (Saparina & Lapata, 2024) 1, a bench-
mark designed for parsing ambiguous questions into database queries across multiple domains. The

1We also use another ambiguous dataset ASQA (Stelmakh et al., 2022), reported in Appendix B.3.
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benchmark consists of 1,277 ambiguous questions, each paired with human-provided unambiguous
interpretations and corresponding SQL queries (2,965 in total), spanning 846 multi-table databases
across 16 distinct domains. It includes three types of ambiguity—scope ambiguity, attachment
ambiguity, and vagueness—and goes beyond earlier datasets that assume a single “correct” query,
offering a rigorous evaluation yardstick for models that must both detect ambiguity and enumerate all
valid SQL programs.

We first prompt LLMs to generate interpretations for the ambiguous questions in the dataset. Specifi-
cally, we use LLama-3.3-70B-Instruct (Meta AI, 2024) for this task (see Appendix B.1 for a prompting
example). For each ambiguous question, we generate two interpretations, i1 and i2. These interpre-
tations are then treated as unambiguous questions and are each further prompted to generate their
own interpretations. As a result, for both ambiguous and unambiguous questions, we obtain two
interpretations each, forming a triplet (q, i1, i2).

Next, we compute the distances between the original question and its interpretations on AMBROSIA:
D(q, i1), D(q, i2), and D(i1, i2). These distances are calculated using both our path kernel-based
method and traditional dense vector-based methods. For comparing with both Embedding model and
Generation models, we use SFR-Embedding-Mistral (Meng et al., 2024) and LLama-3.3-70B-Instruct
to generate dense embeddings, with distances computed as follows:

D(x,x′) = 1− E(x) ·E(x′)

∥E(x)∥ ∥E(x′)∥
(10)

We further analyze the computed distances using the following two ways:

1. We compute the average of the three distances (by Equation 7) - D1(q, i1), D1(q, i2), D1(i1, i2)) -
and plot the distribution of these mean values to show patterns.

2. We normalize the distances (by Equation 8) using the ratios D2(q, i1)/D2(i1, i2) and
D2(q, i2)/D2(i1, i2), and plot these normalized values to reveal potential patterns.

The results from dense vector-based methods serve as baselines for comparison.

Results. Figure 5 presents the results using our path kernel-based method (with SAE), as well as
two dense vector-based methods: one using SFR-Embedding-Mistral and the other using LLama-3.3-
70B-Instruct. The horizontal axis shows the average distance assigned to each sample, computed as
(D1(q, i1),D1(q, i2),D1(i1, i2)), for both ambiguous questions and unambiguous questions in the
AMBROSIA dataset. Moving along the x-axis from left to right corresponds to increasing average
distance.

The vertical axis represents the absolute frequency, i.e., the raw number of observations falling into
each of the 40 equal-width histogram bins. Superimposed on the histogram bars are kernel density
curves, scaled so that their peaks align with the same frequency units. This allows for a direct visual
comparison between the smooth density estimates and the discrete histogram counts.

As shown in the figure, our method results in fewer overlapping samples (27.5%) between ambiguous
and unambiguous questions compared to the dense vector-based methods. Specifically, when using
the x-coordinate of the intersection point of the red and blue density curves as a threshold for
distinguishing ambiguous from unambiguous questions, the detection accuracies are as follows: Path
kernel-based method (with SAE): 86.25%, Dense vector method with SFR-Embedding-Mistral: 70%,
and Dense vector method with LLama-3.3-70B-Instruct: 77.75%. As a comparison, the Zero-shot
accuracy of the Llama3-70B is 46.31%. We also visualise the distance relationship in Appendix B.2.

4.2 AGENTIC TOOL CALLING

Experiment Settings. We evaluate our tool-calling framework (Figure 4) on the Gorilla dataset (Patil
et al., 2024). This multi-faceted benchmark contains about 1.6K ML-oriented API call templates
sourced from HuggingFace, TorchHub, and TensorHub. The dataset includes training and test sets, as
well as API collections that support retrieval-augmented generation (RAG). We analyzed the API call
results (including both the API calls and their domains) and found that ambiguity is a major factor
contributing to performance degradation. See Appendix C.1 for an illustrative example.

We evaluate the performance of our framework on the Gorilla dataset using several baselines: the
Gorilla base model (7B), the Gorilla fine-tuned model (fine-tuned on the TensorFlow Hub API

8
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27.5%

Average Distance

44.5%60%

Average Distance Average Distance

Our method (accuracy: 86.25%) SFR-Embedding-Mistral (accuracy: 70%) Llama-3.3-70B-Instruct (accuracy: 77.75%)

Figure 5: Distribution of average distances calculated using the path kernel method with SAE, and
dense vector-based methods with SFR-Embedding-Mistral and LLama-3.3-70B-Instruct. A smaller
overlapping area indicates a stronger ability to distinguish ambiguous from unambiguous questions.

dataset), and versions of fine-tuned Gorilla with BM25 and GPT-based retrievers. As the Gorilla
base model is relatively small, for fair comparison, we also use a 7B model, Mistral-7B(The Mistral
AI Team) with its sparse-autoencoder(Tyler Cosgrove) to implement our method. Additionally, we
include SFR-Embedding-Mistral (Meng et al., 2024) as a baseline 2.

To predict the missing concepts in queries, we train a LightGBM model. We then evaluate the
performance of our framework on the test data by using the predicted concepts to retrieve relevant
API calls from the API collections. Considering the extra computational cost introduced by the sparse
autoencoder (SAE), we do not retrieve all the concepts activated by the query. Instead, we select the
top 50%, 30%, and 20% of the activated concepts, ranked by their activation values.

SFR-Embedding-Mistral
Gorilla base

Gorilla_FT_0_shot

Gorilla_FT_bm25

Gorilla_FT_gpt_index

Concept Retrieval (50%)

Concept Retrieval (30%)

Concept Retrieval (20%)0
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)

56.25%

33.58%

83.79%

34.30%

52.40%

82.41% 79.51%
75.73%

39.10%

8.76%

54.59%

2.19%
5.99%

55.81%
51.60%

42.73%

API Retrieval Performance
Domain
API call

Figure 6: API bench Retrieval Results. Our methods are highlighted in red.

Results. Figure 6 shows the performance of our concept retrieval method compared to the baselines
on the Gorilla TensorFlow Hub API bench. We evaluate the accuracy of identifying the correct API
domains and retrieving the correct API calls. The red highlight shows the performance of our method,
demonstrating that when using the top 50% of activated concepts, our approach achieves the highest
accuracy in retrieving API calls. Accuracy of retrieving the correct domain is only slightly lower than
Fine-tuned 0-shot Gorilla. We note that even when using only the top 20% of concepts (reduce the
computational cost introduced by SAE), our method still outperforms all retrieval based baselines.

5 CONCLUSION

In this paper, we designed a novel concept-based method for ambiguity resolution in LLMs. Our
method distilled concepts from ambiguous utterances and their associated interpretations, inferred the
pattern of their difference in the latent space and leveraged the difference for ambiguity resolution.
We demonstrated that out method outperformed baselines on the text-to-SQL task. We also gave a
new method to improve LLMs’ agentic tool calling performance through missing concept prediction.
The method outperformed the SOTA in APIBench.

2SFR-Embedding-Mistral is ranked among the top 5 models on the MTEB leaderboard (Muennighoff et al.,
2022).
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A ALGORITHM: MEASURING SEMANTIC ENTROPY BY LLM

Definition A.1 (Semantic Entropy). Given a prompt x, let S be the set of possible sequences (texts)
and let C be a partition of S into semantic equivalence classes (meanings) c ∈ C. The language model
induces a distribution p(s | x) over sequences s ∈ S, which pushes forward to a distribution over
meanings,

p(c | x) =
∑
s∈c

p(s | x).

The semantic entropy of the model at x is the Shannon entropy of this meaning distribution:

SE(x) = −
∑
c∈C

p(c | x) log p(c | x) = −
∑
c∈C

(∑
s∈c

p(s | x)

)
log

(∑
s∈c

p(s | x)

)
. (11)

At a high level the semantic entropy estimation involves three steps (Algorithm 1):

1. Generation. Given a prompt x, sample N sequences s1, . . . , sN ∼ p(· | x) from the LLM.
2. Clustering. Embed each sequence zi = E(si) and group the embeddings into semantic

equivalence classes C = {C1, . . . , C|C|} via a clustering method C (cosine + agglomerative
with threshold). Let ℓi denote the class label of si and Ck = {i : ℓi = k}.

3. Entropy estimation. Estimate the class masses p(Ck | x) and compute entropy over
meanings.

Algorithm 1: Measuring Semantic Entropy (Monte-Carlo class-average)
Input: Prompt x; num of samples N ; generator G; embedder E ; clustering procedure C
Output: semantic entropy Hsem, cluster probs {pk}, labels {ℓi}
// 1) Generate N samples and (optional) scores
for i← 1 to N do

yi, si ← G(x) ; // yi: text, si: (avg) sequence log-prob

// 2) Embed and cluster by meaning
Zi ← E(yi) for i = 1..N ;
ℓ1, . . . , ℓN ← C(Z1, . . . , ZN ) ; // e.g., cosine + agglomerative
// 3) Estimate cluster probabilities
Let K be the number of distinct clusters among {ℓi};
if using counts then

nk ←
∑N

i=1 1[ℓi = k]; pk ← nk

N for k = 1..K;

else
// probability-weighted
// Stabilize weights with log-sum-exp

m← maxi si; w̃i ← exp(si −m); wi ← w̃i∑N
j=1 w̃j

;

pk ←
∑N

i=1 wi · 1[ℓi = k] for k = 1..K;
// 4) Ensure numerical safety (clip and renormalize)
ε← 10−12;
pk ← max(pk, ε); pk ← pk∑K

j=1 pj
for k = 1..K;

// 5) Calculate semantic entropy

Hsem ← −
∑K

k=1 pk logb pk (default b = 2 for bits);
return Hsem, {pk}, {ℓi};

B AMBIGUITY DETECTION: PROMPT EXAMPLES AND ADDITIONAL RESULTS
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B.1 FEW-SHOT EXAMPLES USED IN PROMPTS TO INJECT CONCEPTS

Here we provide an example showing how concept-embodied examples can guide an LLM to generate
diverse interpretations (Figure 7).

Example_1 = "question: What brands of agricultural machinery are available in each machinery 
store\n
**interpretations**: 
1. Which brands of machinery are equally available in all agricultural machinery stores?\n
2. For each agricultural machinery store, show which brands of machinery are available?\n"

Example_2 = "question: List the price of products sold in every duty-free shop.\n
**interpretations**: 
1. For each duty-free shop, list the prices of all the products they sell.\n
2. What is the price of each product that is sold in all duty-free shops.\n"
      

instruction = f"Below question is ambiguous, and it has 2 interpretations. Please you generate 
these 2 interpretations for this question. Here are two examples: Example 1: {Example_1} 
Example 2: {Example_2} Now please generate 2 interpretations for below question. Don't answer 
it is ambiguous or not, only answer the 2 interpretations. \n**Question**: " + question + 
"\n**interpretations**:\n1. "

Figure 7: An example to prompt LLM to generate diverse interpretations.

B.2 DISTANCE RELATIONSHIP

In Figure 8, we normalize the distances (Equation 8) for the distances between q, i1, i2 using the ratios
D2(q, i1)/D2(i1, i2) and D2(q, i2)/D2(i1, i2), and plot these normalized values to reveal potential
patterns. In this case, no concept mask is applied during distance calculation. Our goal is to examine
distance patterns when using equation 8 with all activated concepts valid. For clarity, we visualize
100 samples for each case. We find that compared to unambiguous questions, interpretations for
ambiguous questions are more concentrated and more symmetrically distributed in their distances to
the questions.

Unambiguous Query Ambiguous Query 

Figure 8: Normalized distances (Equation 8) for the distances between questions and their interpreta-
tions using the ratios D2(q, i1)/D2(i1, i2) and D2(q, i2)/D2(i1, i2), compared to unambiguous and
ambiguous questions’ distance triplets cluster to the center of the map.

Figure 9 shows the results of the baselines, we can see that distance calculations with dense vectors
generated by both generation and embedding models cannot show the symmetric pattern of ambiguous
questions and their interpretations. As such, we can not distinguish each data point is ambiguous or
not by their measurements.
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Unambiguous Query Ambiguous Query 

(a) Llama-3.3-70B-instruct model

Unambiguous Query Ambiguous Query 

(b) SFR-Embedding-Mistral model

Figure 9: Normalized distances for the baselines.

B.3 AMBIGUITY SENSITIVITY IMPROVEMENT OF LLMS WITH MISSING CONCEPT ADDITION

To demonstrate the connection between targeted concepts and ambiguity resolution, we conducted
experiments with LLaMA3-70B on questions involving scope ambiguity. Below is an example (an
ambiguous question and its interpretations):

Ambiguous question: ”What brands of machinery are available in each machinery store?”;
Interpretation 1: ”Which brands of machinery are equally available in all machinery stores?”;
Interpretation 2: ”For each machinery store, show which brands of machinery are available.”

As the missing concepts were found to correlate with tokens like “For,” “each,” “Which,” “What,”
“all,” “?”, and “common”, we first identified the concepts invoked by these tokens, and then manually
increased the activation values of these concepts to 1.0. As results in table 1 show, we found that
the accuracy of ambiguity detection on unambiguous questions increased from 39.8% to 60.5%. In
contrast, when the same number of random concepts were activated instead, the accuracy dropped to
just 0.2%. Although this will result in a 16.4% decrease in the ambiguous question detection accuracy,
the overall accuracy will increase from 46.31% to 54.61%. This indicates that only targeted concept
activation helps identify ambiguity, whereas randomly activating concepts only bring interference.

14
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Table 1: Effect of concept activation on ambiguity detection and overall accuracy.

Metric Baseline Targeted activation Random activation vs. baseline
Unambiguous accuracy 39.8% 60.5% 0.2% +20.7 pp (targeted)
Ambiguous accuracy 59.3% 42.8% — −16.4 pp (targeted)
Overall accuracy 46.31% 54.61% — +8.30 pp (targeted)

Notes. “pp” = percentage points. Unambiguous questions and ambiguous questions in dataset are unbalanced.

C AGENTIC TOOL CALLING: PROMPT AND CONCEPT MATCHING EXAMPLES

C.1 AMBIGUOUS PROMPT EXAMPLES

{"domain": "Image classification", 
 "framework": "TensorFlow Hub", 
 "functionality": "Image classification using pre-trained model", 
 "api_name": "imagenet_mobilenet_v2_100_224_classification", 
 "api_call": 
"hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4')", 
 "api_arguments": {"url": 
"https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/classification/4"}, 
 "python_environment_requirements": {"tensorflow": ">=2.0.0", "tensorflow_hub": ">=0.12.0", 
"numpy": ">=1.19.5", "PIL": ">=8.3.2"}, 
 "performance": {"dataset": "ImageNet", "accuracy": "71.8%"}, 
 "description": "A pre-trained image classification model using MobileNetV2 architecture on 
ImageNet dataset with 100% depth and 224x224 input size.”

The API assistant searched:
{"domain": "Image object detection", 
 "framework": "TensorFlow Hub", 
 "functionality": "Detect objects in images", 
 "api_name": "model_id", 
 "api_call": "hub.load('https://tfhub.dev/tensorflow/ssd_mobilenet_v2/2')", 
 "api_arguments": ["model_id"], 
 "python_environment_requirements": ["tensorflow", "tensorflow_hub"], 
 "performance": {"dataset": "COCO", "accuracy": "0.320"}, 
 "description": "A pre-trained TensorFlow Hub model for detecting objects in images using the Single Shot 
MultiBox Detector (SSD) architecture with MobileNet V2 as the base network."}

Instruction: “Find out what's in the image taken by a wildlife photographer, so we can determine 
the main subject of the picture.\n###Input: An image taken by a wildlife photographer.”

Instruction: “Find out what's in the image taken by a wildlife photographer, so we can determine 
the object of the picture.\n###Input: An image taken by a wildlife photographer.”

The API assistant searched:
{"domain": "Image feature vector", 
 "framework": "TensorFlow Hub", 
 "functionality": "Feature extraction", 
 "api_name": "model_id", 
 "api_call": 
"hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4')", 
 "api_arguments": {"model_id": "string", "input_shape": "tuple", "trainable": "boolean"}, 
 "python_environment_requirements": ["tensorflow", "tensorflow_hub"], 
 "performance": {"dataset": "ImageNet", "accuracy": "Top-1 accuracy"}, 
 "description": "A pre-trained image feature vector model for image classification and transfer 
learning, based on MobileNetV2 architecture."}

Ground truth 

Figure 10: An example illustrating ambiguity in agentic tool calling (from the Gorilla dataset, using
the Gorilla model as the API assistant). The red highlight marks differences in the instructions. Minor
changes to the instruction can steer the LLM’s answer, and may even shift the domain of the returned
API.

C.2 A CONCEPT MATCHING EXAMPLE

Figure 11 illustrates how the concepts that involve which activated by the input question and which
predicted by pre-trained predictor are matched to those in the structured API document through the
union joint operator.
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Question: "We want to develop a simple application where users can take a photo of any object and find the description of it. 
Help us with creating a model that extracts features from the object's image.\\n"

API Data
{"domain": "Image feature vector", 
 "framework": "TensorFlow Hub", 
 "functionality": "Feature extraction from images", 
 "api_name": "imagenet_mobilenet_v2_100_224_feature_vector", 
 "api_call": "hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4')", 
 "api_arguments": {"input_shape": "[224, 224, 3]", 
       "output_shape": "[1280]"}, "python_environment_requirements": {
   "tensorflow": ">=2.0.0", "tensorflow_hub": ">=0.12.0"}, 
  "performance": {"dataset": "ImageNet", "accuracy": "71.9%"}, 
  "description": "A pre-trained image feature vector model using MobileNet V2 architecture with 100% depth and 224x224 
input size. It
   can be used for image classification, object detection, and other image-based tasks.“
  "example_code": ” 
 import tensorflow as tf
 import tensorflow_hub as hub
 model = tf.keras.Sequential([
     hub.KerasLayer('https://tfhub.dev/google/imagenet/mobilenet_v2_100_224/feature_vector/4’,
                    input_shape=(224, 224, 3), trainable=False), tf.keras.layers.Dense(10, activation='softmax’)])", 
}}

Extracted Concepts
1. Text Embedding, 
2. TensorFlow Hub, 
3. Universal Sentence Encoder, 
4. Text Classification, 
5. Natural Language Processing, 
6. Keras Layer, 
7. Image Feature Extraction, 
8. MobileNetV2, 
9. Sentence Embedding, 
10. Text Preprocessing
11.………………….

Union Joint: 
get similarity

Figure 11: An example for getting similarity for extracted concepts by union joint.

D LIMITATIONS

Our method was evaluated on limited datasets. While results on both ambiguity and API datasets
demonstrate its effectiveness, these datasets cover only a subset of known ambiguity scenarios, leaving
it unclear whether our interpretation-generation method generalizes to other types of ambiguity in
natural language. Investigating this question is left for future work.

E COMPUTING RESOURCES

Our experiments were conducted on four NVIDIA H100 GPU node, each with 96GB memory.
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