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ABSTRACT

Cross-lingual sentence encoders (CLSE) create fixed-size sentence represen-
tations with aligned translations. Current pre-trained CLSE approaches use
sentence-level objectives only. This can lead to loss of information, especially for
tokens, which then degrades the sentence representation. We propose MEXMA,
a novel approach that integrates both sentence-level and token-level objectives.
The sentence representation in one language is used to predict masked tokens in
another language, with both the sentence representation and all tokens directly
updating the encoder. We show that adding token-level objectives greatly im-
proves the sentence representation quality across several tasks. Our approach out-
performs current pre-trained cross-lingual sentence encoders on bitext mining as
well as several downstream tasks. We also analyse the information encoded in our
tokens, and how the sentence representation is built from them.

1 INTRODUCTION

Creating general-purpose multilingual embeddings has attracted significant attention from the re-
search community in recent years, driven by the growing need for efficient and effective cross-
lingual representations. Cross-Lingual Sentence Encoders (CLSE) create fixed-size sentence rep-
resentations that are able to capture the relevant information in a sentence, and are aligned across
languages. By capturing relevant sentence information in a shared multilingual space, these aligned
representations enable efficient comparison and retrieval based on distance measures, thereby facil-
itating their effective utilization in various downstream applications.

Current CLSE (Duquenne et al., 2023; Feng et al., 2022) typically build upon pre-trained encoders,
often language models (Conneau et al., 2020; Devlin et al., 2019) or translation models (NLLB Team
et al., 2022). These pre-trained encoders have been trained using objectives that focus on individual
words or tokens, i.e. token-level objectives. Examples of such objectives include unmasking, where
the model is required to predict each token individually, and all predictions are used to update
the encoder directly. However, Muennighoff et al. (2023); Hu et al. (2020) show that pre-trained
encoders without objectives that consider entire sentences, i.e. sentence-level objectives, do not
create good sentence representations. This means that CLSE need to train using sentence-level
objectives, in order to effectively capture the relevant information of the sentences.

Although CLSE start from encoders pre-trained with token-level objectives, they are commonly
trained with sentence-level objectives that only update the encoder through the sentence represen-
tation (Duquenne et al., 2023; Feng et al., 2022; Yang et al., 2019; Artetxe & Schwenk, 2019a),
without any objective for each token individually. We hypothesize that token-level objectives should
be kept during the training of CLSE, coupled with the sentence-level objectives, to better update
the encoder and improve sentence representation quality and alignment. The intuition is that only
using sentence-level objectives leads to a degradation of token level information, especially lexical
information, which in turn can impact the sentence representation.

Recently, there have been approaches exploring the use of both token-level and sentence-level objec-
tives for better sentence representations. In DAP (Li et al., 2023), the token-level objective is only
used to update the token representations in the encoder, without influencing directly the sentence
representation. In RetroMAE (Xiao et al., 2022), the tokens are not directly updated with the same
token-level objective as the sentence representation.
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To effectively combine token and sentence-level objectives, we propose MEXMA, a new approach
that uses the sentence representation in one language to predict masked tokens in another language,
and uses both the sentence and tokens’ information to update the encoder. This token-level objective
is combined with a sentence-level objective to enforce sentence alignment across languages.

Our approach outperforms state-of-the-art pre-trained cross-lingual sentence encoders, namely
LaBSE and SONAR, on several key tasks including bitext mining, classification, and pair classi-
fication. Specifically, we report notable gains on the xsim++ benchmark computed over the FLO-
RES200 test set, where MEXMA achieves an error rate of 9.6%, surpassing SONAR’s 12.1%. Addi-
tionally, in classification tasks evaluated on MTEB and SentEval, MEXMA achieves an accuracy of
65.4% compared to SONAR’s 63.0%. The larger supervision in MEXMA enables training smaller
models with better alignment than LaBSE (≈2×) and close to SONAR’s performance (≈3×).

Our main contributions are:

• We introduce a novel architecture leveraging both sentence-level and token-level objectives
outperforming current approaches.

• We perform ablation studies that show the impact of token-level objectives on the sentence-
level representations performance.

• We provide an extensive analysis of the inner working of our model, by analysing its to-
kens’ contents, and the way the sentence embedding is built. We show that as a byproduct
of our training, individual tokens are also well aligned across languages.

• We show that our approach can also be coupled with existing alignment approaches, specif-
ically contrastive learning, and improve its quality.

• Our code and model are available here: HIDDEN FOR ANONYMITY

2 RELATED WORK

Sentence embeddings have been well studied in the last decade. Initially, recurrent networks were
trained to predict previous and next sentence (Kiros et al., 2015) or sentence entailment (Conneau
et al., 2017). Universal Sentence Encoder (Cer et al., 2018) trains a transformer network on both
tasks. Reimers & Gurevych (2019) propose to continue the training of a BERT model to include a
sentence-level objective. These initial works have been extended to multilingual settings, to capture
the relevant information in the sentences, and to have aligned representations across languages.
These new approaches are called cross-lingual sentence encoder. We describe those works next.

UPDATE VIA SENTENCE REPRESENTATION Most current cross-lingual sentence encoder ap-
proaches only update their encoder via the sentence representation objective, without having any
token-level objective in the output of the encoder that would update each token individually (Guo
et al., 2018; Yang et al., 2019; Feng et al., 2022; Artetxe & Schwenk, 2019a; Duquenne et al., 2023;
Heffernan et al., 2022). They are most commonly based on contrastive learning (Hadsell et al.,
2006) methods, that aim to reduce the distance between positive pairs (translations) and increase
the distance between negative pairs (non-translations) (Guo et al., 2018; Yang et al., 2019; Feng
et al., 2022). Notably, LaBSE (Feng et al., 2022) uses the contrastive loss, with the additive margin
softmax approach of Yang et al. (2019). Non-contrastive approaches reduce the distance between
positive pairs (translations) only, being prone to collapse. A common solution to collapse is to use
an auto-regressive decoder to prevent it. For CLSE, it is common to use translation (Artetxe &
Schwenk, 2019a; Duquenne et al., 2023) with a fixed-size sentence representation after the encoder
(bottleneck), assuming that a model can translate a sentence into many languages only if a good
sentence-level conceptual representation is learned. The bottleneck, however, prevents gradients
from the decoder to directly update the individual token representations of the encoder, which we
hypothesize leads to a degradation of token level information and consequently of the sentence rep-
resentation. Our method also uses a sentence representation as context for the unmasking, but allows
direct token-level gradients to propagate to the encoder token representations.

UPDATE VIA SENTENCE AND TOKEN REPRESENTATIONS Recent approaches (Li et al., 2023;
Xiao et al., 2022; Wei et al., 2021; Fan et al., 2022) have shown that combining token and sentence
level objectives can improve sentence representations. RetroMAE (Xiao et al., 2022), is an Infor-
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Figure 1: MEXMA architecture. Given two translations, we create two views for each, a masked
and a clean version (symmetrical architecture), and use the sentence representations from one lan-
guage to unmask the other (cross-unmasking). We align the clean sentence representations via the
alignment loss, and increase the usage of the space with the KoLeo loss.

mation Retrieval method that utilizes fixed-size sentence representations to guide token unmasking,
demonstrating its effectiveness in enhancing sentence representation quality. The encoder itself is
only updated by its own MLM loss with light masking, and via the gradients coming from the sen-
tence representation, but not from the direct token-level gradients of the heavy unmasking with the
sentence representation as context. The masking in the encoder input forces the sentence represen-
tation to not be built from the full sentence, which is not ideal. Wei et al. (2021) combines MLM
with the contrastive loss. However, the alignment between sentences is performed on masked sen-
tences, and the unmasking is not done with a cross-lingual sentence context. DAP (Li et al., 2023)
proposes to jointly align tokens and sentence representations. It performs unmasking with all tokens
of the other language as context, which means it updates the encoder with each token individually.
However, it relies exclusively on the contrastive loss to update the sentence representations, and the
sentence representation is not used to perform the token unmasking. In our work, we show that
sentence and token-level objectives can be much more intertwined, with both individual tokens and
the sentence representation updating the encoder, and each other, leading to improved performance.

Detailed diagrams of the described architectures are provided in Appendix H.

3 METHODOLOGY

We propose MEXMA, a novel multilingual alignment technique based on both token-level and
sentence-level objectives. The goal is to create a sentence representation that is able to encode the
syntactic, semantic and lexical information in a sentence, with representations well aligned across
languages. To achieve this goal, inspired by monolingual masked auto-encoding techniques (Xiao
et al., 2022), we use the sentence representation in one language to unmask the tokens in another
language, updating both the sentence and individual tokens. This also forces the sentence rep-
resentation to encode the relevant parts of the sentence. Using masking also allows us to use a
non-contrastive loss to align sentence representations, since it prevents the collapse. Both sentence
and token-level objectives are used to improve the quality of the sentence representation. Our archi-
tecture is depicted in Figure 1, and is composed of several components that we describe now. For
the explanation, we refer to inputs, models and outputs that have no masking as clean, and masked
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for their masked counterparts. Additionally, we consider two languages, language A and language
B, which are associated with the sentence representations SA and SB (from the clean encoders).

THE CROSS-UNMASKING To ensure that our sentence vector captures the meaningful informa-
tion of the sentence, we mask a significant portion of the input tokens in language A. This makes it
challenging for the encoder and the MLM head to recover the missing tokens without any additional
context. To overcome this challenge, we provide the unmasking head with the sentence vector SB,
derived from the clean sentence in language B. This forces the model to leverage the information
in SB to predict the masked tokens in language A. By doing so, we encourage the sentence vector
to capture the essential information of the sentence. Furthermore, by alternating languages, we en-
force the sentence vector to encode information that is useful across languages. We formulate this
component into a symmetrical cross-entropy loss (CE), applied over the outputs of the encoders:

Lmlm = CE([SB, Â], A) + CE([SA, B̂], B),

where Â and B̂ are the outputs of the masked encoders without the CLS embedding, A and B the
masked tokens’ targets, and [X,Y ] represents the concatenation of X and Y.

THE ALIGNMENT LOSS The cross-unmasking generates an implicit alignment due to the switch-
ing of languages to perform the unmasking. However, as is, that implicit alignment does not strongly
enforce the same sentence representations in two different languages to be close in the embedding
space. Following SONAR (Duquenne et al., 2023), to further reinforce the spatial proximity of se-
mantically equivalent sentences across languages, we use an additional non-contrastive alignment
objective. The two losses, unmasking and alignment, complement each other to provide both aligned
and meaningful vector representations of sentences in multiple languages. We formulate this com-
ponent as a Mean Squared Error (MSE) loss between sentence representations:

Lalignment = MSE(SA, SB),

THE SYMMETRICAL ARCHITECTURE To align all languages and maximize data usage, we
adopt a symmetrical approach that unmasks the tokens of language A with SB, and vice versa,
simultaneously. We thus create four instances of the encoder (with shared parameters). For each
language, we have two versions of each sentence: one heavily masked and one clean. This allows us
to generate two clean sentence vectors, SA and SB, which is essential for aligning representations
between languages. A non-symmetrical approach with only two encoders (one per language) would
not produce the desired alignment as it would force the model to align a heavily masked sentence
vector with a clean one, which is not ideal.

THE KOLEO LOSS In preliminary experiments, we noticed that our representations exhibited
more anisotropy than those learned with contrastive approaches. This has been shown to impact the
quality of the representations (Godey et al., 2024). Inspired by DINOv2 (Oquab et al., 2024), we
employ the KoLeo loss (Sablayrolles et al., 2019) to encourage sentence representations to spread
out evenly in the latent space. The KoLeo loss is based on the Kozachenko-Leonenko differential
entropy estimator (see Beirlant et al. (1997)). We define below the KoLeo loss, LKoLeo, for a set of
n representations, as well as the symmetrical version, LK , we use to train our models:

LK = LKoLeo(SA) + LKoLeo(SB) with LKoLeo = − 1

n

n∑
i=1

log(dn,i)

where dn,i = minj ̸=i ∥ xi − xj ∥ is the distance between xi and its nearest point in the batch.

Our training loss is a weighted combination of all previous losses:

LMEXMA = α · Lalignment + β · Lmlm + γ · LK

where α, β and γ are hyper-parameters that control the weight of each loss term. To show that
MEXMA can be used on top of existing alignment approaches, we provide, in Section 5.2, experi-
mental results when replacing the MSE alignment loss in MEXMA with a contrastive loss.
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Model xsim ↓ xsim++ ↓ BUCC ↑ o-xsim ↓ o-xsim++ ↓ d-xsim ↓ d-xsim++ ↓
DAP - - 98.68 - - 2.90 32.82
SONAR 0.09 12.08 98.25 0.08 11.68 0.04 10.55
LaBSE 0.92 18.65 98.75 0.31 16.21 0.26 14.51
MEXMA 0.06 9.60 98.93 0.05 9.01 0.02 8.26

Table 1: Results in mining (%). xsim and xsim++ are computed on 81 languages (FLORES200
dataset, X-eng pairs), with o-. . . columns showing results for 72 supported languages from LaBSE
and d-. . . columns showing results for 34 languages supported by DAP. BUCC is computed with F1
in its 4 languages.

3.1 EXPERIMENTAL SETUP

ENCODER BACKBONE As our encoder, we utilize a modified version of the XLM-RoBERTa
model (Conneau et al., 2020) provided by HuggingFace that uses a more efficient attention (details
in Appendix A). Our sentence representation from the encoder is obtained via the CLS embedding
of the last layer, without any further processing.

TRAINING DATA Our training dataset is a subset of the NLLB-200 corpus (NLLB Team et al.,
2022), which comprises 200 languages. We cover 81 languages, utilizing only publicly available
data, all sourced from Opus (Tiedemann, 2012). The specific languages used are listed in Ap-
pendix C. We always train using one sentence in English associated with its translation in one of
the remaining 80 languages, as done in SONAR. The dataset consists of a combination of human-
translated and synthetic data, where we attempt to impose a minimum of 15 million sentences per
language. For languages with limited human-annotated data, we supplemented the dataset with
mined data from NLLB (Schwenk et al., 2020; Fan et al., 2020; NLLB Team et al., 2022) to reach
the 15 million sentence threshold. Conversely, to ensure that our dataset is somewhat balanced
across languages, for languages with abundant human-annotated data, we capped the dataset at 25
million sentences per language. The datasets used are detailed in Table 17.

We provide additional details about the parameters and configurations of our model in Appendix A.

4 RESULTS

To assess the quality and alignment of our embeddings, we evaluate them on a range of tasks. These
tasks fall into two categories: mining tasks and other downstream tasks. Mining tasks measure how
aligned our representations are across languages, while downstream tasks evaluate the generalization
power and overall quality of our embeddings.

4.1 MULTILINGUAL ALIGNMENT THROUGH MINING

We evaluate our model on three alignment tasks: xsim1, xsim++ (Chen et al., 2023), and BUCC
(Zweigenbaum et al., 2018; 2017). Both xsim and BUCC involve retrieving the correct translation of
a query sentence from multilingual datasets. xsim++ adds complexity by introducing hard negatives
in English sentences. Following Heffernan et al. (2022), we exclude Tatoeba due to limited data and
low-quality translations.

xsim and xsim++ use a margin-based similarity approach (Artetxe & Schwenk, 2019b), while BUCC
employs cosine similarity. xsim and xsim++ scores are the error rate of misaligned sentences,
whereas BUCC uses the F1 score, evaluated with the MTEB benchmark (Muennighoff et al., 2023).

BUCC covers German, French, Russian and Chinese. We evaluate our model using xsim and
xsim++ on the FLORES200 dataset, covering the 81 languages supported by our model (listed
in Appendix C). For fairer comparison, we also report results for the 72 languages supported by
LaBSE, SONAR, and MEXMA (”o-xsim”), and separately for the 34 languages common to DAP
and the other models (”d-xsim”). Results per language are available in Appendix E .

1https://github.com/facebookresearch/LASER/tree/main/tasks/xsim
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Model average SentEval en zh fr da nb pol
DAP 61.80 78.18 66.35 67.46 63.76 52.27 51.58 53.03
SONAR 63.02 85.82 65.63 63.13 61.88 54.01 55.59 55.09
LaBSE 62.77 85.63 66.75 68.69 62.05 49.53 50.76 56.00
MEXMA 65.35 86.38 68.20 66.25 66.07 55.38 58.08 57.09

Table 2: Classification results, reported as accuracy (%), on SentEval and MTEB (last 6 columns),
averaged across languages.

Model average en zh fr
DAP 66.01 63.87 61.12 73.03
SONAR 69.70 70.73 60.80 77.57
LaBSE 68.47 69.75 61.95 73.70
MEXMA 71.55 74.39 62.12 78.13

Table 3: Pair classification results, average precision (%), on MTEB, averaged across languages.

The results are shown in Table 1. MEXMA outperforms previous SOTA on all benchmarks, show-
casing improved alignment in our approach. The improvements in xsim and BUCC suggest that our
approach improves the semantic alignment of the embeddings. The large improvement in xsim++
(+2.48% absolute improvement against the previous best model SONAR) also indicates the in-
creased robustness of our model with regard to hard negatives, likely due to handling better lexical
information. For more thorough comparisons using the same data and backbones see Appendix B.4.

4.2 DOWNSTREAM TASKS

To understand the quality of our embeddings and how generic they are, we evaluate them on several
tasks from the MTEB benchmark (Muennighoff et al., 2023). We report the averaged results for
each language. For the full list of results for every task, see Appendix E.

SINGLE SENTENCE CLASSIFICATION We evaluate our model’s classification performance on
two benchmarks. First, the SentEval suite (Conneau & Kiela, 2018) is used to assess the performance
across various tasks in English. We evaluate on the tasks considered in LaBSE. Second, we evaluate
the multilingual classification capabilities using the available datasets from the MTEB benchmark.
Table 2 shows the aggregated results. We can see that MEXMA outperforms all baseline models on
average, and more specifically gains +2.33% when compared with SONAR.

PAIRWISE SENTENCE CLASSIFICATION We further evaluate on the pair classification task. This
task consists in classifying sentence pairs, e.g. determining if two sentences are duplicates or not.
The metric, as reported in MTEB, is the Average Precision (AP) based on the distance between sen-
tence representations. The results are in Table 3. MEXMA consistently outperforms all baselines on
average, by at least +1.85%. These results, combined with our single sentence classification results,
suggest that our model can effectively encode the relevant information in the sentence vectors.

SEMANTIC TEXTUAL SIMILARITY (STS) The STS task evaluates the model’s ability to repli-
cate human judgments on sentence similarity. The metric, as reported in MTEB, is the Spearman
correlation based on distance. The results are in Table 4. We can see that LaBSE outperforms all
other methods, and in particular MEXMA by 0.66%. MEXMA outperforms SONAR (+5.95%) and

Model avg eng zh fr pl
DAP 59.39 67.45 45.31 67.74 57.06
SONAR 58.04 67.24 42.15 65.60 57.17
LaBSE 64.65 70.93 47.50 74.33 65.82
MEXMA 63.99 70.62 51.56 70.10 63.67

Table 4: STS results, reported as Spearman correlation (%), on MTEB, averaged across languages.
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component xsim ↓ xsim++ ↓ SentEval ↑

Only sentence-level grads 1 0.15 11.37 85.06
+ Token-level grads 2 0.10 ↓0.05 9.67 ↓1.7 85.98 ↑0.92

+ KoLeo loss 3 - MEXMA 0.06 ↓0.04 9.60 ↓0.07 86.38 ↑0.4

Table 5: Ablation study of the different components of the model. All experiments are conducted
with the final hyperparameters of the model, as reported in Section 3.1.

Model xsim ↓ xsim++ ↓ SentEval ↑
Contrastive XLM-RoBERTa 0.13 33.30 85.5
Contrastive MEXMA without MLM token-level gradients 0.13 12.78 85.86
Contrastive MEXMA 0.12 10.93 85.94

Table 6: Using contrastive loss as the alignment loss in MEXMA.

DAP (+4.6%). The results indicate that the contrastive loss better suits the STS task, given that this is
the only task where DAP is able to outperform SONAR, and where LaBSE outperforms MEXMA.

5 ABLATIONS AND ANALYSES

In this section, we conduct a comprehensive analysis of our MEXMA architecture, examining the
impact of its individual components, how it scales with varying model and data sizes, and its po-
tential to improve other alignment approaches. We also examine the characteristics of the token
embeddings and sentence representations learned by our model.

5.1 MODEL COMPONENTS

In Table 5 we ablate the impact of having direct token-level gradients in MEXMA. The goal is to
understand the relevance of the gradients that update the encoder: either only from the sentence, or
from the sentence and all tokens. In model 1 , we have all of MEXMA’s components, as covered
in Section 3, without the KoLeo loss. However, the gradients from the unmasking task are only
back propagating through the sentence representations back to the encoder, and are deactivated for
the individual tokens the encoder outputs, i.e. in the Lmlm mentioned in Section 3, Â/B̂ have no
gradients flowing back to the encoder. This model already achieves results that are competitive with
current state of the art, but does not outperform them. However, if we allow the gradients to flow
through the tokens directly, model 2 , we are able to outperform the current state-of-the-art. As
we hypothesized, adding updates on the tokens directly, coupled with the sentence updates largely
improves results across all tasks. Additionally, we also show that adding the KoLeo loss, model 3 ,
also slightly improves results across all tasks. The ablation on all components of the model, and on
cross-linguality , is provided in Appendix B.

5.2 CONTRASTIVE ALIGNMENT LOSS

To further assess the improvements given by the direct token updates in MEXMA, and understand
MEXMA’s scalability to other alignment approaches, we replaced our alignment loss, MSE, with a
contrastive loss (also dropping the KoLeo loss). We used a siamese network with XLM-RoBERTa-
large trained on the symmetric cross-entropy loss (InfoNCE from van den Oord et al. (2019)) as the
baseline model, having an architecture similar to LaBSE (Feng et al., 2022). Our training used a
batch size of 1.2k, with the rest of the parameters the same as reported in Section 3.1. The results
are presented in Table 6. Our baseline model performs well on xsim and SentEval but struggled with
xsim++. Switching to the MEXMA architecture without token-level gradients, as done in model 1
in Section 5.1, improved performance, already close to state-of-the-art xsim++ performance. More-
over, incorporating token-level gradients, allowing the full MEXMA architecture with contrastive
loss, as done in model 2 in Section 5.1, resulted in competitive performance, already outperform-
ing previous approaches in SentEval and xsim++. This demonstrates the positive impact of direct
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Model #parameters xsim ↓ xsim++ ↓ SentEval ↑ d-xsim ↓ d-xsim++ ↓
DAP 277M 78.18 2.90 32.82
MEXMA-base 277M 0.13 13.03 85.30 0.06 11.01
LaBSE 471M 0.92 18.65 85.63 0.26 14.51
MEXMA 559M 0.06 9.60 86.38 0.02 8.26
SONAR 766M 0.09 12.08 85.82 0.04 10.55

Table 7: Model size comparison. MEXMA-base is based on the XLM-RoBERTa-base, and
MEXMA is based on XLM-RoBERTa-Large. The d-xxx columns are computed on 34 languages
supported by DAP.

Model 81 xsim ↓ 81 xsim++ ↓ SentEval ↑ 90 xsim ↓ 90 xsim++ ↓ SentEval ↑
SONAR 0.09 12.08 85.82 0.05 11.42 85.82
MEXMA 0.06 9.60 86.38 0.05 9.06 86.64

Table 8: Training data size comparison. We train MEXMA on either 81 languages, or 90 languages.
See Appendix C for the list of covered languages.

token-level gradients and shows that MEXMA can be easily integrated with existing alignment ap-
proaches, such as contrastive learning, to improve their results.

5.3 MODEL AND DATA SIZES

Table 7 shows how our model’s results scale with the model size. We train two models, MEXMA-
base with 277M parameters, based on XLM-RoBERTa-base, and MEXMA with 559M parameters,
based on XLM-RoBERTa-large. We observe that even the smaller model (277M parameters) outper-
forms LaBSE (471M parameters), on both xSIM and xSIM++, and gets a close result in SentEval,
with a 0.3% decrease in performance, with 58.81% of the size. This smaller model also gets sur-
prisingly close to the results of SONAR, which has 766M parameters, i.e. ≈2.77 times its size.
These results show that our approach works on smaller and larger models, and it seems to enable
quite powerful small models, due to our stronger training signal. Our larger model, MEXMA, with
≈73% the size of SONAR, is able to largely outperform it across all tasks.

To investigate the impact of training data, we conducted experiments using two different language
subsets of the FLORES200. We trained separate MEXMA models on each subset, using the same
hyperparameters as reported in Section 3.1. For comparison, we evaluated the publicly available
SONAR model, which was trained on all available 200 languages, on both language subsets. The
results, presented in Table 8, demonstrate that MEXMA outperforms SONAR on both subsets, high-
lighting the adaptability and robustness of our approach to varying training data.

5.4 MASKING RATIO

NLP models typically use masking percentages around 15%, whereas vision papers have explored
much higher masking ratios, ranging from 40% in BEiT (Bao et al., 2022) to as high as 90% in MAE
(He et al., 2022) and V-JEPA (Bardes et al., 2024), usually aligning augmentations. For text, there is
less redundancy and the representations are more information-dense. In our case, we are aligning the
same sentence in several languages, which can be viewed as augmentations of a pivot sentence, i.e.
the sentence in English. We need to know how much we can mask, to make the unmasking task hard,
but to not deteriorate the performance of our encoder. More information is provided in Appendix B.
The range 30%-60% seems to be the best operating region. We selected 40% for all experiments
conducted in this paper, since it had the best balance between alignment and classification.

5.5 TOKEN EMBEDDINGS ANALYSIS

Sentence vectors are pooled representations of their tokens. In this section, we investigate the infor-
mation encoded in the tokens from the last layer across different models. Our goal is to determine
whether the tokens primarily convey semantic, lexical, and/or contextual information. Although
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Model % other % same language % same sentence % translation
XLM-RoBERTa 1.19 63.89 2.65 32.27
LaBSE 0.00 0.13 42.33 57.54
DAP 0.00 0.66 20.11 79.23
No-tok-MEXMA 0.13 0.40 11.90 87.57
NLLB 0.40 3.17 1.72 94.71
SONAR 0.00 0.13 0.20 99.67
MEXMA 0.26 1.33 0.53 97.88

Table 9: Result of the token matching analysis.

these categories can be intertwined, understanding the dominant characteristics of each model’s
tokens provides valuable insights into their behavior.

To gain insight into the information encoded in individual tokens, we examined their nearest neigh-
bors in the embedding space. We categorized these neighboring tokens into four groups based on
the sentence they belong to. Same language: the matched token is the same token in a different
sentence in the same language, which means that it encodes lexical information. Same sentence: the
token matches another one in the same sentence, meaning the tokens’ representations are heavily in-
fluenced by its context. Translation: the token matches its equivalent in a translation of the original
sentence. It means that the tokens’ representations are aligned across languages. Other: tokens that
do not belong to previous classes.

We conducted these experiments by encoding all tokens from all sentences of the 81 languages (see
Appendix C for the list) on the FLORES200 test set using each model. We randomly select three
tokens among each of the first 250 English sentences of the dataset as query, and for each query,
we retrieve the five closest tokens among all tokens of all sentences (but itself). We analyze the
properties of the sentence encoders as well as some respective backbones, XLM-RoBERTa (used to
initialize MEXMA) and NLLB-200 encoder (used in SONAR). For the sake of comparison, we also
examine ”no-tok-MEXMA”, a variant of MEXMA that does not use token-level gradients during
training. The statistics are shown in Table 9.

Our analysis reveals distinct characteristics for the considered models and we can cluster them in
three different overall behaviours. XLM-RoBERTa exhibits strong lexical relationships (high same
language percentage) but weaker semantic and contextual relations.

LaBSE, DAP and no-tok-MEXMA show higher semantic capabilities as shown by the larger trans-
lation rate. However, we can also observe a high percentage of matches with adjacent tokens (same
sentence column), indicating that those models encode a very large amount of context in their tokens.

NLLB, SONAR and MEXMA have strong cross-lingual semantic capability as shown by the very
high percentage in the translation column. This is expected as SONAR and NLLB were trained to
perform translation, and MEXMA cross-lingual unmasking. Notice that for SONAR and MEXMA,
this cross-lingual token level alignment is guided by the decoding using the sentence representation
as context (and additionally the direct token-level gradients for MEXMA).

Note also that LaBSE and DAP are the only models trained with a sentence-level contrastive loss,
and even though DAP has an additional loss to enforce the semantic alignment of the tokens, it does
not manage to achieve the same alignment as SONAR and MEXMA.

Notably, comparing the backbones NLLB and XLM-RoBERTa, we can see that the former ex-
hibits more semantical tokens than the latter, as shown by its higher translation rate and lower same
sentence rate, which can be attributed to its translation-based pre-training that enhances semantic
properties and cross-lingual alignment. SONAR, which starts from NLLB, also matches translated
tokens with a high rate, >99%, but does not encode a lot of lexical information (low same language
rate). MEXMA also matches translated tokens very frequently, but additionally displays more lexi-
cality (higher same language rate) and increased semantic robustness (higher other rate). To assess
the latter, we verified MEXMA’s other matches. The matched tokens belong to sentences in other
languages that are not translations of the original one, with the matched token being the translated
token. We believe that MEXMA produces sentence representations that inherit the above properties,

9
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Model xsim ↓ xsim++ ↓ STS ↑ Classification ↑
Uni LaBSE 2.02 20.73 63.50 58.03
Uni MEXMA 0.19 18.21 54.24 56.98
CLS LaBSE 0.92 18.65 64.65 62.77
CLS MEXMA 0.06 9.60 63.99 65.35
∆ LaBSE -119.65 -11.19 +1.78 +7.55
∆ MEXMA -212.50 -89.73 +15.24 +12.81

Table 10: Downstream results for LaBSE and MEXMA, using both a uniform attention distribution
(Uni xxx in the table), and the CLS distribution (CLS xxx in the table). The last two rows provide the
delta between the uniform and CLS distributions, in relative terms. Classification and STS results
are across all datasets mentioned under Appendix E.

allowing it to outperform other models on downstream tasks. We provide examples to illustrate the
behavior of the models, also experiments with SimAlign (Jalili Sabet et al., 2020) , in Appendix F.

5.6 SENTENCE VECTOR ANALYSIS

Sentence representations are created by combining token representations in various ways (average
or CLS/attention pooling). The previous section examined properties encoded in tokens, and this
section explores how these representations are combined to form the sentence embedding.

For SONAR, the attention weight distribution is uniform, given that SONAR averages the tokens to
create their sentence representation. MEXMA and LaBSE both use a CLS token to perform pooling
over the tokens in the sentence.

MEXMA’s and LaBSE’s attention distribution are rather different, with LaBSE having a more uni-
form attention distribution across its tokens, and MEXMA having a more skewed representation.
We verify this by computing the average entropy of the attention probabilities in the last layer given
by the CLS token, for both models on the test set of the FLORES200, in the languages supported
by both LaBSE and MEXMA. LaBSE gets an entropy of ≈ 3.4, while MEXMA gets an entropy
of ≈ 2.5. The entropy values obtained for LaBSE and MEXMA are difficult to interpret in abso-
lute terms, but the relative difference between them is informative. Specifically, LaBSE exhibits a
higher entropy compared to MEXMA, suggesting that it has a more uniform distribution of attention
probabilities. We provide examples of the distributions in Appendix G.

We perform an additional analysis, where we push the uniformity of the sentence representation to
the extreme, by using the average of tokens as our sentence representation. By doing this for both
MEXMA and LaBSE, we aim to understand the importance/impact of the attention distribution for
each model. The results are provided in Table 10. The deltas are computed in terms of relative
change from the uniform to the CLS representation. We can see that for all tasks, MEXMA has a
larger change in performance compared to LaBSE, showing that indeed since our representations are
more skewed, we suffer more from an increase in uniformity of the distribution. For those tasks, it is
noticeable that MEXMA having a uniform distribution, will lose its ability to focus on the important
tokens, decreasing its results. For LaBSE the decrease is not as accentuated, since it was already not
focusing as much on the important tokens with its more uniform CLS pooling.

6 CONCLUSION

We introduced MEXMA, a novel multilingual alignment technique that leverages both token-level
and sentence-level objectives. We show that integrating token-level objectives into the training of
cross-lingual sentence encoders (CLSE) greatly improves sentence representation quality, outper-
forming current state-of-the-art pre-trained CLSE in bitext mining and other downstream tasks. We
additionally validate these improvements via ablations. Notably, MEXMA also achieves strong to-
ken alignment across languages and effectively encodes meaningful information within each token.
Since the sentence representation is built from these tokens, as we analysed, this leads to better sen-
tence representations. Looking ahead, we plan to explore MEXMA’s scalability to more languages,
and potentially modalities.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

In order to ensure reproducibility of our results we detail the hyperparameters used to train our
network in Section 3.1 and Appendix A. Additionally, we provide the training code as supplementary
material, and will publicly release the code and the model weights after the paper is no longer
anonymous.
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Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno,
Jan Odijk, and Stelios Piperidis (eds.), Proceedings of the Eighth International Conference on
Language Resources and Evaluation (LREC’12), pp. 2214–2218, Istanbul, Turkey, May 2012.
European Language Resources Association (ELRA). URL http://www.lrec-conf.org/
proceedings/lrec2012/pdf/463_Paper.pdf.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding, 2019. URL https://arxiv.org/abs/1807.03748.

Jesse Vig. A multiscale visualization of attention in the transformer model. In Proceedings of the
57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 37–42, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.18653/
v1/P19-3007. URL https://www.aclweb.org/anthology/P19-3007.

Xiangpeng Wei, Rongxiang Weng, Yue Hu, Luxi Xing, Heng Yu, and Weihua Luo. On learning
universal representations across languages, 2021. URL https://arxiv.org/abs/2007.
15960.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming lan-
guage models with attention sinks, 2024. URL https://arxiv.org/abs/2309.17453.

Shitao Xiao, Zheng Liu, Yingxia Shao, and Zhao Cao. RetroMAE: Pre-training retrieval-oriented
language models via masked auto-encoder. In Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang
(eds.), Proceedings of the 2022 Conference on Empirical Methods in Natural Language Process-
ing, pp. 538–548, Abu Dhabi, United Arab Emirates, December 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.emnlp-main.35. URL https://aclanthology.
org/2022.emnlp-main.35.

Yinfei Yang, Gustavo Hernandez Abrego, Steve Yuan, Mandy Guo, Qinlan Shen, Daniel Cer, Yun
hsuan Sung, Brian Strope, and Ray Kurzweil. Improving multilingual sentence embedding using
bi-directional dual encoder with additive margin softmax, 2019. URL https://arxiv.org/
abs/1902.08564.

Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao Kong. ibot:
Image bert pre-training with online tokenizer. International Conference on Learning Representa-
tions (ICLR), 2022.

Michał Ziemski, Marcin Junczys-Dowmunt, and Bruno Pouliquen. The United Nations parallel
corpus v1.0. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Gro-
belnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, and Stelios
Piperidis (eds.), Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), pp. 3530–3534, Portorož, Slovenia, May 2016. European Language Re-
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A EXPERIMENTAL SETUP

A.1 ENCODER BACKBONE

The available implementation of XLM-RoBERTa in HuggingFace employs an inefficient attention
mechanism, which we have modified to incorporate the memory-efficient attention from xFormers
(Lefaudeux et al., 2022). This modification was necessary due to the random batching process used
in our training, which results in a significant amount of padding and increased computational cost.
To address this issue and eliminate padding, we have employed the BlockDiagonalMask 2, which
through custom CUDA kernels, avoids computations in padding altogether. With this change we are
able to increase our batch size in each GPU by a factor of ≈ 8.

A.2 UNMASKING HEAD

For the unmasking head, we use 6 transformer layers, also leveraging the memory-efficient attention.

A.3 COMPUTE AND TRAINING LENGTH

Our models were trained on a single node of 8 A100 GPUs. Each GPU had a batch size of 150,
totalling 1,200 batch size across all GPUs. We accumulated two gradients, making our effective
batch size 2,400. We trained our models for 300k steps.

A.4 LOSSES

Our models were trained with α = 1, β = 1
2 and γ = 0.01

2 .

A.5 TRAINING PARAMETERS

We utilize the AdamW optimizer for our training process. The learning rate is linearly increased
from 1e-5 for the 300k steps. To optimize memory usage, we employ mixed precision training,
where the model is stored in float32, while most computations are performed in float16. The max-
imum sequence length for our input data is set to 200 tokens. Finally, we apply a masking ratio of
40% to the input data.

2https://facebookresearch.github.io/xformers/components/ops.html#
xformers.ops.fmha.attn_bias.BlockDiagonalMask
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B ABLATIONS

B.1 MODEL COMPONENTS

component xsim ↓ xsim++ ↓ SentEval ↑

Non-symmetrical 1 0.09 14.75 84.68
+ Symmetrical architecture 2 0.09 0.00 14.39 ↓0.36 84.83 ↑0.15

+ Alignment loss (clean to dirty alignment) 3 0.21 ↑0.12 12.09 ↓2.3 85.61 ↑0.78

+ Clean to clean alignment 4 0.15 ↓0.06 11.37 ↓0.72 85.06 ↓0.55

+ Token-level grads 5 0.10 ↓0.05 9.67 ↓1.7 85.98 ↑0.92

+ KoLeo loss 6 - MEXMA 0.06 ↓0.04 9.60 ↓0.07 86.38 ↑0.4

Table 11: Ablation study of the different components of the model. All experiments are conducted
with the final parameters of the model, as reported in Section 3.1.

In Table 11, we ablate the different components of our architecture described in Section 3. We briefly
explain each entry in the table. Model 1 has only two encoder instances, one for each language,
where one of the inputs is masked, and the other is left clean. The token unmasking is performed
with the clean sentence representation as context. The languages are randomly swapped at every new
sample, to eliminate potential biases. The gradients from the unmasking task are only propagated
back to the encoder via the sentence representation, and there is no gradient propagation from the
individual tokens back to the encoder. There is also neither alignment nor koleo losses. Model 2
adds two additional encoder instances, totalling four instances, two for each language, where now
each language has its clean and masked input. This allows to unmask language A with language B,
and vice-versa, and will also allow (once added) to align two clean sentence representations. Model
3 adds the alignment loss, but it is performed between the masked sentence representation of lan-

guage A and the clean sentence representation of language B, to better emphasize the advantages of
having a symmetrical architecture with an alignment loss between two clean representations. Model
4 then changes the alignment loss to be performed between the two clean sentence representations

of each language. In model 5 we allow the gradients from the unmasking to be propagated to the
encoder via each individual token, as well as its sentence representation. Finally, model 6 adds the
KoLeo loss.

The results indicate that each component always enhances performance on at least two out of the
three tasks. Notably, the alignment loss, 3 - 4 , and token-level gradients, 5 , emerge as the most
critical components. More precisely, the alignment loss yields substantial improvements on two
tasks while also resulting in a notable decline in performance on another task. In contrast, the
token-level gradients consistently provide significant performance gains across all three tasks.

B.2 CROSS-LINGUALITY

component xsim ↓ xsim++ ↓ SentEval ↑
Same language unmasking 21.83 73.78 80.34
Cross lingual unmasking 0.06 ↓21.77 9.60 ↓64.18 86.38 ↑6.04

Table 12: Ablation study of the importance of cross-lingual unmasking. All experiments are con-
ducted with the final parameters of the model, as reported in Section 3.1.

In Table 12 we ablate the importance of cross-linguality in the unmasking. To conduct this ex-
periment, we performed the unmasking using as context the sentence representation in the same
language of the tokens being unmasked, instead of the representation in the opposite language. The
large gap in the results shows the importance of doing the unmasking cross-lingually, as motivated
in Section 3. The experiments were conducted using the same hyperparameters.
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Masking % xsim ↓ xsim++ ↓ SentEval ↑
20% 0.06 10.50 85.87
30% 0.06 9.82 86.00
40% 0.06 9.60 86.38
50% 0.07 9.56 86.37
60% 0.08 9.79 86.13
70% 0.09 10.65 86.41
80% 0.10 12.81 85.85
90% 0.11 14.62 84.99

Table 13: The model performance across different masking ratios.

B.3 MASKING RATIO

Classical NLP masked encoders like BERT use a small masking percentage, usually ≈ 15%, without
aligning any augmentations. Recent vision approaches use much higher masking percentages. BEiT
(Bao et al., 2022) was one of the first masked image modelling (MIM) approaches, in a BERT-style
training, and masked 40%. MAE (He et al., 2022) is another BERT-like model for images, and masks
75%, but shows that even masking 80% or 90% still achieves good results. DINO v2 (Oquab et al.,
2024) and I-BOT (Zhou et al., 2022) mask between 10%-50% in a block-wise masking scenario,
aligning augmentations. I-BOT can use 65%-75% masking ratio, if randomly masking (instead of
block-wise masking). For videos, V-JEPA (Bardes et al., 2024) masks with a very high percentage
of 90%. Recent textual approaches, namely RetroMAE experiment with masking percentages of up
to 50∼70%, but this task will not update the actual encoder.

For MEXMA, since these masking gradients are updating our encoder, we need to strive for a bal-
ance where unmasking is hard, and cannot be done by the encoder and head, but also not too much
that will deteriorate the representations of the encoder. Table 13 shows the results we obtained for
the different masking ratios.

B.4 FAIRER COMPARISONS

Model xsim ↓ xsim++ ↓ SentEval ↑
XLM-R LaBSE 0.10 33.82 86.08
NLLB-MEXMA 0.11 23.36 85.20

Baselines
MEXMA 0.06 9.60 86.36
SONAR 0.09 12.08 85.82
LaBSE 0.92 18.65 85.63

Table 14: Fairer comparisons with same backbone to compare different strategies, all trained on the
same data.

In this section, we conduct additional experiments to enhance the fairness of our method compar-
isons, ensuring that all models are trained on the same data as MEXMA. Results are reported in
Table 14. To facilitate a more equitable comparison with LaBSE, we re-implemented LaBSE using
the same backbone as MEXMA, i.e. XLM-RoBERTa (XLM-R). The model was trained with the
same hyperparameters reported in the original paper, specifically a 4k batch size (compared to the
1k batch size used in MEXMA). This different backbone and data led to improved performance over
LaBSE on the xsim and SentEval benchmarks, although it resulted in a significant decrease in perfor-
mance on the xsim++ benchmark. For a more accurate comparison with SONAR, we replaced the
XLM-R backbone in MEXMA with the NLLB encoder. This approach is more straightforward than
training SONAR with XLM-R, as SONAR requires a pre-trained translation decoder. The results,
however, were inferior to those of MEXMA across all tasks, with larger gaps than SONAR. This
outcome is expected, given that the NLLB model was not originally trained for masked language
modeling.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

C LANGUAGE INFORMATION APPENDIX

In this section, we cover the languages used by our model. The list of languages used to train
our model is reported in Table 15. The list used to conduct the experiments with 90 languages is
available in Table 16.

FLORES200 code Language FLORES200 code Language
acm Arab Mesopotamian Arabic kan Knda Kannada
aeb Arab Tunisian Arabic kat Geor Georgian
afr Latn Afrikaans kaz Cyrl Kazakh
amh Ethi Amharic khm Khmr Khmer
ary Arab Moroccan Arabic kir Cyrl Kyrgyz
arz Arab Egyptian Arabic kor Hang Korean
asm Beng Assamese lao Laoo Lao
azb Arab South Azerbaijani mal Mlym Malayalam
azj Latn Azerbaijani mar Deva Marathi
bel Cyrl Belarusian mkd Cyrl Macedonian
ben Beng Bengali mya Mymr Burmese
bos Latn Bosnian nld Latn Dutch
bul Cyrl Bulgarian nno Latn Norwegian
cat Latn Catalan nob Latn Norwegian Bokmål
ces Latn Czech npi Deva Nepali
ckb Arab Central Kurdish pol Latn Polish
cym Latn Welsh por Latn Portuguese
dan Latn Danish ron Latn Romanian
deu Latn German rus Cyrl Russian
ell Grek Greek san Deva Sanskrit
eng Latn English sin Sinh Sinhala
epo Latn Esperanto slk Latn Slovak
est Latn Estonian slv Latn Slovenian
eus Latn Basque snd Arab Sindhi
fin Latn Finnish som Latn Somali
fra Latn French spa Latn Spanish
gla Latn Scottish Gaelic srp Cyrl Serbian
gle Latn Irish sun Latn Sundanese
glg Latn Galician swe Latn Swedish
guj Gujr Gujarati swh Latn Swahili
hau Latn Hausa tam Taml Tamil
heb Hebr Hebrew tel Telu Telugu
hin Deva Hindi tha Thai Thai
hrv Latn Croatian tur Latn Turkish
hun Latn Hungarian uig Arab Uyghur
hye Armn Armenian ukr Cyrl Ukrainian
ind Latn Indonesian urd Arab Urdu
isl Latn Icelandic vie Latn Vietnamese
ita Latn Italian xho Latn Xhosa
jav Latn Javanese zho Hant Chinese (Traditional)
jpn Jpan Japanese

Table 15: 81 languages set.
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FLORES200 code Language FLORES200 code Language
afr Latn Afrikaans kmr Latn Kurdish (Kurmanji)
als Latn Albanian kor Hang Korean
amh Ethi Amharic lao Laoo Lao
arb Arab Arabic lit Latn Lithuanian
asm Beng Assamese lvs Latn Latvian
azj Latn Azerbaijani mal Mlym Malayalam
bel Cyrl Belarusian mar Deva Marathi
ben Beng Bengali mkd Cyrl Macedonian
bos Latn Bosnian mya Mymr Burmese
bul Cyrl Bulgarian nld Latn Dutch
cat Latn Catalan nno Latn Norwegian
ces Latn Czech npi Deva Nepali
cym Latn Welsh ory Orya Oriya
dan Latn Danish pan Guru Punjabi
deu Latn German pbt Arab Pashto
ell Grek Greek plt Latn Malagasy
eng Latn English pol Latn Polish
epo Latn Esperanto por Latn Portuguese
est Latn Estonian prs Arab Persian
eus Latn Basque ron Latn Romanian
fin Latn Finnish rus Cyrl Russian
fra Latn French san Deva Sanskrit
gaz Latn Oromo sin Sinh Sinhala
gla Latn Gaelic slk Latn Slovak
gle Latn Irish slv Latn Slovenian
glg Latn Galician snd Arab Sindhi
guj Gujr Gujarati som Latn Somali
hau Latn Hausa spa Latn Spanish
heb Hebr Hebrew srp Cyrl Serbian
hin Deva Hindi sun Latn Sundanese
hrv Latn Croatian swe Latn Swedish
hun Latn Hungarian swh Latn Swahili
hye Armn Armenian tam Taml Tamil
ind Latn Indonesian tel Telu Telugu
isl Latn Icelandic tha Thai Thai
ita Latn Italian tur Latn Turkish
jav Latn Javanese uig Arab Uyghur
jpn Jpan Japanese ukr Cyrl Ukrainian
kan Knda Kannada urd Arab Urdu
kat Geor Georgian uzn Latn Uzbek
kaz Cyrl Kazakh vie Latn Vietnamese
khk Cyrl Mongolian xho Latn Xhosa
khm Khmr Khmer ydd Hebr Yiddish
kir Cyrl Kyrgyz zho Hans Chinese (Simplified)
zsm Latn Malay zho Hant Chinese (Traditional)

Table 16: 90 languages set
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D DATASETS

In this section we report the data used to train our models. Table 17 reports all the datasets used to
train the models.

Dataset Source Origin
bible-uedin Opus Christodouloupoulos & Steedman (2015); Tiedemann (2012)
DGT Opus Steinberger et al. (2012); Tiedemann (2012)
ECB Opus Tiedemann (2012)
EMEA Opus Tiedemann (2012)
EUbookshop Opus Tiedemann (2012)
infopankki Opus Tiedemann (2012)
memat Opus Tiedemann (2012)
OpenSubtitles Opus Lison & Tiedemann (2016); Tiedemann (2012), Link: opensubtitles.org

QED Opus Abdelali et al. (2014); Tiedemann (2012)
Tanzil Opus Tiedemann (2012), Link: tanzil.net/trans

Tatoeba Opus Tiedemann (2012)
Ted20 Opus Reimers & Gurevych (2020); Tiedemann (2012)
Tico19 Opus Anastasopoulos et al. (2020); Tiedemann (2012)
UNPC Opus Ziemski et al. (2016); Tiedemann (2012)
Wikimedia Opus Tiedemann (2012)
NLLB mined Opus Schwenk et al. (2020); Fan et al. (2020); Tiedemann (2012)

Table 17: Datasets used to train our models.
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E MTEB DATASETS

In this section, we report the scores for each task of the MTEB benchmark reported in Section 4.
We report the scores per task, with every dataset used per task, and per language. MEXMA is able
to outperform the previous SOTA results on mining, while also improving the downstream results
on classification and pair classification. LaBSE outperforms all other models on STS.

E.1 BITEXT MINING

Results for mining are in Table 18, for the BUCC dataset. We report the scores on the four available
languages: German, French, Russian and Chinese. Results on all languages covered by MEXMA
for xsim and xsim++ on FLORES200 are provided in Tables 19 and 20, respectively.

LP DAP SONAR LaBSE MEXMA
de-en 99.45 98.82 99.35 99.52
fr-en 98.58 98.09 98.72 98.98
ru-en 97.74 97.37 97.78 98.06
zh-en 98.96 98.72 99.16 99.18

Table 18: BUCC results for each language pair (LP).

E.2 CLASSIFICATION

Classification results for English are available in Table 21, for SentEval, and in Table 22 for the
English MTEB classification datasets. Classification results for Chinese, French, Danish, Norwegian
and Polish are reported in Table 23, Table 24, Table 25, Table 26, Table 27, respectively. MEXMA
outperforms all other models on average.

E.3 PAIR CLASSIFICATION

Pair classification results for English, French and Chinese are reported in Table 28, Table 29, and
Table 30, respectively. MEXMA outperforms all other models on average.

E.4 SEMANTIC TEXTUAL SIMILARITY (STS)

Semantic Textual Similarity (STS) results are reported in Table 31, Table 33, Table 34 and Table 32
for English, French, Polish and Chinese, respectively. LaBSE outperforms MEXMA and the re-
maining models on STS. MEXMA and LaBSE outperform SONAR by large margins.
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Language SONAR LaBSE MEXMA DAP Language SONAR LaBSE MEXMA DAP
acm Arab 0 0 0 - kan Knda 0 0 0 -
aeb Arab 0.10 0.10 0.10 - kat Geor 0.40 0 0 7.41
afr Latn 0 0 0 0.10 kaz Cyrl 0.20 0.20 0.20 44.96
amh Ethi 0 0 0 - khm Khmr 0 2.08 0 -
ary Arab 0.79 1.09 0.89 - kir Cyrl 0.10 0 0 -
arz Arab 0 0 0 - kor Hang 0 0 0 0
asm Beng 0 0 0 - lao Laoo 0 2.77 0 0.20
azb Arab 1.68 9.58 0.99 - mal Mlym 0.10 0.10 0.10 1.48
azj Latn 0.20 0.10 0.10 - mar Deva 0 0 0 1.38
bel Cyrl 0.30 0 0 - mkd Cyrl 0 0 0 -
ben Beng 0 0 0 0 mya Mymr 0.20 0.30 0.20 -
bos Latn 0 0 0 - nld Latn 0.10 0 0 0
bul Cyrl 0.10 0 0 0 nno Latn 0.10 0 0.10 -
cat Latn 0 0 0 - nob Latn 0.10 0.10 0.10 -
ces Latn 0 0 0 - npi Deva 0.40 0.30 0.30 -
ckb Arab 0.10 49.11 0 - pol Latn 0 0 0 -
cym Latn 0 0 0 - por Latn 0 0 0 0
dan Latn 0 0 0 - ron Latn 0 0 0 -
deu Latn 0 0 0 0 rus Cyrl 0.10 0 0 0
ell Grek 0 0 0 0.10 san Deva 0.50 0.79 0.40 -
epo Latn 0 0 0 - sin Sinh 0 0 0 -
est Latn 0 0 0 0 slk Latn 0 0 0 -
eus Latn 0 0 0 0 slv Latn 0.10 0 0 -
fin Latn 0.10 0.10 0.10 0.10 snd Arab 0 0 0 -
fra Latn 0 0 0 0 som Latn 0.10 0.20 0.10 -
gla Latn 0.10 0.10 0.10 - spa Latn 0.10 0.10 0.10 0.10
gle Latn 0 0 0 - srp Cyrl 0 0 0 -
glg Latn 0 0 0 - sun Latn 0.10 0.10 0.10 -
guj Gujr 0 0 0 - swe Latn 0 0 0 -
hau Latn 0.30 0.30 0.30 - swh Latn 0 0 0 0
heb Hebr 0 0 0 0 tam Taml 0 0 0 28.26
hin Deva 0.10 0 0 0.10 tel Telu 0 0 0 2.77
hrv Latn 0 0 0 - tha Thai 0 5.53 0.10 0.10
hun Latn 0 0 0 0 tur Latn 0 0 0 0
hye Armn 0 0 0 - uig Arab 0.10 0.10 0.10 -
ind Latn 0 0 0 0 ukr Cyrl 0 0 0 -
isl Latn 0.20 0.10 0.10 - urd Arab 0.10 0.10 0.10 0.30
ita Latn 0 0 0 0 vie Latn 0 0 0 0
jav Latn 0 0 0 11.17 xho Latn 0.10 0.10 0.10 -
jpn Jpan 0 0 0 0 zho Hant 0.10 0 0 0

Table 19: xsim results for each language in FLORES200 covered by MEXMA.
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Language SONAR LaBSE MEXMA DAP Language SONAR LaBSE MEXMA DAP
acm Arab 13.54 28.56 12.35 - kan Knda 16.21 18.38 10.77 -
aeb Arab 14.23 35.38 14.82 - kat Geor 16.01 18.48 11.66 69.66
afr Latn 6.62 9.39 5.63 20.75 kaz Cyrl 12.55 15.32 8.89 89.72
amh Ethi 11.56 19.07 7.51 - khm Khmr 14.72 20.55 9.39 -
ary Arab 15.91 44.47 25.59 - kir Cyrl 15.12 20.55 13.04 -
arz Arab 13.93 31.03 13.24 - kor Hang 14.82 18.58 9.19 -
asm Beng 17.98 41.11 13.44 - lao Laoo 10.18 18.77 7.41 42.19
azb Arab 45.26 69.17 33.00 - mal Mlym 13.14 19.96 11.17 54.35
azj Latn 17.69 17.69 12.35 - mar Deva 10.97 15.42 8.00 54.45
bel Cyrl 20.26 21.94 13.44 - mkd Cyrl 7.51 11.86 6.42 -
ben Beng 13.83 17.79 8.70 33.60 mya Mymr 19.66 28.06 15.91 -
bos Latn 7.61 8.10 5.24 - nld Latn 13.34 13.34 10.08 20.45
bul Cyrl 9.19 9.19 5.53 17.89 nno Latn 16.80 13.24 8.30 -
cat Latn 6.03 8.79 5.04 - nob Latn 15.51 11.56 7.41 -
ces Latn 8.20 11.76 6.72 - npi Deva 14.53 13.74 7.61 -
ckb Arab 13.64 93.97 14.03 - pol Latn 11.17 12.65 8.70 -
cym Latn 7.61 14.03 5.43 - por Latn 5.93 9.09 6.32 14.53
dan Latn 6.03 8.10 4.84 - ron Latn 8.10 8.40 5.73 -
deu Latn 6.13 7.61 6.13 15.22 rus Cyrl 7.91 9.98 6.23 19.17
ell Grek 10.57 16.40 8.99 26.58 san Deva 24.41 51.09 22.33 -
epo Latn 6.13 9.49 5.63 - sin Sinh 12.15 16.01 7.91 -
est Latn 8.10 11.46 5.93 18.87 slk Latn 8.99 10.77 7.51 -
eus Latn 10.87 15.32 8.30 25.20 slv Latn 9.58 11.56 6.62 -
fin Latn 8.99 13.44 8.50 20.55 snd Arab 13.64 28.85 9.68 -
fra Latn 5.93 7.61 5.34 17.59 som Latn 15.81 30.93 14.92 -
gla Latn 17.19 23.62 12.25 - spa Latn 9.49 11.07 7.71 20.55
gle Latn 10.57 15.81 9.68 - srp Cyrl 6.92 9.98 5.34 -
glg Latn 7.51 8.40 5.63 - sun Latn 15.02 16.50 10.38 -
guj Gujr 11.56 15.12 8.30 - swe Latn 8.00 8.99 6.03 -
hau Latn 16.40 25.99 13.44 - swh Latn 7.11 15.71 8.89 29.05
heb Hebr 6.92 15.02 7.51 26.28 tam Taml 15.61 18.48 11.26 81.32
hin Deva 9.58 10.97 6.92 29.74 tel Telu 13.83 15.12 10.87 57.02
hrv Latn 8.20 9.09 6.52 - tha Thai 10.57 28.16 8.20 30.83
hun Latn 9.09 13.74 7.91 17.79 tur Latn 8.60 10.87 7.51 18.38
hye Armn 7.51 12.94 9.09 - uig Arab 16.70 23.12 13.74 -
ind Latn 6.23 9.09 5.73 14.92 ukr Cyrl 10.08 12.25 7.61 -
isl Latn 10.38 14.43 8.50 - urd Arab 12.25 16.70 10.08 47.13
ita Latn 9.98 9.49 6.23 16.11 vie Latn 7.41 12.15 7.61 18.58
jav Latn 13.74 17.09 9.88 63.04 xho Latn 11.96 31.42 15.61 -
jpn Jpan 15.22 17.79 10.08 27.17 zho Hant 17.89 24.60 12.55 28.56

Table 20: xsim++ results for each language in FLORES200 covered by MEXMA.

Task DAP SONAR LaBSE MEXMA
Average 78.18 85.82 85.63 86.38
MR 74.33 81.23 78.89 80.14
SST2 81.88 86.49 83.64 86.16
TREC 75.00 95.00 92.80 94.80
CR 78.70 85.67 86.44 84.43
SUBJ 91.83 93.70 93.14 94.27
MPQA 78.86 89.38 89.66 89.41
MRPC 66.67 69.28 74.84 75.42

Table 21: SentEval results.
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Dataset DAP SONAR LaBSE MEXMA
Average 66.35 65.63 66.75 68.20
AmazonCounterfactualClassification 77.16 81.49 75.93 78.06
AmazonPolarityClassification 65.73 62.73 68.95 64.96
AmazonReviewsClassification 34.03 31.55 35.80 32.77
Banking77Classification 71.83 73.50 69.85 75.14
ImdbClassification 62.06 55.75 62.04 62.08
MTOPDomainClassification 85.54 89.92 86.06 89.85
MTOPIntentClassification 64.17 70.85 63.03 75.18
MasakhaNEWSClassification 77.95 55.42 77.77 72.28
MassiveIntentClassification 63.48 64.37 61.46 66.64
MassiveScenarioClassification 68.75 69.05 66.41 70.38
ToxicConversationsClassification 59.14 67.28 66.90 62.85

Table 22: MTEB English classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.46 63.13 68.69 66.25
AmazonReviewsClassification (zh) 34.35 31.91 32.98 33.40
MassiveIntentClassification (zh-CN) 71.99 62.08 63.86 74.41
MassiveScenarioClassification (zh-CN) 65.45 68.88 70.85 65.28
JDReview 71.54 69.59 79.13 70.73
MultilingualSentiment 62.03 57.69 65.52 60.34
OnlineShopping 85.03 75.64 85.62 80.09
Waimai 81.82 76.12 82.85 79.52

Table 23: MTEB Chinese classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.76 61.88 62.05 66.07
AmazonReviewsClassification 35.60 34.91 38.52 35.62
MTOPDomainClassification 84.43 86.19 84.14 86.70
MTOPIntentClassification 65.78 66.75 62.01 74.12
MassiveIntentClassification 64.51 58.55 60.47 65.59
MassiveScenarioClassification 68.50 63.02 65.1 68.31

Table 24: MTEB French classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 52.27 54.01 49.53 55.38
DanishPoliticalCommentsClassification 36.44 37.59 38.69 38.75
LccSentimentClassification 58.27 54.27 50.07 52.40
MassiveIntentClassification (da) 58.74 62.03 58.25 65.75
MassiveScenarioClassification (da) 66.15 67.76 65.24 69.26
NordicLangClassification 41.73 48.40 35.38 50.74

Table 25: MTEB Danish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 51.58 55.59 50.76 58.08
MassiveIntentClassification 55.85 59.90 57.91 64.48
MassiveScenarioClassification 62.67 65.81 64.29 68.22
NoRecClassification 46.06 48.25 45.44 48.88
NordicLangClassification 41.73 48.40 35.38 50.74

Table 26: MTEB Norwegian classification results.
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Dataset DAP SONAR LaBSE MEXMA
Average 53.03 55.09 56.00 57.09
AllegroReviews 31.58 29.62 34.89 31.09
MassiveIntentClassification (pl) 58.53 65.86 59.71 66.85
MassiveScenarioClassification (pl) 63.05 69.99 64.58 70.20
PAC 67.97 73.87 68.11 73.31
PolEmo2.0-IN 61.75 52.80 64.00 59.10
PolEmo2.0-OUT 35.32 38.40 44.72 42.00

Table 27: MTEB Polish classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 63.87 70.73 69.75 74.39
PawsX 55.30 75.05 54.07 73.18
SprintDuplicateQuestions 72.47 77.08 89.26 86.89
XNLI 63.83 60.06 65.92 63.10

Table 28: MTEB English pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 73.03 77.57 73.70 78.13
PawsX (fr) 55.57 71.36 54.63 71.07
Opusparcus (fr) 100.00 100.00 100.00 100.00
XNLI 63.52 61.34 66.48 63.32

Table 29: MTEB French pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 61.12 60.80 61.95 62.12
PawsX(zh) 56.20 65.35 54.26 63.68
Cmnli 69.29 61.86 72.67 67.45
Ocnli 57.86 55.18 58.91 55.23

Table 30: MTEB Chinese pair classification results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.45 67.24 70.93 70.62
BIOSSES 70.51 79.11 78.70 75.97
SICK-R 69.18 62.94 69.99 66.00
STS12 64.69 65.46 65.08 67.32
STS13 63.50 62.79 67.98 67.05
STS14 61.49 57.54 64.03 62.73
STS15 75.38 74.25 76.59 75.72
STS16 68.00 75.73 72.98 76.93
STS17 (en-en) 77.03 79.94 79.45 80.97
STS22 (en) 53.38 47.12 60.97 57.11
STSBenchmark 69.39 67.39 72.25 73.53
STSBenchmarkMultilingualSTS (en) 69.39 67.39 72.25 73.53

Table 31: MTEB English STS results.
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Dataset DAP SONAR LaBSE MEXMA
Average 45.31 42.15 47.50 51.56
ATEC 28.01 26.18 26.61 29.68
BQ 40.01 37.66 42.60 44.37
LCQMC 54.97 50.11 52.19 61.34
PAWSX 12.99 32.75 10.23 27.77
STS22(zh) 52.05 52.82 63.02 63.49
STSB 63.67 50.18 68.38 65.75
STSBenchmarkMultilingualSTS (zh) 65.46 45.33 69.50 68.55

Table 32: MTEB Chinese STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 67.74 65.60 74.33 70.10
SICKFr 66.84 66.1 69.94 65.94
STS22 (fr) 64.44 61.72 77.95 72.19
STSBenchmarkMultilingualSTS (fr) 71.92 68.99 75.1 72.17

Table 33: MTEB French STS results.

Dataset DAP SONAR LaBSE MEXMA
Average 57.06 57.17 65.82 63.67
CDSC-R 74.12 85.77 85.53 85.95
SICK-R-PL 60.63 62.98 65.90 64.31
STS22 (pl) 28.16 25.31 39.28 32.51
STSBenchmarkMultilingualSTS (pl) 65.31 54.62 72.58 71.93

Table 34: MTEB Polish STS results.
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F TOKEN LEVEL ANALYSIS

In this section, we illustrate the behaviour of each model by visualizing the closest tokens in the
space. We observe that MEXMA matches tokens in translations but also different contexts when
tokens are used with the same meaning. This is further broken down in Table 9, which distinguishes
between two types of matches MEXMA does: (1) ”same language” matches, where the model
identifies the same token used in a different context (monolingual), and (2) ”other” matches, where it
recognizes translated tokens in a sentence in another language that is not a translation (multilingual).
We observe that SONAR primarily matches tokens across translations, but does not tend to match the
same token when it appears in different sentences within the same language. Examples of MEXMA
and SONAR comparisons of matching the same token in other sentences is in Figure 5, and both
models matching translations in Figure 6. In both figures, we show the three closest tokens to the
selected token, denoted as query on the green box, with the blue text. The closest tokens are in
the purple boxes with the pink text. Additionally, we show examples of how LaBSE and MEXMA
without direct token-level gradients (no-tok MEXMA), match adjacent tokens in the same sentence
regularly. These are shown for LaBSE in Figure 2, and for no-tok MEXMA in Figure 3. Lastly, we
show how XLM-RoBERTa mostly matches the same tokens in other sentences in the same language,
presented in Figure 4. For these last three models, we show the top-2 closest tokens, with the same
color scheme as mentioned above. Each image has two examples for the given model.

The governor's office said nineteen of the
injured were police officers.

Token: nineteen Token: bell

The governor's office said nineteen of the
injured were police officers.

The governor's office said nineteen of the
injured were police officers.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

He built a WiFi door bell, he said.

Figure 2: Example of LaBSE’s token matching. The token in blue is the query token, the tokens in
pink are the closest tokens to the query token in the space.

. Scientists say this animal's plumage ...
with a pale ... underside.

Token: plumage Token: down

. Scientists say this animal's plumage ...
pale ... underside.

. Scientists say this animal's plumage
... pale ... underside.

"The researchers suggested ... this is the
tail ... chick's down."

"The researchers suggested ... this
is the tail ... chick's down."

"The researchers suggested ... this is the
tail ... chick's down."

Figure 3: Example of MEXMA no token-level grad’s token matching. The token in blue is the query
token, the tokens in pink are the closest tokens to the query token in the space.

"We now have 4-month-old mice that are non-
diabetic that used to be diabetic," he added.

Token: diabetic Token: particles

Some venues offer alcoholic beverages on the
house. ...

You can also have alloys that include small
amounts of non-metallic elements like carbon.

This theory says that most dark matter around a
galaxy is located around a galaxy in a kind of halo,

and is made of lots of small particles.

A curry is a dish based on herbs and spices,
together with either meat or vegetables.

Examples include control, planning and ...

Figure 4: Example of XLM-RoBERTa token matching. The token in blue is the query token, the
tokens in pink are the closest tokens to the query token in the space.
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He built a WiFi door bell, he said.

SONAR

িতিন জানান �য িতিন এক�ট ওয়াই-
ফাই �ডার �বল �তির কেরিছেলন।

అత� WiFi �� ��
��� ం��. అ� ��� �.

അേ�ഹം ഒരു WiFi
േഡാർ െബൽ

ഉ�ാ�ിെയ�് അവൻ
പറ�ു.

Dheweke mbangun bel 
lawang WiFi, jarene.

Previously, Ring's CEO, 
Jamie Siminoff, remarked 
the company started when 
his doorbell wasn't audible 
from his shop in his garage.

WiFi ile çalışan bir kapı 
zili yaptığını söyledi.

MEXMA

The find also grants insight into the evolution of feathers
in birds.

SONAR

यह खोज पि�यो ंम� पंखो ंके 
िवकास की पूरी जानकारी भी �दान

करती है.

கண்���ப்பான�
பறைவகளில் இற�களின்

பரிணாம 
வளரச்�்ையப் பற்�ய

�ண்ண�ைவ வழங்��ற�.

ഈ ക�ുപിടി�ം 
പ�ികളിെല തൂവലുകളുെട 
ഉൽഭവ�ിേല�് െവളി�ം 

വീശി.

Oppdagelsen gir i tillegg 
innsikt i utviklingen for 

fjær hos fugler.

The area is also home to 
an extremely wide variety 
of animal and bird species.

But there are a lot of 
things about birds that 
still look like a dinosaur.

MEXMA

The researchers suggested that, even though this is the tail of
a young dinosaur, the sample shows adult plumage and not a

chick's down.

SONARMEXMA

The number of people present was so large that it was not
possible for everybody to gain access to the funeral in St.

Peter's Square.

SONARMEXMA

The feathers' structure
suggests that they were not
used in flight but rather for
temperature regulation or
display. The researchers

suggested that, even though
this is the tail of

a young dinosaur, the sample
shows adult plumage 

and not a chick's down.

Token: bell Token: birds

Token: young Token: funeral

Cercetătorii au sugerat că, 
deși aceasta este coada 

unui dinozaur tânăr, 
eșantionul arată un penaj 
adult și nu puful unui pui.

Os pesquisadores 
sugeriram que, apesar do

rabo ser de um
dinossauro jovem, a amostra

revela uma plumagem 
adulta, não uma penugem.

Fue tanta la cantidad de
gente que se concentró, que
no todos pudieron acceder

al funeral en la Plaza de San
Pedro.

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Foi tal o número de persoas
que acudiu que non todo o

mundo puido acceder
ao funeral na praza de 

San Pedro.

Els investigadors 
suggereixen que, tot i que 

es tracta de la cua d'un
dinosaure jove, la mostra
revela un plomatge adult, 

i no pas plomissol.

Հետազոտողները
ենթադրում են, որ չնայած

սա երիտասարդ դինոզավրի
պոչ է, նմուշը ցույց է տալիս
մեծահասակի փետուր և ոչ

ձագի:

研究者らは、この標本が若い恐竜
の尻尾であるにもかかわらず、ひ
なの羽毛ではなく大人の羽毛が生
えていることを示唆している。

O número de pessoas
presentes era tão grande 
que não foi possível que
todos tivessem acesso
ao funeral na Praça de 

São Pedro.

Over four million people 
went to Rome to attend

the funeral.

Hi havia tanta gent present
que no tots van aconseguir
accedir al funeral a la Plaça

de Sant Pere.

Figure 5: Comparison of SONAR and MEXMA token matching. MEXMA displays the ability to
match a token in another sentence in the same language. SONAR matches a translated token. The
token in blue is the query token, the tokens in pink are the closest tokens to the query token in the
space. MEXMA is on the left, SONAR on the right.
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 "We now have 4-month-old mice that are non-diabetic that
used to be diabetic," he added.

SONAR

انہوں نے مزید بتایا کہ، "اب ہمارے پاس
غیر ذیابیس والے 4 مہینے کی عمر کے
"چوہے ہیں جنہیں شوگر ہوجایا کرتا تھا۔

"Ni havas nun 4-monataĝajn
musojn, kiuj ne estas

diabetaj, sed estis diabetaj",
li aldonis.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

“Ons het nou 4-maand oue
muise wat nie diabeties is,

wat eenmaal diabeties was,”
het hy bygevoeg.

"Agora temos ratos de 4
meses de idade que não são
diabéticos e que antes eram
diabéticos,"complementou.

"Mae gennym ni nawr lygod
pedwar mis oed sydd ddim yn
ddiabetig oedd yn arfer bod

yn ddiabetig", 
ychwanegodd e.

MEXMA

He did not set a figure for the cuts, saying they will be
made based on China's economic output.

SONAR

മുറിവുകൾ�ായി അേ�ഹം ഒരു
ചി�തം സ�മാ�ിയി�ി�,
ൈചനയുെട സാ��ിക

ഉൽ പാദനെ� 
അടി�ാനമാ�ിയാണ്അ

വ നിർ�ി�ുക എ�് പറ�ു.

Ông ấy đã không đưa ra con
số cắt giảm, mà nói rằng 

việc đó sẽ được thực
hiện dựa vào kết quả của 
nền kinh tế Trung Quốc.

ລາວບ່ໍໄດ້ກໍານົດຕົວເລກສໍາລັບການຕັດ
ອອກ ເຊ່ິງກ່າວວ່າພວກເຂົາຈະເຮັດໂດຍ
ອີງໃສ່ຜົນໄດ້ຮັບທາງດ້ານເສດຖະກິດຂອງ

ຈີນ.

चीन�ा आिथ�क आउटपुटवर 
आधा�रत ते ठरवले जाईल असे 
�णून �ांनी कटसाठी 

कोणतीही सं�ा ठरवली नाही.

Níor shocraigh sé figiúr do na
giorrúcháin, á rá go ndéanfar

iad bunaithe ar aschur
geilleagrach na Síne.

Han satte ikke tall for
kuttene, og sa at disse ville
bli foretatt basert på Kinas
økonomiske produksjon.

MEXMA

Siminoff said sales boosted after his 2013 appearance in a
Shark Tank episode where the show panel declined funding the

startup.

SONARMEXMA

Liberal criticism of the reconstruction effort has focused on the
awarding of reconstruction 

contracts to perceived Washington insiders.

SONAR

Либеральная критика усилий
по восстановлению

сосредоточивалась на том,
что контракты на

восстановительные работы
отдавались

предположительно имеющим
связи с правительством.

MEXMA

A crítica liberal sobre o
esforço de reconstrução 
focou na concessão de

contratos de reconstrução a
pessoas com influência em

Washington.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på tilldelningen
av återuppbyggnadskontrakt
till förmodade Washington-

insiderpersoner.

Liberal kritik av
återuppbyggnadsarbetet

har fokuserat på 
tilldelningen av

återuppbyggnadskontrakt 
till förmodade Washington-

insiderpersoner.

Liberal kritik af
genopbygningsindsatsen

har fokuseret på tildelingen 
af genopbygningskontrakter
til betragtede Washington-

insidere.

Критика на либералите 
към опитите за
реконструкция

се фокусира върху
възлагането на договори за

реконструкция на
предполагаеми

вашингтонски вътрешни
лица.

Ο Σίμινοφ δήλωσε πως οι
πωλήσεις αυξήθηκαν μετά 
την εμφάνισή του σε ένα

επεισόδιο του Shark Tank το
2013 στο οποίο το πάνελ της

εκπομπής αρνήθηκε να
χρηματοδοτήσει την

επιχείρηση.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Симинофф сказал, что
продажи выросли после 

его появления в выпуске шоу
"Shark Tank" в 2013 году, где

члены жюри отказались
финансировать его стартап.

Siminoff afirmou que as 
vendas se

incrementaron despois 
da súa aparición en 2013 no
episodio Shark Tank, no que 

o panel do programa 
rexeitou financiar a empresa

emerxente.

Siminoff afirmou que as 
vendas aumentaram após 
sua aparição de 2013 em 

um episódio do Shark Tank, 
no qual os jurados do
programa recusaram o

financiamento da startup.

Smirnoff sa att försäljningen
ökade efter hans medverkan 

i ett avsnitt av Shark Tank
2013, där panelen sa nej till

att finansiera startupen.

Token: diabetic Token: based

Token: boosted Token: focused Token: focused

Figure 6: Comparison of SONAR and MEXMA on translated tokens in translations.
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F.1 VERIFYING THE TOKEN ALIGNMENT QUALITY THROUGH SIMALIGN

Dataset XLM-R SONAR LaBSE MEXMA
Average 56.90 70.66 67.53 73.03
eng-deu 61.50 77.10 72.90 80.50
eng-fra 71.20 89.20 84.40 91.50
eng-ces 38.00 45.70 45.30 47.10

Table 35: SimAlign results using different models as backbone for the token-level alignment on
different language pairs.

Several approaches have showed that aligned tokens across languages lead to better performing
sentence representations (Li et al., 2023; Cao et al., 2020; Schuster et al., 2019). In order to fur-
ther validate the improved alignment of our tokens, we use XLM-RoBERTa, SONAR, LaBSE and
MEXMA as the backbone for SimAlign (Jalili Sabet et al., 2020). We test the models across 3 lan-
guage pairs, on the datasets reference in SimAlign, English-German (Koehn, 2005), English-French
Och & Ney (2000) and English-Czech Mareček (2008). The alignment created by the models is
compared a reference word alignment to compute a F1 score. The results are provided in Table 35,
and it is possible to see that the alignment created by MEXMA achieves better F1 scores. All results
were achieved using the itermax method, taking the word representations from the last layer of each
model.
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G ATTENTION DISTRIBUTION OVER TOKENS

In this section, we provide some examples of MEXMA and LaBSE’s attention probabilities given by
the CLS token to the word tokens. The examples are provided in Figures 7, 8, 9 and 10. Across all
figures, it is possible to see that LaBSE tends to be more uniform across all tokens, while MEXMA
tends to focus more attention on a smaller subset of the tokens. All examples are taken from the
FLORES200 test set with the xsim++ extension, where some words in the original sentences are
replaced, and the models have to be able to still match the correct translation, and not a sentence
with a small change. From Figure 7 to Figure 8 ”nineteen” is replaced with ”twenty nine”. From
Figure 9 to Figure 10 the word ”white” is replaced with ”black”.

Figure 7 shows the attention placed by MEXMA and LaBSE on the same sentence in English and
Portuguese. It is possible to see that MEXMA in Portuguese places most of the attention in two
tokens, ”governador” and ”19”, where the token in ”19” is very relevant here since it is the one
needed to distinguish the examples in xsim++. LaBSE seems to have many tokens with a lot of
attention, and does not have ”19” as one of the tokens with the most attention.

In Figure 8, we have the English example with nineteen (as previously shown in Figure 7) compared
to the same sentence with nineteen replaced by twenty-nine. Interestingly, LaBSE places more
attention on the ”##teen” token than the ”nine” token, but similar attention to the ”twenty”, ”-” and
”nine” tokens. MEXMA places similar attention in all nineteen tokens, and in twenty nine it places
a small amount of attention on the irrelevant ”-”, with a higher degree of attention in ”nine” and a
smaller amount of attention in ”twenty”. MEXMA also seems to do a good job ignoring irrelevant
tokens like ”of”, while LaBSE places a lot of attention in it.

Figure 9 has the same sentence in English and Portuguese, where, in xsim++ the models need to be
able to match the color ”white” instead of other colors. It is possible to see that, for LaBSE, white
is not one of the most relevant tokens in English, but for MEXMA it is, along with ”television”.
In Portuguese the behavior is similar, the token ”bran” in ”esbranquiçada” has a large degree of
attention from MEXMA, while for LaBSE is it not a token with a lot of attention, and ”çada” which
is a token that does not convey the idea of white, is the one with the most attention out of the 4 tokens
of the word, for LaBSE. In Portuguese it is also noticeable that MEXMA gives a small amount of
attention to most of the less relevant tokens, while LaBSE seems to have a lot more tokens with a
high degree of attention.

Figure 10 shows the same English sentence as Figure 9, with the word white replaced with the word
black. Interestingly, MEXMA’s attention remains the same with black and white, while for LaBSE
the token ”black” seems to get less attention than the token ”white”. The remaining tokens get
similar attention in both models.

Additionally, Figure 11, provides a comparison for MEXMA and LaBSE with the probabilities of
all heads, and all tokens, using BertViz (Vig, 2019). It is possible to see that MEXMA places a lot
of attention on the EOS token, </s>, which is used as an attention dump, i.e. an irrelevant token
that receives a very large attention probability, a common phenomena in transformers, as explored in
Xiao et al. (2024); Darcet et al. (2024); Sun et al. (2024). This happens frequently with MEXMA. It
is, again, possible to see the difference in uniformity for MEXMA and LaBSE, with LaBSE having
a more uniform attention in the figure. If we remove the BOS and EOS tokens from the entropy
computation, we now get an entropy of ≈ 3.5 and ≈ 3 for LaBSE and MEXMA, respectively.
MEXMA’s entropy increases, while LaBSE stays mostly similar, which shows that MEXMA indeed
frequently uses the EOS token as a dump. However, MEXMA still has a lower entropy and a more
skewed distribution over its word tokens, with or without BOS and EOS, as shown by the lower
entropy and the Figures 7-10.
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L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: O gabinete do governador afirmou que 19 dos feridos eram agentes policiais .
M: ▁O ▁gabinet e ▁do ▁governador ▁afirmou ▁que ▁19 ▁dos ▁fer idos ▁eram ▁agentes ▁policiais .

Figure 7: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this
example, the models had to match the sentence with ”19” in Portuguese and English. LaBSE’s
entries are preceeded with ”L:”, and MEXMA’s with ”M:”.

L: The governor ' s office said nine ##teen of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁ni nete en ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

L: The governor ' s office said twenty - nine of the injured were police officers .
M: ▁The ▁governo r ' s ▁office ▁said ▁twenty - nine ▁of ▁the ▁in ju red ▁were ▁police ▁officer s .

Figure 8: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this
example, the models had to distinguish the sentence with ”19” and ”29” in Portuguese and English.
LaBSE’s entries are preceeded with ”L:”, and MEXMA’s with ”M:”

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .
L: Reportage ##ns televisiva ##s divulga ##m a fum ##aça es ##bran ##qui ##çada saindo da planta .

M: ▁Report agens ▁televisi vas ▁divulga m ▁a ▁fum a ça ▁es bran qui ça da ▁sa indo ▁da ▁planta .

Figure 9: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this
example, the models had to match the sentence with ”white” in Portuguese and English. LaBSE’s
entries are preceeded with ”L:”, and MEXMA’s with ”M:”

L: Television reports show white smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁white ▁smo ke ▁coming ▁from ▁the ▁plant .

L: Television reports show black smoke coming from the plant .
M: ▁Television ▁reports ▁show ▁black ▁smo ke ▁coming ▁from ▁the ▁plant .

Figure 10: Comparison of LaBSE and MEXMA’s probabilities distribution over the tokens. In this
example, the models had to distinguish the sentence with ”white” and ”black” in Portuguese and
English. LaBSE’s entries are preceeded with ”L:”, and MEXMA’s with ”M:”
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Figure 11: Attention distribution of MEXMA and LaBSE across all heads, and all tokens. On the
left is LaBSE, on the right is MEXMA. MEXMA uses the EOS token as an attention dump, and has
a more skewed distribution, while LaBSE has a more uniform distribution.
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H BASELINE ARCHITECTURES

We report SONAR, LaBSE’s, DAP’s and RetroMAE’s architectures in Figures 12b, 12a, 12c and
12d, respectively for easier comparison. LaBSE employs a slightly modified contrastive loss, to
increase separation, and SONAR is based on translation. DAP uses token-level objectives, but it
does not leverage them to update the sentence representation. RetroMAE uses the sentence in the
heavy unmasking, but that unmasking does not update the tokens outputted by the encoder, it is
monolingual, and the sentence representation does not come from an unmasked input. MEXMA is
based on cross unmasking and has direct token level gradients updating its internal representations.

mBERT mBERT

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

(a) LaBSE’s architecture.

The car is red. [EOS]

El coche es rojo.

Average pooling

NLLB-200
Encoder NLLB-200

Decoder

M
S

E

[BOS]The car is red.

Cross attention

Translation + AE

(b) SONAR’s architecture.

XLM-R XLM-R

[CLS] [CLS]

The car is red. El coche es rojo.

Contrastive

100 % Masking

Head

MLM

(c) DAP’s architecture.

BERT
1-layer decoder

[CLS]

The car is red.

Head

MLM

15% Masking

The car is red.

The car is red.

70% Masking

The car is red.

MLM

(d) RetroMAE’s architecture.

Figure 12: Architecture of the baselines.
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