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Abstract

Current text classification approaches usually001
focus on the content to be classified. Contextual002
aspects (both linguistic and extra-linguistic) are003
usually neglected, even in tasks based on online004
discussions. Still in many cases the multi-party005
and multi-turn nature of the context from which006
these elements are selected can be fruitfully ex-007
ploited. In this work, we propose a series of008
experiments on a large dataset for stance de-009
tection in English, in which we evaluate the010
contribution of different types of contextual in-011
formation, i.e. linguistic, structural and tempo-012
ral, by feeding them as natural language input013
into a transformer-based model. We also exper-014
iment with different amounts of training data015
and analyse the topology of local discussion016
networks in a privacy-compliant way. Results017
show that structural information can be highly018
beneficial to text classification but only under019
certain circumstances (e.g. depending on the020
amount of training data and on discussion chain021
complexity). Indeed, we show that contextual022
information on smaller datasets from other clas-023
sification tasks does not yield significant im-024
provements. Our framework, based on local025
discussion networks, allows the integration of026
structural information while minimising user027
profiling, thus preserving their privacy.028

1 Introduction029

Online conversations are a main channel through030

which phenomena such as fake news, rumors and031

hate speech can spread (Sheth et al., 2022), polit-032

ical leaning is expressed (Garimella et al., 2018)033

and one’s health conditions can be revealed (Gun-034

tuku et al., 2017). All these phenomena can be035

captured to some degree automatically, provided036

that we have reliable NLP systems able to classify037

the content of the messages. Most classification038

approaches focus on the textual content of single039

comments (or a pair, in the case of stance detec-040

tion), however little has been done to include the041

Figure 1: Representation of input data in Kialo dataset:
the discussion chain (in bold) is extracted from the dis-
cussion tree, and each claim has a textual content c, a
user id and a timestamp. A support (green) or contrast
(red) label w.r.t. the previous statement is assigned to
each claim. The initial claim c0 has no stance (blue).
This representation can be easily generalized to experi-
ments on other datasets.

full context of the conversation and test its useful- 042

ness in classification tasks. 043

Indeed, while the actual content of comments 044

gives us information about what was written, know- 045

ing whether and how often two users interact with 046

each other can give us a wider picture of how the 047

dialogue is evolving. Furthermore, temporal in- 048

formation allows us to identify peaks or “waves” 049

of comments, suggesting the occurrence of a trig- 050

gering event, as seen in relation to online toxicity 051

(Saveski et al., 2021) and fake news (Vosoughi 052

et al., 2018). 053

Previous NLP studies already investigated how 054
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contextual information can be included in the clas-055

sification of online conversations, mainly following056

three distinct directions: integrating textual context,057

i.e. the previous thread of a given post (Pavlopou-058

los et al., 2020), modelling user-related context059

(Zhang et al., 2018; Nguyen et al., 2020), or in-060

cluding structural context in terms of conversation061

structure (Song et al., 2021; Tian et al., 2022), or062

external knowledge (Beck et al., 2023). Regard-063

less of which type of context was considered, one064

major issue is represented by the limited size of065

many benchmarks, from which models can hardly066

learn contextual information (Menini et al., 2021;067

Anuchitanukul et al., 2022). Another drawback068

is that, in order to develop classification models069

embedding contextual information, complex and070

computationally-intensive architectures are needed071

(Agarwal et al., 2022).072

We address the above challenges by propos-073

ing an approach integrating textual, temporal and074

structural context in a simple, unified architec-075

ture, where such information is expressed in nat-076

ural language and is captured by a transformer-077

based model (Vaswani et al., 2017) for classifica-078

tion, without separately modelling the latent struc-079

tural information of the interactions. In this frame-080

work, we avoid to explicitly provide user-related081

information, which may lead to privacy issues, but082

we rather represent users as “local discussion IDs”,083

meaning that a user is assigned a new ID for each084

discussion they participate in. As a consequence,085

if a user is active in several discussions, this infor-086

mation is not available and user profiling at global087

network level is not possible, thus enforcing pri-088

vacy preservation.089

Since previous studies highlighted that training090

size is crucial to make models aware of contextual091

information, we mainly perform our experiments092

on a task of stance detection using a large dataset093

Scialom et al. (2020), extracted from the Kialo094

platform (details in Section 4). Figure 1 displays095

an example of discussion structure from the dataset.096

To better understand the contribution of the train-097

ing set size, we perform also an analysis of the098

learning curve (Section 8) and we evaluate the per-099

formance of our models on local discussion net-100

works (LDNs) of different complexity and of vary-101

ing length (Section 9). As a comparison, we also102

test our approach on two smaller datasets for stance103

detection and abusive language detection, confirm-104

ing the effect of dataset size (Section 7).105

The data will be made available upon request 106

only for research purposes, in compliance with 107

Kialo’s terms of service. We will follow a data 108

minimisation principle, sharing only the informa- 109

tion needed to replicate our experiments after user 110

anonymisation. The software to reproduce the ex- 111

periments will be released on a dedicated Github 112

page. 113

2 Related Work 114

Despite the fact that social network discussions 115

involve more information than just a sequence of 116

texts, such as user interactions and temporal evo- 117

lution, researchers have only made few attempts 118

to combine linguistic information with structural 119

and temporal information. Some attempts have 120

been made for tasks like fake news detection (e.g., 121

Nguyen et al., 2020, and Song et al., 2021), hate 122

speech detection (Chakraborty et al., 2022), stance 123

detection (e.g., Yang et al., 2019, and Zhou et al., 124

2023) and rumour verification (Zhou et al., 2019). 125

User-related information has also been success- 126

fully exploited in abusive comment moderation 127

(Pavlopoulos et al., 2017). 128

All these tasks are closely related to the dynam- 129

ics of human behavior, but the involvement of lin- 130

guistic information, network information and tem- 131

poral information altogether has been difficult be- 132

cause of: I. the fusion of heterogeneous knowledge, 133

by combining computationally-expensive models 134

such as Pretrained Language Models and Graph 135

Neural Networks (GNNs) (Zhou et al., 2020), like 136

in Lin et al. (2021); II. the access to large-scale 137

private data, that cannot be freely released; III. the 138

training of human annotators on this data; IV. the 139

deletion of social media posts over time leading to 140

gaps in discussions, especially in hate speech and 141

fake news (Klubicka and Fernández, 2018). 142

For few shared tasks, datasets that also include 143

contextual information such as user ids and times- 144

tamps have been created (Gorrell et al., 2019; 145

Cignarella et al., 2020). Still, researchers have 146

mostly worked only on the textual content. 147

One of the reasons why contextual information 148

has been marginally explored in classification tasks 149

is that it has not been proved beneficial in a con- 150

sistent way. As shown by Menini et al. (2021), 151

exploiting the textual context does not lead to any 152

increase in performance for abusive language de- 153

tection, even if the dataset was re-annotated by 154

looking at the full context. These results have been 155
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confirmed by Anuchitanukul et al. (2022), who fur-156

ther show that the outcome of contextual models157

strongly depends on the intrinsic characteristics and158

the dimension of the training set. Yu et al. (2022)159

show that adding a short context (only parent and160

target comments) improves hate speech classifica-161

tion. However, they do not consider any structural162

context but only textual one. Similar to our work,163

Beck et al. (2023) model contextual information164

through natural language. However, they consider165

as “context” external contextual knowledge such as166

structured knowledge bases, causal relationships,167

or information retrieved from a large pretrained168

model, and not the conversation structure.169

For what regards stance detection, Agarwal et al.170

(2022) proposed a graph-based inference model171

to predict the stance of a comment versus its own172

parent, exploiting the concept of graph walk to add173

context. They performed experiments on a dataset174

retrieved from Kialo, as we do in this work (details175

of Kialo dataset in Section 4).176

A similar task is rumour verification, where the177

goal is to evaluate the truthfulness of a rumour178

based on the reaction caused by it. In this case,179

since the focus is on the effects produced by the180

claim, the context is represented by the claims fol-181

lowing the target claim (i.e., the right context),182

rather than the claims preceding it (i.e., the left183

context). To address this task, Tian et al. (2022)184

propose a combination of BERT with a particu-185

lar Graph Neural Network called GAT (Veličković186

et al., 2017) to retrieve both linguistic context and187

extra-linguistic context, but working on the full dis-188

cussion tree and performing the classification at the189

level of the initial claim.190

To summarize, existing past works that tried to191

integrate contextual information to classification192

tasks either were not able to outperform text-only193

approaches, or yielded an improvement using com-194

putationally expensive models such as Graph Neu-195

ral Networks (GNNs). Furthermore, they tended to196

give in input to the model all possible information,197

including user data. With our approach, instead,198

context benefits classification, while modelling the199

diverse types of input in natural language and be-200

ing privacy-preserving.201

3 Problem statement202

The definition of discussion is not unique. De-203

pending on the social network, different discussion204

structures can arise, from discussion chains to dis-205

The enforcement of 
the criminalisation of 
drugs has harmed 
communities around
the world and should 
be stopped

Criminalising the activity of 
drug users has negative 
effects on individual, their 
families, and society

The legalisation of drugs 
would not likely stop the 
over-policing of affected 
communities in countries
like the US.

Figure 2: Example of supportive (green) and contrastive
(red) claim having the same parent claim in Kialo.

cussion trees, or allowing branches only at specific 206

levels. In the following, discussion chain indicates 207

a linear thread of ordered claims, where each claim 208

is the reply to the previous one. This definition al- 209

lows us to assume that the author of the N th claim 210

has read all the previous N − 1 claims. Moreover, 211

using the single chain instead of the discussion tree 212

allows us to reduce the complexity of the discus- 213

sion structure. From a discussion chain we can 214

retrieve a Local Discussion Network (LDN), i.e. a 215

multi-edge directed network of interaction among 216

the users, with a timestamp label for each edge. 217

Formalization. Let D = {d0, d1, d2, ..., dm} 218

be a set of discussions, where each discussion 219

is made of an ordered sequence of claims di = 220

{c̄0, c̄1, c̄2, ..., c̄n} where c̄0 is called initial claim 221

and each claim c̄i is a response to the claim 222

c̄i−1∀i ≥ 1. Each claim c̄i is a tuple {ci, ui, ti}, 223

where ci is the textual content, ui the local user ID 224

of the author and ti the timestamp. Each discussion 225

di has a label yi ∈ Y , with Y = [0, l − 1] where l 226

is the number of possible labels. In Kialo setting 227

(see details of Kialo dataset in Section 4), we have 228

two labels called contrast (C) and support (S) re- 229

spectively mapped to {0, 1}. The goal is to learn a 230

function f that maps correctly each discussion to 231

its correct label f : D → Y . 232

4 Kialo Dataset for Stance Detection 233

Kialo1 is an online platform where people can de- 234

bate around a main topic, with moderators being 235

in charge of checking the grammaticality of the 236

claims, evaluating the level of support or of contrast 237

between a target claim and its parent claim, and 238

even moving claims to make conversations more 239

consistent. For these reasons, Kialo typically con- 240

tains less noisy data and a clearer conversational 241

1https://www.kialo.com
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structure than other social media like Twitter, being242

an ideal testbed for experiments and analyses.243

In Kialo, the author of each comment is required244

to assign a stance label to it with respect to the245

parent comment. This label (support or contrast) is246

then checked by the moderator, who can change it247

if needed (an example of supportive and contrastive248

stance from the dataset is displayed in Figure 2).249

Furthermore, being clearly structured, it is possible250

to easily retrieve from discussions the reply-tree251

structure and the distribution of support/contrast252

comments.253

Datasets extracted from Kialo have already been254

used in the past to study the linguistic characteris-255

tics of impactful claims (Durmus et al., 2019a,b) or256

perform polarity prediction (Agarwal et al., 2022).257

We obtained access to the dataset based on Kialo258

presented in Scialom et al. (2020), which was used259

for binary stance detection. We extract from their260

data only a subset containing chains longer than261

1 (i.e., having at least the initial claim and one262

reply). In this way, we obtain 122, 681 training in-263

stances, 7, 447 validation instances and 8, 211 test264

instances. Each instance includes: I. the target265

claim; II. the discussion chain, from the initial266

claim to the target claim; III. the stance of each267

claim versus its parent claim; IV. the user ID of268

each claim; V. the timestamp of each claim. Given269

a discussion d = {c̄0, c̄1, ..., c̄n} of length n + 1,270

the goal is to classify correctly the stance of c̄n with271

respect to c̄n−1, choosing between support (S) or272

contrast (C). We report descriptive statistics about273

this Stance Detection Kialo dataset, from now on274

abbreviated as SDK dataset, in Appendix A.4.275

For each discussion tree we extract all the dis-276

cussion chains going from the initial claim to the277

leaves. Consequently, it is possible for portions278

of these chains to overlap, while the target claims,279

with their respective labels, remain unique. This280

approach allows the model to process instances in281

which different discussion progressions result in282

different outcomes. Furthermore, to mitigate poten-283

tial data contamination effects, the dataset is split284

according to the initial claim c0. As a result, all285

chains originating from the same initial claim are286

exclusively assigned to either training, validation,287

or test set.288

5 Context Definition and Modelling289

In past works, context has been integrated in so-290

cial media classification tasks using two main ap-291

proaches: by combining linguistic and network 292

information through the combination of node or 293

network embeddings and textual embeddings (Shu 294

et al., 2019; Dou et al., 2021) or by using textual 295

embeddings as features in a network system, and 296

retrieving a general representation using GNNs or 297

node/network embedding techniques (Yao et al., 298

2019; Lin et al., 2021). 299

We follow a third approach by expressing infor- 300

mation on structural and temporal context using 301

natural language, and then giving it in input to 302

a transformer-based model. We use a RoBERTa- 303

based model (Liu et al., 2019) to perform the 304

task. This allows us to keep the same classification 305

framework while only changing the input data to 306

progressively add contextual information, adopting 307

a simple yet effective solution which is computa- 308

tionally lightweight. 309

Given a discussion chain d = {c̄0, c̄1, ..., c̄n} 310

of length n + 1, where c̄i = {ci, ui, ti}, we can 311

identify 3 different types of context: a linguistic 312

(textual) context, ci, and two extra-linguistic (tem- 313

poral and structural) contexts, ti and ui. 314

Textual context. In our experiments, the tex- 315

tual context is defined as the sequence of all the 316

claims in the discussion chain from c0 to cn−2, and 317

it is added to cn−1 and cn (i.e., the claims used 318

for defining the stance). We concatenate all ci for 319

0 ≤ i ≤ n and between each pair of claims we 320

put a [SEP] tag. If the length of the final input ex- 321

ceeds the maximum input length for the model, we 322

iteratively delete ci, for i from 1 to n− 2 (keeping 323

always c0 at the beginning). We call this concate- 324

nation TXT_CHAIN. 325

Temporal context. To model the temporal con- 326

text, we add at the beginning of each ci (from the 327

textual context) the time ti passed between the pub- 328

lication of the initial claim c̄0 and of c̄i. However, 329

we know that transformer-based models struggle 330

in mathematical reasoning (Patel et al., 2021). To 331

overcome this limitation, instead of reporting ti as 332

a value in milliseconds (as provided in the dataset) 333

the temporal information is given in the format 334

“after d days, h hours, m minutes”, with d, 335

h, and m correctly computed. We call this prefix 336

TIME. This prefix is delimited by two special tags: 337

<t> and </t>. 338

Structural context. To model the structural 339

context, we add at the beginning of each text ci 340

the local user ID of ui. This piece of information 341

makes it possible to reconstruct the structure of the 342
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Figure 3: Schematic view of the input configuration
for each model tested. We display the position of each
textual content ci, the [CLS] tokens, the [SEP] tokens,
the USER prefix and the TIME prefix.

LDN among the users in the discussion d, i.e. if A343

replies to B, there is a direct edge from A to B. We344

can therefore see the LDN as a multi-edge directed345

graph of the interactions, with the textual content346

and the order of interactions as labels (Figure 1).347

The local user ID is locally unique: for each dis-348

cussion chain, a value from 0 to m− 1 is incremen-349

tally assigned to each of the m users contributing350

in the discussion according to their first appear-351

ance within the discussion itself. Using local IDs352

means that when a user is active across different353

discussions, they are assigned a different ID in each354

conversation. This prevents our model from implic-355

itly profiling users’ behavior and attitude at global356

level, thus adopting a privacy-preserving approach.357

The structural information is given in input to358

the model adding before each comment the prefix359

“jth user”, with 0 ≤ j ≤ m − 1 to declare that360

the author with local ID j wrote the claim. We call361

this prefix USER. Also for this prefix we adopt two362

special tags to signal the start and the end of the363

prefix: <o> and </o>.364

6 Models and Experimental Settings365

We implement and compare eight different classifi-366

cation models trained on the SDK dataset, which367

can be divided into three categories: DUMMY,368

BASELINES and CONTEXTUAL. DUMMY models369

predict the label ignoring the input (i.e., majority370

class or random class). Instead, for BASELINES371

and CONTEXTUAL we always use a pre-trained372

RoBERTa-based model (Liu et al., 2019) to embed373

the input. Then we extract the final [CLS] con-374

textual embedding and feed it into a Multi-Layer 375

Perceptron (MLP) module to perform the classi- 376

fication task (for details of the architecture, see 377

Appendix A.2). We use Optuna (Akiba et al., 2019) 378

for hyperparameter optimization of the learning 379

rate and the dropout applied to the MLP (details in 380

Appendix A.3). In Figure 3 we report a schematic 381

view of the input configuration employed for the 382

BASELINE models and the CONTEXTUAL models. 383

In Appendix A.1 we report an example of input for 384

each of these models. 385

We describe below the different classification 386

models, divided into the three following categories. 387

DUMMY. We implement two “dummy” models: 388

• MAJORITY CLASS: this model always as- 389

signs the majority class label (i.e., support in 390

the case of the SDK dataset). 391

• RANDOM: this model assigns the label, for 392

each item, at random, each with the probabil- 393

ity p = 0.5. 394

TEXT-ONLY BASELINES. The two models, 395

based only on the text of the claims, take in input a 396

fixed number of claims: 397

• SINGLE: we give in input to the model only 398

the textual content of the last claim cn. The 399

goal is to predict the stance of cn without 400

considering what was written before. This 401

approach should be able to perform classifi- 402

cation just by looking at linguistic or stylistic 403

cues in cn. 404

• PAIR: we give in input to the model only the 405

textual content of the last two comments, cn 406

and cn−1, separated by the [SEP] token. The 407

goal here is to predict the correct label looking 408

at the semantics and at the style of the two 409

claims, as well as at the relations between the 410

two. This is the standard solution for Stance 411

Detection. 412

CONTEXTUAL. We model contextual informa- 413

tion in four different ways: 414

• TC: we give in input to the model only the 415

concatenated claims in the TXT_CHAIN for- 416

mat. 417

• TC + T: we give in input to the model the con- 418

catenated claims in the TXT_CHAIN format, 419

each claim with the TIME prefix. 420
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• TC + U: we give in input to the model the con-421

catenated claims in the TXT_CHAIN format,422

each claim with the USER prefix.423

• TC + U + T: we give in input to the model424

the concatenated claims in the TXT_CHAIN425

format, each claim with the TIME prefix and426

the USER prefix.427

7 Experiments428

7.1 Stance Detection on Kialo429

The goal of the first set of experiments is to evalu-430

ate on Kialo the performance of the eight models431

described above by using the whole training set,432

both for hyperparameter optimization and for the433

final evaluation. The results are the average and434

standard deviation over 5 experimental runs (de-435

tails in Appendix A.3).We report in Table 1 the F1436

score for each class, its weighted average (W-F1),437

and the macro average (M-F1). The final metric we438

use for ranking the models is M-F1.439

Results. All the results are reported in Table 1.440

We compute statistical significance using Almost441

Stochastic Order test (Del Barrio et al., 2018; Dror442

et al., 2019). We use the implementation provided443

in the deep-significance library, presented by444

Ulmer et al. (2022), with the suggested threshold445

value of τ = 0.2.446

Both BASELINE models lead to better perfor-447

mances than the DUMMY models. Interestingly,448

the SINGLE model performs well (72.8 M-F1 on449

average), showing that the style of the target com-450

ment already conveys relevant information to detect451

its stance. However, as expected, taking the last452

two comments in input (PAIR model) increases the453

M-F1 score by +8.4 over the SINGLE one.454

Among the CONTEXTUAL models, the TC455

model achieves the worst results, slightly lower456

than the PAIR model. This shows that adding con-457

text is not always beneficial. In this case, since458

the number of claims in a discussion changes, the459

model is probably not able to focus on the right por-460

tion of the chain. Adding the temporal information461

only, as in the TC + T model, yields a better per-462

formance than the simple textual chain in the TC463

model (+1.2 M-F1) and outperforms significantly464

the PAIR baseline (+0.5).465

Looking at the different types of context, we ob-466

serve that adding only the USER prefix as in the467

TC + U, leads to a significant increase of +3.2 M-468

F1 over the TC model and of +2.5 over the PAIR469

baseline. Furthermore, the model with both USER470

prefix and TIME prefix, TC + U + T model, in- 471

creases significantly the performance with respect 472

to TC model (+3.4), PAIR model (+2.7) and TC 473

+ T model (+2.2). However, there is no significant 474

difference between TC + U model and TC + U + T 475

model (only +0.2). This indicates that TIME prefix 476

is no more relevant once we pass to the model the 477

USER prefix. 478

7.2 Experiments on other Datasets 479

As a comparison, we run the same experiments on 480

two smaller datasets, which provide the same type 481

of information included in SDK: the SQDC dataset 482

(Gorrell et al., 2019) for stance detection, and the 483

ContextAbuse dataset (Menini et al., 2021) for abu- 484

sive language detection. These datasets present a 485

size of respectively 5% and 7% compared to SDK. 486

On the SQDC dataset, the SINGLE baseline yields 487

the best result (47.2 M-F1), probably because the 488

official test set contains only chains of length 2. 489

After creating a better balanced train and test split, 490

instead, the best result is obtained by PAIR base- 491

line (46.4 M-F1). On the ContextAbuse dataset, 492

adding textual context (i.e., TC model) yields the 493

best performance (81.4 M-F1), which however is 494

not statistically significant compared to the SIN- 495

GLE baseline (80.7 M-F1). For detailed dataset 496

specifications and experimental results, we refer to 497

Appendix A.7 and Appendix A.8. 498

These experiments suggest that, independently 499

from the specific task, contextual information may 500

not yield substantial enhancements in performance 501

if the amount of training data is too limited. In 502

order to investigate better this aspect, we perform 503

an additional analysis of the learning curve in the 504

following section. 505

8 Learning Curve Analysis 506

While our experiments show that the discussion 507

context on the SDK dataset is beneficial to stance 508

detection, we aim to assess the impact of the train- 509

ing set size. Our intuition is that, when contextual 510

information is embedded in the model, more train- 511

ing instances are needed than for text-only models. 512

Indeed, the model must be given enough training 513

instances to understand what is the role of the spe- 514

cial tags and what type of information is included 515

between two specific separators. 516

We therefore extract from the original training 517

data 5 different training sets, comprising around 518

5% (6, 354 examples), 10% (12, 402 examples), 519
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Category Model C-F1 S-F1 W-F1 M-F1 LR DO

DUMMY
MAJORITY 70.5 (±0.0) 0.0 (±0.0) 38.4 (±0.0) 35.3 (±0.0) / /

RANDOM 52.1 (±0.6) 48.0 (±0.4) 50.2 (±0.5) 50.1 (±0.5) / /

BASELINES
SINGLE 75.5 (±0.5) 70.2 (±0.6) 73.0 (±0.1) 72.8 (±0.2) 7.5 · 10−6 0.5

PAIR 83.1 (±0.4) 79.3 (±0.4) 81.4 (±0.2) 81.2 (±0.2) 7.5 · 10−6 0.25

CONTEXTUAL

TC 82.2 (±0.6) 78.8 (±0.4) 80.7 (±0.3) 80.5 (±0.3) 7.5 · 10−6 0.25

TC + T 83.3 (±0.4) 80.0 (±0.4) 81.8 (±0.3) 81.7 (±0.3)∗ 7.5 · 10−6 0.25

TC + U 85.2 (±0.5) 82.1 (±0.7) 83.8 (±0.5) 83.7 (±0.5)∗ 1.0 · 10−5 0.25

TC + U + T 85.6 (±0.4) 82.3 (±0.3) 84.0 (±0.3) 83.9 (±0.3)∗ 7.5 · 10−6 0.25

Table 1: F1 scores obtained on the test set of SDK dataset, for each class, in weighted average and in macro average
(average of the best 5 runs in validation over 10). Asterisks show a statistically significant improvement with respect
to the PAIR baseline. We report the average and the standard deviation for each metric. LR column reports the
Learning Rate and DO column reports the dropout value in the MLP component

Figure 4: Learning curve for each BASELINE and CON-
TEXTUAL model, in terms of M-F1 score.

20% (24, 748 examples), 40% (49, 249 examples)520

and 80% (98, 389 examples) of the original training521

instances.522

Results. Figure 4 shows the results obtained523

when increasing the training set size as the average524

over 3 runs (the full results and experimental de-525

tails are reported in Appendix A.5). We exclude526

the DUMMY models, since they never outperform527

BASELINE and CONTEXTUAL models.528

With 5% of the training data, all the CONTEX-529

TUAL models are beaten by the worst BASELINE530

model (i.e., SINGLE), with performance down from531

−10.8 to −16.3 M-F1 compared to using the whole532

training set. At the same time, the PAIR model533

achieves the best result in this setting, with a per-534

formance drop of only −4.6. However, as soon535

as we add more data, the scenario changes. With536

10% training set and 20% training set, CONTEX-537

TUAL models overcome the SINGLE model and538

progressively approach the PAIR model. With 40% 539

training set, TU + U and TC + U + T outperform 540

the PAIR model and with more data they substan- 541

tially increase their gap with the latter. 542

To sum up, these results show that CONTEX- 543

TUAL models need between 20% and 40% of the 544

training data (i.e., from 24 thousand to 49 thousand 545

training examples) to achieve comparable results 546

with the PAIR model, while they need more data to 547

outperform it. 548

9 Analysis of Discussion Structure 549

Beside assessing the impact of training set size 550

on classification performance, we are also inter- 551

ested in analysing the role played by the topology 552

of local discussion networks (LDNs), in particular 553

in terms of repeated users and number of turns.2 554

We first divide LDNs in the SDK dataset into two 555

groups: simple LDNs, which are characterized by 556

chains where users write only one turn, and com- 557

plex LDNs, with a user writing several turns. We 558

run the stance detection experiment with the set- 559

ting presented in Section 7 and compare the results 560

obtained on simple vs. complex chains. We also 561

analyse how the number of claims and of users 562

affects classifier performance on complex LDNs 563

(with and without context). Results are reported in 564

Figure 5, which displays the M-F1 score obtained 565

with the different models. The thickness of the line 566

represents the standard deviation over 5 runs. The 567

analysis shows that extra-linguistic context gives an 568

important contribution to the classification of com- 569

2For this analysis, we merge the consecutive claims written
by the same author in a discussion chain into a unique turn, and
create a corresponding turn chain. In this way, two consecutive
turns have always different authors.
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Figure 5: Model comparison when testing the classifier on different dimensions: Simple vs. Complex LDNs (left),
complex LDNs with different number of turns (center) and different number of users (right).

plex LDNs, in particular the TC + U + T model.570

This contribution is more limited on simple chains,571

with the PAIR model and the CONTEXTUAL mod-572

els achieving comparable results.573

As regards the impact that the number of turns574

has on the classification of complex LDNs perfor-575

mance (middle panel of Figure 5), we first group576

the turns into three bins based on their length: from577

2 to 5 (dark blue), from 6 to 10 (blue) and > 10578

(light blue). The comparison among the three579

groups clearly demonstrates that the inclusion of580

temporal and structural context consistently results581

in a performance improvement, regardless of the582

number of turns in the discussion. We finally inves-583

tigate the effect that the number of users involved584

in the complex LDN has on classification perfor-585

mance (right plot of Figure 5). Also in this case,586

the chains are grouped into three bins: having less587

that 4 users (dark blue), from 5 to 8 users (blue),588

and more than 8 (light blue). Again, the compar-589

ison demonstrates that the inclusion of the extra-590

linguistic contexts consistently results in improve-591

ment, regardless of the number of users involved in592

the discussion.593

10 Discussion594

The results reported in Section 7 and Section 8595

show that adding extra-linguistic context is bene-596

ficial to improve performance on stance detection.597

However, this benefit arises only if the CONTEX-598

TUAL models have access to enough data, which599

in our experiments on the SDK dataset means600

between 24, 000 and 49, 000 items. This result601

explains also the different performance obtained602

on smaller datasets (Section 7.2). As regards the603

analysis of local discussion chains, the more com-604

plex is the LDN, the more evident are the ben-605

efits from the structural context. This suggests606

that our transformer-based model is able to capture 607

the structure given by the interactions among the 608

users, even if implicit, when enough data are avail- 609

able. Our analyses show also that capturing con- 610

textual information is particularly beneficial with 611

longer chains of turns, and discussion chains with 612

more users. When all contextual information (both 613

linguistic and extra-linguistic) is included in the 614

model, the classifier performs equally well on long 615

and on short chains, making the results more con- 616

sistent and the model more robust to chain length 617

and user activity. 618

As regards the temporal context, we show that it 619

is still useful to achieve a better performance, but 620

we argue that in Kialo it may not be particularly 621

relevant because this is a platform where users are 622

more likely to ponder their responses and take some 623

time to reflect before posting, also thanks to a strict 624

moderation policy (Vosoughi et al., 2018). 625

11 Conclusions 626

In this paper we have tested the effectiveness of us- 627

ing linguistic and extra-linguistic contexts for text 628

classification. Our results show that full linguistic 629

context alone worsens or does not significantly im- 630

prove the results with respect to the non-contextual 631

baseline. Instead, with extra-linguistic context, the 632

performance improves, especially with the contri- 633

bution of structural context. Further analysis shows 634

that such results strongly depend on the amount of 635

data on which the models are trained. Moreover, 636

we found that extra-linguistic context makes results 637

more robust across discussion networks of different 638

lengths and more or less active users. Our exper- 639

iments show also that transformer-based models 640

are able to embed structural features, which can be 641

effectively given in input to the model in the form 642

of simple natural language statements. 643
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12 Limitations644

The findings presented in this work were mainly645

focused on the Kialo dataset on the specific task646

of stance detection. Kialo is an ideal testbed for647

our hypotheses because it is a moderated platform648

with well-structured discussions written in plain649

English. It is not possible to infer that the same650

findings would be confirmed on any social network,651

where discussions may be more fragmented and652

lacking moderation. Indeed, to have a clear picture653

of our findings, other large datasets with similar654

characteristics would be needed. Nevertheless, as655

a preliminary exploration, our experiments on the656

two smaller datasets from Twitter confirmed our657

expectation about the importance of the amount658

of training data. Moreover, our work presents a659

limited number of classification models. We tested660

a few other combinations without reaching inter-661

esting results, therefore we decided to focus only662

on few configurations and to analyse their behav-663

ior more thoroughly. Overall, our contribution is664

not focused on generally achieving the best results,665

but rather on assessing how and why contextual666

information influences the behavior of a model.667

13 Ethics Statement668

Integrating user information into a text classifica-669

tion task may pose ethical risks, since profiling may670

introduce biases in classification, hurting some in-671

dividuals with a specific profile, and is explicitly672

prohibited in a number of countries. However, we673

adopt a solution that minimises such risks in that it674

does not use global user information but only local675

one, making it impossible to infer user information676

at platform level. Furthermore, no additional in-677

formation about users’ preferences and attitude is678

explicitly coded: the model is given in input only679

what and when users post in each discussion, and680

in response to whom.681

In terms of reproducibility, our models are ex-682

tremely lightweight and allow the reproduction of683

the experiments on common GPUs, using imple-684

mentations available online.685
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A Appendix920

A.1 Example of Input Configuration921

We report in Table 2 an example of how the same922

training instance is given in input to the model923

in the different configurations. In the pretrained924

RoBERTa model available on Hugging Face3, the925

[CLS] token is replaced by a <s> tag and the [SEP]926

token is represented by a sequence of special tags927

(i.e., </s></s>). We have taken inspiration from928

these representations for our new special tokens:929

<t>, </t>, <o>, </o>. We preprocessed the input930

text by substituting the website links with the string931

HTTPURL and tags starting with the “@” with the932

string @USER (common tweet preprocessing4).933

A.2 Model Architecture934

The model architecture is reported schematically935

in Figure 6. It is made of two main components:936

a RoBERTa model with on top a Multi Layer Per-937

ceptron (MLP). To perform the prediction, we feed938

the RoBERTa model with the input, and then we939

extract the final [CLS] contextual embedding. So940

we pass the [CLS] contextual embedding to the941

MLP, which consists in a classic Feedforward Neu-942

ral Network (FNN), and perform the prediction.943

The dimension of the [CLS] contextual embed-944

ding is d = 768. The RoBERTa model archi-945

tecture and initial weights correspond to the pre-946

trained version provided by Hugging Face called947

roberta-base5, with maximum input length l =948

512 tokens.949

The MLP consists in 3 layers: I. the first goes950

from dimension 768 to 200 with ReLU activation951

function; II. the second goes from dimension 200952

to dimension 300, again with ReLU activation func-953

tion; III. the third goes from dimension 300 to954

dimension n, where n is the number of classes955

among which we predict the class, with tanh ac-956

tivation function. Finally we apply a softmax on957

the n value in output from the last layer, in order958

to have a probability distribution among the n pos-959

sible values (the prediction will correspond to the960

index of highest probability).961

A.3 Training Details.962

Hyperparameter search and Evaluation. We963

exploited Optuna (Akiba et al., 2019) for hyper-964

3https://huggingface.co/docs/transformers/model_doc/roberta
4https://huggingface.co/cardiffnlp/twitter-roberta-base-

sentiment
5https://huggingface.co/roberta-base

RoBERTa
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Figure 6: Schematic view of the model we tested. We
distinguish between the component we change in each
experiment (the input) and the fixed structure (RoBERTa
+ MLP).

parameter search, using a grid search for: I. the 965

learning rate, with a uniform probability between 966

the values 7.5 ·10−6, 1.0 ·10−5, 2.5 ·10−5, 5 ·10−5, 967

7.5 · 10−5; II. the dropout applied between the lay- 968

ers of the MLP, with values 0.25 and 0.5. We use 969

batch size b = 32 and weight decay wd = 10−4 970

in the RoBERTa components. In SDK dataset, we 971

used unweighted Cross Entropy loss both in train- 972

ing and in validation phase, since the imbalance is 973

negligible. 974

For the final evaluation, we fix the hyperparame- 975

ters and then we perform 10 runs, changing each 976

time the random seed. Then we keep the 5 best runs 977

in validation, in order to exclude possible “outlier" 978

runs due to initialization problems. We compute 979

the average and standard deviation of the test re- 980

sults on these 5 best runs. 981

Training pipeline. We perform the backpropa- 982

gation on the full structure of the model, without 983

freezing any layer. As said previously, our experi- 984

ments keep always the same model, just changing 985

the input. We used early stopping for the model 986

selection with patience p = 2 epochs for the SDK 987

dataset (Section 7 and Section 8) and p = 5 epochs 988

for the SQDC dataset (Appendix A.7). In the SDK 989

dataset, each epoch corresponds to a training epoch 990

on a sample of the training set which is around 991

half of the total training set, in order to speed up 992

the computation and the generalization. We tested 993

also the usage of the full training set in each epoch, 994

but the results remain comparable. This holds for 995

all the experiments on Kialo datasets, the standard 996

one (Section 7) and the learning curve on train- 997

ing size (Section 8). For the SQDC dataset and 998

ContextAbuse dataset, we refer respectively to Ap- 999

pendix A.7 and Appendix A.8. 1000

For all the experiments we used a single A40 1001

GPU with 48GB Memory. All the experimental 1002

code is developed in PyTorch. It requires around 1003
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Model Input

SINGLE <s>There have been very few Marxist Governments. At best the empirical evidence is weak. The article
quoted above is almost tangential to the topic as a whole. </s>

PAIR <s>The utopia imagined by Marx only works in theory. HTTPURL suggests that the [pursuit of communism
leads to totalitatian HTTPURL </s></s>There have been very few Marxist Governments. At best the
empirical evidence is weak. The article quoted above is almost tangential to the topic as a whole. </s>

TC <s> Should HTTPURL adapt to improve, not merely HTTPURL and HTTPURL </s></s> Democracy is not
necessarily the best way to structure society and politics. </s></s> Even if democracy has a number of flaws,
it is [comparatively the best form of political HTTPURL </s></s> The utopia imagined by Marx only works
in theory. HTTPURL suggests that the [pursuit of communism leads to totalitatian HTTPURL </s></s>
There have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted
above is almost tangential to the topic as a whole. </s>

TC + T <s> <t> after 0 days, 0 hours, 0 minutes </t> Should HTTPURL adapt to improve, not merely HTTPURL
and HTTPURL </s></s> <t> after 1 days, 18 hours, 17 minutes </t> Democracy is not necessarily the best
way to structure society and politics. </s></s> <t> after 81 days, 3 hours, 48 minutes </t> Even if democracy
has a number of flaws, it is [comparatively the best form of political HTTPURL </s></s> <t> after 81 days,
3 hours, 51 minutes </t> The utopia imagined by Marx only works in theory. HTTPURL suggests that the
pursuit of communism leads to totalitatian HTTPURL </s></s> <t> after 83 days, 3 hours, 53 minutes </t>
There have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted
above is almost tangential to the topic as a whole. </s>

TC + U <s> <o> 0th user </o> Should HTTPURL adapt to improve, not merely HTTPURL and HTTPURL </s></s>
<o> 1st user </o> Democracy is not necessarily the best way to structure society and politics. </s></s>
<o> 2nd user </o> Even if democracy has a number of flaws, it is [comparatively the best form of political
HTTPURL </s></s> <o> 2nd user </o> The utopia imagined by Marx only works in theory. HTTPURL
suggests that the pursuit of communism leads to totalitatian HTTPURL </s></s> <o> 0th user </o> There
have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted above
is almost tangential to the topic as a whole. </s>

TC + U + T <s> <t> after 0 days, 0 hours, 0 minutes </t> <o> 0th user </o> Should HTTPURL adapt to improve, not
merely HTTPURL and HTTPURL </s></s> <t> after 1 days, 18 hours, 17 minutes </t> <o> 1st user </o>
Democracy is not necessarily the best way to structure society and politics. </s></s> <t> after 81 days, 3
hours, 48 minutes </t> <o> 2nd user </o> Even if democracy has a number of flaws, it is comparatively the
best form of political HTTPURL </s></s> <t> after 81 days, 3 hours, 51 minutes </t> <o> 2nd user </o>
The utopia imagined by Marx only works in theory. HTTPURL suggests that the [pursuit of communism
leads to totalitatian HTTPURL </s></s> <t> after 83 days, 3 hours, 53 minutes </t> <o> 0th user </o> There
have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted above
is almost tangential to the topic as a whole. </s>

Table 2: Different types of input related to the same discussion that are fed to the model.
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SDK Dataset

Set Counter Support Total

Training 49.2% 50.8% 122681

Validation 50.2% 49.8% 7447

Test 54.5% 45.5% 8211

Table 3: Distribution of the labels in SDK dataset.

33 minutes of computation for each epoch (training1004

phase plus validation phase).1005

A.4 Kialo dataset statistics1006

We report in Table 3 the distribution of the labels1007

in the SDK dataset, and we plot the distribution of1008

the chain length in Figure 7.1009

A.5 Learning curve experiment1010

We report in Table 4 the results from the second ex-1011

periment on the SDK dataset presented in Section 8.1012

We first run hyperparameter optimization on each1013

training set. Then, after fixing the hyperparameters1014

as in Section 6, we perform 3 experimental runs on1015

each training set, changing the random seed each1016

time, and compute the average M-F1 among the 31017

runs. The same evaluation is performed using the1018

complete training set.1019

A.6 Details about the analysis of the results on1020

SDK dataset1021

In Kialo, the same author can write several consecu-1022

tive comments, even in contrast between each other1023

(typical argumentation step, with both support the-1024

sis and anti-thesis). However, we are more inter-1025

ested in interactions among different users. For this1026

reason, we introduce the concept of turn. Given1027

a discussion chain of n claims, we can retrieve1028

a chain of n′ turns, where two consecutive turns1029

have different authors. This is possible by merg-1030

ing all consecutive claims written by the same user1031

into a unique turn. For instance if we have a dis-1032

cussion chain d of length 6 with user sequence1033

{u0, u0, u1, u1, u1, u2}, the associated turn chain1034

has length 3 merging into one turn the first two1035

claims, then the following three into another turn1036

and the last one is already a turn, with user se-1037

quence {u0, u1, u2}. This represents also a sim-1038

ple discussion. A complex discussion might be1039

similar to the following: if the user sequence is1040

{u0, u1, u0, u0, u2, u2}, in the turn chain the user1041

sequence becomes {u0, u1, u0, u2}.1042

A.7 Results on SQDC dataset 1043

The SQDC dataset. We perform the same set 1044

of experiments and analysis on a second dataset, 1045

which was developed for the task “SQDC support 1046

classification” at the RumourEval 2019 challenge 1047

(Gorrell et al., 2019). For each item we have the 1048

same information as in the SDK dataset, and given 1049

a discussion tree, all the discussion chains from 1050

the initial claim to any node (even internal) are ex- 1051

tracted, and each item labeled according to the last 1052

comment. However, the label of each claim does 1053

not represent the stance versus the previous claim, 1054

but rather the stance with respect to the rumour 1055

discussed in the chain. This chain is treated as 1056

the common ground topic on which the discussion 1057

is taking place, even if it is not necessarily stated 1058

explicitly in the initial claim. Again, the dataset 1059

split is based on the initial claim, avoiding any data 1060

contamination. 1061

There are four possible labels: I. support, II. 1062

query, III. deny, and IV. comment. Those labels 1063

are respectively shortened as S, Q, D and C, from 1064

which the name of the task (SQDC support clas- 1065

sification). The original dataset is highly unbal- 1066

anced among the classes and comprises threads 1067

from Reddit6 and Twitter7. We focus this second 1068

set of experiments on the Twitter part of the dataset. 1069

1070

Experiments. At first, we run our experiments 1071

on the original train-validation-test split, reaching 1072

different results w.r.t. those obtained on Kialo, 1073

since the SINGLE model yields the best perfor- 1074

mance (see full results in Table 5). 1075

We further inspect the dataset and we find that 1076

the test set was formed only by chains of length 1077

2, where the usefulness of the context is limited. 1078

So, we exclude the original test set and generate a 1079

new train-validation-test split, analysing the distri- 1080

bution of labels and chain lengths. The results are 1081

different w.r.t. the original SQDC dataset: the CON- 1082

TEXTUAL model achieves a performance between 1083

SINGLE model (lower bound) and PAIR model (up- 1084

per bound). For details, see Table 6. Overall, the 1085

results on the new split of the SQDC dataset con- 1086

firm the overall findings obtained by analysing the 1087

learning curve for different training sizes in Kialo 1088

(discussed in Section 8): the SQDC dataset is not 1089

large enough to allow modelling the context in an 1090

6https://www.reddit.com
7https://twitter.com
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Figure 7: Length distribution of the discussion chains in SDK dataset.

Figure 8: Length distribution of discussion chains in SQDC dataset - challenge version.

Figure 9: Length distribution of discussion chains in SQDC dataset - new split version.
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Category Model 5% 10% 20% 40% 80% 100%

DUMMY
MAJ. 35.3 35.3 35.3 35.3 35.3 35.3

RAND. 50.1 50.1 50.1 50.1 50.1 50.1

BASELINES
SINGLE 70.2 70.5 71.1 71.6 72.2 72.7

PAIR 76.1 77.3 77.7 79.3 80.9 80.7

CONTEXTUAL

TC 69.6 71.1 76.7 77.9 80.4 80.4

TC + T 68.2 72.7 75.4 77.4 80.7 81.6

TC + U 69.6 73.8 77.1 79.4 83.2 83.3

TC + U + T 67.4 71.8 74.1 80.7 83.2 83.7

TRAINING SET SIZE 6354 12402 24748 49249 98389 122681

Table 4: Macro-F1 scores obtained on the test set of SDK dataset, for every training set in growing size.

Category Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 86.6 (±0.0) 66.1 (±0.0) 21.6 (±0.0) / /

RAND. 12.6 (±2.1) 9.5 (±1.1) 13.9 (±2.6) 37.5 (±1.9) 31.6 (±1.3) 18.3 (±0.6) / /

BASEL.
SINGLE 14.1 (±7.7) 54.4 (±2.9) 47.5 (±3.5) 72.6 (±5.7) 64.1 (±4.2) 47.2 (±2.3) 5.0 · 10−5 0.25

PAIR 13.5 (±1.6) 58.4 (±3) 44.9 (±0.1.5) 71.1 (±3.2) 62.8 (±2.3) 47.0 (±0.5) 2.5 · 10−5 0.25

CONT.

TC 12.9 (±4.1) 58.6 (±2.4) 42.7 (±7.2) 71.5 (±4.3) 62.9 (±4.2) 46.4 (±4.0) 1.0 · 10−5 0.25

TC + T 15.4 (±0.8) 59.0 (±2.6) 44.1 (±4.5) 63.4 (±3.7) 57.0 (±2.8) 45.5 (±1.6) 1.0 · 10−5 0.5

TC + U 13.2 (±5.1) 56.3 (±4.6) 41.6 (±3.8) 65.1 (±11.4) 57.8 (±8.6) 44.0 (±3.3) 2.5 · 10−5 0.25

TC + U + T 19.2 (±4.7) 52.3 (±3.5) 43.1 (±1.8) 68.6 (±4.7) 61.1 (±3.9) 45.8 (±2.3) 2.5 · 10−5 0.5

Table 5: SQDC - Challenge. F1 scores obtained on the test set of SQDC dataset, on the original split given for the
challenge. The F1 score is reported for each class, in weighted average and in macro average. The results are the
average over the best 5 runs in validation over 10. We report the average and the standard deviation for each metric.

Category Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 82.9 (±0.0) 58.6 (±0.0) 20.7 (±0.0) / /

RAND. 15.3 (±2.0) 14.4 (±3.4) 11.7 (±2.0) 39.1 (±1.5) 31.8 (±0.7) 20.1 (±0.8) / /

BASEL.
SINGLE 31.3 (±3.7) 52.5 (±2.6) 27.7 (±5.7) 56.2 (±6.6) 51.0 (±5.3) 42.0 (±3.4) 5.0 · 10−5 0.25

PAIR 30.2 (±1.5) 54.3 (±1.6) 33.7 (±1.4) 67.2 (±3.7) 59.3 (±2.9) 46.4 (±1.8) 2.5 · 10−5 0.25

CONT.

TC 28.3 (±3.0) 53.1 (±4.7) 31.1 (±4.2) 68.4 (±5.3) 59.6 (±3.9) 45.3 (±2.3) 2.5 · 10−5 0.5

TC + T 27.9 (±1.8) 49.8 (±1.9) 33.6 (±2.9) 63.3 (±4.5) 55.8 (±3.3) 43.6 (±2.0) 7.5 · 10−6 0.25

TC + U 27.9 (±1.1) 52.7 (±2.2) 32.2 (±3.0) 64.8 (±4.0) 57.0 (±3.0) 44.4 (±1.5) 1.0 · 10−5 0.25

TC + U + T 27.2 (±2.1) 51.4 (±3.0) 32.8 (±1.4) 62.2 (±3.2) 55.0 (±2.8) 43.4 (±2.0) 1.0 · 10−5 0.5

Table 6: SQDC - New split. F1 scores obtained on the test set of SQDC dataset, with our new split to obtain
complex structures even in training. See caption in Table 5 for further details.

Category Model NS-F1 S-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 82.9 (±0.0) 0.0 (±0.0) 58.6 (±0.0) 41.4 (±0.0) / /

RAND. 59.6 (±1.0) 38.4 (±1.5) 53.4 (±0.8) 49.0 (±0.9) / /

BASEL.
SINGLE 74.4 (±2.9) 52.9 (±0.8) 68.1 (±2.3) 63.6 (±1.8) 1.0 · 10−5 0.5

PAIR 73.4 (±3.4) 53.8 (±1.5) 67.7 (±2.6) 63.6 (±2.0) 7.5 · 10−6 0.5

CONT.

TC 73.3 (±3.2) 49.3 (±1.3) 66.3 (±2.5) 61.3 (±2.1) 7.5 · 10−6 0.25

TC + T 75.3 (±3.0) 51.1 (±1.4) 68.3 (±2.4) 63.2 (±2.0) 1.0 · 10−5 0.5

TC + U 74.7 (±3.0) 49.9 (±1.0) 67.5 (±2.1) 62.3 (±1.6) 1.0 · 10−5 0.5

TC + U + T 74.7 (±1.5) 48.4 (±1.9) 67.0 (±1.3) 61.6 (±1.3) 2.5 · 10−5 0.25

Table 7: SQDC - Binary. F1 scores obtained on the test set of SQDC dataset, with our new split to obtain complex
structures even in training, for the binary task to detect Stance class vs No Stance Class. See caption in Table 5 for
further details.

effective way. We also try to test our models on1091

a binary task, more similar to stance detection in1092

Kialo, by merging the query class, the deny class1093

and the support class into a unique stance class, and1094

the comment class as a no-stance class. Results are 1095

reported in Table 7. Again, the SINGLE model is 1096

the best performing one probably due to the data 1097

size and the context does not yield any improve- 1098
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SQDC Dataset - Challenge

Set S Q D C Total

Training 20.2% 7.9% 7.6% 64.3% 4519

Validation 9.0% 10.1% 6.8% 74.1% 1049

Test 13.2% 5.8% 8.6% 72.4% 1066

SQDC Dataset - New split

Set S Q D C Total

Training 13.9% 8.6% 7.6% 69.9% 3957

Validation 12.0% 8.9% 8.7% 70.4% 689

Test 11.3% 10.9% 7.1% 70.7% 595

SQDC Dataset - Binary

Set No Stance Stance Total

Training 69.9% 30.1% 3957

Validation 70.4% 29.6% 689

Test 70.7% 29.3% 595

Table 8: Distribution of the labels in SQDC dataset,
distinguishing training set, validation set, and test set
We report the three versions experiments: chellenge
version, new split version and binary version.

ment. For these datasets, we report the descriptive1099

statistics in Table 8 and plot the length distribution1100

of the discussion chains in Figure 8 and Figure 9.1101

Training Details. To balance the classes during1102

training, for each epoch we undersample each class1103

in the training set in order to have s samples for1104

each class, where s is the cardinality of the less1105

represented class. We use as loss function the un-1106

weighted Cross Entropy. Then, for validation, we1107

use a weighted Cross Entropy Loss according to the1108

cardinality of each class, with weight wc = 100/sc1109

for each class, where sc is the cardinality of the1110

class c. We use the same pipeline for hyperparame-1111

ter optimization and test on fixed hyperparameters1112

as in SDK dataset (i.e. 5 best runs in validation1113

over 10), performing even the same statistical test.1114

Again, for all the experiments we use a single A401115

GPU with 48GB Memory.1116

A.8 Results on ContextAbuse dataset1117

The ContextAbuse dataset.1118

ContextAbuse Dataset

Set No Abuse Abuse Total

Training 82.6% 17.4% 5651

Validation 82.4% 17.6% 1216

Test 81.7% 18.3% 1151

Table 9: Distribution of the labels in ContextAbuse
dataset

ContextAbuse (Menini et al., 2021) is a subset1119

of the well-known hate speech dataset Founta et al.1120

(2018), where the items have been relabeled as1121

"Abusive" or "Not Abusive" taking into account1122

not only the tweet to classify, but also the previ- 1123

ous tweets (textual context). This re-annotation led 1124

to a remarkable reduction of items annotated as 1125

"Abusive", suggesting that context is vital to disam- 1126

biguate real abusive tweets from other cases (e.g. 1127

irony, satire, etc.). Given the set of tweets from 1128

Founta et al. (2018), the authors did not retrieve the 1129

full discussion tree, but just the discussion chain 1130

from the initial claim to the target comment. In 1131

this way, there is no overlap among different items, 1132

but each tweet in each sequence is seen only once. 1133

This could result in major difficulties for contextual 1134

models to extract useful information to perform the 1135

classification. 1136

Experiments The dataset is provided on Github8 1137

without official splits. So we create a train- 1138

ing/validation/test set according to a 70/15/15 strat- 1139

egy. We report the descriptive statistics in Table 1140

9 and the length of the discussion chain in Figure 1141

10. In this case we have only the SINGLE model as 1142

a baseline because the goal is to classify a single 1143

claim. 1144

The results obtained on the ContextAbuse 1145

dataset exhibit similarities to the ones obtained 1146

from SQDC dataset (new split version). These find- 1147

ings align with the outcomes of the learning curve 1148

experiment from the SDK dataset. In this scenario, 1149

the contextual models fail to significantly outper- 1150

form the baseline (which is the SINGLE model in 1151

this case). Nevertheless, it is worth noting that the 1152

TC model and TC+T+U model exhibit some im- 1153

provement, albeit not statistically significant, with 1154

the latter showing lower variance. However, it re- 1155

mains uncertain whether, in presence of a larger 1156

training set, the contextual model would be capable 1157

of increasing the performance gap with the baseline. 1158

All the results are reported in Table 10. 1159

Training Details. 1160

Differently from the SQDC dataset, for each 1161

epoch we use the entire training set without under- 1162

sampling, and make use of weighted cross-entropy 1163

loss both for training loss and validation loss, ac- 1164

cording to the cardinality of each class (as in Ap- 1165

pendix A.7). We use the same pipeline for hyper- 1166

parameter optimization and test on fixed hyperpa- 1167

rameters as in SDK dataset (i.e. 5 best runs in 1168

validation over 10), performing the same statistical 1169

test. Again, for all the experiments we use a single 1170

A40 GPU with 48GB Memory. 1171

8https://github.com/dhfbk/
twitter-abusive-context-dataset/tree/main

17

https://github.com/dhfbk/twitter-abusive-context-dataset/tree/main
https://github.com/dhfbk/twitter-abusive-context-dataset/tree/main


Category Model A-F1 NA-F1 W-F1 M-F1 LR DO

DUMMY
MAJ. 89.9(±0.0) 0.0(±0.0) 73.4(±0.0) 45.0(±0.0) / /

RAND. 82.2(±0.4) 21.1(±2.7) 71.0(±0.7) 51.7(±1.4) / /

BASEL. SINGLE 91.0(±0.4) 70.5(±0.8) 87.2(±0.5) 80.7(±0.6) 1.0 · 10−5 0.5

CONT.

TC 91.4(±1.2) 71.4(±2.2) 87.7(±1.3) 81.4(±1.7) 7.5 · 10−6 0.5

TC + T 90.6(±1.3) 69.6(±2.1) 86.7(±1.5) 80.1(±1.7) 1.0 · 10−5 0.5

TC + U 90.1(±1.8) 68.7(±2.8) 86.2(±2.0) 79.4(±2.3) 7.5 · 10−6 0.5

TC + U + T 91.6(±0.8) 70.8(±1.0) 87.8(±0.8) 81.2(±0.9) 7.5 · 10−6 0.25

Table 10: ContextAbuse. F1 scores obtained on the test set of ContextAbuse dataset. The F1 score is reported for
each class, in weighted average and in macro average. The results are the average over the best 5 runs in validation
over 10. We report the average and the standard deviation for each metric.

Figure 10: Length distribution of discussion chains in ContextAbuse dataset
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