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Abstract

Current text classification approaches usually
focus on the content to be classified. Contextual
aspects (both linguistic and extra-linguistic) are
usually neglected, even in tasks based on online
discussions. Still in many cases the multi-party
and multi-turn nature of the context from which
these elements are selected can be fruitfully ex-
ploited. In this work, we propose a series of
experiments on a large dataset for stance de-
tection in English, in which we evaluate the
contribution of different types of contextual in-
formation, i.e. linguistic, structural and tempo-
ral, by feeding them as natural language input
into a transformer-based model. We also exper-
iment with different amounts of training data
and analyse the topology of local discussion
networks in a privacy-compliant way. Results
show that structural information can be highly
beneficial to text classification but only under
certain circumstances (e.g. depending on the
amount of training data and on discussion chain
complexity). Indeed, we show that contextual
information on smaller datasets from other clas-
sification tasks does not yield significant im-
provements. Our framework, based on local
discussion networks, allows the integration of
structural information while minimising user
profiling, thus preserving their privacy.

1 Introduction

Online conversations are a main channel through
which phenomena such as fake news, rumors and
hate speech can spread (Sheth et al., 2022), polit-
ical leaning is expressed (Garimella et al., 2018)
and one’s health conditions can be revealed (Gun-
tuku et al., 2017). All these phenomena can be
captured to some degree automatically, provided
that we have reliable NLP systems able to classify
the content of the messages. Most classification
approaches focus on the textual content of single
comments (or a pair, in the case of stance detec-
tion), however little has been done to include the
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Figure 1: Representation of input data in Kialo dataset:
the discussion chain (in bold) is extracted from the dis-
cussion tree, and each claim has a textual content ¢, a
user id and a timestamp. A support (green) or contrast
(red) label w.r.t. the previous statement is assigned to
each claim. The initial claim ¢y has no stance (blue).
This representation can be easily generalized to experi-
ments on other datasets.

full context of the conversation and test its useful-
ness in classification tasks.

Indeed, while the actual content of comments
gives us information about what was written, know-
ing whether and how often two users interact with
each other can give us a wider picture of how the
dialogue is evolving. Furthermore, temporal in-
formation allows us to identify peaks or “waves”
of comments, suggesting the occurrence of a trig-
gering event, as seen in relation to online toxicity
(Saveski et al., 2021) and fake news (Vosoughi
et al., 2018).

Previous NLP studies already investigated how



contextual information can be included in the clas-
sification of online conversations, mainly following
three distinct directions: integrating textual context,
i.e. the previous thread of a given post (Pavlopou-
los et al., 2020), modelling user-related context
(Zhang et al., 2018; Nguyen et al., 2020), or in-
cluding structural context in terms of conversation
structure (Song et al., 2021; Tian et al., 2022), or
external knowledge (Beck et al., 2023). Regard-
less of which type of context was considered, one
major issue is represented by the limited size of
many benchmarks, from which models can hardly
learn contextual information (Menini et al., 2021;
Anuchitanukul et al., 2022). Another drawback
is that, in order to develop classification models
embedding contextual information, complex and
computationally-intensive architectures are needed
(Agarwal et al., 2022).

We address the above challenges by propos-
ing an approach integrating fextual, temporal and
structural context in a simple, unified architec-
ture, where such information is expressed in nat-
ural language and is captured by a transformer-
based model (Vaswani et al., 2017) for classifica-
tion, without separately modelling the latent struc-
tural information of the interactions. In this frame-
work, we avoid to explicitly provide user-related
information, which may lead to privacy issues, but
we rather represent users as “local discussion IDs”,
meaning that a user is assigned a new ID for each
discussion they participate in. As a consequence,
if a user is active in several discussions, this infor-
mation is not available and user profiling at global
network level is not possible, thus enforcing pri-
vacy preservation.

Since previous studies highlighted that training
size is crucial to make models aware of contextual
information, we mainly perform our experiments
on a task of stance detection using a large dataset
Scialom et al. (2020), extracted from the Kialo
platform (details in Section 4). Figure 1 displays
an example of discussion structure from the dataset.

To better understand the contribution of the train-
ing set size, we perform also an analysis of the
learning curve (Section 8) and we evaluate the per-
formance of our models on local discussion net-
works (LDNGs) of different complexity and of vary-
ing length (Section 9). As a comparison, we also
test our approach on two smaller datasets for stance
detection and abusive language detection, confirm-
ing the effect of dataset size (Section 7).

The data will be made available upon request
only for research purposes, in compliance with
Kialo’s terms of service. We will follow a data
minimisation principle, sharing only the informa-
tion needed to replicate our experiments after user
anonymisation. The software to reproduce the ex-
periments will be released on a dedicated Github

page.
2 Related Work

Despite the fact that social network discussions
involve more information than just a sequence of
texts, such as user interactions and temporal evo-
lution, researchers have only made few attempts
to combine linguistic information with structural
and temporal information. Some attempts have
been made for tasks like fake news detection (e.g.,
Nguyen et al., 2020, and Song et al., 2021), hate
speech detection (Chakraborty et al., 2022), stance
detection (e.g., Yang et al., 2019, and Zhou et al.,
2023) and rumour verification (Zhou et al., 2019).
User-related information has also been success-
fully exploited in abusive comment moderation
(Pavlopoulos et al., 2017).

All these tasks are closely related to the dynam-
ics of human behavior, but the involvement of lin-
guistic information, network information and tem-
poral information altogether has been difficult be-
cause of: I. the fusion of heterogeneous knowledge,
by combining computationally-expensive models
such as Pretrained Language Models and Graph
Neural Networks (GNNs) (Zhou et al., 2020), like
in Lin et al. (2021); 1I. the access to large-scale
private data, that cannot be freely released; I11. the
training of human annotators on this data; 1v. the
deletion of social media posts over time leading to
gaps in discussions, especially in hate speech and
fake news (Klubicka and Fernandez, 2018).

For few shared tasks, datasets that also include
contextual information such as user ids and times-
tamps have been created (Gorrell et al., 2019;
Cignarella et al., 2020). Still, researchers have
mostly worked only on the textual content.

One of the reasons why contextual information
has been marginally explored in classification tasks
is that it has not been proved beneficial in a con-
sistent way. As shown by Menini et al. (2021),
exploiting the textual context does not lead to any
increase in performance for abusive language de-
tection, even if the dataset was re-annotated by
looking at the full context. These results have been



confirmed by Anuchitanukul et al. (2022), who fur-
ther show that the outcome of contextual models
strongly depends on the intrinsic characteristics and
the dimension of the training set. Yu et al. (2022)
show that adding a short context (only parent and
target comments) improves hate speech classifica-
tion. However, they do not consider any structural
context but only textual one. Similar to our work,
Beck et al. (2023) model contextual information
through natural language. However, they consider
as “context” external contextual knowledge such as
structured knowledge bases, causal relationships,
or information retrieved from a large pretrained
model, and not the conversation structure.

For what regards stance detection, Agarwal et al.
(2022) proposed a graph-based inference model
to predict the stance of a comment versus its own
parent, exploiting the concept of graph walk to add
context. They performed experiments on a dataset
retrieved from Kialo, as we do in this work (details
of Kialo dataset in Section 4).

A similar task is rumour verification, where the
goal is to evaluate the truthfulness of a rumour
based on the reaction caused by it. In this case,
since the focus is on the effects produced by the
claim, the context is represented by the claims fol-
lowing the target claim (i.e., the right context),
rather than the claims preceding it (i.e., the left
context). To address this task, Tian et al. (2022)
propose a combination of BERT with a particu-
lar Graph Neural Network called GAT (Velickovic¢
et al., 2017) to retrieve both linguistic context and
extra-linguistic context, but working on the full dis-
cussion tree and performing the classification at the
level of the initial claim.

To summarize, existing past works that tried to
integrate contextual information to classification
tasks either were not able to outperform text-only
approaches, or yielded an improvement using com-
putationally expensive models such as Graph Neu-
ral Networks (GNNs). Furthermore, they tended to
give in input to the model all possible information,
including user data. With our approach, instead,
context benefits classification, while modelling the
diverse types of input in natural language and be-
ing privacy-preserving.

3 Problem statement

The definition of discussion is not unique. De-
pending on the social network, different discussion
structures can arise, from discussion chains to dis-
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Figure 2: Example of supportive (green) and contrastive
(red) claim having the same parent claim in Kialo.

cussion trees, or allowing branches only at specific
levels. In the following, discussion chain indicates
a linear thread of ordered claims, where each claim
is the reply to the previous one. This definition al-
lows us to assume that the author of the N*" claim
has read all the previous N — 1 claims. Moreover,
using the single chain instead of the discussion tree
allows us to reduce the complexity of the discus-
sion structure. From a discussion chain we can
retrieve a Local Discussion Network (LDN), i.e. a
multi-edge directed network of interaction among
the users, with a timestamp label for each edge.

Formalization. Let D = {dy,d,ds,....,dn}
be a set of discussions, where each discussion
is made of an ordered sequence of claims d; =
{¢o, 1, €2, ..., Cn } Where ¢y is called initial claim
and each claim ¢; is a response to the claim
¢i—1Vi > 1. Each claim ¢; is a tuple {c¢;, u;, t;},
where c; is the textual content, u; the local user ID
of the author and ¢; the timestamp. Each discussion
d; has alabel y; € Y, withY = [0,] — 1] where [
is the number of possible labels. In Kialo setting
(see details of Kialo dataset in Section 4), we have
two labels called contrast (C) and support (S) re-
spectively mapped to {0, 1}. The goal is to learn a
function f that maps correctly each discussion to
its correct label f : D — Y.

4 Kialo Dataset for Stance Detection

Kialo' is an online platform where people can de-
bate around a main topic, with moderators being
in charge of checking the grammaticality of the
claims, evaluating the level of support or of contrast
between a target claim and its parent claim, and
even moving claims to make conversations more
consistent. For these reasons, Kialo typically con-
tains less noisy data and a clearer conversational

"https://www.kialo.com



structure than other social media like Twitter, being
an ideal testbed for experiments and analyses.

In Kialo, the author of each comment is required
to assign a stance label to it with respect to the
parent comment. This label (support or contrast) is
then checked by the moderator, who can change it
if needed (an example of supportive and contrastive
stance from the dataset is displayed in Figure 2).
Furthermore, being clearly structured, it is possible
to easily retrieve from discussions the reply-tree
structure and the distribution of support/contrast
comments.

Datasets extracted from Kialo have already been
used in the past to study the linguistic characteris-
tics of impactful claims (Durmus et al., 2019a,b) or
perform polarity prediction (Agarwal et al., 2022).
We obtained access to the dataset based on Kialo
presented in Scialom et al. (2020), which was used
for binary stance detection. We extract from their
data only a subset containing chains longer than
1 (i.e., having at least the initial claim and one
reply). In this way, we obtain 122, 681 training in-
stances, 7,447 validation instances and 8, 211 test
instances. Each instance includes: 1. the target
claim; 1I. the discussion chain, from the initial
claim to the target claim; 111. the stance of each
claim versus its parent claim; 1v. the user ID of
each claim; V. the timestamp of each claim. Given
a discussion d = {¢y, €1, ..., ¢, } of length n + 1,
the goal is to classify correctly the stance of ¢,, with
respect to ¢,—1, choosing between support (S) or
contrast (C). We report descriptive statistics about
this Stance Detection Kialo dataset, from now on
abbreviated as SDK dataset, in Appendix A.4.

For each discussion tree we extract all the dis-
cussion chains going from the initial claim to the
leaves. Consequently, it is possible for portions
of these chains to overlap, while the target claims,
with their respective labels, remain unique. This
approach allows the model to process instances in
which different discussion progressions result in
different outcomes. Furthermore, to mitigate poten-
tial data contamination effects, the dataset is split
according to the initial claim cy. As a result, all
chains originating from the same initial claim are
exclusively assigned to either training, validation,
or test set.

5 Context Definition and Modelling

In past works, context has been integrated in so-
cial media classification tasks using two main ap-

proaches: by combining linguistic and network
information through the combination of node or
network embeddings and textual embeddings (Shu
et al., 2019; Dou et al., 2021) or by using textual
embeddings as features in a network system, and
retrieving a general representation using GNNs or
node/network embedding techniques (Yao et al.,
2019; Lin et al., 2021).

We follow a third approach by expressing infor-
mation on structural and temporal context using
natural language, and then giving it in input to
a transformer-based model. We use a RoBERTa-
based model (Liu et al., 2019) to perform the
task. This allows us to keep the same classification
framework while only changing the input data to
progressively add contextual information, adopting
a simple yet effective solution which is computa-
tionally lightweight.

Given a discussion chain d = {¢, ¢y, ..., Cn}
of length n + 1, where ¢; = {c;, u;,t;}, we can
identify 3 different types of context: a linguistic
(textual) context, c;, and two extra-linguistic (tem-
poral and structural) contexts, ¢; and u;.

Textual context. In our experiments, the tex-
tual context is defined as the sequence of all the
claims in the discussion chain from ¢y to ¢,,—_2, and
it is added to ¢,,_1 and ¢, (i.e., the claims used
for defining the stance). We concatenate all ¢; for
0 < 7 < n and between each pair of claims we
put a [SEP] tag. If the length of the final input ex-
ceeds the maximum input length for the model, we
iteratively delete c¢;, for ¢ from 1 to n — 2 (keeping
always cg at the beginning). We call this concate-
nation TXT_CHAIN.

Temporal context. To model the temporal con-
text, we add at the beginning of each c¢; (from the
textual context) the time ¢; passed between the pub-
lication of the initial claim ¢y and of ¢;. However,
we know that transformer-based models struggle
in mathematical reasoning (Patel et al., 2021). To
overcome this limitation, instead of reporting ¢; as
a value in milliseconds (as provided in the dataset)
the temporal information is given in the format
“after d days, h hours, m minutes”, with d,
h, and m correctly computed. We call this prefix
TIME. This prefix is delimited by two special tags:
<t>and </t>.

Structural context. To model the structural
context, we add at the beginning of each text c;
the local user ID of u;. This piece of information
makes it possible to reconstruct the structure of the
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Figure 3: Schematic view of the input configuration
for each model tested. We display the position of each
textual content ¢;, the [CLS] tokens, the [SEP] tokens,
the USER prefix and the TIME prefix.

LDN among the users in the discussion d, i.e. if A
replies to B, there is a direct edge from A to B. We
can therefore see the LDN as a multi-edge directed
graph of the interactions, with the textual content
and the order of interactions as labels (Figure 1).

The local user ID is locally unique: for each dis-
cussion chain, a value from 0 to m — 1 is incremen-
tally assigned to each of the m users contributing
in the discussion according to their first appear-
ance within the discussion itself. Using local IDs
means that when a user is active across different
discussions, they are assigned a different ID in each
conversation. This prevents our model from implic-
itly profiling users’ behavior and attitude at global
level, thus adopting a privacy-preserving approach.

The structural information is given in input to
the model adding before each comment the prefix
“sth user”, with 0 < 57 < m — 1 to declare that
the author with local ID j wrote the claim. We call
this prefix USER. Also for this prefix we adopt two
special tags to signal the start and the end of the
prefix: <o> and </o0>.

6 Models and Experimental Settings

We implement and compare eight different classifi-
cation models trained on the SDK dataset, which
can be divided into three categories: DUMMY,
BASELINES and CONTEXTUAL. DUMMY models
predict the label ignoring the input (i.e., majority
class or random class). Instead, for BASELINES
and CONTEXTUAL we always use a pre-trained
RoBERTa-based model (Liu et al., 2019) to embed
the input. Then we extract the final [CLS] con-

textual embedding and feed it into a Multi-Layer
Perceptron (MLP) module to perform the classi-
fication task (for details of the architecture, see
Appendix A.2). We use Optuna (Akiba et al., 2019)
for hyperparameter optimization of the learning
rate and the dropout applied to the MLP (details in
Appendix A.3). In Figure 3 we report a schematic
view of the input configuration employed for the
BASELINE models and the CONTEXTUAL models.
In Appendix A.1 we report an example of input for
each of these models.

We describe below the different classification
models, divided into the three following categories.

DuMMY. We implement two “dummy” models:

* MAJORITY CLASS: this model always as-
signs the majority class label (i.e., support in
the case of the SDK dataset).

* RANDOM: this model assigns the label, for
each item, at random, each with the probabil-
ity p = 0.5.

TEXT-ONLY BASELINES. The two models,
based only on the text of the claims, take in input a
fixed number of claims:

* SINGLE: we give in input to the model only
the textual content of the last claim ¢,,. The
goal is to predict the stance of ¢, without
considering what was written before. This
approach should be able to perform classifi-
cation just by looking at linguistic or stylistic
cues in ¢y,.

* PAIR: we give in input to the model only the
textual content of the last two comments, ¢,
and c,,_1, separated by the [SEP] token. The
goal here is to predict the correct label looking
at the semantics and at the style of the two
claims, as well as at the relations between the
two. This is the standard solution for Stance
Detection.

CONTEXTUAL. We model contextual informa-
tion in four different ways:

* TC: we give in input to the model only the
concatenated claims in the TXT_CHAIN for-
mat.

* TC + T: we give in input to the model the con-
catenated claims in the TXT_CHAIN format,
each claim with the TIME prefix.



* TC + U: we give in input to the model the con-
catenated claims in the TXT_CHAIN format,
each claim with the USER prefix.

* TC + U + T: we give in input to the model
the concatenated claims in the TXT_CHAIN
format, each claim with the TIME prefix and
the USER prefix.

7 Experiments

7.1 Stance Detection on Kialo

The goal of the first set of experiments is to evalu-
ate on Kialo the performance of the eight models
described above by using the whole training set,
both for hyperparameter optimization and for the
final evaluation. The results are the average and
standard deviation over 5 experimental runs (de-
tails in Appendix A.3).We report in Table 1 the F1
score for each class, its weighted average (W-F1),
and the macro average (M-F1). The final metric we
use for ranking the models is M-F1.

Results. All the results are reported in Table 1.
We compute statistical significance using Almost
Stochastic Order test (Del Barrio et al., 2018; Dror
et al., 2019). We use the implementation provided
in the deep-significance library, presented by
Ulmer et al. (2022), with the suggested threshold
value of 7 = 0.2.

Both BASELINE models lead to better perfor-
mances than the DUMMY models. Interestingly,
the SINGLE model performs well (72.8 M-F1 on
average), showing that the style of the target com-
ment already conveys relevant information to detect
its stance. However, as expected, taking the last
two comments in input (PAIR model) increases the
M-F1 score by +8.4 over the SINGLE one.

Among the CONTEXTUAL models, the TC
model achieves the worst results, slightly lower
than the PAIR model. This shows that adding con-
text is not always beneficial. In this case, since
the number of claims in a discussion changes, the
model is probably not able to focus on the right por-
tion of the chain. Adding the temporal information
only, as in the TC + T model, yields a better per-
formance than the simple textual chain in the TC
model (+1.2 M-F1) and outperforms significantly
the PAIR baseline (4+0.5).

Looking at the different types of context, we ob-
serve that adding only the USER prefix as in the
TC + U, leads to a significant increase of 3.2 M-
F1 over the TC model and of +2.5 over the PAIR
baseline. Furthermore, the model with both USER

prefix and TIME prefix, TC + U + T model, in-
creases significantly the performance with respect
to TC model (+3.4), PAIR model (+2.7) and TC
+ T model (42.2). However, there is no significant
difference between TC + U modeland TC + U + T
model (only 4-0.2). This indicates that TIME prefix
is no more relevant once we pass to the model the
USER prefix.

7.2 Experiments on other Datasets

As a comparison, we run the same experiments on
two smaller datasets, which provide the same type
of information included in SDK: the SQDC dataset
(Gorrell et al., 2019) for stance detection, and the
ContextAbuse dataset (Menini et al., 2021) for abu-
sive language detection. These datasets present a
size of respectively 5% and 7% compared to SDK.
On the SQDC dataset, the SINGLE baseline yields
the best result (47.2 M-F1), probably because the
official test set contains only chains of length 2.
After creating a better balanced train and test split,
instead, the best result is obtained by PAIR base-
line (46.4 M-F1). On the ContextAbuse dataset,
adding textual context (i.e., TC model) yields the
best performance (81.4 M-F1), which however is
not statistically significant compared to the SIN-
GLE baseline (80.7 M-F1). For detailed dataset
specifications and experimental results, we refer to
Appendix A.7 and Appendix A.8.

These experiments suggest that, independently
from the specific task, contextual information may
not yield substantial enhancements in performance
if the amount of training data is too limited. In
order to investigate better this aspect, we perform
an additional analysis of the learning curve in the
following section.

8 Learning Curve Analysis

While our experiments show that the discussion
context on the SDK dataset is beneficial to stance
detection, we aim to assess the impact of the train-
ing set size. Our intuition is that, when contextual
information is embedded in the model, more train-
ing instances are needed than for text-only models.
Indeed, the model must be given enough training
instances to understand what is the role of the spe-
cial tags and what type of information is included
between two specific separators.

We therefore extract from the original training
data 5 different training sets, comprising around
5% (6,354 examples), 10% (12,402 examples),



Category Model C-F1 S-F1 W-F1 M-F1 LR DO
DUMMY MAJORITY 70.5 (£0.0) | 0.0 (£0.0) 38.4 (£0.0) | 35.3 (£0.0) / /
RANDOM 52.1 (£0.6) | 48.0 (£0.4) | 50.2 (£0.5) | 50.1 (£0.5) / /
SINGLE 75.5 (£0.5) | 70.2 (£0.6) | 73.0 (£0.1) 72.8 (£0.2) 7.5-107¢ 0.5
BASELINES .
PAIR 83.1 (£0.4) | 79.3 (£0.4) | 81.4 (£0.2) 81.2 (0.2) 75-107% | 0.25
TC 82.2 (£0.6) | 78.8 (£0.4) | 80.7 (£0.3) 80.5 (£0.3) 75-107% | 0.25
TC+T 83.3 (£0.4) | 80.0 (£0.4) | 81.8 (+0.3) 81.7 (£0.3)" | 7.5- 107% | 0.25
CONTEXTUAL
TC+U 85.2 (£0.5) | 82.1 (£0.7) | 83.8 (£0.5) 83.7 (£0.5)" | 1.0- 107°% | 0.25
TC+U+T | 85.6 (£0.4) | 82.3 (£0.3) | 84.0 (£0.3) 83.9 (£0.3)" | 7.5- 1075 | 0.25

Table 1: F1 scores obtained on the test set of SDK dataset, for each class, in weighted average and in macro average
(average of the best 5 runs in validation over 10). Asterisks show a statistically significant improvement with respect
to the PAIR baseline. We report the average and the standard deviation for each metric. LR column reports the
Learning Rate and DO column reports the dropout value in the MLP component
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Figure 4: Learning curve for each BASELINE and CON-
TEXTUAL model, in terms of M-F1 score.

20% (24, 748 examples), 40% (49, 249 examples)
and 80% (98, 389 examples) of the original training
instances.

Results. Figure 4 shows the results obtained
when increasing the training set size as the average
over 3 runs (the full results and experimental de-
tails are reported in Appendix A.5). We exclude
the DUMMY models, since they never outperform
BASELINE and CONTEXTUAL models.

With 5% of the training data, all the CONTEX-
TUAL models are beaten by the worst BASELINE
model (i.e., SINGLE), with performance down from
—10.8 to —16.3 M-F1 compared to using the whole
training set. At the same time, the PAIR model
achieves the best result in this setting, with a per-
formance drop of only —4.6. However, as soon
as we add more data, the scenario changes. With
10% training set and 20% training set, CONTEX-
TUAL models overcome the SINGLE model and

progressively approach the PAIR model. With 40%
training set, TU + U and TC + U + T outperform
the PAIR model and with more data they substan-
tially increase their gap with the latter.

To sum up, these results show that CONTEX-
TUAL models need between 20% and 40% of the
training data (i.e., from 24 thousand to 49 thousand
training examples) to achieve comparable results
with the PATIR model, while they need more data to
outperform it.

9 Analysis of Discussion Structure

Beside assessing the impact of training set size
on classification performance, we are also inter-
ested in analysing the role played by the topology
of local discussion networks (LDNs), in particular
in terms of repeated users and number of turns.”
We first divide LDNs in the SDK dataset into two
groups: simple LDNs, which are characterized by
chains where users write only one turn, and com-
plex LDNs, with a user writing several turns. We
run the stance detection experiment with the set-
ting presented in Section 7 and compare the results
obtained on simple vs. complex chains. We also
analyse how the number of claims and of users
affects classifier performance on complex LDNs
(with and without context). Results are reported in
Figure 5, which displays the M-F1 score obtained
with the different models. The thickness of the line
represents the standard deviation over 5 runs. The
analysis shows that extra-linguistic context gives an
important contribution to the classification of com-

%For this analysis, we merge the consecutive claims written
by the same author in a discussion chain into a unique furn, and
create a corresponding turn chain. In this way, two consecutive
turns have always different authors.
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Figure 5: Model comparison when testing the classifier on different dimensions: Simple vs. Complex LDNs (left),
complex LDNs with different number of turns (center) and different number of users (right).

plex LDNS, in particular the TC + U + T model.  that our transformer-based model is able to capture
This contribution is more limited on simple chains, the structure given by the interactions among the
with the PAIR model and the CONTEXTUAL mod-  users, even if implicit, when enough data are avail-
els achieving comparable results. able. Our analyses show also that capturing con-
As regards the impact that the number of turns  textual information is particularly beneficial with
has on the classification of complex LDNs perfor-  longer chains of turns, and discussion chains with
mance (middle panel of Figure 5), we first group ~ more users. When all contextual information (both
the turns into three bins based on their length: from  linguistic and extra-linguistic) is included in the
2 to 5 (dark blue), from 6 to 10 (blue) and > 10  model, the classifier performs equally well on long
(light blue). The comparison among the three  and on short chains, making the results more con-
groups clearly demonstrates that the inclusion of  sistent and the model more robust to chain length
temporal and structural context consistently results  and user activity.
in a performance improvement, regardless of the As regards the temporal context, we show that it
number of turns in the discussion. We finally inves-  is still useful to achieve a better performance, but
tigate the effect that the number of users involved =~ we argue that in Kialo it may not be particularly
in the complex LDN has on classification perfor-  relevant because this is a platform where users are
mance (right plot of Figure 5). Also in this case,  more likely to ponder their responses and take some
the chains are grouped into three bins: having less  time to reflect before posting, also thanks to a strict
that 4 users (dark blue), from 5 to 8 users (blue), moderation policy (Vosoughi et al., 2018).
and more than 8 (light blue). Again, the compar-
ison demonstrates that the inclusion of the extra- 11 ~Conclusions
linguistic contexts consistently results in improve-
ment, regardless of the number of users involved in
the discussion.

In this paper we have tested the effectiveness of us-
ing linguistic and extra-linguistic contexts for text
classification. Our results show that full linguistic
context alone worsens or does not significantly im-
prove the results with respect to the non-contextual
The results reported in Section 7 and Section 8  baseline. Instead, with extra-linguistic context, the
show that adding extra-linguistic context is bene-  performance improves, especially with the contri-
ficial to improve performance on stance detection.  bution of structural context. Further analysis shows
However, this benefit arises only if the CONTEX-  that such results strongly depend on the amount of
TUAL models have access to enough data, which ~ data on which the models are trained. Moreover,
in our experiments on the SDK dataset means  we found that extra-linguistic context makes results
between 24,000 and 49, 000 items. This result  more robust across discussion networks of different
explains also the different performance obtained  lengths and more or less active users. Our exper-
on smaller datasets (Section 7.2). As regards the  iments show also that transformer-based models
analysis of local discussion chains, the more com-  are able to embed structural features, which can be
plex is the LDN, the more evident are the ben- effectively given in input to the model in the form
efits from the structural context. This suggests  of simple natural language statements.

10 Discussion



12 Limitations

The findings presented in this work were mainly
focused on the Kialo dataset on the specific task
of stance detection. Kialo is an ideal testbed for
our hypotheses because it is a moderated platform
with well-structured discussions written in plain
English. It is not possible to infer that the same
findings would be confirmed on any social network,
where discussions may be more fragmented and
lacking moderation. Indeed, to have a clear picture
of our findings, other large datasets with similar
characteristics would be needed. Nevertheless, as
a preliminary exploration, our experiments on the
two smaller datasets from Twitter confirmed our
expectation about the importance of the amount
of training data. Moreover, our work presents a
limited number of classification models. We tested
a few other combinations without reaching inter-
esting results, therefore we decided to focus only
on few configurations and to analyse their behav-
ior more thoroughly. Overall, our contribution is
not focused on generally achieving the best results,
but rather on assessing how and why contextual
information influences the behavior of a model.

13 Ethics Statement

Integrating user information into a text classifica-
tion task may pose ethical risks, since profiling may
introduce biases in classification, hurting some in-
dividuals with a specific profile, and is explicitly
prohibited in a number of countries. However, we
adopt a solution that minimises such risks in that it
does not use global user information but only local
one, making it impossible to infer user information
at platform level. Furthermore, no additional in-
formation about users’ preferences and attitude is
explicitly coded: the model is given in input only
what and when users post in each discussion, and
in response to whom.

In terms of reproducibility, our models are ex-
tremely lightweight and allow the reproduction of
the experiments on common GPUs, using imple-
mentations available online.
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A Appendix

A.1 Example of Input Configuration

We report in Table 2 an example of how the same
training instance is given in input to the model
in the different configurations. In the pretrained
RoBERTa model available on Hugging Face?, the
[CLS] token is replaced by a <s>tag and the [SEP]
token is represented by a sequence of special tags
(i.e., </s></s>). We have taken inspiration from
these representations for our new special tokens:
<t>, </t>, <0>, </0>. We preprocessed the input
text by substituting the website links with the string
HTTPURL and tags starting with the “@” with the
string QUSER (common tweet preprocessing?).

A.2 Model Architecture

The model architecture is reported schematically
in Figure 6. It is made of two main components:
a RoBERTa model with on top a Multi Layer Per-
ceptron (MLP). To perform the prediction, we feed
the RoOBERTa model with the input, and then we
extract the final [CLS] contextual embedding. So
we pass the [CLS] contextual embedding to the
MLP, which consists in a classic Feedforward Neu-
ral Network (FNN), and perform the prediction.

The dimension of the [CLS] contextual embed-
ding is d = 768. The RoBERTa model archi-
tecture and initial weights correspond to the pre-
trained version provided by Hugging Face called
roberta-base’, with maximum input length [ =
512 tokens.

The MLP consists in 3 layers: 1. the first goes
from dimension 768 to 200 with ReLU activation
function; 11. the second goes from dimension 200
to dimension 300, again with ReLU activation func-
tion; I11. the third goes from dimension 300 to
dimension n, where n is the number of classes
among which we predict the class, with tanh ac-
tivation function. Finally we apply a softmax on
the n value in output from the last layer, in order
to have a probability distribution among the n pos-
sible values (the prediction will correspond to the
index of highest probability).

A.3 Training Details.

Hyperparameter search and Evaluation. We
exploited Optuna (Akiba et al., 2019) for hyper-

3https://huggingface.co/docs/transformers/model_doc/roberta

“https://huggingface.co/cardiffnlp/twitter-roberta-base-
sentiment
Shttps://huggingface.co/roberta-base
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- /§ NN
Figure 6: Schematic view of the model we tested. We
distinguish between the component we change in each

experiment (the input) and the fixed structure (RoBERTa
+ MLP).
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parameter search, using a grid search for: 1. the
learning rate, with a uniform probability between
the values 7.5-107%,1.0-107%,2.5-107°,5-107°,
7.5 - 107%; 11. the dropout applied between the lay-
ers of the MLP, with values 0.25 and 0.5. We use
batch size b = 32 and weight decay wy = 10~*
in the ROBERTa components. In SDK dataset, we
used unweighted Cross Entropy loss both in train-
ing and in validation phase, since the imbalance is
negligible.

For the final evaluation, we fix the hyperparame-
ters and then we perform 10 runs, changing each
time the random seed. Then we keep the 5 best runs
in validation, in order to exclude possible “outlier”
runs due to initialization problems. We compute
the average and standard deviation of the test re-
sults on these 5 best runs.

Training pipeline. We perform the backpropa-
gation on the full structure of the model, without
freezing any layer. As said previously, our experi-
ments keep always the same model, just changing
the input. We used early stopping for the model
selection with patience p = 2 epochs for the SDK
dataset (Section 7 and Section 8) and p = 5 epochs
for the SQDC dataset (Appendix A.7). In the SDK
dataset, each epoch corresponds to a training epoch
on a sample of the training set which is around
half of the total training set, in order to speed up
the computation and the generalization. We tested
also the usage of the full training set in each epoch,
but the results remain comparable. This holds for
all the experiments on Kialo datasets, the standard
one (Section 7) and the learning curve on train-
ing size (Section 8). For the SQDC dataset and
ContextAbuse dataset, we refer respectively to Ap-
pendix A.7 and Appendix A.8.

For all the experiments we used a single A40
GPU with 48GB Memory. All the experimental
code is developed in PyTorch. It requires around



Model

Input

SINGLE

<s>There have been very few Marxist Governments. At best the empirical evidence is weak. The article
quoted above is almost tangential to the topic as a whole. </s>

PAIR

<s>The utopia imagined by Marx only works in theory. HTTPURL suggests that the [pursuit of communism
leads to totalitatian HTTPURL </s></s>There have been very few Marxist Governments. At best the
empirical evidence is weak. The article quoted above is almost tangential to the topic as a whole. </s>

TC

<s> Should HTTPURL adapt to improve, not merely HTTPURL and HTTPURL </s></s> Democracy is not
necessarily the best way to structure society and politics. </s></s> Even if democracy has a number of flaws,
it is [comparatively the best form of political HTTPURL </s></s> The utopia imagined by Marx only works
in theory. HTTPURL suggests that the [pursuit of communism leads to totalitatian HTTPURL </s></s>
There have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted
above is almost tangential to the topic as a whole. </s>

TC+T

<s> <t> after 0 days, 0 hours, O minutes </t> Should HTTPURL adapt to improve, not merely HTTPURL
and HTTPURL </s></s> <t> after 1 days, 18 hours, 17 minutes </t> Democracy is not necessarily the best
way to structure society and politics. </s></s> <t> after 81 days, 3 hours, 48 minutes </t> Even if democracy
has a number of flaws, it is [comparatively the best form of political HTTPURL </s></s> <t> after 81 days,
3 hours, 51 minutes </t> The utopia imagined by Marx only works in theory. HTTPURL suggests that the
pursuit of communism leads to totalitatian HTTPURL </s></s> <t> after 83 days, 3 hours, 53 minutes </t>
There have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted
above is almost tangential to the topic as a whole. </s>

TC+U

<s> <0> Oth user </0> Should HTTPURL adapt to improve, not merely HTTPURL and HTTPURL </s></s>
<o0> 1st user </0> Democracy is not necessarily the best way to structure society and politics. </s></s>
<0> 2nd user </o> Even if democracy has a number of flaws, it is [comparatively the best form of political
HTTPURL </s></s> <0> 2nd user </0> The utopia imagined by Marx only works in theory. HTTPURL
suggests that the pursuit of communism leads to totalitatian HTTPURL </s></s> <0> Oth user </o> There
have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted above
is almost tangential to the topic as a whole. </s>

TC+U+T

<s> <t> after 0 days, 0 hours, 0 minutes </t> <0> Oth user </o> Should HTTPURL adapt to improve, not
merely HTTPURL and HTTPURL </s></s> <t> after 1 days, 18 hours, 17 minutes </t> <o> 1st user </0>
Democracy is not necessarily the best way to structure society and politics. </s></s> <t> after 81 days, 3
hours, 48 minutes </t> <0> 2nd user </0> Even if democracy has a number of flaws, it is comparatively the
best form of political HTTPURL </s></s> <t> after 81 days, 3 hours, 51 minutes </t> <o0> 2nd user </0>
The utopia imagined by Marx only works in theory. HTTPURL suggests that the [pursuit of communism
leads to totalitatian HTTPURL </s></s> <t> after 83 days, 3 hours, 53 minutes </t> <0> Oth user </o> There
have been very few Marxist Governments. At best the empirical evidence is weak. The article quoted above
is almost tangential to the topic as a whole. </s>

Table 2: Different types of input related to the same discussion that are fed to the model.
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SDK Dataset
Set Counter | Support Total
Training 49.2% 50.8% | 122681
Validation | 50.2% 49.8% 7447
Test 54.5% 45.5% 8211

Table 3: Distribution of the labels in SDK dataset.

33 minutes of computation for each epoch (training
phase plus validation phase).

A.4 Kialo dataset statistics

We report in Table 3 the distribution of the labels
in the SDK dataset, and we plot the distribution of
the chain length in Figure 7.

A.5 Learning curve experiment

We report in Table 4 the results from the second ex-
periment on the SDK dataset presented in Section 8.
We first run hyperparameter optimization on each
training set. Then, after fixing the hyperparameters
as in Section 6, we perform 3 experimental runs on
each training set, changing the random seed each
time, and compute the average M-F1 among the 3
runs. The same evaluation is performed using the
complete training set.

A.6 Details about the analysis of the results on
SDK dataset

In Kialo, the same author can write several consecu-
tive comments, even in contrast between each other
(typical argumentation step, with both support the-
sis and anti-thesis). However, we are more inter-
ested in interactions among different users. For this
reason, we introduce the concept of rurn. Given
a discussion chain of n claims, we can retrieve
a chain of n’ turns, where two consecutive turns
have different authors. This is possible by merg-
ing all consecutive claims written by the same user
into a unique turn. For instance if we have a dis-
cussion chain d of length 6 with user sequence
{ug, ug, u1, u1, u1, us}, the associated turn chain
has length 3 merging into one turn the first two
claims, then the following three into another turn
and the last one is already a turn, with user se-
quence {ug, u1,us}. This represents also a sim-
ple discussion. A complex discussion might be
similar to the following: if the user sequence is
{up, u1,ug, up, uz, u2}, in the turn chain the user
sequence becomes {ug, u1, ug, uz}.
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A.7 Results on SQDC dataset

The SQDC dataset. We perform the same set
of experiments and analysis on a second dataset,
which was developed for the task “SQDC support
classification” at the RumourEval 2019 challenge
(Gorrell et al., 2019). For each item we have the
same information as in the SDK dataset, and given
a discussion tree, all the discussion chains from
the initial claim to any node (even internal) are ex-
tracted, and each item labeled according to the last
comment. However, the label of each claim does
not represent the stance versus the previous claim,
but rather the stance with respect to the rumour
discussed in the chain. This chain is treated as
the common ground topic on which the discussion
is taking place, even if it is not necessarily stated
explicitly in the initial claim. Again, the dataset
split is based on the initial claim, avoiding any data
contamination.

There are four possible labels: 1. support, 11.
query, 111. deny, and 1V. comment. Those labels
are respectively shortened as S, Q, D and C, from
which the name of the task (SQDC support clas-
sification). The original dataset is highly unbal-
anced among the classes and comprises threads
from Reddit® and Twitter’. We focus this second
set of experiments on the Twitter part of the dataset.

Experiments. At first, we run our experiments
on the original train-validation-test split, reaching
different results w.r.t. those obtained on Kialo,
since the SINGLE model yields the best perfor-
mance (see full results in Table 5).

We further inspect the dataset and we find that
the test set was formed only by chains of length
2, where the usefulness of the context is limited.
So, we exclude the original test set and generate a
new train-validation-test split, analysing the distri-
bution of labels and chain lengths. The results are
different w.r.t. the original SQDC dataset: the CON-
TEXTUAL model achieves a performance between
SINGLE model (lower bound) and PAIR model (up-
per bound). For details, see Table 6. Overall, the
results on the new split of the SQDC dataset con-
firm the overall findings obtained by analysing the
learning curve for different training sizes in Kialo
(discussed in Section 8): the SQDC dataset is not
large enough to allow modelling the context in an

®https://www.reddit.com
"https://twitter.com
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Figure 7: Length distribution of the discussion chains in SDK dataset.
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Category Model 5% 10% 20% 40% 80% 100%
Mai. 35.3 35.3 35.3 35.3 35.3 35.3
DuMMY
RAND. 50.1 50.1 50.1 50.1 50.1 50.1
SINGLE 70.2 70.5 71.1 71.6 72.2 72.7
BASELINES
PAIR 76.1 77.3 o 79.3 80.9 80.7
TC 69.6 71.1 76.7 77.9 80.4 80.4
TC+T 68.2 72.7 75.4 7.4 80.7 81.6
CONTEXTUAL
TC+U 69.6 73.8 77.1 79.4 83.2 83.3
TC+U+T 67.4 71.8 74.1 80.7 83.2 83.7
l TRAINING SET SIZE [ 6354 [ 12402 [ 24748 [ 49249 [ 98389 [ 122681 ‘

Table 4: Macro-F1 scores obtained on the test set of SDK dataset, for every training set in growing size.

Category Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO
DUMMY MAJ. 0.0 (£0.0) 0.0 (£0.0) 0.0 (£0.0) 86.6 (£0.0) 66.1 (+£0.0) | 21.6 (+0.0) / /
RAND. 12.6 (£2.1) | 9.5 (£1.1) 13.9 (£2.6) 37.5 (£1.9) 31.6 (£1.3) | 18.3 (£0.6) / /
BAsEL. SINGLE 14.1 (£7.7) | 54.4 (£2.9) | 47.5 (+3.5) 72.6 (£5.7) 64.1 (+4.2) | 47.2 (£2.3) | 5.0-107° | 0.25
PAIR 13.5 (£1.6) | 58.4 (£3) 44.9 (£0.1.5) | 71.1 (£3.2) 62.8 (£2.3) | 47.0 (£0.5) | 2.5-10~° | 0.25
TC 12.9 (£4.1) | 58.6 (£2.4) | 42.7 (£7.2) 71.5 (£4.3) 62.9 (+4.2) | 46.4 (£4.0) | 1.0-107° | 0.25
Cont TC+T 15.4 (£0.8) | 59.0 (£2.6) | 44.1 (£4.5) 63.4 (£3.7) 57.0 (£2.8) | 45.5 (£1.6) | 1.0-10~° 0.5
TC+U 13.2 (£5.1) | 56.3 (£4.6) | 41.6 (+3.8) 65.1 (+11.4) | 57.8 (+£8.6) | 44.0 (£3.3) | 2.5-107° | 0.25
TC+U+T | 19.2 (£4.7) | 52.3 (£3.5) | 43.1 (£1.8) 68.6 (£4.7) 61.1 (+£3.9) | 45.8 (£2.3) | 2.5-10"° 0.5

Table 5: SQDC - Challenge. F1 scores obtained on the test set of SQDC dataset, on the original split given for the
challenge. The F1 score is reported for each class, in weighted average and in macro average. The results are the
average over the best 5 runs in validation over 10. We report the average and the standard deviation for each metric.

Category | Model S-F1 Q-F1 D-F1 C-F1 W-F1 M-F1 LR DO
sy | MAL 0.0 (£0.0) 0.0 (+0.0) 0.0 (£0.0) 82.9 (£0.0) | 58.6 (£0.0) | 20.7 (£0.0) / /
RAND. 15.3 (£2.0) | 14.4 (£3.4) | 11.7 (£2.0) | 39.1 (£1.5) | 31.8 (£0.7) | 20.1 (£0.8) / /
BaseL. SINGLE 31.3 (£3.7) | 52.5 (£2.6) | 27.7 (£5.7) | 56.2 (£6.6) | 51.0 (£5.3) | 42.0 (£3.4) | 5.0-107° | 0.25
PAIR 30.2 (£1.5) | 54.3 (£1.6) | 33.7 (£1.4) | 67.2 (£3.7) | 59.3 (+£2.9) | 46.4 (£1.8) | 2.5-107° | 0.25
TC 28.3 (+£3.0) | 53.1 (+4.7) | 31.1 (+4.2) | 68.4 (+5.3) | 59.6 (+£3.9) | 45.3 (£2.3) | 2.5-10~° | 0.5
CoNt. TC+T 27.9 (£1.8) | 49.8 (£1.9) | 33.6 (£2.9) | 63.3 (+4.5) | 55.8 (£3.3) | 43.6 (£2.0) | 7.5-1076 | 0.25
TC+U 27.9 (+1.1) | 52.7 (£2.2) | 32.2 (+3.0) | 64.8 (+4.0) | 57.0 (+3.0) | 44.4 (£1.5) | 1.0-10~° | 0.25
TC+U+T | 27.2 (£2.1) | 51.4 (+£3.0) | 32.8 (£1.4) | 62.2 (+3.2) | 55.0 (£2.8) | 43.4 (£2.0) | 1.0-107° | 0.5

Table 6: SQDC - New split. F1

scores obtained on the test set of SQDC dataset, with our new split to obtain
complex structures even in training. See caption in Table 5 for further details.

Category Model NS-F1 S-F1 W-F1 M-F1 LR DO
DUMMY MaAlJ. 82.9 (+0.0) | 0.0 (40.0) 58.6 (£0.0) | 41.4 (£0.0) / /
RAND. 59.6 (£1.0) 38.4 (£1.5) 53.4 (£0.8) 49.0 (£0.9) / /
BASEL. SINGLE 74.4 (£2.9) | 52.9 (£0.8) | 68.1 (+2.3) | 63.6 (£1.8) 1.0-107° 0.5
PAIR 73.4 (£3.4) | 53.8 (£1.5) | 67.7 (£2.6) | 63.6 (£2.0) 7.5.1076 0.5
TC 73.3 (£3.2) | 49.3 (£1.3) | 66.3 (£2.5) | 61.3 (£2.1) 7.5-107% | 0.25
Cont. TC +T 75.3 (£3.0) | 51.1 (£1.4) | 68.3 (£2.4) | 63.2 (£2.0) 1.0-107° 0.5
TC +U 74.7 (£3.0) | 49.9 (£1.0) | 67.5 (+£2.1) | 62.3 (£1.6) 1.0-107° 0.5
TC+U+T | 74.7 (£1.5) | 48.4 (£1.9) | 67.0 (£1.3) 61.6 (£1.3) | 2.5-107° | 0.25

Table 7: SQDC - Binary. F1 scores obtained on the test set of SQDC dataset, with our new split to obtain complex
structures even in training, for the binary task to detect Stance class vs No Stance Class. See caption in Table 5 for
further details.

effective way. We also try to test our models on
a binary task, more similar to stance detection in
Kialo, by merging the query class, the deny class
and the support class into a unique stance class, and
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the comment class as a no-stance class. Results are
reported in Table 7. Again, the SINGLE model is
the best performing one probably due to the data
size and the context does not yield any improve-



SQDC Dataset - Challenge
Set S Q D C Total
Training 20.2% 7.9% 7.6% 64.3% 4519
Validation 9.0% 10.1% 6.8% 74.1% 1049
Test 13.2% 5.8% 8.6% 72.4% 1066
SQDC Dataset - New split
Set S Q D C Total
Training 13.9% 8.6% 7.6% 69.9% 3957
Validation 12.0% 8.9% 8.7% 70.4% 689
Test 11.3% 10.9% 7.1% 70.7% 595
SQDC Dataset - Binary
Set No Stance Stance Total
Training 69.9% 30.1% 3957
Validation 70.4% 29.6% 689
Test 70.7% 29.3% 595

Table 8: Distribution of the labels in SQDC dataset,
distinguishing training set, validation set, and test set
We report the three versions experiments: chellenge
version, new split version and binary version.

ment. For these datasets, we report the descriptive
statistics in Table 8 and plot the length distribution
of the discussion chains in Figure 8 and Figure 9.

Training Details. To balance the classes during
training, for each epoch we undersample each class
in the training set in order to have s samples for
each class, where s is the cardinality of the less
represented class. We use as loss function the un-
weighted Cross Entropy. Then, for validation, we
use a weighted Cross Entropy Loss according to the
cardinality of each class, with weight w. = 100/ s,
for each class, where s, is the cardinality of the
class c. We use the same pipeline for hyperparame-
ter optimization and test on fixed hyperparameters
as in SDK dataset (i.e. 5 best runs in validation
over 10), performing even the same statistical test.
Again, for all the experiments we use a single A40
GPU with 48GB Memory.

A.8 Results on ContextAbuse dataset
The ContextAbuse dataset.

ContextAbuse Dataset

Set No Abuse
82.6%
82.4%

81.7%

Abuse
17.4%
17.6%
18.3%

Total
5651
1216
1151

Training
Validation

Test

Table 9: Distribution of the labels in ContextAbuse
dataset

ContextAbuse (Menini et al., 2021) is a subset
of the well-known hate speech dataset Founta et al.
(2018), where the items have been relabeled as
"Abusive" or "Not Abusive" taking into account
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not only the tweet to classify, but also the previ-
ous tweets (textual context). This re-annotation led
to a remarkable reduction of items annotated as
"Abusive", suggesting that context is vital to disam-
biguate real abusive tweets from other cases (e.g.
irony, satire, etc.). Given the set of tweets from
Founta et al. (2018), the authors did not retrieve the
full discussion tree, but just the discussion chain
from the initial claim to the target comment. In
this way, there is no overlap among different items,
but each tweet in each sequence is seen only once.
This could result in major difficulties for contextual
models to extract useful information to perform the
classification.

Experiments The dataset is provided on Github®
without official splits. So we create a train-
ing/validation/test set according to a 70/15/15 strat-
egy. We report the descriptive statistics in Table
9 and the length of the discussion chain in Figure
10. In this case we have only the SINGLE model as
a baseline because the goal is to classify a single
claim.

The results obtained on the ContextAbuse
dataset exhibit similarities to the ones obtained
from SQDC dataset (new split version). These find-
ings align with the outcomes of the learning curve
experiment from the SDK dataset. In this scenario,
the contextual models fail to significantly outper-
form the baseline (which is the SINGLE model in
this case). Nevertheless, it is worth noting that the
TC model and TC+T+U model exhibit some im-
provement, albeit not statistically significant, with
the latter showing lower variance. However, it re-
mains uncertain whether, in presence of a larger
training set, the contextual model would be capable
of increasing the performance gap with the baseline.
All the results are reported in Table 10.

Training Details.

Differently from the SQDC dataset, for each
epoch we use the entire training set without under-
sampling, and make use of weighted cross-entropy
loss both for training loss and validation loss, ac-
cording to the cardinality of each class (as in Ap-
pendix A.7). We use the same pipeline for hyper-
parameter optimization and test on fixed hyperpa-
rameters as in SDK dataset (i.e. 5 best runs in
validation over 10), performing the same statistical
test. Again, for all the experiments we use a single
A40 GPU with 48GB Memory.

Shttps://github.com/dhfbk/
twitter-abusive-context-dataset/tree/main


https://github.com/dhfbk/twitter-abusive-context-dataset/tree/main
https://github.com/dhfbk/twitter-abusive-context-dataset/tree/main

Category Model A-F1 NA-F1 W-F1 M-F1 LR DO
DUMMY MALI. 89.9(40.0) 0.0(£0.0) 73.4(£0.0) 45.0(£0.0) / /
RAND. 82.2(£0.4) | 21.1(%2.7) | 71.0(£0.7) | 51.7(%£1.4) | / /
BASEL. SINGLE 91.0(£0.4) | 70.5(+0.8) | 87.2(£0.5) | 80.7(£0.6) | 1.0-10"°% | 0.5
TC 91.4(£1.2) | 71.4(£2.2) | 87.7(+1.3) | 81.4(%£1.7) | 7.5-10% | 0.5
Cont TC+T 90.6(£1.3) | 69.6(+2.1) | 86.7(£1.5) | 80.1(%£1.7) | 1.0-10"° | 0.5
TC+U 90.1(+1.8) | 68.7(+2.8) | 86.2(+£2.0) | 79.4(%£2.3) | 7.5-10-% | 0.5
TC+U+T | 91.6(£0.8) | 70.8(x1.0) | 87.8(+£0.8) | 81.2(%£0.9) | 7.5-10"% | 0.25

Table 10: ContextAbuse. F1 scores obtained on the test set of ContextAbuse dataset. The F1 score is reported for
each class, in weighted average and in macro average. The results are the average over the best 5 runs in validation
over 10. We report the average and the standard deviation for each metric.
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Figure 10: Length distribution of discussion chains in ContextAbuse dataset
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