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ABSTRACT

We introduce the Reservoir State Space Model (RSSM), a novel neural architecture
that integrates the structured dynamics of State Space Models (SSMs) with the
efficiency of reservoir computing to address long-term dependencies in sequence
modeling. Leveraging the linear structure of SSMs, RSSMs implement efficient
convolutional operations that maintain a latent internal state, akin to Recurrent
Neural Networks (RNNs), while enabling fast and parallelizable computation. We
conduct a stability analysis of the underlying SSMs to extend the memory capacity
of the model, ensuring rich and expressive hidden representations.
A key innovation of RSSM is its use of untrained, structured convolutional dynam-
ics as a fixed reservoir, with learning confined to a lightweight feed-forward read-
out layer. This design drastically reduces training complexity and computational
overhead, making RSSMs well-suited for low-resource or real-time applications.
Empirical evaluations on standard sequence modeling benchmarks demonstrate
that RSSMs achieve competitive accuracy while offering significant efficiency
gains compared to traditional trainable architectures. Our results establish RSSMs
as a new class of sequence models that combines the strengths of structured, fixed
dynamics with the flexibility of learned representations, offering a compelling
trade-off between performance and efficiency.

1 INTRODUCTION

Efficiently modeling long-term dependencies in sequential data remains a major challenge in machine
learning Bengio et al. (1994). This issue is prominent in tasks such as text summarization and
sentiment analysis Cho et al. (2014), where understanding depends on information introduced much
earlier in the sequence. Similar challenges appear in audio processing, where correct interpretation
relies on long-range context.

While transformers have proven effective across many sequence modeling tasks, their quadratic
complexity with respect to sequence length makes them computationally expensive for long inputs
Vaswani et al. (2017). To address these limitations, structured state-space models (SSMs) have
emerged as a promising alternative Gu et al. (2021); Nguyen et al. (2022), leveraging their equivalence
with convolutions to enable parallel computation and faster training while maintaining an internal
state akin to RNNs.

In this work, we explore the integration of reservoir computing Lukoševičius & Jaeger (2009); Naka-
jima & Fischer (2021) with SSMs to define a novel, convolution-based reservoir model. Our approach
utilizes untrained convolutional layers to form a deep reservoir that captures rich temporal features,
inspired by principles of deep reservoir computing Gallicchio et al. (2017). Only a feedforward
readout layer is trained. This improves efficiency and reduces the need for extensive parameter
updates. This architecture offers long short-term memory, computational efficiency, and sustainability
benefits. It lowers training costs and energy consumption, supporting more environmentally friendly
AI practices Strubell et al. (2019) and increasing accessibility for institutions with limited resources.

The contributions of this paper are:

• Integration of SSMs into the Reservoir Computing framework. We propose Reservoir
State-Space Model (RSSM), an efficient reservoir computing model that structures the
recurrent dynamics following principles of modern SSMs.
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• Stability analysis of RSSM. We establish sufficient conditions for the stability of RSSM
from both a classical recurrent perspective and a convolutional interpretation, offering
complementary insights into their dynamic behavior.

• Excellent Efficiency-Accuracy trade-off. We benchmark RSSM against a diverse set of
sequence modeling approaches, including reservoir computing models, fully-trainable RNNs,
efficient Transformer variants, and the state-of-the-art S4 architecture. RSSM demonstrates a
compelling balance between computational efficiency and predictive accuracy, highlighting
its competitiveness across a range of sequence modeling tasks.

2 RELATED WORKS

Recurrent Neural Networks. Recurrent Neural Networks (RNNs) are foundational for sequence
modeling due to their temporal recurrence and memory Mikolov et al. (2010), but struggle with
vanishing/exploding gradients on long dependencies Bengio et al. (1994); Pascanu et al. (2013).
Gated variants like LSTMs Hochreiter & Schmidhuber (1997) and GRUs Cho et al. (2014); Chung
et al. (2014) address this via gating mechanisms. Further improvements leverage norm-preserving
parameterizations such as unitary matrices Arjovsky et al. (2016), Householder/Givens rotations
Mhammedi et al. (2017); Jing et al. (2017), and Cayley transforms Helfrich et al. (2018). Recent
models like xLSTM Beck et al. (2024) scale memory via exponential gating and matrix structures,
enhancing long-term retention in deep architectures.

Reservoir Computing. Reservoir Computing (RC) provides a training-efficient alternative to
RNNs by leveraging fixed high-dimensional dynamical systems and training only a linear readout
Lukoševičius & Jaeger (2009); Nakajima & Fischer (2021). Prominent models include Echo State
Networks (ESNs) Jaeger (2007) and Liquid State Machines Maass (2011). RC’s simplicity and
computational efficiency make it attractive for resource-constrained applications. Deep variants, such
as DeepESNs Gallicchio et al. (2017), have been developed to model hierarchical temporal features,
enabling richer multi-timescale dynamics without full backpropagation Gallicchio et al. (2018).

Transformers and Efficient Attention. Transformers Vaswani et al. (2017) dominate sequence
modeling through self-attention, which enables global context aggregation and parallelism. However,
their quadratic complexity in sequence length limits scalability. Efficient variants—such as Sparse
Transformers Child et al. (2019), Longformer Beltagy et al. (2020), BigBird Zaheer et al. (2020),
Linformer Wang et al. (2020), and Reformer Kitaev et al. (2020)—introduce sparsity, low-rank
approximations, and locality to reduce this cost. Some alternatives, like Synthesizer Tay et al. (2021)
and linear attention models Katharopoulos et al. (2020), question the necessity of self-attention
entirely. Despite these advances, modeling long-range dependencies remains a fundamental challenge
Tay et al. (2020); Wen et al. (2022).

Deep State Space Models. State Space Models (SSMs) offer a compelling alternative by learning
continuous-time latent dynamics for sequence modeling. The HiPPO framework Gu et al. (2020)
introduces a memory-efficient representation, inspiring deep variants like S4 Gu et al. (2022a),
which uses diagonal plus low-rank parameterizations and FFT-based computation to replace attention.
Simplified models such as DSS and S4D Gupta et al. (2022); Gu et al. (2022b) retain efficiency
while preserving performance. These models generalize well across domains including language
Mehta et al. (2022), vision Nguyen et al. (2022), and audio Goel et al. (2022), showing promise for
long-sequence processing.

3 METHOD

In this section, we introduce the proposed method, detailing its architecture and underlying dynamics.
We analyze its stability, offer a convolutional interpretation, and discuss the benefits of depth,
concluding with a comparison of its computational complexity to state-of-the-art models.
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3.1 RSSM BLOCK

The foundational block of our structured reservoir computing approach is based on linear state space
models. We briefly outline the foundational concepts required for our methodology, and refer to
Appendix D for more details. A linear continuous SSM is a parameterized linear time-invariant
system defined by {

x′(t) = Ax(t) +Bu(t)

y(t) = ℜ (Cx(t)) +Du(t), t ∈ R+.
(1)

where x(t) ∈ CP is the internal state, u(t) ∈ R is the input, y(t) ∈ R is the output. The model
parameters are the state matrix A ∈ CP×P , the input matrix B ∈ CP×1, the output matrix C ∈
C1×P , the skip connection D ∈ R, and ℜ(z) denotes the real part of a complex-valued vector z.
Through discretization, a discrete SSM is obtained as follows.{

xk = Axk−1 +Buk
yk = ℜ

(
Cxk

)
+Duk, k = 0, . . . , L− 1

(2)

where the new parameters A,B,C,D are obtained by a discretization method, e.g., ZOH (Defi-
nition D.3), using a constant sampling frequency ∆. The linear discrete SSM admits an efficient
representation as a convolution, which we exploit to build the RSSM block.

Our proposed RSSM block is a sequence-to-sequence model that efficiently maps an input time
series u to an output time series y of the same length. Specifically, given a linear discrete SSM, the
kernel K =

[
CB, . . . ,CA

l
B, . . . ,CA

L−1
B
]
∈ C1×L, where L is the sequence length, defines

the linear convolution mapping from the input sequence {uk}L−1
k=0 = u ∈ R1×L to the output

sequence {yk}L−1
k=0 = y ∈ R1×L, which takes the following form yk =

(
ℜ
(
K ∗ u

)
+ Du

)
k
=

ℜ
(∑k

l=0 Kl uk−l

)
+Duk. The linear convolution is efficiently computed using the discrete Fourier

transform (DFT) and the Convolution Theorem Oppenheim & Schafer (2010):

y = ℜ
(
DFT−1

(
DFT

(
K
)
⊙DFT (u)

))
+Du. (3)

To enhance computational efficiency, we adopt a diagonal discrete state transition matrix. Beyond
reducing parameter count and model complexity, this design choice also enables a more tractable
theoretical analysis of RSSM stability, as detailed in Section 4. Given a linear continuous SSM with
diagonal complex state matrix A = diag(λ0, . . . , λP−1), the diagonal discrete state matrix after the
Zero-Order Hold (ZOH) transform with sampling interval ∆ > 0 is:

A = e∆A = diag(ρ0e
iθ0 , . . . , ρP−1e

iθP−1) (4)

where ρi = e∆ℜ(λi) and θi = ∆ℑ(λi) for i = 0, . . . , P − 1. To enable an RSSM block to
process multivariate inputs, we incorporate H linear SSMs in parallel within a single block. Now,
since we assume diagonal state transition matrices of dimension P , we can parameterize an RSSM
block by the state matrix A ∈ CP×H , sampling rates ∆ ∈ RH , input matrix B ∈ CP×H , output
matrix C ∈ CH×P , and skip connection D ∈ RH , collectively defining H independent continuous
SSMs. The state matrix A is initialized with eigenvalues λi,j such that ℜ(λi,j) ∈ [mA,MA] and
ℑ(λi,j) ∈ [0, 2π). The sampling rates control the discretization process and are ∆ ∈ [m∆,M∆]

H ,
where M∆ ≥ m∆ > 0. The input and output matrices B and C are constrained such that their
magnitudes lie in [mB,MB] ⊂ R+ and [mC,MC] ⊂ R+ respectively. The skip connection is set
such that D ∈ [mD,MD]H ⊂ R . This parameterization enables precise regulation of the system’s
dynamic behavior across all H features while maintaining stability and expressive representations
(Sections 4.1 and 4.2). Appendix C provides further details of the RSSM block, including its
parameterization and initialization scheme. Our RSSM block does not include a mixing layer that
combines the H features at each step of the output sequence generated by the convolutional layer.
Learning how the features depend on each other is left to the readout component of the overall
architecture, which operates in a high-dimensional space. This choice is motivated by our ablation
study on untrained mixing layers in S4D, reported in Appendix A.

3.2 RESERVOIR STATE SPACE MODEL (RSSM)

Our approach is inspired by RC and SSMs; accordingly, we aim to intelligently structure the internal
connections and leave them untrained after initialization. We refer to this approach as the RSSM.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

The architecture comprises multiple stacked RSSM blocks, enabling the construction of hierarchical
representations. The structure is depicted in Figure 1.

u0 ul uL-1
encoder

RSSM block 0y(0)

RSSM block n-1
y

FROZEN TRAINED

convolution

y(1)
fwd

y(n-1)
fwd

y(1)
fit

y(i)
fit

y(n)
fit

MLP

Figure 1: RSSM graphical representation. The batched input sequence is first projected into a
higher-dimensional space using an encoder. It then passes through multiple convolutional layers
within the RSSM (Equation 5). The activated output from each layer is collected and processed to fit
a readout model (Equation 6), enabling efficient sequence modeling and prediction.

The input sequence u ∈ RH0×L is first transformed into a higher-dimensional space, RH , using
an encoder matrix Wen ∈ RH×H0 . This higher-dimensional representation is then processed
sequentially by a stack of n convolutional layers. We use two distinct activation functions: ϕfwd(·)
and ϕfit(·). The activation function ϕfwd(·) is used during the forward pass through the layers of
the reservoir model, while ϕfit(·) prepares the layer outputs for the fitting of the readout model.
Specifically, we apply the activation function ϕfwd(·) to the output of each layer, and this activated
output serves as the input to the next layer (Equation 5).

y(0) = Wen · u
y(i) = ℜ

(
DFT−1

(
DFT

(
K

(i)
)
⊙DFT

(
y
(i−1)
fwd

)))
+D

(i)
y
(i−1)
fwd

y
(i)
fwd = ϕfwd

(
y(i)
)

y
(i)
fit = ϕfit

(
y(i)
)
, if i > 1,

(5)

where K
(i)

is the kernel of the i-th block, and D
(i)

is the skip connection of the i-th block. Therefore,
the output of each layer y(i) is computed using the convolution view of a discrete SSM. Meanwhile,
the outputs of each layer activated by ϕfit(·) are stacked row-wise to produce the global output y of
our reservoir model, as illustrated in Figure 1, and described by the following equation:

y =


y
(1)
fit
...

y
(n)
fit

 ∈ RnH×L. (6)

The global output y produces a hierarchical representation of the input signal in a high-dimensional
space. RSSM produces a multiple frequency representation via the global output y (Equation 6) where
progressively higher layers focus on progressively higher frequencies (similar to deep reservoirs
in Gallicchio et al. (2017)), thereby increasing the input bandwidth (Section 4.3). We prove in
Section 4.3 that this representation is more informative than the original input signal.

The activation function ϕfit(·) does not influence the forward pass of the input sequence through the
model’s layers, as its role is to fit the readout with activated output. Instead, the choice of ϕfwd is
crucial for effectively propagating information through the layers (Section 4.3). We use ReLU(·) for
ϕfwd(·) to ensure effective propagation of information through the layers (Theorem 4.2), and tanh(·)
for ϕfit(·) to prepare the output for the readout fitting.
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Efficiency. For computational efficiency, the RSSM utilizes GPU parallelization for convolutions,
moving outputs temporarily to RAM before batch-wise training of a readout model. Given a dataset
of N sequences, the readout is an MLP or ridge regression, solving the optimization problem
Wout = arg minW

{
∥Y ·W − d∥2 + α∥W∥2

}
, where Y ∈ RN×nH×L′

is the aggregated RSSM
output, d ∈ RNL′

is the vector of labels, and α the l-2 regularization factor. For further details on the
training pipeline, see Appendix B.

4 THEORETICAL ANALYSIS

We now present a series of theoretical results that establish the stability and representational capacity
of our approach. All the proofs are provided in Appendix E.

4.1 DYNAMICAL STABILITY

The stability of an RSSM block is determined by the stability of the continuous and discrete SSMs it
contains, which in turn depends on their respective state matrices, A and A. These matrices govern
the autonomous state dynamics in the absence of external inputs (i.e., when u(t) = 0 or ul = 0).

We summarize in Theorem 4.1 the conditions for stability of a deep RSSM architecture.
Theorem 4.1 (Stability Conditions). A deep RSSM architecture is stable if all of its constituent RSSM
blocks are stable. An RSSM block is stable if and only if each of the H discretised SSMs is stable. A
continuous SSM is stable if and only if ℜ(λi) ≤ 0, and equivalently, a discretized SSM is stable if
and only if ρi ≤ 1.

From Theorem 4.1, the sets of stable state matrices are:
SA =

{
A ∈ CP | ℜ(λi) ≤ 0

}
, SA =

{
A ∈ CP | |λi| ≤ 1

}
.

The boundaries represent the stability margins:
∂SA = {A | ℜ(λi) = 0} , ∂SA =

{
A | |λi| = 1

}
.

To achieve stable yet expressive reservoir dynamics, state matrices are chosen close to these bound-
aries Ceni & Gallicchio (2024a;b). Specifically, we initialize eigenvalues λi within:

{A | mA ≤ ℜ(λi) ≤MA ≤ 0, 0 ≤ ℑ(λi) < 2π} .
Upon discretization, eigenvalues of A have radii ρi ∈ [e∆mA , e∆MA ] and angles θi ∈ [0,∆ · 2π).
The sampling interval ∆ critically impacts internal dynamics by controlling the eigenvalue radii and
angles. As ∆ → 0, eigenvalues approach the stability margin (ρi → 1, θi → 0), enhancing memory
capacity and discretization accuracy. However, excessively small ∆ leads to nearly static dynamics,
impairing system responsiveness. Thus, appropriate selection of the hyperparameters (mA,MA,∆)
is essential.

Next, we interpret the RSSM from a convolutional viewpoint by examining the derived kernel K.

4.2 CONVOLUTION FILTER

We examine how the parameters A, B, C, and ∆ influence the convolution kernel K that determines
the pre-activated output of the system (Equation 27). Specifically, we focus on the real-valued filter
F = ℜ(K), which governs the actual computation of the pre-activated output signal of the RSSM
block for each feature i = 0, . . . , H − 1 of the input signal (see Definition D.6).
Definition 4.1 (RSSM Convolution). Assume a single-channel case (H = 1) with no skip connection
(D = 0), and let u ∈ R1×L be a real-valued input signal. The output of the linear RSSM block is
given by:

y = ℜ(K ∗ u) = F ∗ u, (7)
where the real-valued filter F has elements:

Fl =

P−1∑
i=0

νiρ
l
i cos(ψi + lθi) (8)

with νi the amplitude, ρi the decay/growth rate, θi the frequency, and ψi the phase.

5
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The hyperparameters (P, {λi},∆, ∥B∥, ∥C∥) provide a mechanism for filter design, as the following
lemmas demonstrate.

Lemma 4.1 (State Dimension Effect). The state dimension P determines the number of oscillatory
terms in F. Higher P allows for more complex filters by superposition of diverse frequencies.

Similarly to Theorem 4.1, we can find stability constraints from a convolutional perspective, as stated
in Lemma 4.2.

Lemma 4.2 (Stability Constraint). The ℜ(λi), affecting the decay/growth rates ρi, govern both the
memory capacity and the stability of the convolution by bounding the filter coefficients:(

P−1∑
i=0

νi

)
min
i
{ρi}l ≤ |Fl| ≤

(
P−1∑
i=0

νi

)
max
i

{ρi}l (9)

where mini{ρi} = e∆mini{ℜ(λi)}, and maxi{ρi} = e∆maxi{ℜ(λi)}.

On the other hand, the weight matrices B,C do impact the amplitudes and phase shifts of the
convolution filter oscillations, as stated in Lemma 4.3.

Lemma 4.3 (Parameter Scaling). The matrices B,C control the oscillation amplitudes

νi = |Bi||Ci| ∝ |Bi||Ci| ∈ [mBmC,MBMC], (10)

and the phase shifts
ψi = arg(Bi) + (Ci) ∈ [0, 2π). (11)

Finally, the hyperparameter ∆ has a crucial role in determining the frequencies and decays of
oscillations in the convolution filter, as stated in Lemma 4.4.

Lemma 4.4 (Sampling Rate Effect). The discretization step ∆ affects the frequencies and decay:

θi = ∆ℑ(λi), ρi = e∆ℜ(λi). (12)

Larger ∆ increases oscillation frequency but reduces memory capacity.

This parametric flexibility enables expression of diverse dynamical behaviors, from smooth responses
to complex oscillatory patterns. Section 4.3 next examines how the deep architecture processes these
filters through nonlinear transformations.

4.3 REPRESENTATIONAL RICHNESS OF DEEP RSSM

The deep RSSM architecture generates hierarchical signal representations through stacked linear
RSSM blocks interleaved with nonlinear activations (Equation 5, Figure 1). While linear RNNs can
approximate shift-invariant linear operators Li et al. (2022), they cannot generate new frequency
components. Our architecture overcomes this limitation through activation-induced spectral leakage.

Theorem 4.2 (Spectral Leakage). Orvieto et al. (2023) Let u : R → R be a continuous-time signal.
Let Ri = [ci − ri, ci + ri] be the i-th region activated by the ReLU(·) applied to u. Then

FT (ReLU(u))(ω) = FT (u)(ω) ∗

[∑
i

2rie
−iωci sin(ωci)

ωci

]
,

where FT denotes the Fourier transform, and ∗ the convolution operation.

This convolution (Theorem 4.2) introduces new frequency components that are impossible for linear
systems. As network depth increases, the input undergoes successive non-linear transformations
that progressively scale and shift frequency components. This process expands the effective input
bandwidth, leading to the emergence of distinct spectral characteristics at each layer.

Therefore, a suitable selection of the fixed parameters (A,B,C,D,∆) ensures stable signal propa-
gation while enabling complex frequency manipulation. The global output (Equation 6) combines
these transformed representations into a rich hierarchical encoding.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.4 COMPUTATIONAL COMPLEXITY ANALYSIS

The RSSM achieves optimal computational efficiency by integrating three key properties: (1) a
training cost that is independent of sequence length via an MLP readout, (2) parallelizable operations
through convolutional processing, and (3) constant-time recurrent inference. This hybrid design effec-
tively avoids the quadratic scaling bottleneck of attention mechanisms while maintaining expressive
capacity.

Convolutional operations, which are central to both S4 and RSSM, benefit from efficient computation
in the frequency domain. Specifically, when two sequences of length L, denoted h = h0, . . . , hL−1

and u = u0, . . . , uL−1, are convolved, the operation can be computed as element-wise multiplication
in the frequency domain using the Discrete Fourier Transform (DFT), h ∗ u = DFT−1(DFT (h)⊙
DFT (u)). This approach yields a time complexity of O(L log(L)), as established in standard signal
processing references Oppenheim et al. (1999); Proakis & Manolakis (1996).

Table 1: Comparison of model complexities across convolutional, recurrent, attention-based, S4,
ESN, and our proposed RSSM. The table summarizes key metrics, including the number of trainable
parameters, training complexity, reservoir complexity, space complexity, parallelization capabilities,
and inference complexity. L̃ and H̃ denote logarithmic factors in L and H , respectively. All the cost
complexities should be interpreted in O(·) (big O notation). Bold denotes model is theoretically best
for that metric.

Trainable pars Training Reservoir Space Parallel Inference

Convolution LH BLL̃H − BLH Yes LH2

Recurrence H2 BLH2 − BLH No H2

Attention H2 BLH(L+H) − BL(L+H) Yes L2H +H2L

S4 H2 BLH(L̃+ H̃) − BLH Yes H2

ESN H2 BH2 BLH2 BLH No H2

RSSM (ours) H2 BH2 BLL̃H BLH Yes H2

As shown in Table 1, RSSM matches or outperforms existing architectures across all key complexity
dimensions. By decoupling readout cost from sequence length, it improves training efficiency while
retaining the inference-time advantages of recurrent models. This makes RSSM particularly well-
suited for long-sequence modeling scenarios where computational efficiency and expressivity are
both essential.

5 EXPERIMENTS

In this section, we present the experiments conducted on various tasks to compare the performance of
our method against other baseline models from the literature. We evaluate the experiments based on
both effectiveness and efficiency in classification tasks. All experiments have been executed on a
Tesla V100-PCIE-16GB GPU. The source code for the method, analysis, and all experiments will be
made publicly available on GitHub upon acceptance.

Appendix F describes the architecture of our model for classification tasks and the other baseline
models. We benchmark our model on the sMNIST, psMNIST Le et al. (2015), sCIFAR-10 tasks Gu
et al. (2022a), and the pool of Long Range Arena tasks Tay et al. (2020). Appendix F.1 details the
approach used for hyperparameter tuning and selecting optimal model configurations.

5.1 PERFORMANCE AND EFFICIENCY ON PIXEL-LEVEL IMAGE CLASSIFICATION

In Table 2 we report results including training time, CO2 emissions (in grams), energy consumption
(in kWh), and accuracy. For the reservoir-based models (ESN, DeepESN, RSSM-r, and RSSM), the
time refers to the computation of the reservoir output plus the fitting time of the readout. Bold green
indicates the best value for a given metric if it corresponds to an RC-based model, whereas bold red
indicates the best value if it corresponds to a fully trainable model. The hyperparameter search space
for each model is detailed in Appendix G, and the optimal hyperparameters are listed in Appendix H.
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Table 2: Performance results on the sMNIST, psMNIST, and sCIFAR-10 datasets.

sMNIST
Time (s) Emissions Energy Acc

GRU 2.21±0.04 × 103 1.24±0.03 × 10−1 5.49±0.06 × 10−1 99.26±0.16

S4 1.47±0.03 × 103 8.38±0.07 × 10−2 3.71±0.07 × 10−1 99.30±0.14

ESN 1.03±0.02 × 102 5.68±0.06 × 10−3 2.51±0.04 × 10−2 66.65±0.32

DeepESN 51.82±0.31 3.02±0.05 × 10−3 1.33±0.02 × 10−2 72.92±0.35

RSSM-r (ours) 47.49±0.39 2.70±0.04 × 10−3 1.20±0.02 × 10−2 97.07±0.22

RSSM (ours) 91.40±0.42 4.88±0.05 × 10−3 2.16±0.03 × 10−2 98.61±0.19

pMNIST
Time (s) Emissions Energy Acc

GRU 1.97±0.03 × 103 1.11±0.02 × 10−1 4.89±0.03 × 10−1 94.96±0.41

S4 1.29±0.02 × 103 7.32±0.09 × 10−2 3.24±0.05 × 10−1 98.08±0.19

ESN 1.03±0.01 × 102 5.81±0.06 × 10−3 2.57±0.03 × 10−2 92.76±0.31

DeepESN 56.41±0.33 3.52±0.04 × 10−3 1.55±0.03 × 10−2 90.50±0.37

RSSM-r (ours) 50.91±0.37 2.84±0.02 × 10−3 1.26±0.02 × 10−2 95.59±0.24

RSSM (ours) 95.73±0.55 5.16±0.06 × 10−3 2.28±0.03 × 10−2 98.10±0.20

sCIFAR-10
Time (s) Emissions Energy Acc

GRU 1.73±0.02 × 104 1.14±0.01 5.03±0.06 73.57±0.42

S4 1.28±0.02 × 104 9.12±0.07 × 10−1 4.03±0.03 84.72±0.31

ESN 3.62±0.04 × 103 2.45±0.03 × 10−1 1.08±0.02 34.09±0.50

DeepESN 6.99±0.05 × 102 4.15±0.06 × 10−2 1.84±0.03 × 10−1 31.76±0.39

RSSM-r (ours) 5.70±0.06 × 102 3.73±0.05 × 10−2 1.65±0.03 × 10−1 60.02±0.37

RSSM (ours) 1.21±0.02 × 103 8.49±0.07 × 10−2 3.75±0.05 × 10−1 63.31±0.32

Table 3: Model speeds (iterations/second) for both training
and inference. Higher is better.

sMNIST (L = 784) sCIFAR-10 (L = 1024)

Training

RSSM (ours) 342.18 14.08
GRU 7.06 (48.4×) 1.16 (12.1×)
S4 12.24 (27.9×) 2.28 (6.1×)

Inference

RSSM (ours) 5.68 3.86
ESN 2.39 (2.3×) 0.38 (10×)
DeepESN 4.94 (1.4×) 3.12 (1.2×)

The results on sMNIST, pMNIST,
and sCIFAR-10 (Tables 2) are eval-
uated using training time, accuracy,
CO2 emissions, and energy consump-
tion, see Appendix F.2. RSSM per-
forms competitively with fully train-
able models like GRU and S4, while
outperforming reservoir methods such
as ESN and DeepESN.

On sMNIST and pMNIST, RSSM
matches GRU and S4 in accuracy, and
notably surpasses them on pMNIST,
showing robustness to permuted se-
quences. Unlike ESN and DeepESN,
which suffer from late-timestep zero-
padding, RSSM maintains strong per-
formance, underscoring its superior memory capacity.

In efficiency, RSSM excels in both MLP readout training and reservoir computation. Table 3 compares
training runtimes, focusing on RSSM’s MLP readout speed across tasks (excluding pMNIST, which
shares sMNIST’s sequence length). RSSM trains significantly faster than GRU and S4 by learning
dependencies only at the final timestep of the global output (Equation 6), leveraging reservoir memory
(Section 4.4, Table 1).

The Inference runtimes refer to the forward pass (excluding the readout fitting), showing RSSM’s
reservoir computation is faster than ESN and DeepESN due to its unique parallelization. pMNIST
speeds are excluded for sequence length parity.
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This efficiency results in lower energy use and CO2 emissions (Tables 2) compared to GRU and
S4. On the more complex sCIFAR-10, RSSM maintains superior efficiency with competitive
accuracy—outperforming ESN and DeepESN and approaching S4—making it a strong candidate for
resource-constrained or energy-aware applications.

5.2 LONG RANGE ARENA BENCHMARK

Table 4: Accuracy on the LRA benchmark. Transformer and S4
results are from Tay et al. (2020) and Gu et al. (2022a), respec-
tively. Best and second-best scores are in bold and underlined.
FAIL indicates transformers failed to learn Path-X.

Model Image ListOps Text Pathfinder Path-X

Chance 10.00 10.00 50.00 50.00 50.00

Transformer 42.44 36.37 64.27 71.40 FAIL
Local attention 41.46 15.82 52.98 66.63 FAIL
Sparse Trans. 44.24 17.07 63.58 71.71 FAIL
Longformer 42.22 35.63 62.85 69.71 FAIL
Linformer 38.56 35.70 53.94 76.34 FAIL
Reformer 38.07 37.27 56.10 68.50 FAIL
Sinkhron trans. 41.23 33.67 61.20 67.45 FAIL
Synthesizer 41.61 36.99 61.68 69.45 FAIL
BigBird 40.83 36.05 64.02 74.87 FAIL
Linear trans. 42.34 16.13 65.90 75.30 FAIL
Performer 42.77 18.01 65.40 77.05 FAIL

S4 87.26 58.35 76.02 86.05 88.10

RSSM-r (ours) 49.11 31.50 64.40 66.46 54.06
RSSM (ours) 49.66 23.54 62.36 85.44 59.36

We evaluate RSSM and RSSM-r
on the LRA benchmark, which
tests a model’s ability to cap-
ture very long-range dependen-
cies across diverse tasks (Ta-
ble 4). While transformer mod-
els perform well on simpler tasks
like text classification, they con-
sistently fail on extreme long-
range tasks like Path-X, where
even efficient variants such as
Linformer and Performer under-
perform. In contrast, RSSM
achieves the highest accuracy on
Pathfinder and is the only model
to succeed on Path-X, demon-
strating superior long-sequence
modeling through untrained con-
volutions without incurring the
quadratic cost of attention.

Results underscore RSSM’s ar-
chitectural strengths and effi-
ciency in long-term dependency
retention, positioning it as a ro-
bust alternative to transformers.
Its adaptability is evident in task-specific hyperparameter tuning (see Appendix H): batch sizes are
adjusted to sequence length, state-space decay parameters (mA, MA) are tuned for retention vs.
forgetting, and sampling rates (∆) are lowered for finer temporal resolution on longer sequences.

While S4 achieves the highest overall LRA accuracy—particularly on Path-X and ListOps—RSSM
remains competitive, nearly matching S4 on Pathfinder and outperforming all transformers on Path-X.
Additionally, RSSM strikes a strong balance between accuracy and efficiency, as evident from Table 3.

Unlike S4 and other fully trainable models, RSSM does not rely on common deep learning enhance-
ments such as dropout, bidirectional layers, batch normalization, pooling, or warm restarts Loshchilov
& Hutter (2016). The reported results thus reflect the raw capacity of the RSSM architecture.

6 CONCLUSIONS

This work introduces a novel neural architecture that combines SSMs with RC to capture long-term
dependencies efficiently. Leveraging the linearity of SSMs, the model constructs parallelizable convo-
lutional reservoirs with high memory capacity, requiring training only in a lightweight feed-forward
readout. Inspired by deep RC, it produces expressive hierarchical outputs while maintaining computa-
tional efficiency. Although inheriting some limitations of RC—such as sensitivity to reservoir design
and fixed internal dynamics—the integration with SSMs mitigates these challenges. Experimental
results demonstrate a favorable balance between accuracy and efficiency. These benefits are crucial
for real-world applications demanding high performance with limited resources. Furthermore, the
model’s low computational cost reduces energy use, supporting sustainability goals like the EU’s 2050
climate neutrality strategy Commission (2021) and addressing concerns over deep learning’s energy
demands. Future work will explore alternative reservoirs, advanced optimization, and applications in
forecasting, unsupervised learning, and neuromorphic hardware.
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neural network based language model. In Proceedings of Interspeech 2010, pp. 1045–1048,
Makuhari, Japan, 2010.

Kohei Nakajima and Ingo Fischer. Reservoir computing. Springer, 2021.

Eric Nguyen, Karan Goel, Albert Gu, Gordon Downs, Preey Shah, Tri Dao, Stephen Baccus, and
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A S4D ABLATION STUDY

We describe the experiments conducted on S4D that inspired the architecture of the proposed RSSM
block.

Our RSSM block does not include a mixing layer (Figure 3) that combines the H features at each
step of the output sequence generated by the convolutional layer. We made this architectural choice
(Figure 2) because, without proper training, a mixing layer ruins the dynamics of the individual
features in the output signal.

GLU(⋅): 
ℝ2H→ℝH

conv1d: 
ℝBxHxL→ℝBx2HxL

𝜙fwd(⋅)

convolution:
ℝBxHxL→ℝBxHxL

u∈ℝBxHxL

y∈ℝBxHxL

y∈ℝBxHxL

Mixing Layer

S4
block

𝜙fwd(⋅)

convolution: 
ℝBxHxL→ℝBxHxL

u∈ℝBxHxL

y∈ℝBxHxL

y∈ℝBxHxL

RSSM
block

Figure 2: Graphical comparison of a single S4 block (left) and a single RSSM block (right). In the
RSSM block, the mixing layer is removed to simplify the model and enhance its efficiency. Only the
nonlinear activation function is retained, streamlining the architecture while maintaining essential
functionality.

In our model, feature mixing is implicitly handled by the encoder through the Wen matrix, which
combines the original H0 features of the input signal. Learning how the features depend on each
other is left to the readout model, which operates in a high-dimensional space. To demonstrate that
the untrained mixing layer ruins the dynamics of individual features of the output signal, we conduct
an ablation study on the S4D model to identify which parameters can be fixed without significantly
affecting performance. We fix the sampling frequency ∆ time and, in succession, the encoder, the
parameters A, B, C, and D of the S4D block, and the mixing layer within the S4D block. The
mixing layer learns the dependencies between the features (Figure 3) Gu et al. (2022a) to overcome
the fact that the S4 and S4D models are single input and single output (SISO), unlike S5, which
performs a scan with an associative binary operation, in parallel Smith et al. (2023).
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Figure 3: Graphical representation of the mixing layer. The mixing layer combines the features at
each timestep independently of the other timesteps in the sequence. When trained, it can provide an
advantage; otherwise, it disrupts the dynamics produced by the independent H SSMs that process the
features independently (Figure 4).

u0(t)

uH-1(t)

u(t)

y0(t)

yH-1(t)

y(t)

C0B0

A0

D0

∫++
+

+
ẋ0(t) x0(t)

CH-1BH-1

AH-1

DH-1

∫+
+

+
+

ẋH-1(t) xH-1(t)

Figure 4: Graphical representation of the H independent SSM, one for each feature of the input
sequence. The internal state of each SSM is a vector of dimension P . The output signal has the same
number of features H as the input signal.

We notice that freezing parameters B, C, and D degrades the performance of the SSM very slightly.
Freezing matrix A can cause performance degradation that we can avoid with a good choice of A
eigenvalues.

Instead, fixing the mixing layer causes a high degradation as it ruins the trajectories over time of each
feature y(t) (Figure 3). Therefore, we obtain the best performance by removing the mixing layer
(Table 5, and Figure 2) because the original input signal features are already mixed by the matrix
Wen. Moreover, the readout model can then specifically learn the feature dependencies in the output
signal generated by the reservoir, independent of the temporal dependencies.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Ablation study on the S4D model. The symbol * stands for an untrained parameter. The
last three rows represent untrained S4D blocks, where only the decoder layer is trained. These
experiments are run on sMNIST with a small S4D model with two layers of 64 features H .

∆ Encoder A B C D Mixing Layer Accuracy

* 98.23
* * 98.63
* * * 98.20
* * * * 97.67
* * * * * 96.89
* * * * * * 97.58

* * * * * * reservoir+glu 73.17
* * * * * * reservoir+tanh 69.84
* * * * * * identity 78.75

B TRAINING PIPELINE

Our model efficiently uses both CPU and GPU processing units. Initially, input data is transferred
to the GPU’s dedicated memory (VRAM) to take advantage of the parallelization capabilities of
convolutional operations by processing input sequences in batches on the GPU. Once the GPU
completes its computations, to manage the limited memory available on GPUs VRAM, we transfer
each batched global output y ∈ RB×nH×L, generated by the RSSM (Equation 6), back to the
system’s main memory RAM. This transfer enables the CPU to collect the outputs to form a new
input dataset Y ∈ RN×nH×L, where N represents the total number of time series (see Figure 5).
This dataset, together with the original labels, is prepared for a data loader. The data loader is
responsible for moving each batch (which may vary in size fromB) back to the GPU, where a readout
neural network is trained (as shown in Figures 1 and 5).

H0

RSSM block

RSSM block

y(0)∈ℝBxHxL

Wen∈ℝ
HxH

u∈ℝBxHxL

…

y(n)∈ℝBxHxL

y∈ℝBx(nH)xL

y(1)∈ℝBxHxL

n layers

GPU 
(all frozen) GPU

CPU

Y∈ℝNx(nH)xL

readout

y∈ℝB’xKxL

dataloader
fit

fit

HxH0

BxH0xL

Figure 5: Graphical representation of the RSSM forward phase. Input data is transferred to the
GPU’s VRAM for parallel processing in the convolutional RSSM blocks. For memory efficiency, the
outputs are moved to the system’s RAM via the CPU, then transferred back to the GPU in batches for
training the readout model. The batch size for the frozen RSSM is chosen to speed up the forward
phase, while the readout model’s batch size is chosen to maximize accuracy through standard model
selection.

To train the readout model, the first w timesteps from each time series y may be discarded for general
tasks, as they are less representative of the series’ dynamics. For the classification task, by setting
w = L − 1, we use only the last timestep yL−1, being the most representative of the series as it
encapsulates all preceding information.
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The readout can be a sequence modeling neural network, such as an RNN, a 1-D convolutional
network, or a trainable SSM, trained on the input dataset Y ∈ RN×nH×(L−w). Alternatively, for
greater efficiency, we use a readout model that treats each timestep independently, without temporal or
sequential dependencies like a closed-form readout such as ridge regression or a feed-forward neural
network such as MLP. In this case, the readout is trained on the input dataset Y ∈ RN(L−w)×nH ,
among the vector of labels d ∈ RN(L−w).

We choose to use the MLP or the ridge regression as readout to maximize the information and
expressiveness of the global RSSM output while keeping the training phase more efficient (for
complexity analysis, see Section 4.4 and Table 1).

More in detail, given the vector of labels d ∈ RN(L−w), the ridge regression readout solves the l-2
regularized least-squares problem Lukoševičius & Jaeger (2009):

Wout = arg min
W

{
∥Y ·W − d∥2 + α∥W∥2

}
(13)

in closed form
Wout =

(
YTY + αI

)−1
YTd. (14)

C RSSM PARAMETERS

The parameters of the RSSM include the encoding matrix Wen ∈ RH0×H for the encoding layer
and the parameters of each RSSM block, obtained from a discretized continuous SSM.

The Wen matrix encodes the original input signal u ∈ RH0×L in a output signal y(0) withH features.
For each time step l, the features of y(0)

l are given by the linear combination of the features of ul with
the rows of Wen as coefficients. We fix the parameter Wen ∈ RH0×H such that each value has an
absolute value in the interval [men,Men] where men and Men are positive values. Recall that Wen

have real values, so they can take values in [−Men,−men] ∪ [men,Men]. Having the real values of
Wen different signs helps to mix better the features of the original input signals and avoid exploding
values of the encoded input y(0) obtainable with all positive or all negative values of Wen.

C.1 RSSM BLOCK

The parameters of the RSSM block consist of the diagonal state matrix A ∈ CP×H , the
vector of the sampling rates ∆ ∈ RH , the input matrix B ∈ CP×H , the output matrix
C ∈ CH×P , and the skip connection vector D ∈ RH . We recall that the parameters(
A ∈ CP×H ,∆ ∈ RH ,B ∈ CP×H ,C ∈ CH×P ,D ∈ RH

)
identify H independent continuous

SSMs, one for each feature i = 0, . . . , H − 1 as we can see in Equation 15 and Figure 4

A = [ A0 · · · AH−1 ] , B = [ B0 · · · BH−1 ] ∈ CP×H

C =

 C0

...
CH−1

 ∈ CP×H ,

D =

 D0

...
DH−1

 , ∆ =

 ∆0

...
∆H−1

 ∈ RH . (15)

The state matrix A has a crucial role in determining the internal dynamics of our models since it
regulates the relationship between successive internal states over time. We fix the state matrix

A =

 λ0,0 · · · λ0,H−1

...
...

...
λP−1,0 · · · λP−1,H−1

 (16)

of the H continuous SSMs randomly in the space{
A ∈ CP×H | mA ≤ ℜ(λi,j) ≤MA, 0 ≤ ℑ(λi,j) < 2π

}
. (17)

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The hyperparameters mA, MA, referring to the minimum and maximum values of the real parts
of the complex eigenvalues of state matrix A, control the internal stability of the RSSM (for more
details see the Section 4.1).

The vector ∆ ∈ RH represents the sampling rates for each input feature, used to discretize the H
continuous systems into H discrete-time systems. We set the hyperparameters m∆ and M∆ that
constraints the value of each ∆i:

∆ ∈ [m∆,M∆]
H ⊂ RH , with M∆ ≥ m∆ > 0. (18)

The input matrix B and the output matrix C are crucial in defining the relationship between the state
and observations. Specifically, the input matrix B maps the control inputs, regulating to what extent
the control inputs affect the internal dynamics. On the other hand, the output matrix C links the
internal state of the system to the observable outputs, thereby determining how the state is reflected
in the measurements. We fix the parameters B ∈ CP×H and C ∈ CH×P of the H continuous SSMs
such that each value has an absolute value in the interval [mB,MB] and [mC,MC] respectively,
where mB, mC, MB and MC are positive values. B, C having complex values assume values
belonging to the ring {z ∈ C | mB ≤ ∥z∥ ≤MB} and {z ∈ C | mC ≤ ∥z∥ ≤MC} respectively.

The skip connection parameter D ∈ RH operates feature-wise, adding to each output feature i the
respective input feature scaled by Di. We set its values in the interval [mD,MD] where MD > mD

are real values. In this way, having the possibility to set the parameter D values to be all positive, all
negative, or with mixed signs, we have more control over the skip connection.

D DEFINITIONS

In this appendix, we provide definitions of the main concepts used in this work. We start with the
definition of a continuous-time state space model and its discretization through the Zero-Order Hold
(ZOH) transform. We then define the convolution kernel associated with the discrete state space
model.

Definition D.1 (Continuous State Space Model (SSM)). A continuous SSM is a parameterized linear
time-invariant system defined by{

x′(t) = Ax(t) +Bu(t)

y(t) = ℜ (Cx(t)) +Du(t), t ∈ R+.
(19)

where x(t) ∈ CP is the internal state, u(t) ∈ R is the input, y(t) ∈ R is the output. The model
parameters are the state matrix A ∈ CP×P , the input matrix B ∈ CP×1, the output matrix C ∈
C1×P , and the skip connection D ∈ R.

Definition D.2 (Discrete State Space Model (SSM)). The discrete SSM is{
xk = Axk−1 +Buk
yk = ℜ

(
Cxk

)
+Duk, k = 0, . . . , L− 1

(20)

where the new parameters A,B,C,D are obtained by a discretization method, e.g., ZOH (Defini-
tion D.3), using a constant sampling frequency ∆.

Definition D.3 (Zero-Order Hold (ZOH) Transform). Given a continuous SSM (Definition D.1) and
sampling interval ∆ > 0, the Zero-Order Hold (ZOH) transform maps the continuous system to the
discrete SSM (Definition D.2) where the discrete parameters are given by

A = e∆A

B = A−1
(
e∆A − I

)
B

C = C

D = D

(21)

with e∆A denoting the matrix exponential and I the identity matrix.
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Definition D.4 (SSM Convolution Kernel). Given a discrete SSM (Definition D.2), the convolution
kernel K ∈ C1×L is defined as

K =
[
CB, . . . ,CA

l
B, . . . ,CA

L−1
B
]

(22)

where L is the sequence length. The kernel K defines the linear convolution mapping from the input
sequence uk to the output sequence yk, obtained by unrolling the recurrence of the discrete SSM
(Definition D.2):

yk = ℜ

(
k∑
l=0

Kl uk−l

)
+Duk. (23)

Definition D.5 (Convolution Kernel for Diagonal Discrete SSM). Let A = diag(λ0, . . . , λP−1) ∈
CP×P be a diagonal state matrix, B ∈ CP×1 the input matrix, and C ∈ C1×P the output matrix.
The convolution kernel K ∈ C1×L in Definition D.4 can be written as:

K =
(
C⊙B

T
)
·V, (24)

where ⊙ denotes element-wise multiplication and V ∈ CP×L is the Vandermonde matrix generated
by (λ0, . . . , λP−1), with entries Vi,l = λli

Definition D.6 (Convolution View of SSM). Given a discrete SSM (Definition D.2), the kernel K
(Definition D.4) defines the linear convolution mapping from the input sequence u ∈ R1×L to the
output sequence y ∈ R1×L

y = ℜ
(
K ∗ u

)
+Du. (25)

The linear convolution is computed using the discrete Fourier transform (DFT):

y = ℜ
(
DFT−1

(
DFT

(
K
)
⊙DFT (u)

))
+Du. (26)

E PROOFS

This appendix provides proofs for the theorems and lemmas presented in the main text. For all the
proofs, we assume the number of features H = 1 for simplicity. This assumption does not affect the
generality of the results, as each feature is processed independently in the RSSM layer.

Theorem 4.1: Stability Conditions

Proof. First, we note that a hierarchy of contractive reservoirs is stable Gallicchio & Micheli (2017).
Second, we note that for a diagonal state space matrix, the eigenvalues coincide with the singular
values. Therefore, the spectral norm coincides with the spectral radius. Hence, if the spectral radius is
less than 1, then the corresponding dynamics are contractive. Moreover, an RSSM block is composed
ofH independent SSM systems. With these remarks, it now suffices to find conditions of stability for a
single SSM to imply the stability of a deep RSSM architecture. Let A = diag(λ0, . . . , λP ) ∈ CP×P

be a diagonal continuous-time state matrix. The continuous-time SSM is stable if and only if the
real part of every eigenvalue is non-positive, i.e., ℜ(λi) ≤ 0 for all i (see, e.g., Khalil (2002); Ogata
(2010); Hespanha (2018)).

Consider the discretization of the system with sampling interval ∆ > 0. The discretized state matrix
is given by

A = exp(∆A) = diag(e∆λ0 , . . . , e∆λP ).

Let λi = e∆λi denote the i-th eigenvalue of A. The modulus of λi is

ρi = |λi| = |e∆λi | = e∆ℜ(λi).

The discrete-time SSM is stable if and only if |λi| ≤ 1 for all i (see, e.g., Kailath (1980); Ogata
(1997)). This is equivalent to

e∆ℜ(λi) ≤ 1 ⇐⇒ ∆ℜ(λi) ≤ 0.

Since ∆ > 0, this holds if and only if ℜ(λi) ≤ 0 for all i.

Therefore, the stability condition for the continuous SSM (ℜ(λi) ≤ 0) is equivalent to the stability
condition for the discretized SSM (ρi ≤ 1).
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Lemma 4.1: State Dimension Effect

Proof. The pre-activated output of the RSSM layer is given by

y = ℜ
(
DFT−1

(
DFT

(
K
)
⊙DFT (u)

))
+Du, (27)

where DFT is the discrete Fourier transform and DFT−1 is its inverse. Assuming the skip connec-
tion D = 0, we can rewrite the Equation 27 as

y = ℜ(K ∗ u) = ℜ(K) ∗ u = F ∗ u,

where we denote the convolution filter as F = ℜ(K). The kernel K is given by K =
(
C⊙B

T
)
·V,

where V is the Vandermonde matrix of A. To simplify, we define the vector W = C⊙B
T

. The l-th
element of the kernel K is given by the dot product W ·Al

. Rewriting W and A
l

in polar notation:

W = C⊙B
T
=
[
ν0e

iψ0 · · · νP eiψP
]

and

A
l
=

 ρ
l
0e
i(lθ0)

...
ρlP e

i(lθP )

 ,
the l-th element of the kernel becomes Kl =

∑P−1
i=0 νiρ

l
i · ei(ψi+lθi). Thus, the l-th element of the

convolution filter is:

Fl =

P−1∑
i=0

νiρ
l
i · cos(ψi + lθi).

The convolution filter F is equivalent to a sum of P oscillatory components, where P is the state
dimension of the SSM:

F =

P−1∑
i=0

F
(i)
.

Therefore, the i-th oscillatory component is F
(i) ∈ R1×L, with the l-th element F

(i)

l = νiρ
l
i cos(ψi+

lθi). Each component F
(i)

is characterized by its amplitude νi, decay rate ρi, phase ψi, and frequency
θi.

Lemma 4.2: Stability Constraint

Proof. Recall that the l-th element of the convolution filter is given by

Fl =

P−1∑
i=0

νiρ
l
i cos(ψi + lθi),

where νi ≥ 0 is the amplitude, ρi = e∆ℜ(λi) is the decay/growth factor, and ψi, θi are the phase and
frequency parameters.

Since | cos(ψi + lθi)| ≤ 1 for all i and l, we have

|Fl| ≤
P−1∑
i=0

νi|ρi|l.

Moreover, since ρi > 0 for all i, we can bound the sum as
P−1∑
i=0

νimin
i
{ρi}l ≤

P−1∑
i=0

νiρ
l
i ≤

P−1∑
i=0

νimax
i

{ρi}l.
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Thus, (
P−1∑
i=0

νi

)
min
i
{ρi}l ≤ |Fl| ≤

(
P−1∑
i=0

νi

)
max
i

{ρi}l.

To ensure stability (i.e., boundedness of the filter for all l), it is necessary that maxi{ρi} ≤ 1, which
is equivalent to requiring ℜ(λi) ≤ 0 for all i. If ℜ(λi) < 0, then ρi < 1 and the filter coefficients
decay exponentially, resulting in fading memory. If ℜ(λi) = 0, then ρi = 1 and the filter coefficients
remain bounded but do not decay.

Therefore, the real part of the eigenvalues controls both the stability and the memory capacity of the
convolution filter, as claimed.

Lemma 4.3: Parameter Scaling

Proof. Let B ∈ CP×1 and C ∈ C1×P be the input and output matrices of the continuous SSM,
with each entry of B and C having modulus in [mB,MB] and [mC,MC], respectively, where
mB,mC,MB,MC > 0 (see Appendix C).

After discretization (e.g., via the ZOH method), the discrete parameters are

A = e∆A, B = A−1(e∆A − I)B, C = C.

The convolution kernel is given by

K = (C⊙B
T
) ·V,

where V is the Vandermonde matrix of A. Define W = C⊙B
T

.

Expressing W in polar form, each entry is Wi = νie
iψi , where νi = |Bi||Ci| and ψi =

arg(BiCi) = arg(Bi) + arg(Ci). Since |Bi| ∝ |Bi| ∈ [mB,MB] and |Ci| = |Ci| ∈ [mC,MC],
it follows that [mBmC,MBMC] it give us an estimate of the amplitude νi. The phase ψi is in [0, 2π)
due to the randomness of arg(Bi), and arg(Ci) (see Appendix C).

Thus, the amplitude and phase of each oscillatory component in the convolution filter are directly
determined by the magnitudes and arguments of the entries of B and C, as claimed.

Lemma 4.4: Sampling Rate Effect

Proof. The Zero-Order Hold (ZOH) method discretizes the continuous-time SSM by sampling the
input signal at intervals of ∆, i.e., uk = u(k∆), and assumes the signal is piecewise constant between
samples:

u((k + δ)∆) = u(k∆), δ ∈ [0, 1).

Under ZOH, the continuous SSM parameters (A,B,C,D) are mapped to discrete parameters as
follows: 

A = e∆A

B = A−1
(
e∆A − I

)
B

C = C

D = D

Let λi = ℜ(λi) + iℑ(λi) be the i-th eigenvalue of A. The i-th eigenvalue of A is λi = e∆λi =
e∆ℜ(λi)ei∆ℑ(λi). Thus, the modulus and argument are

ρi = |λi| = e∆ℜ(λi), θi = arg(λi) = ∆ℑ(λi).

The convolution filter is given by

Fl =

P−1∑
i=0

νiρ
l
i cos(ψi + lθi),

where νi and ψi are determined by B and C.
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As ∆ increases, θi increases linearly, resulting in a higher oscillation frequency in the filter. Simulta-
neously, for ℜ(λi) < 0, increasing ∆ decreases ρi (since 0 < ρi < 1), causing the filter coefficients
to decay more rapidly and thus reducing memory capacity. Conversely, decreasing ∆ yields smoother
filters (lower frequency) and increases memory capacity (slower decay).

Therefore, the sampling rate ∆ directly controls both the frequency and decay rate of each oscillatory
component in the convolution filter, as claimed.

F EXPERIMENTAL SETUP

In this appendix, we describe the architecture of our model for classification tasks and outline the
models used as benchmarks.

To exploit the memory capacity of the RSSM and improve training efficiency, we employ two efficient
readouts: an MLP and a ridge regressor, with the latter trained in closed form (Equations ??, 14).

The model using the MLP readout is referred to as RSSM, while we denote the ridge regressor variant
as RSSM-r. The readout learns dependencies between features within each timestep, independently
of other timesteps, while the reservoir component of the RSSM captures temporal dependencies in
the input sequences without requiring training.

Only the final timestep yL−1 is used for classification tasks, as it encapsulates all previous states
and best represents the entire sequence. The input dimension for the ridge regressor and the first
MLP layer corresponds to the global output dimension of the RSSM, n ·H , where n is the number
of RSSM layers, and H is the number of output sequence features per layer (see Section 3.2 and
Figure 1). Each MLP layer uses the Gated Linear Unit (GLU) activation function, defined as:

GLU(·) : R2N −→ RN[
a
b

]
−→ a⊙ σ(b), (28)

where ⊙ denotes element-wise multiplication and σ(·) is the sigmoid function. The GLU activation
employs a gating mechanism that helps select important features, effectively halving the output
dimensionality at each layer and controlling information flow, thus reducing readout complexity
while retaining the most relevant features Dauphin et al. (2016).

We evaluate our model’s performance against two fully trainable models, the GRU and S4, and two
reservoir computing models: the Leaky Integrator ESN Jaeger et al. (2007) in its shallow configuration
(ESN) and deep configuration (DeepESN) Gallicchio et al. (2017).

The ESN consists of a single layer, with the number of neurons matching the total number of hidden
features in the RSSM with n layers. We configure the DeepESN with the same number of layers and
neurons per layer. The states outputted from each layer of the DeepESN are concatenated, similar to
our architecture (see Figure 1) Gallicchio et al. (2017). Both ESN models use a closed-form ridge
classifier for the readout, as in RSSM-r.

The GRU and S4 models are configured with comparable numbers of layers and hidden units to
ensure fair efficiency comparisons. For reservoir-based models (ESN, RSSM-r, and RSSM), we set
the batch size B as large as possible to optimize GPU efficiency, as the forward pass is independent
of batch size. For training the MLP readout, we use a separate batch size B′, selected through model
selection, similar to the approach used for fully trainable models (GRU and S4).

During the training phase of our MLP readout model and other online training models, we split the
development set into training and validation sets, using early stopping with a patience hyperparameter
to prevent overfitting. After early stopping, we further train the model on the whole development
set (training and validation combined) for a single epoch. We use the AdamW optimizer, which
includes weight decay as a regularization hyperparameter. Additionally, a simple scheduler reduces
the learning rate by a factor if the validation loss does not decrease after reaching half the patience
limit. Cross-entropy loss is used as the loss function.
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F.1 MODEL SELECTION

This section details the approach used for hyperparameter tuning and selecting optimal model
configurations.

For reservoir-based models (RSSM, RSSM-r, ESN, and DeepESN), which have untrained components,
model selection is critical due to their sensitivity to hyperparameters and the large search space
required. To address this, we employ random search, sampling up to 1000 configurations from the
possible hyperparameter settings generated by a grid search. Unlike grid search, which systematically
evaluates predefined combinations, random search allows for more efficient exploration of a broader
range of configurations while reducing computational cost Bergstra & Bengio (2012).

In contrast, for fully trainable models (GRU, S4), which are less sensitive to hyperparameter tuning,
we use a traditional grid search approach.

Appendix G provides detailed tables outlining the hyperparameter space for each model.

To improve the efficiency of model selection for the RSSM model with ridge regression and MLP
readouts, we leverage the modularity of the reservoir component and the independent processing
of each of the H features. We implement a two-level model selection process to fully exploit these
characteristics.

In the first phase, we select the best hyperparameters of the reservoir components of the RSSM by
keeping the same ridge regression as readout (Table 9). We can fix the number of hidden features
to a small enough value to enable a large batch size of B that does not change the result of the
input processing due to the untrained reservoir. The combination of reduced model complexity
(from the small H), large batch size, and the speed of the ridge classifier significantly accelerates
the reservoir hyperparameter tuning. After identifying the optimal hyperparameters, we scale the
reservoir component by increasing H to the desired size, and we generate the reservoir output, which
serves as the readout dataset for the second phase.

In the second phase, we perform separate model selections for each readout – MLP (Table 11) and
ridge regression (Table 10) – using the dataset from the selected reservoir. This allows us to fix the
reservoir hyperparameters and focus on tuning the readouts.

By leveraging the independence of theH features arising from theH independent SSMs, the reservoir
component scales with H . Additionally, the modularity of the reservoir component allows us to keep
the same reservoir output for different readout models. These properties help mitigate the complexity
of the hyperparameter space, making this two-level random search process both efficient and scalable.

Appendix H lists the final models for each task, along with the best hyperparameters obtained through
the model selection. Specifically, Tables 16 and 17 show the best hyperparameters selected for
pixel-by-pixel and LRA tasks, respectively, for both RSSM and RSSM-r models.

F.2 EVALUATION METRICS

In our experiments, we evaluate the accuracy of the time-series classification tasks and assess the
model’s computational impact. Precisely, we measure the training time, carbon emissions, and energy
consumption to comprehensively evaluate the environmental and resource costs associated with
our approach. To achieve this, we use the CodeCarbon library Courty et al. (2024). The metrics
collected include training time (measured in seconds), CO2 emissions (measured in grams), and
energy consumption (measured in kilowatt-hours, kWh). We conduct all experiments using the Tesla
V100-PCIE-16GB GPU. By incorporating both accuracy and resource consumption metrics, our
evaluation provides insight into the model’s predictive performance and the associated environmental
costs, highlighting the trade-offs between computational demands and sustainability.

G HYPERPARAMETER SPACE

In this section, we provide details of the model selection, specifying the hyperparameter space for
each model independently of the task. Tables 6 and 7 list the hyperparameters and their respective
possible values for GRU and S4, respectively. Table 8 presents the hyperparameters and their possible
values for both ESN and DeepESN.
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Table 9 outlines the hyperparameters and their corresponding values for the reservoir component of
RSSM. Lastly, Tables 10 and 11 list the hyperparameters and possible values for the ridge and MLP
readouts of RSSM, respectively.

Table 6: GRU hyperparameter space for sMNIST, pMNIST, sCIFAR-10 tasks. ”lr” and ”wd” are,
respectively, the learning rate and weight decay of AdamW. ”rop” is the reducing factor of the
learning rate on a validation score plateau.

GRU hyperparameter values

batch size {64, 128}
lr {0.0005, 0.001, 0.005, 0.01}
wd {0.01, 0.05, 0.1, 0.5}
rop 0.2
patience 10

Table 7: S4 hyperparameter space for sMNIST, pMNIST and sCIFAR-10 tasks. ”init” denotes the
kernel structure. ”num ssm” is the number of distinct SSM respect the total H independent SSM.
”lr” and ”wd” are, respectively, the learning rate and weight decay of AdamW. ”rop” is the reducing
factor of the learning rate on a validation score plateau. Further hyperparameter details are in Gu
et al. (2022a).

S4 hyperparameter values

batch size {64, 128}
state dim P {64, 128, 256}
dropout {0.0, 0.1, 0.2}
tie dropout {False, True}
init legs
m∆ 0.001
M∆ 0.1
kernel lr 0.001
kernel wd 0.0
bidirectional {False, True}
final act GLU(·)
num ssm {1, 2, 8, 64}
lr {0.0005, 0.001, 0.005, 0.01}
wd {0.01, 0.05, 0.1, 0.5}
rop 0.2
patience 10

Table 8: ESN and DeepESN hyperparameter space for sMNIST, pMNIST and sCIFAR-10 tasks.
”input scaling” is the scaling factor of the input weight matrix, ”rho” is the spectral radius of the
recurrent weight matrix, and ”leaky” is the leaking rate Nakajima & Fischer (2021); Gallicchio
et al. (2017). ”ridge α” is the ridge parameter of Thikonov regularization for the offline training
(Equation ??).

ESN/DeepESN hyperparameter values

batch size B large as possible
input scaling {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}
bias scaling {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0}
rho {0.8, 0.9, 1.0, 1.1}
leaky {0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
ridge α {0.0, 0.4, 0.8, 1.5, 3.0, 5.0, 7.5, 10.0, 12.5, 15.0}
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Table 9: Hyperparameter space of the RSSM reservoir component for sMNIST, pMNIST, sCIFAR-10,
and LRA tasks. The hyperparameters of the RSSM reservoir component are described in C.1. ”ridge
α” is the ridge parameter of Thikonov regularization for the offline training (Equation ??). We fix
the ridge regressor readout while selecting the RSSM reservoir component with small H = 64 as
described in F.1.

RSSM hyperparameter values

features H 64
batch size B large as possible
state dim P {8, 16, 32, 64, 128, 256, 512, 1024}
ϕfwd(·) ReLU(·)
ϕfit(·) TanH(·)
mWen 0.0
MWen {0.1, 0.25, 0.5, 0.75, 1.0, 1.25}
discrete False
mA {−4.5,−4.0,−3.5,−3.0,−2.5,−2.0,−1.5,−1.0,−0.5, 0.0}
MA {−0.5, 0.0}
m∆ {0.0001, 0.0005, 0.001, 0.005, 0.01}
M∆ {0.001, 0.005, 0.01, 0.005, 0.1}
mB 0.0
MB {0.1, 0.25, 0.5, 0.75, 1.0, 1.25}
mC 0.0
MC {0.1, 0.25, 0.5, 0.75, 1.0, 1.25}
mD {0.0, 0.25, 0.5, 0.75, 1.0}
MD {0.0, 0.25, 0.5, 0.75, 1.0}
ridge α 0.8

Table 10: Ridge regressor hyperparameter space for sMNIST, pMNIST, sCIFAR-10, and LRA tasks.
α is the ridge parameter of Thikonov regularization for the offline training (Equation ??).

ridge regression hyperparameter values

α {0.0, 0.4, 0.8, 1.5, 3.0, 5.0, 7.5, 10.0, 12.5, 15.0}

Table 11: MLP hyperparameter space for sMNIST, pMNIST, sCIFAR-10, and LRA tasks. For
sMNIST and pMNIST, the number of layers is fixed at 2 due to the lower complexity of the task.
”lr” and ”we” are, respectively, the learning rate and weight decay of AdamW. ”rop” is the reducing
factor of the learning rate on a validation score plateau.

MLP hyperparameter values

layers {2, 4, 6}
batch size B′ {64, 128}
lr {0.0005, 0.001, 0.005, 0.01}
wd {0.01, 0.05, 0.1, 0.5}
rop 0.2
patience 10

H BEST HYPERPARAMETERS

In this section, we present the best models selected through the model selection process for each
model and task (Section F.1 and Appendix G).

Tables 12, 13, 14, 15, and 16 show the optimal hyperparameter values for GRU, S4, ESN, DeepESN,
and RSSM models, respectively, across the sMNIST, pMNIST, and sCIFAR-10 tasks.

Table 17 presents the optimal hyperparameter values for the RSSM models on the LRA tasks.
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Table 12: GRU best hyperparameters for sMNIST, pMNIST, and sCIFAR-10 tasks selected from
Table 6.

GRU sMNIST pMNIST sCIFAR-10

layers 2 2 6
features P 256 256 512
batch 128 128 64
lr 0.001 0.001 0.001
wd 0.1 0.1 0.1
rop 0.2 0.2 0.2
patience 10 10 10

Table 13: S4 best hyperparameters for sMNIST and pMNIST, and sCIFAR-10 tasks selected from
Table 7.

S4 sMNIST pMNIST sCIFAR-10

layers 2 2 6
features H 256 256 512
batch 128 128 64
state dim P 64 64 64
dropout 0.1 0.1 0.1
tie dropout True True True
init legs legs legs
m∆ 0.001 0.001 0.001
M∆ 0.1 0.1 0.1
kernel lr 0.001 0.001 0.001
kernel wd 0.0 0.0 0.0
bidirectional True True True
final act GLU(·) GLU(·) GLU(·)
num ssm 1 1 2
lr 0.01 0.01 0.01
wd 0.05 0.05 0.05
rop 0.2 0.2 0.2
patience 10 10 10

Table 14: ESN best hyperparameters for sMNIST, pMNIST, and sCIFAR-10 tasks selected from
Table 8.

ESN sMNIST pMNIST sCIFAR-10

features H ≡ P 2048 2048 16384
batch B 256 256 32
input scaling 0.3 0.1 0.5
bias scaling 0.0 0.0 0.7
rho 1.1 1.0 1.0
leaky 0.5 1.0 0.1

ridge α 0.4 0.4 12.5
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Table 15: DeepESN best hyperparameters for sMNIST, pMNIST, and sCIFAR-10 tasks selected from
Table 8.

DeepESN sMNIST pMNIST sCIFAR-10

layers 2 2 8
features H ≡ P 1024 1024 2048
batch B 256 256 32
input scaling 0.3 0.1 0.6
bias scaling 0.1 0.0 0.4
rho 1.0 1.0 1.0
leaky 0.2 1.0 0.7

ridge α 0.4 0.4 15.0

Table 16: RSSM-r and RSSM best hyperparameters for sMNIST, pMNIST, and sCIFAR-10 tasks.
The first block of hyperparameters corresponds to the reservoir component, the second to the ridge
readout, and the third to the MLP readout. The optimal hyperparameters for the reservoir, ridge
readout, and MLP readout are selected from Tables 9, 10, and 11, respectively.

RSSM sMNIST pMNIST sCIFAR-10

layers n 2 2 8
featuresH 1024 1024 2048
batchB 256 256 32
state dim P 512 256 64
ϕfwd(·) ReLU(·) ReLU(·) ReLU(·)
ϕfit(·) TanH(·) TanH(·) TanH(·)
mWen 0.0 0.0 0.0
MWen 0.25 0.75 0.75
discrete False False False
mA −3.5 −2.5 0.0
MA 0.0 0.0 0.0
m∆ 0.0001 0.0005 0.0001
M∆ 0.1 0.1 0.1
mB 0.0 0.0 0.0
MB 1.25 0.75 0.75
MC 1.0 0.75 0.1
mD 0.25 0.0 0.25
MD 0.75 0.75 1.0

ridge α 0.0 0.0 12.5

MLP layers 2 2 6
batchB′ 128 128 64
lr 0.005 0.005 0.0005
wd 0.1 0.1 0.5
rop 0.2 0.2 0.2
patience 10 10 10
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Table 17: RSSM-r and RSSM best hyperparameters for LRA tasks. The first block of hyperparameters
corresponds to the reservoir component, the second to the ridge readout, and the third to the MLP
readout. The optimal hyperparameters for the reservoir, ridge readout, and MLP readout are selected
from Tables 9, 10, and 11, respectively.

RSSM Image ListOps Text Pathfinder Path-X

layers n 8 8 8 8 8
featuresH 2048 2048 2048 2048 2048
batchB 32 32 8 32 4
state dim P 1024 512 256 64 128
ϕfwd(·) ReLU(·) ReLU(·) ReLU(·) ReLU(·) ReLU(·)
ϕfit(·) TanH(·) TanH(·) TanH(·) TanH(·) TanH(·)
mWen 0.0 0.0 0.0 0.0 0.0
MWen 0.25 0.25 1.25 1.0 0.5
discrete False False False False False
mA −2.5 −0.5 −1.0 0.0 −1.5
MA 0.0 −0.5 −0.5 0.0 0.0
m∆ 0.01 0.001 0.0001 0.01 0.0001
M∆ 0.1 0.01 0.001 0.1 0.001
mB 0.0 0.0 0.0 0.0 0.0
MB 0.5 1.0 1.25 0.25 1.25
mC 0.0 0.0 0.0 0.0 0.0
MC 0.75 1.0 0.5 1.0 0.5
mD 0.5 0.0 0.75 1.0 0.0
MD 1.0 0.25 1.0 1.0 1.0

ridge α 12.5 0.8 15.0 1.5 0.4

MLP layers 6 4 2 4 4
batchB′ 64 64 64 64 64
lr 0.001 0.0005 0.0005 0.0005 0.0005
wd 0.5 0.01 0.1 0.5 0.1
rop 0.2 0.2 0.2 0.2 0.2
patience 10 10 10 10 10
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