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ABSTRACT

Discrete diffusion has recently emerged as a promising paradigm in discrete
data modeling. However, existing methods typically rely on a fixed-rate tran-
sition matrix during training, which not only limits the expressiveness of latent
representations—a fundamental strength of variational methods—but also con-
strains the overall design space. To address these limitations, we propose Discrete
Markov Bridge, a novel framework specifically designed for discrete representa-
tion learning. Our approach is built upon two key components: Matrix-learning
and Score-learning. We conduct a rigorous theoretical analysis, establishing formal
performance guarantees for Matrix-learning and proving the convergence of the
overall framework. Furthermore, we analyze the space complexity of our method,
addressing practical constraints identified in prior studies. Extensive empirical
evaluations validate the effectiveness of the proposed Discrete Markov Bridge,
which achieves an Evidence Lower Bound (ELBO) of 1.38 on the Text8 dataset,
outperforming established baselines. Moreover, the proposed model demonstrates
competitive performance on the CIFAR-10 dataset, achieving results comparable
to those obtained by image-specific generation approaches.

1 INTRODUCTION

A fundamental question in generative modeling is estimating an underlying distribution, pu, from
observed data and subsequently generating new samples from this distribution. Among the various
generative models proposed, diffusion models have exhibited remarkable performance in both
continuous (Song et al.| 2021} |Ho et al.,|2020b) and discrete domains (Campbell et al., [2022; [Lou
et al.| 2024)), demonstrating their versatility and effectiveness in diverse applications. These models
effectively capture complex data distributions, enabling high-quality sample generation in various
applications. However, despite their strong connection to variational models (Kingma & Welling
2014; \van den Oord et al.| 2018), which are known for their impressive generative capabilities,
diffusion models have yet to integrate the latent encoding ability inherent to variational approaches.
Specifically, in the discrete domain, the noise rate transition matrices within discrete diffusion models
are fixed and constrained, resulting in a limited design space and reduced expressive capacity. To
the best of our knowledge, only the Absorb and Uniform Matrix (Campbell et al.| 2022 |Lou et al.|
2024;|Austin et al.l 2021]) have been considered in computations due to their simplicity in handling
exponential term calculations.

In this study, we challenge the convention of using predefined static matrix in discrete modeling
by introducing a novel approach, termed the Discrete Markov Bridge (DMB), which aims to
integrate the strengths of variational methods with discrete diffusion models, offering a more robust
and efficient solution for complex discrete-state systems. This methodology seeks to enhance the
modeling capabilities by leveraging the theoretical foundations of variational inference within the
framework of discrete diffusion processes. Specifically, DMB is structured as a bidirectional two-
stage learning algorithm. It comprises a forward variational process, i.e., Matrix-learning, that
maps the data distribution to a learned distribution, followed by a backward decoding process, i.e.,
Score-learning, that reconstructs the data distribution from the learned representation.

In its matrix-learning process, DMB learns a rate transition matrix that maps the data distribution to
an adapted noise distribution. A key feature of this matrix is its diagonalizability, which stands in stark
contrast to the Absorb and Uniform matrices. This refinement enhances the model’s adaptability and
leads to improved performance. On the other hand, in the Score-learning process, a neural network
is employed to model the concrete score (Lou et al., 2024; Meng et al.,[2023)). As for the sampling
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Figure 1: Discrete Markov Bridge (DMB) comprises two components: Matrix-learning and Score-
learning. The Matrix-learning stage learns an adaptive transition-rate matrix to estimate the noise-
adapted distribution. This predicted distribution supervises the Score-learning stage via its loss. In
parallel, the Score-learning stage estimates the probability ratio required to construct the inverse
transition-rate matrix, enabling reconstruction of the original data distribution.

procedure, the rate transition matrix derived from the Matrix-learning process and the neural network
obtained from the Score-learning process are jointly employed to solve the backward differential
equation.

Within this framework, a broad spectrum of tasks can be effectively addressed. For discrete data
modalities such as text, the model supports non-autoregressive generation, following the approach
outlined in (Gu & Tan, |2022). In this work, we demonstrate that our proposed method surpasses the
performance of the previously established SEDD model (Lou et al.|[2024). For image data, the model
can be integrated with a VQ-VAE architecture (van den Oord et al., 2018)), yielding performance
on par with that of DDPM when evaluated on the CIFAR-10 dataset.

‘We summarize our contributions as follows:

* Novel Framework for Discrete Data (Section E[): We introduce the Discrete Markov Bridge, a
new variational framework for modeling complex discrete data.

* Theoretical Guarantee (Section[d): We offer a theoretical guarantee in terms of the validity and
accessibility of Matrix-learning as well as the convergence of the whole framework.

* Addressing Practical Issues (Section[5): Building on the theoretical insights established earlier,
we propose a computationally efficient matrix to tackle the practical challenges discussed in
Section[5} We then evaluate the model’s performance through experiments, demonstrating that it
outperforms baseline methods in text modeling and provides comparable image modeling results.

2 PRELIMINARIES AND RELATED WORKS

2.1 CONTINUOUS-TIME DISCRETE MARKOV CHAIN

Let X = {1,2,...,n} denote a finite state space, where n € R. A continuous time discrete Markov
chain (CTDMC) defined on X is represented as { X (¢) | t € R, X (¢) € X}. For convenience, we use
the notation X; = X (¢). The probability of transitioning from state 2 € X at time ¢ to state y € X at
time ¢ + s is denoted as p o¢(y|z) = P(Xi4s =y | X; = «). Similarly, the probability that X,
takes state z at time ¢ is expressed as p;(z) = P(X; = z). The probability distribution over the state
space at time ¢ is then given by the vector p; 2 (p;(1),p¢(2),...,p:(n)). The core component to
describe a continuous time discrete Markov chain is the rate transition matrix. We defined the rate
transition probability as follows:

A dpiy )¢ (ylz) — L Pits)t(Y]®) — peje(y|@) T Pits)e(Y]T) — 62(y)
= —————— " = lim = lim ,

ds As—0 As As—0 As
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where 0, (y) is the Dirac delta function. The Forward Kolmogorov Equation can be written as

% = pQW. fo)y £ qi(z,y), for all 2,y € X, denotes the rate transition matrix at time ¢. The
subscripts z and y indicate the row and column indices, respectively. Each rate transition matrix
satisfies the conditions: the sum of each row must be zero, and all off-diagonal entries must be
non-negative. Formally, this is expressed as Zy Qzy =0forall z and @, > O forall y # x.

2.2 RELATED WORKS

Prior Learning Leveraging a prior is a longstanding paradigm in machine learning. In the field of
natural language processing, for example, training typically begins with pretrained language models
(Liu et al., 2019; Devlin et al., 2019; [Touvron et al., |2023; Radford et al., 2019; |Lan et al., [2020; |Hu
et al., [2021; |Vaswani et al.|[2023). Likewise, pretrained models are highly valued in computer vision
(He et al.l [2015)). In our approach, the concept of a prior is equally fundamental: the forward process
adaptively refines this prior based on the evolving training dynamics of the backward process.

Discrete Diffusion Models Diffusion models (Ho et al.l [2020b; [Song et al., 2021} 12022 |[Sohl+
Dickstein et al.,|2015) add noise to data and use a denoiser for reconstruction, achieving success in
image tasks and gaining traction in discrete domains like natural language (Li et al.,[2022} Lou et al.}
2024; (Campbell et al., 2022} |Gulrajani & Hashimotol, [2023};|Sun et al.| [2023}; |Dieleman et al., [2022;
Nie et al |2025). Some methods map discrete data to continuous space (Li et al.| 2022; \Gulrajani
& Hashimotol 2023)), introducing rounding errors, while others operate directly in discrete space but
impose rigid, non-learnable noise structures (Campbell et al., 2022} [Lou et al., [2024])). In the contin-
uous domain, trainable Gaussian parameters improve flexibility (Kingma et al., [2023), but no such
method exists for discrete diffusion, where Gaussian distributions also remain restrictive. Moreover,
masked discrete diffusion models struggle to learn temporal dependencies (Zheng et al., [2024).

Flow Models Flow-based models (Rezende & Mohamed, |2016; Kingma & Dhariwal, [2018}; |[Liu
et al.| [2022} [Satorras et al., [2022; |Albergo et al. [2023; Trockman & Kolter, [2021)) constitute a
prominent class of machine learning models characterized by their ability to perform reversible
transformations on data representations. In contrast to conventional flow models, which rely on trans-
formation paths predefined by human designers (Albergo et al.|[2023} [Liu et al.,[2022)), our approach
autonomously learns these paths, enhancing adaptability and expressiveness in data modeling.

3 DISCRETE MARKOV BRIDGE

The target distribution, denoted as € R™, is a probability vector, meaning that its elements are
non-negative and collectively sum to one. As shown in Figure[I] our objective is to estimate the
distribution at one endpoint of the Markov chain, denoted as pg, such that py ~ p. The other
endpoint, denoted as pr, serves as the distribution for the latent variables or prior. To achieve
the specified objectives, the proposed DMB framework is structured into two distinct components:
Matrix Learning and Score Learning.

The Matrix-learning serves as a forward bridge, facilitating the transition from p to the latent
distribution. Conversely, the Score-learning function represents a reverse pathway from the latent
distribution back to u, leveraging the groundwork established by the Matrix-learning process. This
dual-function framework ensures a comprehensive bidirectional understanding of the data structure
in a variational-like manner.

The structure of the DMB is demonstrated in Algorithm[2] This pseudocode consists of two nested
while loops that operate within the overarching while loop governing the training epochs. Each of
these nested loops corresponds to a distinct learning stage within the framework. We list the following
theorem to ensure the reversibility of the forward and backward Markovian processes.

Theorem 3.1 (Reversibility (Campbell et al.,|2022;|Lou et al., 2024)). Given the Forward Kolmogorov
Equation of a CTDMC:

dpy

— . O®
P L M
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There exists a reverse CTDMC with Forward Kolmogorov Equation:

pt(y)
pe(x)

dpr—¢

y7 Q0 @

= pr_ QT where Q(t)

This theorem elucidates the reverse form of a CTDMC, proposing that knowledge of the probability
ratio enables the derivation of a reversal of the original Markov chain that is almost everywhere
equivalent. The derivation of the reverse form underscores the theoretical framework that mirrors the
dynamics of the forward stochastic process.

We fomulate the learning process by employing the continuous-time Evidence Lower Bound (ELBO)
as an alternative optimization objective to Maximum Likelihood Estimation (MLE). In the DMB
framework, both Matrix-learning and Score-learning collaboratively optimize the full bound through
their respective subprocesses.

3.1 Matrix-LEARNING

In the Matrix-learning process, our primary objective is to estimate the rate transition matrix @,
where a denotes the set of model parameters. For simplicity, we assume that the forward rate transition

matrix at time ¢, denoted Q&t ), is given by o (t)Q,. Furthermore, we employ the following Q:

- Z a; al N Ap—2 Ap—1
_ 0 — a; ... Gp— Ay -1 ._ -1
Qu = A P 2 1| A7V = AHA 3)
0 0 —Qp—1 An-1
L O 0 0 0 |
, where {a1,a9,...,a,—1} = « are parameters for learning, A, A1 are fixed predefined

permutation matrices and H is denoted as the upper-triangle matrix in the equation. The derivation
and underlying rationale for utilizing this matrix are detailed in Section 4 and further explored in
Section 5.1} Another essential component of this process is y, which is approximated using the
currently predicted py obtained through Score-learning as a prior (see Section[3.2). By integrating
Equation () from time O to time ¢, the following equation can be derived:

Pt = Po exp{ / 5)dsQq} 4)

Note that the exponential in the formula is a matrix exponential. The training procedure aims to
minimize a component of the variational bound (see Equation (9)), leading to the following objective
function J:

Jo £ Eu[Drer( o)) 5)

where the conditional probability distribution pr|q,q is given by the rows of exp{ fOT o(8)dsQa}:
Pr)o; «a(T7|T0) = exp{/ $)dsQa Yo,z (6)

The final distribution pr., is obtained by multiplying the initial distribution py with the conditional
distribution, as presented in Equation (@), evaluated at time ¢ = T'.
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Algorithm 2 Training Algorithm of the DMB
Input: Target discrete data X ~ p

1: Initialize pg, pr < random_init()

2: while not converge do

3:  Sample a batch of discrete instance X ~ p. /* Data for the two learning processes. */
/* Matrix Learning */

4:  step <+ 0

5:  while step < max_step & Lg > € do

6: Update Q,, Jq according to Eqn. @) and predict pr using Eqn. att ="1T.
7: step < step + 1

8:  end while

/* Score Learning */

9: step+ 0
10:  while step < maz_step & Tscore = €score dO
11: Update sg, Jscore W..L. current @, using Eqn. .
12: step < step + 1

13:  end while

14:  Predict updated py that estimates . using Eqn. (I0). /* Used for Matrix Learning */
150 if Jo + Tscore < € then

16: converge <— TRUE

17:  endif

18: end while

3.2 Score-LEARNING

Score-learning constitutes a reverse process of Matrix-learning. It is noted that in Theorem[3.1] the
reverse rate transition matrix adheres to the following relationship:

QY = Z’jﬁ; Quyo () )

Consequently, while Matrix-learning handles the forward rate transition matrix Q, Score-learning
focuses on managing the remaining part, i.e 2 £(y) (Lou et al.| 2024). A learnable model sq(z4, 1),

pe(x)
is designed to model the ratio, and the main part of the continuous time Evidence Lower Bound

(ELBO) (Campbell et al., 2022} [Lou et al., [2024; Kingma & Welling|, [2014) is leveraged as the
training objective, denoted as Jcore:

T (t) Pejo(ylzo) Pejo(ylzo) Pejo(ylzo)
fO EZD’VMMNPHO [y;éz Qy!zf <89(xt’t)y - I)t\loa(ﬂfthj)n) + I)t\loo(ﬂfﬁ;o) (IOg(Pt\LD(wﬁ;O)) - log Se(l‘t’t)y))}dt
Tt
(®)

To provide a comprehensive understanding, we present the complete ELBO as follows, demonstrating
how Matrix-learning and Score-learning collaboratively contribute to minimizing the ELBO bound.

EEON#[i IngO;G(:EO)] S Jscore + JQ~ (9)

Estimating ;¢ The estimation of y is expressed as Equation (I0). The equation below is derived
under the Euler method and can be generalized to other ODE-solving methods. Suppose the inference
time process is partitioned as: [0, t1], [t1,t2], . . ., [tn, T]. By Baye’s rules:

(o) ~ po(wo) = Ex, x,,...x, [Po1 (wo|T1)]. (10)

Under the guidance of Equation (T0), the sampling process begins with drawing zr, followed by
obtaining x,, through the conditional distribution p; |7 (%, | X7 = 27). This procedure continues iter-
atively, generating x.,, 1, and proceeding sequentially until the complete sequence { X1, X,,, ..., X1}
is sampled. Subsequently, the conditional probability py; (zo|z1) is determined. By repeating this
process multiple times and averaging the sampled probabilities, an estimation can be obtained by
approximating the expectation with the empirical mean.
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3.3 SAMPLING

The sampling process is done under the cooperation of Matrix-learning and Score-learning in a
similar way as estimating .. The reverse rate transition matrix is calculated as Equation (7)), and an
ode-solving method such as the Euler method can be further applied to solve Equation (2. Noticed
that, as shown in line 15 of Algorithm [2] the sampling process is performed every time after the
Score-learning process to gain the estimation of ;1 and samples for evaluation.

4 THEORETICAL FOUNDATIONS

4.1 VALIDITY AND ACCESSIBILITY OF Matrix-LEARNING

In this subsection, we establish the validity and accessibility of the Matrix-learning process. Specifi-
cally, validity concerns the ultimate state of the forward process and whether it remains confined
within a well-defined domain, i.e., whether a probability distribution transforms into another valid
probability distribution. Accessibility, on the other hand, pertains to the ability of the process to
transition between any two arbitrary discrete distributions.

Validity Proposition presented below, establishes that any transformation originating from
a probability distribution must result in another probability distribution. This theorem guarantees
that, despite the presence of errors in the learning process, the outcome remains a valid probability
distribution. For a detailed proof, refer to Appendix

Proposition 4.1 (Conservation of the Sum). For two arbitrary vectors ¢, n € R", rate transition
matrix Q € R™*™, if o = pexp{Q}, then

n

S0l =3l

i=1

Accessibility Theorem ensures that any two probability distributions are accessible in the
forward process. Consequently, this implies that the optimality of Matrix-learning can be achieved,
provided the presence of a strong optimizer.

Theorem 4.2 (Accessibility). For two arbitrary discrete distributions p,q € R™, there exists a rate
transition matrix Q € R™ "™ such that:

p=qe? (11)

The central idea of the proof is to construct a specialized matrix that possesses strong representational
capacity while remaining computationally manageable within the framework of matrix exponentiation.
The designed matrix, which is depicted in Lemmal4.3] is an upper triangle matrix with the vanished
sum of rows. A remarkable characteristic of this matrix is its elegant eigendecomposition form, which
presents a well-structured and analytically convenient representation. Its eigenmatrix is an all-one
upper triangular matrix, as shown in Lemma4.3]

Lemma 4.3. Let matrix Q = H € R™", where H is defined in Equation (3),
then QQ can be diagonalized as Q = UAU™', where and the diagonal matrixis A =
1 1 ... 1
. n=l n_l .. 0 I |
diag({— > a;,— > ai,...,—an_1,0}), the orthoganl matrix is U =
=1 1=2 “. PO PO PR
o o0 ... 1

There are two key observations regarding the () matrix. First, it contains only n — 1 parameters,
which constitute the minimal set necessary to solve Equation (TT). This sufficiency implies that the
solution derived for the () matrix is unique. Second, the matrix retains nonzero elements exclusively
in its upper triangular portion, implying that each element can transition only to those with a larger
index. This observation raises an additional consideration: for effective state transitions, the matrix
must allocate sufficient “mass" or probability. Consequently, a matrix is required to appropriately
adjust the indices of elements within the finite set X, as shown in Lemma@ Lemma@] establishes
that, after a permutation, the cumulative probability at each element of the initial distribution in
the transition process is greater than or equal to that of the target distribution. This guarantees that
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elements with surplus probability can redistribute their excess, while those with a deficiency can
receive the necessary adjustments, ensuring a balanced transformation.

Lemma 4.4. For arbitrary distribution p,q € R", there exists an permutation matrix A such that:

P _leé
1=

<SS

q; Z 4;
=1

-

/ /
P1 SP}"‘I’)/Q <.
q1 q + g5

1

-
Il

< =1 (12)

-

1=1

where p' = pA, ¢’ = qA, p) is the i-th entry of p', and ¢, is the i-th entry of ¢

This lemma guarantees the existence of a permutation that, when applied, results in a monotonically
increasing sequence of probabilities.

Lemma 4.5. Let Q € R"*™ be a rate transition matrix, A € R™"*"™ be a permutation matrix, then
AQA™! is a rate transition matrix.

By integrating the lemmas above, we aim to establish the proof of Theoremd.2] A comprehensive
derivation of these lemmas and the theorem is provided in Appendix

4.2 CONVERGENCE

As discussed earlier, the DMB framework operates as a two-step learning algorithm, necessitating
a thorough examination of its convergence properties. In this section, we present a theorem that
establishes the convergence of the entire algorithm. The convergence problem is nontrivial, as the
Score-learning process does not merely constitute a direct inversion of the Matrix-learning process.
The discrepancy arises because the score model sy is trained under the supervision of the distribution

1, rather than pék), where k denotes the epoch number. To be specific, we have

Proposition 4.6 (Supervision of Score-learning). Suppose Q;’s elements are non-zeros, the training
objective is depicted as in Equation , then the optimal score model sg«(x4,t), satisfies:

>~ 1(xo)pejo(ylzo)
sg+ (¢, t)y =E [pth(y‘xO) Y "
T wortole(loe) Pijo(@e|zo) ZH(CCO)Z%\O(%VCO)

o

The proposition presented above illustrates the influence of x4 on the training process and underscores
the challenge of convergence arising from the absence of pék). A detailed proof of this proposition

can be found in Appendix[C|

Under the assumption that each process achieves optimality, the following theorem establishes the
convergence of DMB from the perspective of KL divergence, thereby demonstrating the validity
of the overall DMB framework. Moreover, given our primary focus on the algorithmic aspects,
this assumption is justified, consistent with prior work that introduces new frameworks, such as
Goodfellow et al.| (2014). Notably, although the training objective of the Score-learning process
is the continuous ELBO bound, the theorem presented below can be generalized to encompass a
broader class of objectives. This generalization suggests the potential for designing improved training
objectives within our framework.

Theorem 4.7 (Convergence of the algorithm). If we assume optimality is achieved in every epoch of
the Matrix-learning process and the Score-learning process, and we denote the k-th epoch estimation

of i as pgk), then limy s o0 Drcr, (1] |pék)) converges.

Please refer to Appendix [D]for the proof.

5 PRACTICAL ISSUES AND EXPERIMENTS

In this section, we discuss the practical issues of DMB by assuming our data coming from a high
dimensional space, i.e.u € R?*™, where n is the size of the finite set and d is the number of
dimensions. For instance, for textual data, n is the size of the vocabulary and d is the sequence length.
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5.1 ADDRESSING PRACTICAL ISSUES

Both the DMB model and discrete diffusion models (Lou et al., [2024} |Campbell et al., [2022} |Sun
et al., 2021)) face significant challenges related to the () matrix. In particular, during the Score-learning
process, the computational efficiency of matrix exponential operations becomes a critical constraint.
Furthermore, the Matrix-learning process often requires storing the entire () matrix, posing substantial
concerns regarding space efficiency. These limitations have been the primary reasons restricting
previous studies to utilizing only the Uniform and Absorb matrices.

As Jean le Rond d’ Alembert once remarked, Algebra is generous; she often gives more than is asked
of her: In the context of proving Theorem[.2] we identify a distinct class of matrices, as mentioned
in Section [3.1] and further rigorously discussed in Lemma[4.3] This structured approach not only
underscores the theoretical underpinnings but also highlights the practical implications of matrix
manipulation in these models.

Efficient Computation of the permutation matrix. Before proceeding with the analysis of the
@, matrix, we first outline the computation of the predefined permutation matrix A. As illustrated
in the assumptions, the evolution of each dimension occurs independently. Consequently, for each
dimension, the permutation matrix is computed separately. In accordance with Lemma .4 we
assume the denominator to be constant. Therefore, the permutation matrix for the i-th dimension
satisfies the following inequality:

X =) <u(xP <j+1),¥ie,2,...n—1

The marginal distribution (X, éi)) can be efficiently estimated in the form of a histogram by extracting
a subbatch from the dataset. Subsequently, the permutation matrix is computed using a fast sorting
algorithm with a time complexity of O(n logn).

Efficient Computation of Matrix Exponential. Matrix exponential is difficult to calculate as it’s
defined through Taylor expansion, however, a property exists:

Proposition 5.1. For a matrix Q € R™*™ and a non-degenerate matrix D € R"™*", we have
exp{DQD~1} = Dexp{Q} D1

Please refer to Appendix [E|for proof. By Proposition [5.1]
exp{Qa} = exp{(AU)AL(AU) '} = (AU) exp{A, }(AU) ™! (13)

, where U is the all-one upper triangle matrix, A, is a diagonal matrix parameterized by «.. Therefore,
the computation of the matrix exponential is reduced to evaluating the exponential of a diagonal
matrix, which is significantly more efficient.

Space Efficiency. For the permutation matrices A, A~ € R?*"X" _a total of d x 2n parameters are
required. Apart from A, A~*, the upper triangle matrix can be decomposed into a non-parameterized
all-one upper triangle matrix, a parameterized diagonal matrix, and a constant matrix. Consequently,
the storage requirement is of the order O(nd) parameters.

5.2 ELBO BOUND CALCULATION

As shown in Equation (9), the computation of the full bound necessitates the evaluation of both
the Jscore and the expected Kullback—Leibler (KL) divergence between the evolved distribution
and the target distribution, expressed as E, D, (Pr|o||Pr). Under mild assumptions following
previous works (Campbell et al., |2022; [Lou et al.| 2024}, we can derive a closed-form expression
for computing the KL term:

Proposition 5.2. The KL term can be calculated as:

d
D1 (prioa(@rlzo)llpr(zr))= Y Drr(prioa @ [2§)) lpr (=) (14)
=1
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5.3 EXPERIMENT

Table 2: CIFAR-10 Results. We report inception
Table 1: The results were tested 1000 times score (IS), and Fréchet Inception Distance (FID) score.
on the Text8 dataset. We adopt the baseline re-Results are adopted from [Ho et al/ (2020a)).
sults reported in (Lou et al.,2024) for compar-

ison. AR: Autoregressive generation. NAR: Model IS (1) FID (})
Non-autoregressive generation. Conditional
EBM (Du & Mordatch]|[2019} 8.30 37.9
JEM (Grathwohl et al.[|2020) 8.76 38.4
Model BPCU)  BioGAN (Brock eral 2019} 9.22 14.73
AR StyleGANZ + ADA (vI) (Karras et al.|[2020) 10.06 2.67
IAF/SCF (Ziegler & Rush/[2019) \ 1.88  Unconditional
AR Argmax Flow (Hoogeboom et al.|[2021) 1.39 Gated PixelCNN ¢ oo llboi 160 .03
. ate 1Xe van den Oord et al. ) 4. .
Discrete Flow (Tran et al [2015) 123 pixelIQN (Ostrovski et al 12018} 5.29 49.46
NAR EBM (Du & Mordatch{2019) 6.78 38.2
SEDD Absorb (Lou et al.|[2024) <1.39 NCSN (Song & Ermon|2019) 8.87+0.12 25.32
D3PM Absorb (Austin et al.][2021) <145 ggg:ﬁ g/gg?a al--f?'%w 33318% 1251472
s 1 <1 - e et al.) )] . . R
Mult, Diffusion (Hoogeboom et al.[2021) SLT2 0 G 1eGAN? + ADA (vT) (Rarras et al]3020)  9.74 4 0.05  3.26
11\341?1\? gh‘h et “1"12%22"4\ 2 %'3(1) DDPM (fixed isotropic) (Ho et al.|[2020a) 7.67+0.13 1351
(Graves et al.| ] = DDPM (simple) (Ho et al.|[2020a) 9.46+0.11 3.17
. NAR: w/o [ ”lﬂa;k]z token Discrete Diffusion
. ! ] L -1
D3PM Uniform ¢Austin et al. 12021} S L6l T M (absorbing) (Austn et al]2021) 6.78
SEDD Uniform (Lou et al.[[2024) < 1.47 D3PM i NS TR0 5.99
0 <138 (uniform) ( ustin et al.||2021) . 99
DMB (Ours) <L D3PM (Gauss -+ Logistic) (Austin et al.| 2021} 8.56 -
Ours 8.64 11.63

Best Performance on Text8 The proposed framework was evaluated on the Text8 dataset, with
experimental results summarized in Table [l Performance was measured using the Evidence
Lower Bound (ELBO), calculated as detailed in Section[5.2] and results were averaged over 1,000
independent trials to ensure statistical reliability. Our model, DMB, achieves a Bits-Per-Character
(BPC) of 1.38, outperforming representative discrete diffusion baselines such as SEDD (Lou
et al.,|2024). Notably, this performance is achieved without introducing a mask token or otherwise
modifying the vocabulary. When compared to other methods that also operate without a mask token,
such as SEDD Uniform and D3PM Uniform, our approach demonstrates a significant performance
gain, improving upon previous SOTA by approximately 0.1 BPC.

Competitive Performance on CIFAR-10 We evaluated the performance of DMB on the CIFAR-
10 dataset within a VQ-VAE framework (van den Oord et al. 2018). The quantitative results,
presented in Table E], show that our model achieves an Inception Score (IS) of 8.64 and a Fréchet
Inception Distance (FID) of 11.63. This performance not only surpasses that of another discrete
diffusion model, D3PM, by 0.08 in IS but also outperforms several models explicitly designed for
image generation—including DDPM (fixed isotropic) and SNGAN (Miyato et al., [2018)—across
both IS and FID metrics. The primary advantage of our method over D3PM stems from its core
mechanism: whereas D3PM relies on fixed rate transition matrices (e.g., Absorb, Uniform, Gauss),
DMB adaptively learns the optimal matrix, leading to better outcomes. Collectively, these results
underscore the effectiveness and generalization capability of our model, demonstrating its strong
performance even beyond its primary design scope.

6 CONCLUSION

In this study, we propose a novel paradigm, the Discrete Markov Bridge (DMB), which combines
the strengths of variational methods with the capabilities of discrete diffusion models. We provide
theoretical guarantees to substantiate the validity and accessibility of the proposed Matrix-learning
process and further prove the convergence of the DMB algorithm. In addition to our theoretical
contributions, we conduct extensive empirical evaluations on the Text8 and CIFAR-10 datasets. The
experimental results indicate that DMB not only surpasses existing baselines such as SEDD [Lou
et al.|(2024) in text modeling tasks, but also achieves competitive performance in image modeling
on CIFAR-10, thereby demonstrating its potential as a unified framework for discrete representation
learning.
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This research is strictly methodological, focusing on foundational algorithmic improvements for
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data privacy, bias, or potential misuse. While we acknowledge the broader societal implications of
language models in downstream applications, our study is confined to a pre-deployment, academic
context. The enhancements detailed here are not designed for and do not facilitate manipulation,
deception, or other unethical activities. We therefore conclude that our research poses no direct
ethical or societal risks and is aligned with the principles of responsible Al development.

REPRODUCIBILITY STATEMENT

To ensure our work is fully reproducible, we provide a comprehensive overview of our methods
and experiments (See Sections [3]and [5)). The technical formulation of our approach is detailed in
Section [3] while the experimental details are listed in Appendix [G} Our LLM usage statement is
located in Appendix [} and the complete source code is included with the submission to facilitate
replication. We also attach the code in the supplementary materials.
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A PROOF OF CONSERVATION OF THE SUM

Proposition A.1 (Conservation of the Sum). For two arbitrary vectors ¢, i € RY, rate transition
matrix Q € R¥™, if p = pexp®, then

Proof. As ¢ = pexp®,

Z 1(5) (exp{Q})i
Therefore,
Z Z Z 1(j) (exp{Q});.i
As we have
> (exp{Q})i; =
J
Thus,

> o) = pu() Y (exp{Q)ji = > u(j)

i J i 7

B PROOF OF ACCESSIBILITY

B.1 PROOF OF LEMMAS

Lemma B.1. Let matrix Q € R*? and hold the following form:

— E a; ay as cee Qp_2  Gp-1

0 — Z a; as cee Qp_2  Gp-1

@= 0 0 — nisl a; ... QAp—9 Gp_q
0 0 0 . —Gpe1 ana

0 0 o 0o 0 0|

then Q can be diagonalized in the following form:

Q=UAU!

1 1 1 1

0 1 1 1 n—1 n—1
whereU= {0 1 1 1|, A=diag{— > ai,— > aiy...,—an—1,0})

i=1 i=2

0o 0 O 1

1 1 1 1 1 -1 0

0o 1 1 ... 1 1l m 0 1 -1
Proof. Q=1|... ... ... ... ... |diag({— > a;,— > ai...,—ap_1,0}) ... ...

0 o ... 1 1 i=1 =2 0 0

0 0 0 0 1 0 0
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Lemma B.2. For arbitrary distribution p, ¢ € R'*%, there exists an permutation matrix A such that:

b / /

P p/ 4 p/ Z p; Z b;
L2 < <
1 q1 + 4

=1 (15)

where p' = pA, ¢’ = qA, p} is the i-th entry of p’
Proof. 1t’s obvious that there exists a permutation matrix A which can sort f;—:' ascendly, i.e.:

/
i < Pit1
G 4

, where p’ := pA, ¢’ := gA, and the corner mark ¢ refer to the i-th entry.
Also, we can demonstrate that:

a a a a1 +a
172:>71<12

ar? o
1 by by — bi+by T

(CAY

a2
ba

The inequality we need to prove is:

k k+1
P D
=1 < =1

k — k+1
>4 >4
=1 =1

and it’s sufficient to proving the following inequality:

k
> D
=1

b Qg
>4
i=1

We then start to prove the inequality by induction.
k =1: Leta; = p},as = ph,b1 = q}, ba = ¢, and by using inequality A, the statement is proved.

k + 1: By induction:

/
- < pic-t,-l
k41
>4
i=1
By leveraging inequality /\:
ktl
Z b; p/
s <
' Dk+1
2.4
i=1
As p;c+1 < P;c+2 .
Tor1 = Qoo
k+1
/
Z p; p/
<
D12
>4
i=1
Thus the lemma is proved. u
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Lemma B.3. Let Q € R%%4 pe q rate transition matrix, A € R¥*4 pe g permutation matrix, then
AQA™! is a rate transition matrix.

Proof. As every permutation matrix can be expressed as the products of elementary matrices, we
denote:

1
A= [ P =0 ol
k=Na

, where Tj; is the elementary matrix obtained by swapping row 4 and row j of the identity matrix,
Ny eR

Therefore:
1

Na
AQA™ = (T =] i)
k=1

k=Na

For a single pair of transformation, i.e. Ti(jk)QTi(f), the row sums remain unchanged, and the

diagonal elements is still the diagonal elements after transformation, thus AQA~! is a rate transition
matrix. |

B.2 PROOF OF THE THEOREM

Theorem B.4 (Accessibility). For two arbitrary discrete distributions p, q € R?, there exists a rate
transition matrix QQ € R¥? such that:

p=qe?

Proof. By Lemma [4.4] there exists permutation matrix A which satisfies inequality and we
denote:

P =pA
¢ :=qA
Suppose:
Q:=AQ'A™
T -
- E: a; ay a2 N Ap—2 Ap—1
=t n—1
, where ' = 0 - 7,;2 @i a2 ... Gn-2  Gn-1| — AU, U is all one upper
0 0 0 e —Ap—1 Ap-—1
L O 0 0 0 0 0 |
n—1 n—1
triangle matrix, and A = diag({— >_ ai;,— > ai,..., —an—1,0})
i=1 i=2
Denote:

n—1
P =pU =[P+, Y Pl
=1

n—1
¢ =qU=q,qd\ +db.... > q1]
=1

Thus the solution of p = ge® can be obtained by solving:

17" " _A
P =qe
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R . _ n—lai _ nil a; . '

, where e = diag({e = ,e =2 ... e %=1 1}) Solving the equation:

k+1 k

Z pz Z pz

i=1

ar = In P —In

> qi Z ql

i=1
and specifically,

Z P}
Ap—1 = —ln

Zqz

By the inequality [I5]which p’, ¢’ satisfies and the monotonicity of the In() function, aj, > 0,Vk, and
thus @)’ is a rate transition matrix

Transfering the solution of p” = ¢”e® back, we obtain:
Q=AUAU A" = AQ'A7!

and by Lemma[4.5] Q is a rate transition matrix. [ ]

C PROOF OF SUPERVISION OF Score-LEARNING

Proposition C.1 (Supervision of Score-learning). Suppose Q")’s elements are non-zeros, the training
objective is depicted as in Equation , then the optimality of the score model sg« (x4, 1)y satisfies:

ZM(%)PHO(M%)

pth(y‘xO) xo
56+ (2, 1)y = Eggmopg, (- =
@y = BeompcClenly Coao)) = 5 aleo)paot@ilas)
xo

Proof.
T
Pt|o(y|$0)
Jscore :A EION#,ItNPt\O(thO [Z Qg(/t?m ( (xtvt)y T

v pt\o(l’t\l’o)

Pjo(y]z0) N o Pejo(y]To)
+ polalo) VB0 s lg(pﬂo(wo))))]dt

Therefore, with a little abuse of notation, we have

T
. . Pt\o(y|$o)
arg min J, —arg min Eroohzrm E (t) ———logs dt
g@ score gG /O Lo~ LTt Pt\o(Tt\To) = Qyzt pt|0(xt|$0) g So ]

T
. Ptjo\y|T
:argmln/ B [ E ngt)mt (Sg — EIONMUH[M] log 59>}dt
0

0 g pt\0($t|$0)

L

oL T pijo(ylzo) | 1
8789 :/0 Ty~ bt Z Q;(yt)zt< IONHOH[L]i ]dt

g pt\o(l‘t|$o) So

As Q(t) ’s elements are non zeros, therefore

Q) > 0.Vy # =,
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oL pt|0(y|$0) i

— =0<=1-E; ~pu,, =0
orHol [pt|o($t|$o) Sg

889

Therefore, the optimality of sy satisfies:

pt|o(y\l‘0)

S (-Tt, t)y = Ea;owuo‘t(.‘zt) [pflo(xt|x0)

H(%)Pﬂo(wt\%)

S iCroipuoartzo) e have

Furthermore, as fig|¢ (wo|7¢) =

Zﬂ(xo)pt|o(y|l’0)

Z0

;/«L(ﬁﬂo)pt|o($t|$o)

sg= (4, t)y =

D PROOF OF CONVERGENCE

D.1 PROOF OF LEMMAS

Lemma D.1. For a random variable Xy € R™ with arbitrary two distributions po, pj, the transition
kernel is pyo(x¢|xo). We denote

pi(ay) = Zpo(lfo)Pﬂo(ﬁﬂtWo)

Zo

pi(xe) == > ph(x0)pejo (e z0)

zo
Then we have:
Dk (pellpy) < Dir(pollpy)

Proof.
20, T
Drr(po,i (- Ipoe(-)) = D pot(wo, ) log pOtExO t;
0

Z0o,Tt

prjo(¢|20)po(20)

= Z po,t(To, ¢) log -

a0 Prjo(@t|o)po (o)

= Dk r(pol|po)
Using the chain rule for KL divergence:
Dxr(pel|pt) = D r(po,e(o, 20) P64 (20, 24)) — Ep, [Drcr (poje (wole)| oy (xol2)]
As KL divergence is greater than zero, we have:

Drcr(pillpt) < Drer(po.i(o, x:)l1po ¢ (20, ¢)) = D (pollpo)

D.2 PROOF OF THE THEOREM

Theorem D.2 (Convergence of the algorithm). If we assume optimality is achieved in every epoch
of the forward process and the reverse process, and we denote the k-th epoch estimation of u as po,

then limy_, o0 Dxr, (] |pék)) converges.
Proof. According to the assumption that each subprocess reaches its optimum,

(k) (k)<
W= IPrioPo 7
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(k+1) _ (k) (k) (k)¢
Do = Po PrioPo|T
Therefore, by using Lemma [D.T|twice:

k k k k) (k k k
Dicr(ullph”) > Dicr(uplipl Iy pie) > Dicr (S s peuplir )

Therefore,

k k+1
Drer(ulp”) > Dicr (ul|p§F)
As KL divergence is greater than zero, then

. k

lim Dic(ul|py”)

k—o0
converges. ]
E DERIVATION OF MATRIX EXPONENTIAL CALCULATION

Proposition E.1. For a matrix QQ € R™"*" and a non-degenerate matrix D € R™*", we have:

exp{DQD '} = Dexp{Q}D ™!

Proof. According to the definition of matrix exponential,

exp{DQD '} =1+ (DQD™!
i=1
As (DQD~Y)i = DQ'D™!,
exp{DQD™'} =1+ DQ'D™'=D(I+Y Q)D™' = Dexp{Q}D"

i=1

F DERIVATION OF KLL TERM CALCULATION PROPOSITION

The full bound (Meng et al.,|2023; |(Campbell et al.,[2022) is as follows:

EIONM[_ Ingo;e(l‘oﬂ S Jscore + ]Exow,u [DKL (pT|0;o¢ ($T|£L'0)||¢)]

, where
T
pt\o(b|$o)
Jscore é/ Em LT~ x|z Q(t) ST 7t b —

0 i e~Pejo (3] 0)[17;;,, bt ( ! ) Pt|0($t|$o)
Pejo(blz0) Pejo(bl70)

+ —————= (log sg(x¢, t)p — log(——F= dt
pao(afg) (08 0t —1os L EmE ) |

However, unlike previous works, the second term, which is the K L term should be considered, and
it seems impossible to compute. Fortunately, certain characteristics of the Matrix-learning process
can be used to justify a computable form for the second term. Suppose the text sequence holds d
dimensions, i.e.x € R%, then the characteristics can be described as follows:
* Independent Evolution:
d

Priose(TT|T0) = HPTIO;a(x¥)|xE)i))
1=1

* Independent Terminal:

d B
=[] pr=¥)
=1
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As a result, we provide a computable form for the KL term.

d A 3 .
Proposition F.1. D1 (pri0.0 (z7|70)|[pr(27))= 3 Dicr (prjoa (@ |25 o (22))
=1

Proof. By independent evaluation and independent terminal, we have

pT\o;a($T|$o)

Dk (prjose(zr|zo)|lpr(zr)) = ZPT\o;a(ﬂiTkﬂo) log 8

xT

d pT|0-a(33¥)|33E)i))
= Y pralering) Y log PRERET N0 S

()
i— ZT
O MCIS G i=1 pr(zy’)

4 S

priose (@ f)

=Y Y prpaleria) log e T )
=10 5@ @ pr(zy’)

.....

d

3 @1 PTioa (@ [2f”)
= § :pT\O;a(xT |z )log’#
i=1 0 pr(zy’)

d
=" Dt (priosaeP 1) o (+9)

i=1

G ADDITIONAL EXPERIMENTAL DETAILS

G.1 MODEL DETAILS

In terms of text modeling, for Matrix-learning, the (), matrix is initialized as follows:
a; =0,Vi=1,2,3,...,n—2
ap_1 =1
The model is kept the same as SEDD |Lou et al.|(2024).
As for image modeling, for Matrix-learing, the (), matrix is initialized as follows:
a; =1le—5Vi=1,2,3,...,n—2
The model is kept the same as SEDD |Lou et al.|(2024).

G.2 TRAINING DETAILS

The model is trained with a batch size of 512 and trained with a learning rate of 3 x 10~* (Adam
optimizer) on 8 4090 24GB GPUs. Both the Matrix-learning as well as the Score-learning are trained
with the AdamW [Loshchilov & Hutter| (2019). Training start with a weight decay factor 0.01, which
then turn to 0 in the 7,900,000 step for text8.

H DISCUSSION AND FUTURE WORKS

In this work, the DMB framework primarily relies on the evidence lower bound (ELBO) for both
training and evaluation. However, given that Theorem[{.7)is not dependent on the specific form of
the loss function, it is theoretically possible to derive other bounds for training. This flexibility opens
new avenues for optimizing DMB under different theoretical and practical settings. Furthermore, we
haven’t provided a theorem focusing on optimality, which may be done for future work.
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I THE USE OF LARGE LANGUAGE MODELS (LLMS)

The use of Large Language Models (LLMs) in this work was confined to editorial tasks, namely im-
proving the manuscript’s prose and generating figures. All core scientific contributions—including the
DMB framework, its theoretical development, experimental design, and analysis of the results—are
the exclusive work of the authors.
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