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Abstract
Neural machine translation (NMT) systems am-001
plify lexical biases present in their training data,002
leading to artificially impoverished language in003
output translations. These language-level char-004
acteristics render automatic translations differ-005
ent from text originally written in a language006
and human translations, which hinders their007
usefulness in for example creating evaluation008
datasets. Attempts to increase naturalness in009
NMT can fall short in terms of content preserva-010
tion, where increased lexical diversity comes at011
the cost of translation accuracy. Inspired by the012
reinforcement learning from human feedback013
framework, we introduce a novel method that014
rewards both naturalness and content preserva-015
tion. We experiment with multiple perspectives016
to produce more natural translations, aiming017
at reducing machine and human translationese.018
We evaluate our method on English-to-Dutch019
literary translation, and find that our best model020
produces translations that are lexically richer021
and exhibit more properties of human-written022
language, without loss in translation accuracy.023

1 Introduction024

While machine translation (MT) has achieved025

promising performance with the adoption of neural026

networks (Bahdanau et al., 2015; Vaswani et al.,027

2017; Team NLLB et al., 2022), automatic transla-028

tions remain markedly different from translations029

by professional human translators. A striking exam-030

ple is the fact that MT outputs exhibit reduced lex-031

ical diversity (Vanmassenhove et al., 2019, 2021)032

and increased source-language interference (Toral,033

2019) compared to human translation (HT). These034

linguistic differences were previously referred to035

as machine translationese (de Clercq et al., 2020;036

Bizzoni et al., 2020; Vanmassenhove et al., 2021).1037

Within the context of natural language process-038

ing (NLP), these language-level artifacts of ma-039

1This term has since been criticized, see for example Cre-
spo (2023).
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Figure 1: Aligning the translation policy from both
content preservation and naturalness perspectives.

chine translation can have negative implications. 040

For example, machine translationese in NLP evalu- 041

ation datasets can inflate performance assessments. 042

Examples of this are found in MT (Zhang and Toral, 043

2019; Graham et al., 2020) and cross-lingual trans- 044

fer learning (Yu et al., 2022; Artetxe et al., 2020). 045

Furthermore, in the field of literary translation, pre- 046

serving reading experience (and thus the original 047

style) can be an important aspect of the translation 048

process (Delabastita, 2011; Toral and Way, 2015; 049

Guerberof-Arenas and Toral, 2020). 050

Reducing translation artifacts in MT output is 051

not trivial. Intuitively, translated texts should match 052

the style of the texts originally written in that tar- 053

get language, while preserving the content of the 054

source language. This trade-off between natural- 055

ness and content preservation presents method- 056

ological challenges. For example, previous work 057

shows a decrease in translation quality when aim- 058

ing to recover lexical diversity in MT (Ploeger et al., 059

2024). Moreover, existing approaches such as Tag- 060

ging (Freitag et al., 2022), aim to increase MT 061

naturalness in a rigid manner, while the amount 062

of naturalness in the output translation cannot be 063

manually adjusted to a desired level. Yet, in cases 064

where faithfulness to the source is crucial, the natu- 065
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ralness of a translation may be of lesser importance066

(Parthasarathi et al., 2021).067

To address these challenges, we frame the task068

of increasing naturalness in MT as a text style069

transfer-like task, where style and content are the070

two core aspects (Mou and Vechtomova, 2020; Lai071

et al., 2021). We train a vanilla MT model with072

supervised learning and subsequently exploit re-073

ward learning that fosters naturalness and content074

preservation. With respect to naturalness we ex-075

plore two objectives: making MT more akin to076

human translations (i.e. reducing machine transla-077

tionese) and making MT more akin to texts orig-078

inally written in the target language, i.e. reduc-079

ing translationese (Gellerstam, 1986; Baker, 1993;080

Toury, 2012). We evaluate our framework on a081

dataset for English-to-Dutch literary translation.082

Our main contributions are as follows:083

• We introduce a novel flexible multi-084

perspective alignment framework that favours085

natural translation outputs while fostering086

content preservation;087

• We experiment with and analyse the results088

of three different preference classifiers that089

are used to produce more natural translations:090

preferring original target-language text (OR)091

over HT, OR over MT, and HT over MT;092

• Extensive experiments show that our model093

produces translations that are lexically richer094

than baseline MT systems without loss in095

translation quality.096

2 Related Work097

2.1 Increasing MT Naturalness098

A few approaches have been put forward to make099

NMT output more natural. For example, Freitag100

et al. (2019) trained a post-processor that learns101

to translate from round-trip machine translated to102

original text in the same language. Freitag et al.103

(2022) prepend their training examples with special104

tags that denote whether the target side of the train-105

ing data was originally written in that language106

or not. These methods are rigid, while in some107

cases, content preservation may be more important108

than style (Parthasarathi et al., 2021). In response,109

Ploeger et al. (2024) propose a flexible approach110

based on reranking translation candidates, but re-111

port considerable loss in general translation quality.112

Our method is tailorable to the downstream sce-113

nario, while still being faithful to the source texts.114

A slightly related line of work aims to re- 115

duce translationese from human translations, and 116

uses monolingual approaches based on style 117

transfer (Jalota et al., 2023), semantic pars- 118

ing (Wein and Schneider, 2024) and debiasing em- 119

beddings (Dutta Chowdhury et al., 2022). The 120

other related line is to leverage human feedback 121

to improve overall translation quality where a sin- 122

gle metric such as COMET trained from human 123

annotations is used as the reward model (Ramos 124

et al., 2024; He et al., 2024). In this work we aim 125

to improve translation quality from multiple per- 126

spectives. 127

2.2 (Machine) Translation Detection 128

HT vs OR Classification Baroni and Bernardini 129

(2005) showed that original texts can be distin- 130

guished from human-translated texts with compu- 131

tational methods. Concrete textual markers, such 132

as the frequency of function words or the use of 133

punctuation, have been associated with this differ- 134

ence (Koppel and Ordan, 2011; Volansky et al., 135

2015). Beyond hand-crafting specific linguistic 136

features, Pylypenko et al. (2021) find that neural ar- 137

chitectures provide a reliable tool for distinguishing 138

translated from original texts. They obtain best per- 139

formance by fine-tuning multilingual BERT (De- 140

vlin et al., 2019) on the task, retrieving average 141

accuracies ranging from 84.6% to 94.4%. 142

MT vs HT Classification Bizzoni et al. (2020) 143

show that there is a difference between the transla- 144

tion artifacts produced by humans and MT models. 145

van der Werff et al. (2022) use neural language 146

models to distinguish between HT and NMT in 147

German-to-English translation, and highlight the 148

challenges of this task, with their sentence-level 149

system achieving an accuracy of approximately 150

65%. This is further investigated in a multilingual 151

setting (Chichirau et al., 2023). 152

These works show that HT, MT and original 153

texts can, to some extent, be distinguished from 154

each other with neural methods. Based on this, we 155

expect that our reward functions with neural classi- 156

fiers can be effective for improving naturalness in 157

MT outputs. 158

3 Data 159

In this section, we describe datasets used for (ma- 160

chine) translation detection and MT, including both 161

a parallel and a monolingual corpus of books. Ta- 162

ble 1 shows the sizes and splits of both datasets. 163
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Data Split Language # Books # Sentences

Translationese Detection

Train Dutch (OR) 143 982,114
Dutch (HT) 143 1,390,351

Test Dutch (OR) 36 261,151
Dutch (HT) 36 340,950

Machine Translation

Train Dutch (HT) 495 4,874,784
English (OR) 495 4,874,784

Valid Dutch (HT) 5 88,881
English (OR) 5 88,881

Test Dutch (HT) 31 302,976
English (OR) 31 302,976

Baseline (Train) Dutch (OR) - 4,874,784
Baseline (Valid) Dutch (OR) - 88,881

Table 1: Data set division and size.

Translationese Detection Data We use a dataset164

consisting of books written in Dutch (Toral et al.,165

2021) from a range of authors and genres, as pre-166

processed by Ploeger et al. (2024). The dataset167

contains 7,000 books that were manually annotated168

to be originally written in Dutch (OR) or in an-169

other language (HT). From these, we derive two170

balanced subsets: 286 books for training and 72 for171

testing.172

Machine Translation Data We use the paral-173

lel dataset from Toral et al. (2021), preprocessed174

by Ploeger et al. (2024). This dataset consists of175

531 books that were originally written in English176

(OR) and human translated into Dutch (HT), of177

which 495 books for training, 5 for validation and178

31 as a test set. The genres of these books vary, in-179

cluding literary fiction, popular fiction, non-fiction180

and children’s books from over 100 authors. Par-181

ticularly, the test set also contains a broad range182

of books.2 In addition, we use monolingual data183

for the two baseline MT systems (see Section 5.1),184

consisting of a random sample of equal size to the185

parallel training data and disjoint from the subset186

used for translation detection.187

4 Methodology188

In this section, we first introduce the base MT189

model (Section 4.1) and binary translationese190

classification models (Section 4.2) using super-191

vised learning. Subsequently, we propose a multi-192

2A full list of author names, titles, genres and publishing
years of the test set books can be found in the Appendix.

perspective alignment framework based on reward 193

learning, which explicitly optimises the MT model 194

with human expectations, aiming to increase natu- 195

ralness and to preserve content (Section 4.3). 196

4.1 Base MT Model 197

As the initial step of model alignment, we train the 198

base MT model with supervised learning on high- 199

quality parallel data. Specifically, given a source 200

text x = {x1, · · · , xn} of length n in language ls 201

and a target text y = {y1, · · · , ym} of length m in 202

language lt from dataset D, the MT model aims to 203

learn two conditional distributions, transforming 204

x to y. We begin with Transformer-based models 205

whose goal is to minimize the following negative 206

log-likelihood: 207

Lnl = − 1

m

∑m
i=1 log (p(yi|y0:i−1, x; θ)) (1) 208

Where θ represents model parameters and yi the 209

i-th token of the target sequence. 210

4.2 (Machine) Translationese Classification 211

We use three different classifiers, seeing the pro- 212

motion of natural translations from different per- 213

spectives, namely preferring OR over HT, HT over 214

MT, and OR over MT. The first classifier aims at 215

reducing human translationese, while the second 216

and third ones aim at reducing machine transla- 217

tionese (the second one with respect to HT and the 218

third one with respect to OR). These classifiers will 219

be used as rewards (Section 4.3) to foster natural- 220

ness. Having three perspectives will allow us to 221

find out how each of them impacts the accuracy 222

and naturalness of the resulting translations. 223

For HT vs OR classification, we use the mono- 224

lingual Dutch data introduced in the first part of 225

Table 1. For the other two settings, we translated a 226

subset of the English text in the parallel data (sec- 227

ond part of Table 1) of equal size to the monolin- 228

gual training data (982,114 sentences) into Dutch 229

using the base MT model. The resulting machine 230

translated sentences are combined with OR texts in 231

the monolingual data for MT vs OR classification 232

and with HT texts in the parallel data for MT vs 233

HT. We filter out machine translated texts that are 234

identical to human translations. 235

Based on the above data, we fine-tune the Dutch 236

language model BERTje (de Vries et al., 2019) for 237

the binary detection tasks, obtaining three different 238

models. On the test sets, they achieve an accuracy 239

of 84.8% on HT vs OR, 78.2% on MT vs HT, and 240
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Algorithm 1 Multi-perspective alignment algo-
rithm for translationese reduction
Require: Base MT model p(y|x; θ0), Training set: source

X and target Y
Require: Reward function: COMET C(x, y, ŷ) and transla-

tionese classification p(t1|ŷ;ϕ)
1: for each iteration i = 0, 1, · · · ,m do
2: Mi ← MiniBatch(X,Y )
3: for x ∈Mi do
4: ŷ ∼ p(y|x; θi)
5: Calc. translationese reward rt(ŷ) by Eq. 2
6: Calc. content reward rc(ŷ) by Eq. 3
7: Calc. overall reward r(ŷ) by Eq. 4
8: end for
9: Update MT model using data Mi and M̂i with the

overall reward based on Eq. 6
10: end for

91.1% on MT vs OR. This is on par with the per-241

formance in similar scenarios from previous work242

(Pylypenko et al., 2021). Also in line with previous243

work (van der Werff et al., 2022), we find that the244

distinction between the translation variants (MT245

and HT) is especially challenging.246

4.3 Multi-perspective Alignment for247

Naturalness and Content Preservation248

We introduce our method which ranks samples249

based on rewards that target naturalness and content250

preservation. This approach is inspired by recent251

work in text style transfer, where both meaning has252

to be preserved and style should be transferred (Lai253

et al., 2021). This content vs form trade-off is sim-254

ilar to our situation with content preservation and255

naturalness. Specifically, after training a base MT256

model using supervised learning (Section 4.1), we257

further align it with human expectations in terms258

of naturalness and content in the form of reward259

learning.260

Based on the base MT model, we train our re-261

ward learning based framework. The MT model262

takes source text x as input and generates the cor-263

responding translated text ŷ. To ensure the quality264

of the ŷ, we design two rewards that aim to foster265

naturalness and content preservation. We consider266

the two quality feedbacks as rewards and fine-tune267

the MT model through reinforcement learning. The268

overview of our alignment framework is shown in269

Algorithm 1.270

Rewarding Naturalness We use a binary trans-271

lationese classifier (OR vs HT, HT vs MT or OR272

vs MT) to assess how well the translated text ŷ273

scores on the translationese aspect, i.e., to assess274

its (machine) translationese probability. Formally,275

this reward is formulated as 276

rt(ŷ) =

{
0 if p(t1|ŷ;ϕ) < σt

p(t1|ŷ;ϕ) otherwise
(2) 277

where ϕ is the parameter of the classifier. σt is the 278

translationese threshold (set to 0.5 in our experi- 279

ments). 280

Rewarding Content We employ COMET (Rei 281

et al., 2020) as the content-based reward model 282

C(x, y, ŷ) to assess the content quality of ŷ as the 283

translation of x. This is formulated as 284

rc(ŷ) =

{
0 if C(x, y, ŷ) < σc

C(x, y, ŷ) otherwise
(3) 285

Where C(·) represents the COMET model and σt 286

represents the content threshold (set to 0.85 in our 287

experiments). 288

Overall Reward To encourage the model to fos- 289

ter naturalness while preserving the content, the 290

final reward is the harmonic mean of the above two 291

rewards 292

r(ŷ) =

{
0 if rt = 0 or rc = 0

2
1/rt+1/rc

otherwise
(4) 293

Learning Objectives Here we aim to maximize 294

the expected reward of the generated sequence ŷ, 295

the loss is defined as 296

Lrw = − 1

m

m∑
i=1

r(ŷ)log (p(ŷi|ŷ0:i−1, x; θ)) (5) 297

To keep the fine-tuned model from moving too far 298

from the base MT model, we combine the reward 299

objective with the supervised training loss instead 300

of using a reference model requiring large com- 301

puting resources. Therefore, the final objective 302

function of our framework consists of two com- 303

ponents: negative log-likelihood loss in Eq. 1 and 304

reward-based loss in Eq. 5, jointly formulated as 305

L(θ;D) = E(x,y)∼D[βLnl + Lrw] (6) 306

Where β a is a hyperparameter used to control the 307

weight of the negative log-likelihood loss (set to 0.5 308

in our main experiments), allowing our method to 309

be tailorable. We employ the policy gradient algo- 310

rithm (Williams, 1992) to maximize the expected 311

reward. 312
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5 Experimental Setup313

5.1 Baselines314

In addition to the base MT model (Section 4.1), we315

include two previous methods that aim at reduc-316

ing machine translationese as baselines: automatic317

post-editing (APE) (Freitag et al., 2019) and Tag-318

ging (Freitag et al., 2022).319

APE aims to train a post-processor that trans-320

forms machine-translated Dutch into more natu-321

ral Dutch texts. To obtain parallel data of source322

synthetic Dutch and original Dutch, we round-trip323

translate the original Dutch text of the monolingual324

data.325

Tagging aims to learn to differentiate between326

original and translated texts. We use the base327

Dutch-English MT model to obtain English transla-328

tions of the monolingual original Dutch text. Then,329

we prepend a tag <orig> to the English text in330

the above data, <tran> to the English text in the331

parallel data, and train a new MT model on the332

concatenation of these two datasets.333

We include two settings for the amount of origi-334

nal target data (i.e. <orig>): one equivalent to the335

parallel training data (4.8M) and the other to the336

translationese classifier data (1M). This is done to337

investigate how the proportions of target-translated338

vs target-original in the training data affect results.339

Our hypothesis is that the larger the percentage of340

target-original the more natural the translations, but341

at the expense of lower translation accuracy.342

5.2 Implementation Details343

All experiments are implemented using the library344

HuggingFace Transformers (Wolf et al., 2020). We345

use the BART (Lewis et al., 2020) architecture346

with 6 Transformer-based (Vaswani et al., 2017)347

layers in both the encoder and decoder. The base348

MT models are trained using the AdamW opti-349

miser (Loshchilov and Hutter, 2019) with a cosine350

learning rate decay, and a linear warmup of 1,000351

steps. The maximum learning rate is set to 1e-4,352

the batch size is 256, and the gradient accumula-353

tion is 2; all reward-based models are trained with354

a consistent learning rate of 2e-5. We evaluate the355

model every 1,000 steps and use early stopping356

with patience 3 if the cross-entropy loss on the val-357

idation set does not decrease. We use beam search358

with size 5 during inference. Since some of the359

training data contains instances of repeated punctu-360

ation marks, this led to the reinforcement learning361

method tending to optimize the model for higher re- 362

wards. Therefore, we take a simple post-processing 363

step to remove consecutive repeated punctuation 364

marks after the text is generated.3 365

5.3 Evaluation Methods 366

We perform a comprehensive evaluation on the 367

model outputs, including translation quality and 368

translationese evaluation. Unless stated otherwise, 369

the scores are reported by taking the averages for 370

all books in the test set. 371

Translation Quality We use three metrics to 372

automatically calculate the content preservation 373

of the output based on human references (and 374

source sentences): BLEU (Papineni et al., 2002), 375

COMET (Rei et al., 2020, 2022), and Met- 376

ricX (Juraska et al., 2024). We use the Sacre-BLEU 377

implementation (Post, 2018) for BLEU. Regarding 378

the COMET family, we use both the default model 379

wmt22-comet-da (COMET), and the reference- 380

free model wmt22-cometkiwi-da (KIWI) that is 381

not used for reward learning. For MetricX, we 382

use MetricX-24-Hybrid-XL, considering it our 383

most important translation quality metric, since 384

it achieved state-of-the-art performance on the 385

WMT24 Metrics Shared Task (Freitag et al., 2024). 386

Translationese Evaluation We employ the trans- 387

lationese detection models to assess outputs and 388

report the classification accuracy. Additionally, as 389

previous studies show that translated texts are of- 390

ten simpler than original texts (Baker, 1993), our 391

evaluation also covers lexical diversity. Here we 392

report six different metrics: 393

• TTR (Templin, 1957): Type-Token Ratio is the 394

number of unique words (types) divided by the 395

total number of words in the text. 396

• Yule’s I (Yule, 1944): Given the size of the vo- 397

cabulary (number of types) V and f(i,N) repre- 398

senting the numbers of types which occur i times 399

in a sample of length N , Yule’s I is calculated as 400

Yule’s I =
V 2∑V

i=1 i
2 ∗ f(i,N)− V

(7) 401

• MTLD (McCarthy, 2005): evaluated sequentially 402

as the average length of sequential word strings 403

in a text that maintains a given TTR value. We 404

use a threshold of 0.72. 405

3See Appendix A.2 for post-processing examples.
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HT-OR classification MT-OR classificationMT-HT classification
Sc
or
es

Figure 2: Evaluation results under various settings. Notes: (i) The iteration step of 0K represents the base MT
model; HM indicates the harmonic mean of classification accuracy (i.e. HT-OR, MT-HT or MT-OR) and COMET
score.

• B1 (Vanmassenhove et al., 2021): the percentage406

of words that belong to the 1,000 most frequent407

words.408

• PTF (Vanmassenhove et al., 2021): the average409

percentage (over all relevant source words) of410

times the most frequent translation option was411

chosen among all translation options.412

• CDU (Vanmassenhove et al., 2021): the cosine413

similarity between the output vector for each414

source word and a vector of the same length with415

an equal distribution for each translation option.4416

6 Results and Analysis417

6.1 Initial Results418

During the alignment training phase (see Sec-419

tion 4.3) we find that the loss does not correlate420

with MT quality, especially in terms of the nat-421

uralness aspect (i.e. classifier’s accuracy): while422

naturalness improves, the loss on the validation423

set stays flat. Therefore we manually select check-424

points between the 1k and the 6k training steps,425

and report their evaluation curves in Figure 2.426

The first observation is that all models achieve427

substantial improvement in naturalness over the428

first 1k steps compared to the base MT model (i.e.429

0K), as reflected in the results for translationese430

classification (HT-OR, MT-HT and MT-OR) and431

lexical richness (MTLD). Although the COMET432

scores of some models decrease slightly, the overall433

score HM follows the trend of the translationese434

aspect. After 1k steps, MTLD scores tend to be435

flat, and the translationese classification has some436

fluctuations but overall keeps improving through-437

4See Ploeger et al. (2024) for details on its implementation.

out. For the remaining experiments, we report the 438

results of the alignment model at 5K iteration steps. 439

6.2 Main Results 440

We report the main evaluation results in Table 2, in- 441

cluding the base MT model, the two baselines and 442

our methods trained with both rewards: COMET 443

for content preservation and the three different clas- 444

sifiers for naturalness (i.e. HT-OR, MT-HT and 445

MT-OR). 446

Compared to APE, Tagging consistently per- 447

forms better across the board, both in terms of 448

content (i.e. translation accuracy) and naturalness. 449

Additionally, we observe that using more target- 450

original data results in lower accuracy scores but 451

better naturalness metrics, which is consistent with 452

our hypothesis (see Section 5.1). We also ob- 453

serve that both baselines underperform the base 454

MT model in terms of translation accuracy. 455

When comparing different classification re- 456

wards, the model trained with COMET & MT-HT 457

achieves, overall, better scores than our other two 458

models (HT-OR and MT-OR). We speculate that 459

the rewards that foster OR do not work as well 460

due to a mismatch between the preference of the 461

classifier (OR) and the data in the target side of the 462

MT training data (HT). We thus speculate that such 463

classifiers could be useful in scenarios in which the 464

target side of the MT training data contains texts 465

originally written in that language, which would 466

be common in translation directions in which the 467

target language is higher-resourced than the source 468

language. 469

Overall, our best system (BM + COMET & MT- 470

HT) achieves better naturalness scores than the 471

base MT model (e.g. 93.3 vs 90.4 for MTLD), 472
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Translation Accuracy Classification Accuracy Lexical Diversity

BLEU COMET KIWI MetricX↓ HT-OR MT-HT MT-OR TTR Yule’s I MTLD B1↓ PTF↓ CDU↓

Human Translation - - - - 32.9 69.3 48.6 0.153 3.934 96.0 0.672 0.817 0.548

APE 29.9 80.4 77.9 3.38 33.7 33.6 35.2 0.155 3.670 91.7 0.682 0.824 0.561
Tagging (1M) 31.6 81.6 80.1 2.87 33.0 42.6 36.9 0.161 4.133 95.8 0.671 0.817 0.554
Tagging (4.8M) 31.1 80.9 79.7 3.05 33.5 43.2 39.0 0.164 4.347 96.8 0.667 0.815 0.556
BM: Base MT Model 32.5 82.3 80.4 2.66 28.1 18.9 17.6 0.150 3.537 90.4 0.677 0.826 0.563

BM + COMET & HT-OR 29.7 80.4 79.9 2.83 34.0 24.0 25.5 0.145 3.239 91.0 0.675 0.830 0.554
BM + COMET & MT-HT 32.1 82.2 80.6 2.63 26.1 33.4 26.6 0.150 3.572 93.3 0.674 0.828 0.553
BM + COMET & MT-OR 31.5 81.5 80.1 2.75 28.7 33.3 28.2 0.150 3.544 91.8 0.678 0.827 0.542

Table 2: Translation performance under various settings. Note that bold numbers indicate the best system for each
block, and underlined numbers indicate the best score by an MT system for each metric.

Translation Accuracy Classification Accuracy Lexical Diversity

BLEU COMET KIWI MetricX↓ HT-OR MT-HT MT-OR TTR Yule’s I MTLD B1↓ PTF↓ CDU↓

BM: Base MT Model 32.5 82.3 80.4 2.66 28.1 18.9 17.6 0.150 3.537 90.4 0.677 0.826 0.563
BM + COMET 32.2 81.9 80.7 2.64 26.7 19.1 19.6 0.147 3.362 90.9 0.679 0.830 0.543

BM + HT-OR 31.1 81.0 80.0 2.75 30.3 21.5 22.1 0.137 1.950 26.8 0.700 0.826 0.556
BM + HT-OR & COMET 29.7 80.4 79.9 2.83 34.0 24.0 25.5 0.145 3.239 91.0 0.675 0.830 0.554

BM + MT-HT 32.2 81.5 80.2 2.67 28.2 24.7 22.4 0.149 3.465 91.2 0.679 0.826 0.556
BM + MT-HT & COMET 32.1 82.2 80.6 2.63 26.1 33.4 26.6 0.150 3.572 93.3 0.674 0.828 0.553

BM + MT-OR 32.6 81.9 80.3 2.65 26.8 22.9 22.4 0.149 3.460 90.8 0.680 0.826 0.559
BM + MT-OR & COMET 31.5 81.5 80.1 2.75 28.7 33.3 28.2 0.150 3.544 91.8 0.678 0.827 0.542

Table 3: Ablation study: Evaluate the contribution of each reward component, where we fine-tune the base MT
model using only the content reward or the naturalness reward.

while even having a higher KIWI score (80.6 vs473

80.4) and a lower MetricX score (2.63 vs 2.66;474

lower scores are better), two metrics that have not475

yet been used for reward learning. Tagging attains476

higher naturalness scores but this comes at the price477

of a notable reduction in translation accuracy, as478

shown by KIWI (79.7 vs 80.6) and MetricX (3.05479

vs 2.63).480

6.3 Ablation Study481

To assess the contribution of each reward compo-482

nent, we perform a set of ablation studies, as shown483

in Table 3. For the COMET vs COMET + classi-484

fier setting, we see higher naturalness scores in485

the latter in all cases for MT-HT and MT-OR (ex-486

cept CDU in MT-HT), as expected, while there are487

mixed cases in HT-OR. Also as expected, transla-488

tion accuracy scores decrease when the naturalness489

reward is added (except COMET with MT-HT).490

Compared to classifier-only models, classifier491

+ COMET results generally in better naturalness-492

related metrics (except PTF), but worse content-493

based metrics (except COMET with MT-HT). This494

might be due to a mismatch between the classifier’s495

objective and the training data (see comment in496

Section 6.2) and to complex interactions between497

both rewards, that would require further inspection. 498

6.4 Finer-grained Analysis 499

Surface-level Inspection In Table 4, we com- 500

pare the surface-level output of the strongest base- 501

line (Tagging; 4.8M) with that of the base MT 502

model and our alignment system. As highlighted in 503

green , the English ‘community hikes’ is translated 504

to gemeenschapsfietsen (‘community bicycles’) by 505

the Tagging system, while our alignment system 506

outputs gemeenschapshikes (‘community hikes’). 507

This is an example of how the Tagging model 508

output may score high on lexical diversity met- 509

rics, but strays from the content, where our model 510

preserves it. As shown in blue , ‘general clean- 511

mindedness’ is translated to algehele schoonheid 512

(‘overall beauty’) by the base MT system. Our 513

alignment system translates to algemene proper- 514

heid (‘general cleanliness’), while the Tagging sys- 515

tem outputs algemeene properheid. The latter case 516

contains a double e, which is not typical in this 517

context for modern Dutch, but does appear in the 518

original Dutch dataset. Our alignment MT system 519

is not affected by this. 520

Book-level Comparison Figure 3 shows MTLD 521

scores per book between human translation, base 522
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Source Text

Original English It was because of the atmosphere of hockey-fields and cold baths and community hikes and

general clean-mindedness which she managed to carry about with her.
Human Translation Het was om de sfeer van hockeyvelden en koude douches en groepsuitstapjes en

algemene geestelijke reinheid die zij om zich wist te verspreiden.

Tagging (4.8M) Het kwam door de sfeer van hockeyvelden en koude baden en gemeenschapsfietsen en

algemeene properheid , die zij met haar wist rond te voeren.
BM: Base MT Model Het kwam door de sfeer van hockeyvelden, koude baden en plattelandskantoren en

algehele schoonheid die ze met zich mee kon nemen.

BM + COMET & MT-HT Dat kwam door de atmosfeer van hockeyvelden, koude baden en gemeenschapshikes en

algemene properheid die ze met zich mee kon dragen.

Table 4: Example of human-written text (source and HT), the most relevant baselines (Tagging, BM) and ours.

Translation Accuracy Classification Accuracy Lexical Diversity

BLEU COMET KIWI MetricX↓ HT-OR MT-HT MT-OR TTR Yule’s I MTLD B1↓ PTF↓ CDU↓

Human Translation - - - - 32.9 69.3 48.6 0.153 3.934 96.0 0.672 0.817 0.548
BM: Base MT Model 32.5 82.3 80.4 2.66 28.1 18.9 17.6 0.150 3.537 90.4 0.677 0.826 0.563

BM + COMET & HT-OR 21.8 78.0 77.5 3.59 43.5 48.4 42.8 0.138 2.859 88.0 0.674 0.848 0.527
BM + COMET & MT-HT 24.1 81.3 79.6 3.06 27.0 52.2 34.6 0.121 2.265 92.4 0.683 0.849 0.547
BM + COMET & MT-OR 24.4 80.5 79.8 3.19 32.2 59.2 49.5 0.139 3.084 93.1 0.669 0.845 0.526

Table 5: Translation performance with β set to 0.0, where models are trained without the constraint of negative
log-likelihood loss.

Book ID
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 avg

Figure 3: Per-book comparison of MTLD. Note that avg
presents the average score across all books.

MT model, and alignment model (COMET + MT-523

HT). We observe that COMET + MT-HT scores524

are higher than the base MT model for all books,525

indicating that our alignment method makes the526

translations more lexically diverse. Interestingly,527

our method brings the results closer to or even528

exceeds HT in terms of lexical diversity on some529

books (e.g. 5, 9, 14, and 16). Overall, the MTLD530

scores of the alignment models are between those531

of the base MT model and human translation.532

6.5 Impact of Hyper-parameter533

To examine the impact of hyper-parameter β (see534

Section 4.3), we report the results when it is set to535

0.0, i.e. only considering the reward learning. Mod-536

els trained without the constraint of negative log- 537

likelihood loss lead, as expected, to worse content 538

scores across the board as they move too far from 539

the base MT model. On the other hand, these mod- 540

els achieve better classification scores but worse 541

naturalness results (except B1 and CDU in MT- 542

OR). The higher scores on classifiers could be due 543

to characteristics of translated language beyond 544

those related to high lexical diversity. Future work 545

is needed to determine how the classifiers, lexical 546

diversity, machine translationese and naturalness 547

are precisely related. 548

7 Conclusion 549

We proposed a reinforcement learning based align- 550

ment framework for machine translation, which 551

improves translation quality from multiple perspec- 552

tives. Using the evaluation model COMET and 553

different binary classifiers trained with MT, HT, 554

and original target-language data as reward models, 555

we approximate human preference and align the 556

MT model with it. Our experiments on English- 557

to-Dutch literary translation show that our model 558

produces translations that are lexically richer and 559

more natural without loss in translation accuracy. 560
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8 Limitations561

Due to the computational resources required to con-562

duct this research, we were only able to perform563

extensive experiments on one language pair and564

domain. Since we first wanted to show that our565

method is sound in a simple setting, i.e. training a566

model from scratch, we have not proceeded to in-567

volve complex settings and computationally-heavy568

models, such as pre-trained large language models.569

Furthermore, our metrics for evaluating naturalness570

are mostly limited to lexical diversity, while writ-571

ing style in general is much broader and difficult572

to capture with automatic metrics. We acknowl-573

edge that large-scale human evaluation, beyond our574

surface-level inspection in Section 6.4, could bring575

important insights.576
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A Appendix 903

A.1 Test Set Novels 904

ID Author Title Year Published Genre

1 Patricia Highsmith Ripley Under Water 1991 Thriller, suspense
2 J.D. Salinger The Catcher in the Rye 1951 Literary fiction
3 Mark Twain Adventures of Huckleberry Finn 1884 Literary fiction
4 John Steinbeck The Grapes of Wrath 1939 Literary fiction
5 John Boyne The Boy in the Striped Pyjamas 2006 Historical fiction
6 Nicci French Blue Monday: A Frieda Klein Mystery 2011 Thriller, suspense
7 Philip Roth The Plot Against America 2004 Political fiction
8 Paul Auster Sunset Park 2010 Literary fiction
9 Khaled Hosseini A Thousand Splendid Suns 2007 Literary fiction

10 George Orwell 1984 1949 Literary fiction
11 John Irving Last Night in Twisted River 2009 Literary fiction
12 E.L. James Fifty Shades of Grey 2011 Erotic thriller
13 Jonathan Franzen The Corrections 2001 Literary fiction
14 Stephen King 11/22/63 2011 Science-fiction
15 Oscar Wilde The Picture of Dorian Gray 1890 Literary fiction
16 John Grisham The Confession 2010 Thriller, suspense
17 William Golding Lord of the Flies 1954 Literary fiction
18 Irvin D. Yalom The Spinoza Problem 2012 Historical fiction
19 J.R.R Tolkien The Return of the King 1955 Fantasy
20 David Baldacci Divine Justice 2008 Thriller, suspense
21 Julian Barnes The Sense of an Ending 2011 Literary fiction
22 James Patterson The Quickie 2007 Thriller, suspense
23 Sophie Kinsella Shopaholic and Baby 2007 Popular literature
24 J.K. Rowling Harry Potter and the Deathly Hallows 2007 Fantasy
25 John le Carré Our Kind of Traitor 2010 Thriller, spy fiction
26 Jack Kerouac On the Road 1957 Literary fiction
27 Karin Slaughter Fractured 2008 Thriller, suspense
28 Ernest Hemingway The Old Man and the Sea 1952 Literary fiction
29 David Mitchell The Thousand Autumns of Jacob de Zoet 2010 Historical fiction
30 James Joyce Ulysses 1922 Literary fiction
31 Thomas Pynchon Gravity’s Rainbow 1973 Historical fiction

Table 6: Information on test set books.

A.2 Post-processing Examples 905

Original Outputs Post-processed outputs
Bijna een jaar lang heeft hij foto’s genomen van verlaten
dingen.............

Bijna een jaar lang heeft hij foto’s genomen van verlaten
dingen.

Ongetwijfeld mag hij blij zijn dat hij deze baan heeft
gevonden........

Ongetwijfeld mag hij blij zijn dat hij deze baan heeft
gevonden.

In het begin was hij verbijsterd door de wanorde en de
vuiligheid, de verwaarlozing..............

In het begin was hij verbijsterd door de wanorde en de
vuiligheid, de verwaarlozing.

Table 7: Post-processing examples.
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