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A Critical Analysis of the Limitation of Deep Learning based 3D Dental
Mesh Segmentation Methods in Segmenting Partial Scans

Ananya Jana' and Aniruddha Maiti’> and Dimitris N. Metaxas'

Abstract— Tooth segmentation from intraoral scans is a
crucial part of digital dentistry. Many Deep Learning based
tooth segmentation algorithms have been developed for this
task. In most of the cases, high accuracy has been achieved,
although, most of the available tooth segmentation techniques
make an implicit restrictive assumption of full jaw model and
they report accuracy based on full jaw models. Medically,
however, in certain cases, full jaw tooth scan is not required or
may not be available. Given this practical issue, it is important
to understand the robustness of currently available widely
used Deep Learning based tooth segmentation techniques. For
this purpose, we applied available segmentation techniques on
partial intraoral scans and we discovered that the available
deep Learning techniques under-perform drastically. The
analysis and comparison presented in this work would help us
in understanding the severity of the problem and allow us to
develop robust tooth segmentation technique without strong
assumption of full jaw model.

Clinical relevance— Deep learning based tooth mesh seg-
mentation algorithms have achieved high accuracy. In the
clinical setting, robustness of deep learning based methods is
of utmost importance. We discovered that the high performing
tooth segmentation methods under-perform when segmenting
partial intraoral scans. In our current work, we conduct
extensive experiments to show the extent of this problem. We
also discuss why adding partial scans to the training data
of the tooth segmentation models is non-trivial. An in-depth
understanding of this problem can help in developing robust
tooth segmentation tenichniques.

I. INTRODUCTION

Intraoral scanners (IOS) are being adopted to capture
digital dental impressions. The intraoral scanners can re-
construct the tooth surface in 3D. Tooth segmentation from
intraoral scans is a key step in computer-aided dentistry.
While tooth segmentation is a first step in digital dentistry,
3D intraoral scans dataset availability is rather limited in
the public domain. Due to this factor, a majority of the 3D
teeth segmentation algorithms developed or analyzed so far
are based on private datasets [1], [2], [3], [4]. There are
Deep Learning methods that have been proposed for tooth
segmentation from 3D intraoral scans [5], [6], [7], [8], [9]
Some of these algorithms have achieved excellent accuracy.

A majority of these algorithms are built on private dataset
where we do not have the information regarding subject
distribution, and also these tooth segmentation algorithms
are focused on the entire jaw(either lower or upper). Public
dataset was not available till very recently to that extent.
Recently a large public dataset has been released and hence
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we investigate the effectiveness of the existing methods. We
are interested in testing the robustness of these methods
with the help of the recently introduced public dataset 3D
Teeth Seg dataset[10] for tooth segmentation. In orthodontic
processes, imaging the entire jaw might not always be
necessary e.g. a dental caries between the first premolar teeth
and the second premolar teeth may not need the subjects’s
incisor teeth to be imaged or a gum recession in the gum near
the left canine teeth may not require imaging of the right
side molar teeth. Unlike other kinds of imaging modality in
medical domain e.g. a CT or MRI image where the entire
abdominal region is grabbed via the image taking method
or device, the intraoral scans are a little different - it needs
to be held manually near every tooth facing three different
positions separately - buccal, occlusal and lingual side to
get the 3D surface of the teeth reconstructed. This means
the intraoral scans need to be maunally moved around each
and every tooth to image it. Hence capturing the entire jaw
might be redundant and might waste manual effort in certain
orthodontic/medical treatment/diagnosis cases. The problem
related to the strong assumption regarding the availability
of full jaw scan for tooth segmentation can be found on
literature. However, to which extend this strong assumption
deteriorate the segmentation result for partial scans have not
been studied extensively using all the available deep learning
based segmentation methods.

One might ask here if this shortcoming can be addressed
by training the network on various partial scans. Such a
training is non-trivial and the non-triviality can be attributed
to another limitation in the current tooth mesh segmentation
algorithms. A majority of the deep learning based state-
of-the-art tooth mesh segmentation algorithms operate on
tooth mesh/dental models containing a fixed number of mesh
cells. Once a partial scan is created from an intraoral scan,
the number of mesh cells in the resulting scan is lower
than the original intraoral scans, making the partial scan
unfit to be used in the training. As an example we can
think of a dental model containing 16k mesh cells and a
partial scan containing 3k mesh cells. If the whole dental
model is downsized to 3k points, the individual teeth on
the dental model would lose their curvature, topological
and morphological information. Resizing the partial scan
to match the full intraoral scan is non-trivial due to the
requirement for triangulation. The tooth mesh segmentation
algorithms generally utilize k nearest neighbor methods to
understand the local geometry where k represents a fixed
number. When multi resolution inputs are introduced in the
neural network, the same fixed k might not be sufficient to
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capture local geometry of the upsampled partial scan and the
entire intraoral scan. In fact, working with multiple resolution
of tooth mesh data is a challenge and the current state-
of-the-art tooth mesh segmentation algorithms do not deal
with multiple resolution of the intraoral scans. Resizing such
smaller partial meshes that the tooth mesh contain a fixed
number of mesh cells in the dental model. The main objective
of this work is to investigate and compare the results. It
is with this thought that we investigate the robustness of
the existing state-of-the-art 3D tooth segmentation methods
like - MeshSegNet [5], TSGCNet [8], MBESegNet [7], GAC
[6] and some of the latest generic point cloud segmentation
methods such as PointNet [11], PointNet++ [12], DGCNN
[13], BAAFNet [14], PointMLP [15] and PCT [16]. The
choice of adding generic point cloud segmentation methods
is due to an observation that we made - a majority of the
tooth segmentation algorithms compared the tooth segmen-
tation performance of their methods alongside the generic
point cloud segmentation methods. In brief, our contribution
is:

o We explore the robustness of the state-of-the-art 3D
tooth segmentation methods and thoroughly investigate
a limitation that is severely detrimental for the deploy-
ment of these algorithms in the orthodontic/medical
domain. We perform this investigation with ten different
methods.

« We demonstrate that as we make partial intraoral scans,
the methods which claim excellent accuracy for tooth-
segmentation under-perform drastically.

« the state-of-the-art tooth segmentation algorithms are
developed on mostly private datasets. We evaluate
the robustness of these algorithms on the recently
introduced publicly available dataset 3D Teeth Seg
dataset[10].

II. RELATED WORKS

Our paper is related to two broad areas of research: (a)
Tooth Segmentation from Intraoral Scans and (b) 3D Shape
Segmentation.

byl

(output)

The trained tooth segmentation algorithms fail to achieve good performance when segmenting the partial scans

A. Tooth Segmentation from Intraoral Scans

The conventional methods of 3D tooth segmentation usu-
ally rely upon specific prior knowledge or hand-crafted
features for Tooth segmentation or tooth labeling - e.g.
Kumar et. al[17] leverage the knowledge of mesh curvature
information for tooth segmentation. Recently, a number
of deep learning-based methods have been proposed for
tooth segmentation. In the work by Tian et al[18], the
preprocessing of surface data was done with a sparse octree
partitioning and then this preprocessed data was fed to 3D
CNNs for hierarchical labeling of individual teeth. While a
majority of these 3D tooth segmentation methods employ
fully supervised learning, there are a few methods which
employ weakly supervised or semi-supervised learning for
tooth segmentation - e.g. DArch[19]. The use of the tooth
centroids may not make TSegNet and DArch fully effective
for partial scan segmentation of partial tooth segmentation.

B. 3D Shape Segmentation

3D shape segmentation is a fundamental task in 3D
computer vision. Deep Learning based 3D shape segmen-
tation methods are applied on different types of input -
e.g. Voxelization of surfaces as volumes to construct 3D
CNNs [20], 2D rendering of 3d images [21]or on raw 3D
surfaces[11], [12]. There are several methods that treat the
task of point cloud segmentation as graph learning [22],
[23]. Point cloud segmentation depends on the knowledge of
both global and local information. Methods like PointNet[11]
enable the network to have a global understanding of the
point cloud surface. Recently there has been an interest
in developing methods that are more focused on learning
the local information well. An example of such methods is
CurveNet[24].

III. METHODS

A. Data Pre-processing

The dataset consists of 600 subjects intraoral scans. Each
raw intraoral scan consists of more than 100000 mesh cells.
The intraoral scans had labels for every point. The 3D



Tooth segmentation methods under discussion utilize the
mesh surface features as well. Keeping this in mind, we
interpolate the per-point labels to per mesh triangle label
using the k-nearest neighbor method. To reduce computation,
we downsample the raw meshes to meshes containing 16000
mesh cells using quadric downsampling method. Each mesh
cell can be characterized with four points, namely, three
vertices of the mesh triangle and the center/barycenter of the
mesh triangle alongwith the normals at these four points. In
our experiments we utilize the subjects who did not have
wisdom teeth and hence had with teeth count < 14. The
intraoral scans have a base which is not part of the gum. In
our current work, we crop the scan to remove a the portion
of base of the dental model.

B. Data Augmentation

To improve the models’ generalization ability, the training
and validation sets of the data split are augmented by
combining 1) random rotation, 2) random translation, and 3)
random rescaling (e.g., zooming in/out) of each 3D dental
surface in reasonable ranges. Specifically, along each of the
three axes in the 3D space, a training/validation surface has
50

IV. EXPERIMENTS
A. Dataset

The 3D Teeth Seg Challenge 2022 dataset[10] has been
used in our experiments. In our experiments, we use the
lower jaw scan of the subjects. The task is tooth segmentation
from the 3D dental model as C = 8 different semantic
parts, indicating the central incisor (T7), lateral incisor (T6),
canine/cuspid (T5), Ist premolar (T4), 2nd premolar (T3), 1st
molar (T2), 2nd molar (T1), and background/gingiva (BG).
We utilize 589 subjects for our experiments with 376 subjects
in the training set, 95 subjects in the validation set and 118
subjects in the test set. We augment the training set and
validation set data.

B. Experiment Settings

We train ten different models on our dataset - MeshSegNet
[5], TSGCNet [8], MBESegNet [7], GAC [6], PointNet [11],
PointNet++ [12], DGCNN [13], BAAFNet [14], PointMLP
[15] and PCT [16].

1) Experiment Setting 1 (Entire Scan or Whole Jaw): In
this experimental setting, we let the trained networks predict
the segmentation of the entire lower jaw intraoral scans.

2) Experiment Setting 2 (Half Jaw): In this setting we
crop the test set intraoral scans to have approximately half
of the entire scan or half of the jaw by cropping a 0.48 of
the intraoral scans from the right plane.

3) Experiment Setting 3 (Four Teeth): In this setting, we
try to roughly capture four teeth of the intraoral scans by
cropping (in order): 0.56 from the left plane, then 0.15 from
the bottom plane and finally 0.48 from the front plane.

4) Experiment Setting 4 (Front): In this partial scan, we
try to roughly capture front view of the teeth of a subject by
cropping (in order): 0.30 from the right plane, 0.35 from the
left plane and then 0.5 from the front plane.

5) Experiment Setting 5 (Single Tooth): In our experi-
mental settings, this is the smallest partial scan that we used,
roughly capturing a single tooth in deep intraoral region. The
sequence of scans (in order): 0.48 from the right plane, 0.15
from the bottom plane, 0.26 from the front plane and 0.7
from the back plane.

6) Experiment Setting 6 (Three Teeth): In this setting,
roughly three teeth of the intraoral scans are captured by
cropping (in order): 0.48 from the right plane, 0.15 from the
bottom plane, 0.44 from the front plane, 0.33 from the back
plane.

7) Experiment Setting 7 (Eight Teeth): In this setting we
try to roughly capture eight teeth from the intraoral scans.
The sequence of crops (in order): 0.15 from the bottom plane,
0.59 from the front plane.

8) Experiment Setting 8 (Ten Teeth): In this setting we
try to roughly capture ten teeth from the intraoral scans by
cropping 0.32 from the left plane.

C. Metric

We utilize four different metrics to evaluate the perfor-
mance of the tooth segmentation methods. These metrics are
Overall Accuracy(OA), Dice Score (DSC), Sensitivity (SEN)
and Positive Predictive Value(PPV). For all the metrics, we
take an average over all the 8 class labels.

D. Training Details

The ten segmentation methods have been trained for 400
epochs on RTX 8000 systems. The model yielding the best
validation Dice score has been selected.

V. RESULTS

The experimental results are listed in Table.[I, [ and
The Table. [l shows the overall accuracy Dice score, sensi-
tivity and positive predictive value of the different methods
averaged across all the class labels under the eight different
experimental setups which have been described previously
i.e. Whole Jaw, Half Jaw, Four Teeth, Front Teeth, Three
Teeth, Eight Teeth, Ten Teeth and Single Tooth. As expected,
in most of the cases the performance drops significantly for
partial scans. Out of these ten methods, the MeshSegNet
method with graph cut postprocessing and PointMLP method
performs comparatively better. It is worth noting that the
comparatively better performance of MeshSegNet with post-
processing can be attributed to the graph cut post processing
rather than the Deep Learning method, as can be understood
by comparing with the MeshSegNet results without the graph
cut post-processing. Although the results from PCT method
shows high DSC score for a single tooth, it can be seen
from the qualitative image that PCT actually fails to label
any partial scan. The reason PCT still reports a high DSC
value and PPV is that since for single tooth there are roughly
two labels present in the partial scan and trivially labeling
all the cells to any of the two labels makes the metric values
high. For better understanding these nuances, we also present
the segmented scans in Fig. [2} We also present the Figure
?? for the visual comparison of the Dice score drop of the
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Fig. 2. The qualitative comparison of tooth labeling for partial scans via trained methods. the leftmost column show the segmentation
results of the entire scan whereas other columns show the segmentation results on partial scans. As we can see the performance deteriorates
significantly for the partial scans. Whole Jaw, Half Jaw, Single Tooth, Front, Four Teeth, Ten Teeth, Eight Teeth and Three Teeth are
shown in the columns 1, 2, 3, 4, 5, 6, 7 and 8 respectively. Best viewed in color and when zoomed in.



TABLE I
THE TOOTH SEGMENTATION RESULTS FROM TEN DIFFERENT METHODS IN TERMS OF THE OVERALL ACCURACY (OA), THE DICE SCORE (DSC),
SENSITIVITY (SEN) AND POSTIVE PREDICTIVE VALUE (PPV). WHOLE JAW, HALF JAW, FRONT, FOUR TEETH, SINGLE TOOTH, THREE TEETH,
EIGHT TEETH, TEN TEETH DENOTE THE EXPERIMENT SETTING 1, 2, 3,4, 5, 6, 7 AND 8 RESPECTIVELY. AS WE CAN SEE, ALL THE TEN METHODS
PERFORM THE WORST FOR THE SMALLEST PARTIAL SCAN IN OUR EXPERIMENTS I.E. SINGLE TOOTH. MESHSEGNET WITH GCO AND POINTMLP
OUTPERFORMS OTHER METHODS IN TERMS OF OA, DSC AND SEN. SURPRISINGLY PCT PERFORMS BEST IN TERMS OF PPV. THE GRAPH CUT
POSTPROCESSING ALLOWS FOR BETTER RESULTS FOR MESHSEGNET. BUT IF WE CONSIDER PURELY DEEP LEARNING BASED METHODS, POINTMLP
PERFORMS COMPARATIVELY ROBUSTLY IN SEGMENTING PARTIAL SCANS.

Method Exp OA DSC SEN PPV Exp OA DSC | SEN PPV
PointNet Whole Jaw | 0.9167 | 0.8935 | 0.9033 | 0.9020 Ten Teeth 6600 | 4973 | .5245 | .5158
Half Jaw 0.4428 | 0.2210 | 0.2757 | 0.2976 | Three Teeth | .3918 | .2395 | .3507 | .3991

Front 0.5714 | 03612 | 0.5097 | 0.4142 | Eight Teeth | .6005 | .4540 | .5816 | .5073

[CVPR’17] Four Teeth | 0.4413 | 0.2477 | 0.4157 | 0.2935 | Single Tooth | .2824 | .1810 | .7013 | .2763
PointNet++ Whole Jaw | 0.8820 | 0.8432 | 0.8546 | 0.8553 Ten Teeth 8397 | 7944 | 7963 | .8206
Half Jaw 0.7909 | 0.6906 | 0.7148 | 0.7498 | Three Teeth | .4810 | .2142 | .3856 | .4785

Front 0.5892 | 0.3061 0.5097 | 0.3917 | Eight Teeth | .6471 | 4031 | .6268 | .4597

[NeurIPS’17] | Four Teeth | 0.5050 | 0.2585 | 0.4423 | 0.4238 | Single Tooth | .3945 | .2844 | .7456 | .3449
DGCNN Whole Jaw | 0.9311 | 0.9078 | 0.9194 | 0.9143 Ten Teeth .8032 | 7103 | .7198 | .7533
Half Jaw 0.6614 | 0.5249 | 0.5821 0.6031 | Three Teeth | .5705 | .3762 | .4916 | .6011

Front 0.6256 | 0.4351 | 0.5483 | 0.5128 | Eight Teeth | .5932 | .4266 | .5569 | .4782

[ATG’19] Four Teeth | 0.5682 | 0.2761 | 0.4835 | 0.3831 | Single Tooth | .3045 | .1707 | .7106 | .3865
MeshSegNet Whole Jaw | 0.8377 | 0.7875 0.8143 0.7990 Ten Teeth .8004 | 7382 | .7632 | .7535
Half Jaw 0.6655 | 0.5340 | 0.6010 | 0.5880 | Three Teeth | .5198 | .2630 | .4320 | 4214

Front 0.5634 | 0.3220 | 0.4919 | 0.3737 | Eight Teeth | .5526 | .3157 | .5165 | .3755

[TMI’20] Four Teeth | 0.4871 | 0.3307 | 0.4906 | 0.3750 | Single Tooth | .3440 | .1507 | .7267 | .2056
MeshSegNet Whole Jaw | 0.9125 | 0.8782 | 0.9006 | 0.8723 Ten Teeth 8913 | 8472 | .8826 | .8385
Half Jaw 0.8511 | 0.6698 | 0.8513 | 0.6784 | Three Teeth | .7738 | .4966 | .8625 | .5162

[TMI’20] Front 0.8089 | 0.5921 | 0.8141 | 0.5962 | Eight Teeth | .7895 | .5469 | .8164 | .5496
+GCO Four Teeth | 0.7371 | 0.5722 | 0.7879 | 0.5809 | Single Tooth | .7221 | .3089 | .9221 | .3218
TSGCNet Whole Jaw | 0.7540 | 0.6976 | 0.7537 | 0.7057 Ten Teeth 6340 | 4868 | .5467 | .5504
Half Jaw 0.5463 | 0.3810 | 0.4476 | 0.4477 | Three Teeth | .4493 | .2234 | 3937 | .3642

Front 0.3945 | 0.1498 | 0.3784 | 0.2476 | Eight Teeth | .3713 | .1538 | .4095 | .2424

[CVPR’21] Four Teeth | 0.4269 | 0.2021 0.4041 0.2771 | Single Tooth | .3837 | .1717 | .7472 | 2134
GAC Whole Jaw | 0.8451 | 0.7994 | 0.8080 | 0.8346 Ten Teeth 6779 | 5292 | 5476 | .6154
Half Jaw 0.4531 | 0.1722 | 0.2154 | 0.3956 | Three Teeth | .4321 | .2514 | .3489 | .4245

Front 0.5317 | 0.3267 | 0.4518 | 0.4823 | Eight Teeth | .5670 | .3703 | .5271 | .4650

[PRL21] Four Teeth | 0.4696 | 0.2853 | 0.3967 | 0.4988 | Single Tooth | .3140 | .2078 | .7143 | .3968
BAAFNet Whole Jaw | 0.5910 | 0.6015 | 0.7458 | 0.5846 Ten Teeth 4696 | 4482 | 5470 | .4494
Half Jaw 0.3306 | 0.2986 | 0.4139 | 0.3130 | Three Teeth | .2992 | .2266 | .4320 | .3563

Front 0.3602 | 0.2042 | 0.4140 | 0.2580 | Eight Teeth | .3454 | .2089 | .4436 | .2795

[CVPR’21] Four Teeth | 0.2474 | 0.1847 | 0.3905 | 0.2267 | Single Tooth | .2743 | .1457 | .7036 | .2084
pointMLP Whole Jaw | 0.9373 | 0.9105 | 0.9259 | 0.9139 Ten Teeth 9186 | .8840 | .8977 | .8945
Half Jaw 0.8637 | 0.7702 | 0.8072 | 0.8159 | Three Teeth | .5438 | .3074 | .4474 | .5726

Front 0.7425 | 0.5347 | 0.6959 | 0.5899 | Eight Teeth | .7680 | .6041 | .7503 | .6375

[ICLR’22] Four Teeth | 0.6583 | 0.4309 | 0.6026 | 0.5820 | Single Tooth | .4277 | .4660 | .7585 | .5436
PCT Whole Jaw | 0.6192 | 0.4694 | 0.4994 | 0.5760 Ten Teeth 4522 | 1483 | .1881 | .7584
Half Jaw 0.4338 | 0.1304 | 0.1805 | 0.8998 | Three Teeth | .4199 | .2563 | .3252 | .8453

Front 0.4545 | 0.2455 | 0.3621 0.6978 | Eight Teeth | 4707 | .3381 | .4329 | .7050

[CVM’21] Four Teeth | 0.4285 | 0.2833 | 0.3380 | 0.9131 | Single Tooth | .3000 | .5378 | .7092 | .7626
MBESegNet Whole Jaw | 0.7062 | 0.6320 | 0.7002 | 0.6344 Ten Teeth 6539 | 5149 | .5893 | .5359
Half Jaw 0.7040 | 0.6121 | 0.70246 | 0.6250 | Three Teeth | .4654 | .2781 | 4758 | .4226

Front 0.3168 | 0.1112 | 0.3340 | 0.1667 | Eight Teeth | .3340 | .1411 | .3941 | .1975

[ISBI’22] Four Teeth | 0.3827 | 0.2853 | 0.3967 | 0.4988 | Single Tooth | .4145 | .2021 | .7669 | .2481

different methods under the different settings. Additionally,
in the Table. |lI| and Table. we compare the performance
of the ten different methods across the different class labels
for each of the tooth-class. We demonstrate the qualitative
results of 3D tooth segmentation via the different methods
under the different experimental settings in Fig.

VI. CONCLUSION

We are aware of the assumption made by the 3D tooth
segmentation methods about the full jaw model and the 3D
tooth segmentation problem is treated as a part segmentation
problem where there are fixed number of parts of the jaw
model. But this treatment is not generalizable as partial

tooth scans are also equally valid in orthodontistry. There
is no study which discusses and systematically analyzes this
full jaw model assumption related limitation. Our current
study closes this gap in existing literature. Verification of
the robustness and understanding the extent of the limitation
in the context of part segmentation is important because large
number of tooth data are not full jaw data, but partial scans.
Our work demonstrates the extent to which the performance
of the trained segmentation methods deteriorates with vary-
ing sized partial scans which are medically valid.



TABLE I
THE TOOTH SEGMENTATION RESULTS FROM TEN DIFFERENT METHODS IN TERMS OF THE LABEL WISE DICE SCORE.

Method Exp BG T1 T2 T3 T4 T5 T6 T7
PointNet [CVPR’17] ‘Whole Jaw 0.9374 | 0.7836 | 0.9100 | 0.8853 | 0.9151 | 0.8937 | 0.8994 | 0.9236
Half Jaw 0.6949 | 0.3001 | 0.0856 | 0.0106 | 0.0013 | 0.1285 | 0.3608 | 0.1869
Front 0.8565 | 0.5538 | 0.0119 | 0.0075 | 0.2955 | 0.2114 | 0.3845 | 0.5684
Four Teeth 0.7556 | 0.3311 0.0527 | 0.1489 | 0.4544 | 0.0323 | 0.1915 | 0.0155

Single Tooth | 0.5018 | 0.2447 | 0.0513 | 0.0612 | 0.4153 | 0.0375 | 0.0186 | 0.1175

Ten Teeth 0.9001 | 0.6773 | 0.5932 | 0.4678 | 0.4171 | 0.1846 | 0.1959 | 0.5426
Three Teeth 0.5912 | 0.8480 | 0.0058 | 0.0396 | 0.0413 | 0.1005 | 0.1996 | 0.0905
Eight Teeth 0.8731 0.9324 | 0.0061 0.0039 | 0.0266 | 0.3682 | 0.6243 | 0.7979

PointNet++ [NeurIPS’17] Whole Jaw 0.9145 | 0.7706 | 0.8931 | 0.8663 | 0.8739 | 0.8276 | 0.7724 | 0.8275
Half Jaw 0.8918 | 0.6628 | 0.7218 | 0.7175 | 0.7621 0.6354 | 0.5899 | 0.5434
Front 0.8430 | 0.1461 0.0161 0.0215 | 0.2079 | 0.4587 | 0.3825 | 0.3732
Four Teeth 0.7541 | 0.1386 | 0.0169 | 0.0314 | 0.3917 | 0.3512 | 0.2645 | 0.1198
Single Tooth | 0.5953 | 0.1042 | 0.2333 | 0.0850 | 0.0718 | 0.0585 | 0.1119 | 0.2617
Ten Teeth 0.9027 | 0.8082 | 0.8356 | 0.7409 | 0.7551 | 0.7481 | 0.7521 | 0.8127
Three Teeth 0.7173 | 0.1282 | 0.0817 | 0.1170 | 0.2678 | 0.1385 | 0.0974 | 0.1659
Eight Teeth 0.8542 | 0.2036 | 0.0119 | 0.0199 | 0.2083 | 0.6043 | 0.6130 | 0.7102

DGCNN [ATG’19] Whole Jaw 0.9536 | 0.8205 | 0.9161 0.9033 | 0.9334 | 0.9258 | 0.8982 | 0.9117
Half Jaw 0.8903 | 0.5387 | 0.2997 | 0.0460 | 0.4597 | 0.6925 | 0.6325 | 0.6408
Front 0.8969 | 0.8702 | 0.0219 | 0.0410 | 0.4556 | 0.4430 | 0.3871 | 0.3653

Four Teeth 0.8124 | 0.0638 | 0.0352 | 0.0880 | 0.6521 | 0.2115 | 0.2805 | 0.0660
Single Tooth | 0.6408 | 0.3749 | 0.0290 | 0.1619 | 0.0462 | 0.0114 | 0.0377 | 0.0372
Ten Teeth 0.9260 | 0.7754 | 0.8208 | 0.7203 | 0.7363 | 0.7106 | 0.5394 | 0.4541
Three Teeth 0.7912 | 0.7998 | 0.0577 | 0.1144 | 0.4720 | 0.3665 | 0.2287 | 0.1800
Eight Teeth 0.9138 | 0.9682 | 0.0083 | 0.0112 | 0.0673 | 0.3791 | 0.3785 | 0.6870

MeshSegNet[TMI"20] ‘Whole Jaw 0.9120 | 0.7026 | 0.7899 | 0.7653 | 0.8505 | 0.8211 | 0.6744 | 0.7845
Half Jaw 0.8725 | 0.2506 | 0.4421 | 0.4504 | 0.6075 | 0.6189 | 0.4336 | 0.5970
Front 0.8430 | 0.4346 | 0.0149 | 0.0146 | 0.1152 | 0.3512 | 0.2633 | 0.5398

Four Teeth 0.7703 | 0.4506 | 0.0618 | 0.2142 | 0.2056 | 0.1878 | 0.3632 | 0.3925
Single Tooth | 0.6501 | 0.0972 | 0.1325 | 0.0702 | 0.0586 | 0.0222 | 0.1509 | 0.0241

Ten Teeth 0.8926 | 0.6748 | 0.7285 | 0.6625 | 0.7500 | 0.7464 | 0.6627 | 0.7883
Three Teeth 0.7715 | 0.2006 | 0.1464 | 0.2782 | 0.1823 | 0.2600 | 0.1507 | 0.1145
Eight Teeth 0.8521 0.4701 0.0052 | 0.0110 | 0.1080 | 0.3529 | 0.2552 | 0.4715

MeshSegNet[TMI'20]+GCO Whole Jaw 0.9470 | 0.8408 | 0.8948 | 0.8925 0.916 0.8690 | 0.7681 | 0.8969
Half Jaw 0.9210 | 0.6066 | 0.7563 | 0.7838 | 0.7419 | 0.2393 | 0.4848 | 0.8254
Front 0.9098 | 0.5871 0.6434 | 0.3430 | 0.5723 | 0.7039 | 0.3940 | 0.5836
Four Teeth 0.8262 | 0.6036 | 0.6143 | 0.5036 | 0.5695 | 0.4263 | 0.4527 | 0.5816
Single Tooth | 0.8353 | 0.2749 | 0.1124 | 0.1898 | 0.1003 | 0.3172 | 0.1377 | 0.5043
Ten Teeth 0.9356 | 0.7997 | 0.8821 | 0.8547 | 0.8525 | 0.8320 | 0.7496 | 0.8716
Three Teeth 0.8551 0.5217 | 0.6406 | 0.5907 | 0.2839 | 0.3837 | 0.1956 | 0.5017
Eight Teeth 0.8997 | 0.5774 | 0.6858 | 0.1945 | 0.5623 | 0.6567 | 0.3085 | 0.4905

TSGCNet [CVPR’21] Whole Jaw 0.8418 | 0.5020 | 0.7378 | 0.7034 | 0.7714 | 0.7404 | 0.5850 | 0.6993
Half Jaw 0.7833 | 0.2743 | 0.3684 | 0.2354 | 0.2920 | 0.5314 | 0.3690 | 0.1949
Front 0.7604 | 0.0017 | 0.0012 | 0.0024 | 0.0465 | 0.1961 | 0.1018 | 0.0890

Four Teeth 0.7864 | 0.0024 | 0.0091 0.0711 | 0.2902 | 0.2702 | 0.1233 | 0.0645
Single Tooth | 0.7280 | 0.2073 | 0.2716 | 0.0562 | 0.0128 | 0.0157 | 0.0224 | 0.0602
Ten Teeth 0.8377 | 0.4798 | 0.5933 | 0.5330 | 0.4846 | 0.4693 | 0.3300 | 0.1670
Three Teeth 0.7292 | 0.1250 | 0.1068 | 0.2954 | 0.2822 | 0.1822 | 0.0230 | 0.0439
Eight Teeth 0.7488 | 0.0014 | 0.0008 | 0.0015 | 0.0063 | 0.1703 | 0.0900 | 0.2117

GAC [PRL21] Whole Jaw 0.8995 | 0.6330 | 0.8099 | 0.7495 | 0.8189 | 0.8365 | 0.8130 | 0.8356
Half Jaw 0.7105 | 0.3320 | 0.0334 | 0.0194 | 0.1363 | 0.0807 | 0.0320 | 0.0317
Front 0.8300 | 0.8407 | 0.0110 | 0.0230 | 0.1595 | 0.3731 0.3427 | 0.0337

Four Teeth 0.7387 | 0.9320 | 0.0499 | 0.0776 | 0.2009 | 0.2329 | 0.0451 0.0055
Single Tooth | 0.5731 | 0.4160 | 0.0271 | 0.1572 | 0.1893 | 0.0321 | 0.0252 | 0.2587
Ten Teeth 0.8517 | 0.4861 | 0.6798 | 0.5423 | 0.4986 | 0.4029 | 0.4304 | 0.3422
Three Teeth 0.7233 | 0.9362 | 0.0295 | 0.0083 | 0.0345 | 0.1582 | 0.0341 | 0.0871
Eight Teeth 0.8417 | 0.7976 | 0.0068 | 0.0046 | 0.0189 | 0.3835 | 0.4998 | 0.4095

BAAFNet [CVPR’21] Whole Jaw 0.5016 | 0.4559 | 0.6676 | 0.6293 | 0.6634 | 0.6457 | 0.5767 | 0.6724
Half Jaw 0.3024 | 0.2781 0.4423 | 0.3618 | 0.3426 | 0.2005 | 0.1871 0.2741
Front 0.6546 | 0.0011 0.0019 | 0.0012 | 0.0186 | 0.2916 | 0.2868 | 0.3778

Four Teeth 0.4262 | 0.0017 | 0.0074 | 0.0302 | 0.1283 | 0.1680 | 0.3713 | 0.3445
Single Tooth | 0.5052 | 0.2512 | 0.3232 | 0.0267 | 0.0133 | 0.0140 | 0.0148 | 0.0181
Ten Teeth 0.5113 | 0.4250 | 0.5497 | 0.4547 | 0.4340 | 0.3589 | 0.3797 | 0.4724
Three Teeth 0.3579 | 0.1254 | 0.1022 | 0.2305 | 0.3555 | 0.2494 | 0.2035 | 0.1888
Eight Teeth 0.6600 | 0.0010 | 0.0011 0.0011 0.0035 | 0.1368 | 0.2810 | 0.5874




TABLE III
CONTINUATION OF TABLE. 2.

Method Exp BG Tl T2 T3 T4 T5 T6 T7
pointMLP [ICLR’22] Whole Jaw 0.9570 0.8152 0.9376 09173 0.9400 0.9218 0.8885 0.9074
Half Jaw 0.9375 0.6519 0.8569 0.7667 0.7137 0.8349 0.7131 0.6769
Front 0.9199 0.5272 | 0.0609 0.1514 | 0.6668 0.6373 0.6288 0.6857
Four Teeth 0.8015 0.2551 0.1781 0.5697 0.6197 0.5486 0.3204 0.1548
Single Tooth 0.6442 0.2254 0.2552 0.0881 0.1452 0.1257 0.8070 0.2547
Ten Teeth 0.9541 0.8074 0.9071 0.8533 0.8828 0.8895 0.8784 0.8996
Three Teeth 0.8233 0.1717 0.0630 0.2113 0.3347 0.3323 0.2376 0.2855
Eight Teeth 0.9198 0.8465 0.1220 0.2034 0.6763 0.6404 0.6777 0.7476
PCT [CVM’21] Whole Jaw 0.7791 0.2974 0.5147 0.4496 0.3207 0.3654 0.4497 0.5788
Half Jaw 0.6047 0.3421 0.0263 0.0183 0.0017 0.0188 0.0022 0.0297
Front 0.6271 0.8080 0.3768 0.0629 0.0014 0.0099 0.0038 0.0743
Four Teeth 0.5971 0.9944 0.5944 0.0392 0.0068 0.0274 0.0022 0.0055
Single Tooth 0.4663 0.3154 0.0265 0.2460 0.8372 0.8286 0.8333 0.7492
Ten Teeth 0.6251 0.3155 0.0690 0.0894 0.0525 0.0192 0.0035 0.0128
Three Teeth 0.5890 0.9052 0.2495 0.0149 0.0021 0.0365 0.0787 0.1750
Eight Teeth 0.6398 0.9430 0.5955 0.1879 0.0010 0.0020 0.0172 0.3184
MBESegNet [ISBI'22] Whole Jaw 0.8089 0.4107 0.6989 0.6852 0.7295 0.6512 0.5464 0.5255
Half Jaw 0.8138 0.3779 0.6864 0.6956 0.7371 0.6369 0.5482 0.4011
Front 0.7350 0.0018 0.0015 0.0011 0.0016 0.0750 0.0588 0.0155
Four Teeth 0.7928 0.0027 0.0047 0.0018 0.0207 0.2313 0.3009 0.3005
Single Tooth 0.7192 0.3788 0.3737 0.0296 0.0140 0.0240 0.0445 0.0329
Ten Teeth 0.8391 0.4839 0.6522 0.5281 0.6146 0.5563 0.3419 0.1032
Three Teeth 0.7915 0.1303 0.0740 0.0980 0.3278 0.3492 0.1936 0.2611
Eight Teeth 0.7338 0.0014 0.0013 0.0099 0.0041 0.1002 0.1395 0.1391
VII. COMPLIANCE WITH EDTHICAL STANDARDS [11] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:

Ethical approval was not required as confirmed by the
license attached with the open access data[10].
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