
Benchmarking LLMs on the Semantic Overlap Summarization Task

Anonymous ACL submission

Abstract

Semantic Overlap Summarization (SOS) is001
a constrained multi-document summarization002
task, where the constraint is to capture the003
common/overlapping information between two004
alternative narratives. While recent advance-005
ments in Large Language Models (LLMs) have006
achieved exceptional performance in numer-007
ous summarization tasks, a benchmarking study008
of the SOS task using LLMs is yet to be per-009
formed. As LLMs’ responses are highly sensi-010
tive to variations in prompt design, a major chal-011
lenge in conducting such a benchmarking study012
is to systematically explore a variety of prompts013
before drawing a reliable conclusion. Fortu-014
nately, the TELeR taxonomy has been recently015
proposed, which can be used to design and ex-016
plore various prompts for LLMs. Using this017
TELeR taxonomy, this paper comprehensively018
evaluates 16 popular LLMs on the SOS Task.019
We evaluate and report on 905,216 LLM gener-020
ated summaries using well-established metrics021
like ROUGE, BERTscore, and SEM-F1 on two022
different datasets of alternative narratives and023
we also conduct human evaluation on 540 of024
those summaries for further analysis. We con-025
clude the paper by analyzing the strengths and026
limitations of various LLMs in terms of their027
capabilities in capturing overlapping informa-028
tion1.029

1 Introduction030

Large Language Models (LLMs) represent a031

groundbreaking advancement in the research land-032

scape of Natural Language Processing (NLP) and033

Artificial Intelligence (AI). Trained on large bodies034

of text data, LLMs excel in generating coherent035

and human-like text. These models have been eval-036

uated in a wide range of NLP tasks (Bubeck et al.,037

2023; Dai et al., 2022; Du et al., 2022; Smith et al.,038

1The code and datasets used to conduct this study are
available at https://anonymous.4open.science/r/llm_
eval-E16D

2022) across several areas, including software de- 039

velopment, law, and medicine (Schäfer et al., 2024; 040

School, 2023; Thirunavukarasu et al., 2023). How- 041

ever, there are still areas and tasks where LLMs 042

are yet to be rigorously evaluated. One such task is 043

Semantic Overlap Summarization (SOS) (Bansal 044

et al., 2022c; Karmaker Santu et al., 2018), where 045

the goal is to summarize the common/overlapping 046

information between two alternative narratives. 047

In this paper, we conduct a comprehensive 048

benchmarking study of the SOS task using 16 popu- 049

lar LLMs. Conducting such a benchmarking study 050

is challenging because of the large variations in 051

LLMs’ performance when different prompt type- 052

s/styles are used and different degrees of detail 053

are provided in the prompts. Indeed, Rodriguez 054

et al. (2023) shows varying performance on the 055

CM1 dataset (Hayes et al., 2006) across many dif- 056

ferent prompts with F1-scores ranging from 0.21 057

to 0.54, exhibiting a 0.33 point difference. To ad- 058

dress this issue, Santu and Feng (2023) recently 059

proposed a general taxonomy that can be used to 060

design diverse prompts with specific properties in 061

order to perform a wide range of complex tasks. 062

Using this TELeR taxonomy, we devised a com- 063

prehensive set of prompts with different degrees 064

of detail to perform the SOS task on two different 065

alternative narratives datasets. One dataset is the 066

previously introduced AllSides dataset released by 067

Bansal et al. (2022c), and the second one is our 068

original contribution with extensive human annota- 069

tion efforts, which we name the PrivacyPolicyPairs 070

(3P) dataset. 071

Figure 1 illustrates an example of the SOS task 072

when comparing two alternative privacy policies 073

in the 3P dataset, where the green text denotes the 074

output (common information) from two input pri- 075

vacy policies, one from Google and one from Ap- 076

ple. In this case, we have two competing platforms 077

that provide similar types of services (e.g. Cloud 078

Storage or Streaming Services) and each company 079
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Figure 1: Example of a SOS task using two alternative privacy policy narratives.

lays out its practices when handling your private080

information. These documents contain important081

information regarding your privacy but can be long082

and cumbersome to read. The SOS task can help083

users by briefly identifying the common practices084

followed by each company.085

For evaluation, we report well-established met-086

rics like ROUGE, BERTscore, and SEM-F1 on087

Allsides and 3P datasets for each combination of088

LLMs and prompt style, totaling 905,216 unique089

samples for analysis. We further evaluate a subset090

of samples using human annotators to truly gauge091

the capabilities of LLMs in capturing and synthe-092

sizing overlapping information from multiple nar-093

ratives. We conclude the paper by analyzing the094

strengths and limitations of various LLMs for the095

same task.096

2 Related Work097

Text Summarization: SOS is essentially a sum-098

marization task. Over the past two decades, many099

document summarization approaches have been in-100

vestigated (Zhong et al., 2019). The two most pop-101

ular among them are extractive approaches (Cao102

et al., 2018; Narayan et al., 2018; Wu and Hu, 2018;103

Zhong et al., 2020) and abstractive approaches104

(Bae et al., 2019; Liu et al., 2017; Nallapati et al.,105

2016). Some researchers have tried combining106

extractive and abstractive approaches (Chen and107

Bansal, 2018; Hsu et al., 2018; Zhang et al., 2019).108

The SOS Task: Semantic Overlap Summarization109

can be framed as a multi-document summarization110

task, i.e., multi-seq-to-seq task (Goldstein et al.,111

2000; Yasunaga et al., 2017; Zhao et al., 2020; Ma112

et al., 2020; Meena et al., 2014; Lebanoff et al.,113

2018; Fabbri et al., 2019). However, unlike typi-114

cal multi-document summarizing tasks, SOS aims115

to summarize multiple alternative narratives with116

an overlapping constraint (Bansal et al., 2022c), 117

i.e., the output should only contain the common 118

information from both input narratives (Santu et al., 119

2018). The availability of data for this task is rela- 120

tively small so recently Bansal et al. (2022a) pro- 121

posed a method for training models by utilizing 122

synthetically generated data. 123

Transformers and LLMs: Encoder-decoder- 124

based transformer models have recently gained a 125

lot of attraction, especially for abstractive summa- 126

rization tasks, (Rush et al., 2015; Chopra et al., 127

2016; Zhou et al., 2017; Paulus et al., 2017). Train- 128

ing a generic language model on a large corpus 129

of data and then transferring/fine-tuning it for 130

the summarization job has become a standard ap- 131

proach (Radford et al., 2019; Devlin et al., 2019; 132

Lewis et al., 2019; Xiao et al., 2020; Yan et al., 133

2020; Zhang et al., 2019; Raffel et al., 2019). Trans- 134

former architecture features more parallelizable 135

training, better-scaling properties, and a built-in 136

attention mechanism, allowing large language mod- 137

els (LLMs) to emerge. Made up of billions of pa- 138

rameters, many LLMs like GPT-2 (Radford et al.), 139

and LLaMA (Touvron et al., 2023a) have show- 140

cased strong abilities at generating text. Then, with 141

the introduction of Reinforcement Learning From 142

Human Feedback (Ouyang et al., 2022), LLMs be- 143

came even more powerful, allowing users to inter- 144

act with them as data with natural language queries. 145

Prompt Engineering for LLMs: “Prompt Engi- 146

neering” is a technique for maximizing the utility 147

of LLMs in various tasks (Zhou et al., 2022). It 148

involves crafting and revising the query or con- 149

text to elicit the desired response or behavior from 150

LLMs (Brown et al., 2022). Prompt engineering 151

is an iterative process requiring multiple trial and 152

error runs (Shao et al., 2023). In fact, differences in 153

prompts along several key factors can significantly 154
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impact the accuracy and performance of LLMs in155

complex tasks. To address this issue, Santu and156

Feng (2023) recently proposed the TELeR taxon-157

omy, which can serve as a unified standard for158

benchmarking LLMs’ performances by exploring159

a wide variety of prompts in a structured manner.160

3 Background161

3.1 Semantic Overlap Summarization Task162

Semantic Overlap Summarization (SOS) is a task163

aimed at extracting and condensing shared infor-164

mation between two input documents, DA and DB .165

The output, denoted as DO, is generated in natu-166

ral language and only includes information present167

in both input documents. The task is framed as a168

constrained multi-seq-to-seq (text generation) task,169

where brevity is emphasized to minimize the rep-170

etition of overlapping content. The output can be171

extractive summaries, abstractive summaries, or a172

combination of both (Karmaker Santu et al., 2018).173

Furthermore, SOS adheres to the commutative174

property, meaning the order of input documents175

doesn’t affect the output summary; DA ∩O DB =176

DB ∩O DA. To facilitate research in this area,177

Bansal et al. (2022c) introduced the AllSides178

dataset for training and evaluation, which we also179

used for evaluation in this work.180

3.2 Prompting With TELeR Taxonomy181

As shown in Figure 6, the TELeR taxonomy in-182

troduced by Santu and Feng (2023) categorizes183

complex task prompts based on four criteria.184

1. Turn: This refers to the number of turns or shots185

used while prompting an LLM to accomplish186

a complex task. In general, prompts can be187

classified as either single or multi-turn.188

2. Expression: This refers to the style of expres-189

sion for interacting with the LLM, such as ques-190

tioning or instructing.191

3. Level of Details: This dimension of prompt192

style deals with the granularity or depth of ques-193

tion or instruction. Prompts with higher levels194

of detail provide more granular instructions.195

4. Role: LLMs can provide users with the option196

of specifying the role of the system. The re-197

sponse of LLM can vary due to changes in role198

definitions in spite of the fact that the prompt199

content remains unchanged.200

The taxonomy outlines 7 distinct levels starting201

from level 0 to level 6. With each increase in level202

comes an increase in complexity of the prompt.203

In level 0, only data/context is provided with no 204

further instruction. Level 1 extends level 0 by pro- 205

viding single-sentence instruction. Then level 2 206

extends level 1, and so on, until level 6, where 207

all characteristics of previous levels are provided 208

along with the additional instruction for the LLM to 209

explain its output. For more details on the TELeR 210

taxonomy and its applications, see Santu and Feng 211

(2023). For convenience, we include the outline 212

diagram from the paper in Appendix A.2. 213

4 The Benchmark Datasets 214

4.1 The AllSides Data 215

The AllSides dataset is collected from All- 216

Sides.com, a third-party online news forum known 217

for presenting news and information from vari- 218

ous political perspectives. Bansal et al. (2022c) 219

crawled news articles from AllSides.com to build 220

the dataset, focusing on narratives covering 2, 925 221

events. These articles provide contrasting perspec- 222

tives from media outlets affiliated with “Left” and 223

“Right” political leanings. Additionally, each event 224

includes a factual description labeled as “Theme” 225

by AllSides, which can serve as a neutral perspec- 226

tive for readers (ground truth for common facts). 227

The test set is comprised of 137 narrative pairs 228

where each sample has 4 references: one from 229

AllSides and 3 from human annotators, totaling 230

548 reference summaries for the test set. 231

4.2 The PrivacyPolicyPairs (3P) Data 232

For a more comprehensive evaluation, we introduce 233

the PrivacyPolicyPairs (3P) dataset, an additional 234

evaluation set for the SOS task, which contains 235

135 human annotated samples. Our (3P) dataset is 236

built on the OPP-115 Corpus introduced by Wilson 237

et al. (2016), which comprises 115 privacy policies 238

(267K words) spanning 15 sectors (Arts, Shopping, 239

News, etc.). The policy data of the OPP-115 corpus 240

are also tagged with the following categories: 241

• First Party Collection/Use 242

• Third Party Sharing/Collection 243

• User Choice/Control 244

• User Access, Edit, & Deletion 245

• Data Retention 246

• Data Security 247

• Policy Change 248

• Do Not Track 249

• International & Specific Audiences 250
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Table 1: A single sample from the 3P dataset. For each sample, you are given the category name, company names,
the corresponding policy subsections, the count of words in each policy, and the 3 reference summaries. The
highlighted text shows the overlapping information.

• Other251

These annotations were also associated with a252

text span in the privacy policy to denote where the253

labels were relevant.254

Our motivation behind introducing a new dataset255

for SOS evaluation is the following: 1) it extends256

the amount of available testing data from just 137257

samples from the AllSides evaluation set to 272258

total evaluation samples with a combined total of259

953 human annotations for the two datasets; 2) The260

3P dataset represents a new type of documents in261

the form of semi-structured privacy policies as op-262

posed to the news articles that make up the AllSides263

data; 3) News datasets are abundant, and LLMs are264

extensively pretrained on them in comparison to rel-265

atively infrequent privacy policy data; hence the 3P266

dataset is supposedly more challenging for LLMs.267

Constructing the 3P Dataset: The 3P dataset in-268

cludes pairs of passages taken from the OPP-115269

corpus and tasks the annotator with finding the se-270

mantically overlapping information between them.271

A data sample is shown in Table 1. Each sample272

comprises 2 source documents (two alternative pri-273

vacy policy narratives), the category they fall under,274

and 3 reference overlap summaries. The company 275

names and word counts are also included. 276

When curating this dataset, we wanted to en- 277

sure each passage pair had some degree of over- 278

lap. To facilitate this goal, we reversed the process 279

followed by the original authors and grouped the 280

documents back into their respective sectors. Then, 281

we built pairs of passages for each document in 282

each sector according to the categories they were 283

originally labeled with. This process resulted in 284

6110 passage pairs across all sectors. 285

3P Dataset Statistics
# Samples 135
Avg. # Words per Document 331.00
Avg. # Words per Document Pair 662.01
Avg. # Sentences per Document 14.96
Avg. # Sentences per Document Pair 28.99
Avg. # Words per Reference 22.46
Avg. # Sentences per Reference 1.75

Table 2: Dataset statistics for the 3P dataset consisting
of 135 document pairs with 3 references each.

Of the sectors, we chose to focus on three: eCom- 286

merce, Technology, and Food and Drink, due to 287

their popularity as well as diversity among each 288

other. From these sectors, we collected 346 pas- 289
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sage pairs to annotate. For this task, three human290

annotators were asked to write a summary of com-291

mon information present in each document pair.292

Conflicting summaries arose when there was no293

overlap or the annotators considered shared words294

as overlap. To address these issues, we retain only295

the policy pairs where at least two annotators wrote296

at least 15 words as their reference summaries. Af-297

ter annotating, resolving conflicts, and removing298

samples with no overlap, the process yielded us 3299

annotations per passage pair for a total of 405 an-300

notations for 135 high-quality samples. The final301

dataset statistics are listed in Table 2.302

5 Methodology303

5.1 Large Language Models Evaluated304

We choose to test our datasets using 7 families of305

instruction-tuned LLMs, totaling 16 models. All306

evaluated models are listed in Table 3. For the com-307

mercial LLMs (OpenAI and Google), we used their308

provided APIs for summary generation, but for309

open-source LLMs, we used the huggingface trans-310

formers library (Wolf et al., 2020) to access model311

weights and perform generation on a server with312

4XA4500 20GB GPUs. For additional speedup,313

we leveraged the vLLM library (Kwon et al., 2023).314

LLM Family Model
Google Gemini gemini-1.5-pro-001 (May 2024)
(Team et al., 2024)
OpenAI gpt-3.5-turbo-0125 (May 2024)
(OpenAI, 2023)

mosaicml/mpt-7b-chat (7B)
MosaicML MPT mosaicml/mpt-30b-chat (30B)
(Team, 2023) mosaicml/mpt-7b-instruct (7B)

mosaicml/mpt-30b-instruct (30B)
lmsys/vicuna-7b-v1.5 (7B)

LMSYS Vicuna lmsys/vicuna-13b-v1.5 (13B)
(Zheng et al., 2023) lmsys/vicuna-7b-v1.5-16k (7B)

lmsys/vicuna-13b-v1.5-16k (13B)
MistralAI mistralai/Mistral-7B-Instruct-v0.1 (7B)
(Jiang et al., 2023) mistralai/Mistral-7B-Instruct-v0.2 (7B)
MetaAI Llama2 meta-llama/Llama-2-7b-chat-hf (7B)
(Touvron et al., 2023b) meta-llama/Llama-2-13b-chat-hf (13B)
Microsoft Phi-3 microsoft/Phi-3-mini-4k-instruct (3.8B)
(Abdin et al., 2024) microsoft/Phi-3-mini-128k-instruct 3.8B)

Table 3: The list of models evaluated in this paper. We
use 7 families of models, 2 of which are closed source,
and 5 open source. Parameter counts of open source
models are included in parentheses. OpenAI and Google
have not reported the parameter counts of their models.

We prompted LLMs in a zero-shot setting with315

TELeR as zero-shot approaches to NLP tasks have316

gained popularity with the growing capabilities317

of LLMs. For example, works from Sarkar et al.318

(2023, 2022) explore their zero-shot use cases in319

topic inference and text classification. For this320

study, we used TELeR levels 0 through 4 (5 out of 321

the 7). We chose not to prompt using levels 5 and 322

6 because their use of retrieval augmented prompt- 323

ing does not necessarily apply to the SOS task due 324

to all relevant context being present, i.e., the two 325

source narratives are already provided as part of the 326

prompt. Furthermore, requirement number 5 for 327

level 6 also specifies asking the LLM to explain its 328

own output, which would negatively affect the gen- 329

erated summaries during evaluation. We also ex- 330

periment with in-context learning prompts (Brown 331

et al., 2020). 332

5.2 Designed Prompts 333

For each template, we use the following outline for 334

our prompt design. 335

• TELeR Level 0: {Document 1} {Document 2} 336
• TELeR Level 1: 337

Document 1: {Document 1 Content} 338
Document 2: {Document 2 Content} 339
Summarize the overlapping information be- 340
tween these two documents 341

• TELeR Level 2: 342
{TELeR Level 1 Prompt Text} 343
This information must keep in mind the 5W1H 344
facets of the documents. Do not include any 345
uncommon information. 346

• TELeR Level 3: 347
{TELeR Level 1 Prompt Text} 348

– This information must keep in mind the 349
5W1H facets of the documents. 350

– Do not include uncommon information. 351
• TELeR Level 4: 352

{Level 3 Prompt Text}. 353
Your response will be evaluated against a set of 354
reference summaries. Your score will depend 355
on how semantically similar your response is 356
to the reference. 357

• In-context Learning: 358
Document 1: {Example Doc. 1 Content} 359
Document 2: {Example Doc. 2 Content} 360
Summary: {Example Summary} 361

362
Document 1: {Document1 Content} 363
Document 2: {Document2 Content} 364
Summary: 365

To ensure comprehensive prompt engineering, 366

we created groups of templates for TELeR levels 367

0 through 4, In-Context Learning (Brown et al., 368

2020) formats, and also for system roles. In each 369

template group, we create variations of prompts 370

that follow their respective formats. For example, 371

the group of TELeR L1 prompts is comprised of 5 372

general prompts, 3 AllSides-specific prompts, and 373

3 3P-specific prompts. Then, to construct our final 374

set of prompts, we took all possible combinations 375

of system roles and prompts. A breakdown of the 376
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variation counts for each group is shown in Ta-377

ble 4. Using this prompting strategy, we’ve created378

56,576 unique prompts for each of our 16 evaluated379

LLMs, totaling 905,216 evaluation samples. See380

appendix A.2 for the exact prompts that were used.381

Template Group For PPP For AllSides For Both Total
Systm Role 2 2 6 10
TELeR L0 0 0 1 1
TELeR L1 3 3 5 11
TELeR L2 3 3 3 9
TELeR L3 3 3 2 8
TELeR L4 3 3 2 8
In-Context Learning 0 0 1 1

Table 4: The number of prompts created for each tem-
plate group. The "For PPP/AllSides columns indicate
how many prompts were created for that dataset only.
The "For Both" column is for the prompts that could be
applied to both datasets. For exact prompt details, refer
to Appendix A.2 for exact prompt contents.

5.3 Evaluation382

5.3.1 Automatic Evaluation Metrics383

ROUGE: ROUGE (Lin, 2004) is a family of met-384

rics that score the lexical overlap between the gen-385

erated text and the reference text. We used 3386

variations, R-1, R-2, and R-L, which are widely387

adopted for evaluating text summarizing tasks.388

However, despite its popularity, works like Ak-389

ter et al. (2022b) and Bansal et al. (2022b) show390

that ROUGE is an unsuitable metric for comparing391

semantics.392

BERTscore: BERTscore is a metric that utilizes393

contextual embeddings from transformer models394

like BERT to evaluate the semantic similarity be-395

tween the generated text and reference text. For this396

study, we compute BERTscore with the hashcode397

roberta-large_L17_no-idf_version=0.3.398

12(hug_trans=4.40.2)-rescaled.399

SEM-F1: While ROUGE and BERTscore are use-400

ful and powerful metrics, SEM-F1 was specifi-401

cally designed for the SOS task. SEM-F1 lever-402

ages rigorously fine-tuned sentence encoders to403

evaluate the SOS task using sentence-level sim-404

ilarity unlike BERTscore which utilizes token-405

level similarity. For this study, we compute SEM-406

F1 with 3 underlying models: USE (Cer et al.,407

2018), RoBERTa (Zhuang et al., 2021), and Distil-408

RoBERTa (Sanh et al., 2019).409

5.3.2 Human Evaluation410

For our human evaluation strategy, we recruited411

3 volunteer annotators. These annotators evalu-412

ated 15 randomly chosen dataset samples, where 7413

were picked from the AllSides dataset and 8 were 414

picked from the 3P dataset. For each dataset sam- 415

ple, if we consider all prompts for every possi- 416

ble template combination and every model, it will 417

amount to 3, 328 annotations required for each of 418

the 15 dataset samples, making human judgment 419

very time-consuming. To solve this challenge, we 420

reduce this number by 1) choosing a subset of mod- 421

els to evaluate and 2) choosing the best-evaluated 422

prompts for each of the 6 template groups based on 423

their average performance in terms of automated 424

metrics on both datasets. This strategy reduced 425

the number of summaries per sample from 3, 328 426

to 36 summaries per sample, giving us a total of 427

540 annotations per human annotator. The humans 428

were tasked to score the summaries on a scale of 429

0-5 based on how well they captured the overlap- 430

ping information of the 2 given source documents. 431

After individually scoring the summaries, the an- 432

notators sat together to negotiate a final score to 433

assign to each sample, giving us 2160 annotation 434

scores across all samples. 435

6 Results 436

For clarity, we show our results for automatic eval- 437

uation scores on the largest or newest models of 438

each family in Figure 2. This Figure shows the 439

highest scores achieved by each model over the set 440

of given TELeR prompts. The first two columns 441

are for the commercial LLMs (GPT-3.5-Turbo 442

and Gemini-Pro), and the 5 columns on the right 443

show our open-source LLMs. In general, we ob- 444

serve that GPT-3.5-Turbo and Gemini-Pro beat 445

the open-source models across all benchmarks but 446

we also find that Mistral-7B-Instruct-v0.2 ex- 447

hibits competitive performance across all metrics 448

despite being only a 7-billion parameter model. For 449

a comprehensive breakdown of the model scores 450

achieved by each LLM and for each metric, refer 451

to appendix (Figure 4). 452

Annotator/Metric Agreement In Figure 3, we 453

show Pearson correlation and Kendall’s τ correla- 454

tion to compare human annotator scores with our 455

automatic evaluation metrics. We denote the fi- 456

nal annotation score by Anncomb. From this table, 457

all metrics have a relatively low correlation with 458

human judgments, again demonstrating the limita- 459

tions of automated metrics for evaluating text gen- 460

eration. Interestingly, we see that SEM-F1 best cor- 461

relates with the human annotators, demonstrating 462

its superior quality over ROUGE and BERTscore 463

6



Figure 2: Best scores over each TeLER prompt level for the largest model of each family of LLMs and for each
dataset. Red shows BERTscore, green shows ROUGE, and blue shows Sem-F1. A full breakdown of max scores
obtained by each model is shown in Appendix A.1

Figure 3: Pearson correlation and Kendall’s τ scores between annotator scores and automatic evaluation metrics
(higher is better). The "comb" subscript shows the combined score where the annotators sat with each other to settle
on a final score for each annotation sample.

for multi-document summary evaluation.464

AllSides Vs. 3P: In Table 5, we show average465

scores across all LLMs for each template prompt.466

The highest scores for each column are bolded.467

From this table, it is evident that scores on the 3P468

dataset tend to trail significantly behind the All-469

Sides dataset. Additionally, we observe that for470

automatic evaluation, TELeR level 1 consistently471

performs the best across the AllSides dataset, while472

on the 3P dataset, the SEM-F1 scores suggest better473

performance in TELeR level 2 and 4.474

Human Preference on Model and Template:475

While Table 5 shows that the automatic evalua-476

tions tend to have a preference towards TELeR477

L1 prompts, Table 6 shows that human annota-478

tors actually tend to prefer TELeR L2 prompts479

instead. However, this preference is only480

0.04 points ahead of the next best. The ta-481

ble also indicates the annotators’ preference to-482

wards gpt-3.5-turbo for the commercial LLMs.483

Then, for the open-source LLMs, mpt-30b-chat484

was the most preferred, with an average an- 485

notator score of 3.39. However, it is impor- 486

tant to note that Phi-3-mini-128k-instruct 487

and Mistral-7B-Instruct-v0.2 match and beat 488

gemini-pro, respectively, according to humans. 489

7 Discussion 490

The main takeaways from our study are as follows: 491

Finding-1: “3P” dataset is harder than “AllSides”
for LLMs in the context of SOS task.

492

To elaborate, Table 5 shows a clear difference 493

in scores between the AllSides data and the 3P 494

data. These differences can possibly be explained 495

for the following reasons. The average document 496

word count for both datasets has a significant dif- 497

ference but is well within the context windows of 498

LLMs. For the AllSides data, the average is 504.51 499

while for the 3P data, it’s 662.01. Another differ- 500

ence worth noting is the amount of overlapping 501
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Dataset Template BERTscore R-1 R-2 R-L Sum R-L Sem-F1 (Distil) Sem-F1 (RoBERTa) Sem-F1 (USE)

AllSides

ICL 0.453 0.46 0.267 0.367 0.367 0.621 0.639 0.651
L0 0.391 0.399 0.209 0.315 0.291 0.6 0.618 0.614
L1 0.503 0.507 0.342 0.442 0.433 0.646 0.652 0.671
L2 0.437 0.466 0.278 0.388 0.369 0.631 0.636 0.653
L3 0.461 0.465 0.273 0.377 0.376 0.639 0.646 0.658
L4 0.477 0.467 0.268 0.376 0.376 0.641 0.647 0.656

Privacy
Policy

Pairs (3P)

ICL 0.262 0.278 0.092 0.219 0.219 0.499 0.55 0.371
L0 0.138 0.226 0.067 0.187 0.164 0.509 0.567 0.399
L1 0.329 0.324 0.118 0.262 0.262 0.535 0.588 0.419
L2 0.267 0.307 0.109 0.254 0.234 0.531 0.589 0.414
L3 0.256 0.278 0.08 0.211 0.21 0.517 0.578 0.385
L4 0.299 0.314 0.112 0.244 0.243 0.535 0.577 0.734

Table 5: Average scores per metric broken down by level and dataset. TELeR Levels are denoted by "Lx" and
In-Context Learning is denoted by "ICL". The highest of each metric and dataset are in bold.

Model Score (0-5)
gemini-pro 3.37

gpt-3.5-turbo 3.53
mpt-30b-chat 3.39

Mistral-7B-Instruct-v0.2 3.38
Phi-3-mini-128k-instruct 3.37

vicuna-13b-v1.5-16k 3.32
Template Score (0-5)

ICL 3.08
TELeR L1 3.38
TELeR L2 3.42
TELeR L3 3.32
TELeR L4 3.32

Table 6: Average negotiated preference score for each
model and prompt template. "ICL" represents the In-
Context Learning style prompts while "Lx" refers to the
level of TELeR prompt.

tokens present in each dataset. Utilizing the NLTK502

library (Bird et al., 2009) for tokenization, we find503

that the AllSides dataset has an average of 23.36%504

unique token overlap between source documents505

while it’s 17.95% only for 3P. Aside from the nu-506

merical differences, it is also important to note the507

compositional differences between these datasets.508

The AllSides data is comprised of news articles that509

cover the same events. By the nature of covering510

the same events, it is more likely for overlapping511

spans of text to occur in the form of quotes or head-512

lines. In contrast, although the documents of the513

3P dataset are similar in terms of their document514

structure and the types of excerpts they fall under,515

but they are not essentially written about the same516

subjects. Each document pair in the 3P dataset rep-517

resents two different companies whose policies can518

differ greatly while using similar language.519

Finding-2: SEM-F1 remains the recommended evalu-
ation metric for the SOS task.

520

SEM-F1 showcases the best correlation with hu-521

man annotators, while ROUGE continues to show522

its limitations, which is consistent with the previous523

findings from the literature (Akter et al., 2022a). 524

Figure 3 supports these claims, showing correla- 525

tions between annotators and ROUGE that even go 526

into the negatives. This figure also further high- 527

lights the work that needs to be done in order to 528

improve automatic evaluation to the point where 529

we can rely on them more seriously and let go of 530

expensive human evaluation. 531

Finding-3: Use gpt-3.5-turbo with TELeR L2
prompts for best results in the SOS task

532

As of the time of writing, closed-source com- 533

mercial LLMs remain the top performers in text 534

generation. However he quality of open-source 535

models are not too far off from gpt-3.5-turbo ac- 536

cording to our human evaluators as noted in Table 537

6 and most of our evaluated models even compete 538

with gemini-pro. Aside from model preferences 539

it is also important to note that In-Context Learning 540

styled prompts have been shown as a less effective 541

prompting method compared to TELeR in the con- 542

tstrained multi-document summarization setting. 543

8 Conclusion 544

In this study, we provide a comprehensive look into 545

the capability of LLMs for the Semantic Overlap 546

Summarization (SOS) task. To facilitate robust 547

evaluation, we test on a previously created dataset 548

and additionally introduce the PrivacyPolicyPairs 549

(3P) dataset. We use the TELeR prompting taxon- 550

omy to devise a set of hand-crafted prompts that 551

generate the highest scores we could achieve with 552

pre-trained instruction-tuned LLMs and found that: 553

1) the 3P dataset is a harder benchmark for LLMs 554

2) SEM-F1 is still the best method for evaluating 555

on SOS but far from ideal and 3) based on our test- 556

ing methodology, the best summarization results 557

in a zero-shot setting can be accomplished using 558

gpt-3.5-turbo with TELeR L2 style prompts. 559
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9 Limitations560

The primary limitation of this work is the size of561

the dataset. At only 135 samples, it is not feasible562

to train a model on just the 3P data alone. However563

while the size of the new dataset is small, there is a564

large amount of time and resource that is required565

to build a dataset of this nature. Firstly, this dataset566

requires that for each sample, we find two docu-567

ments that share an overlapping narrative. Second,568

each sample is annotated manually by 3 people569

which for this dataset results in 405 annotations.570

That is without considering the other annotations571

where no overlap was found. Third, there have572

been several instances where disagreements need573

to be resolved which requires further discussion574

among annotators. Despite these limitations it is575

worth noting that this work effectively doubles the576

amount of samples to evaluate on the SOS task577

when considering both AllSides data and 3P data578

combined. In the future, a larger scale effort will579

be needed to increase the space of data for the SOS580

task.581

Another limitation is that we did not perform582

any fine-tuning on these models. All scores were583

obtained using the pre-trained weights for each584

model. This means that it’s possible for additional585

performance to be gained using methods like LoRA586

(Hu et al., 2021). However the main goal of this587

study was to benchmark LLMs to set new baselines588

for the SOS task. In that regard we believe this to589

be an appropriate setup.590
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A Appendix 1455

A.1 Additional Figures 1456

Figure 4 shows a comprehensive breakdown of the 1457

best scores obtained by each model for each dataset. 1458

Figure 5 shows Pearson’s correlation scores be- 1459

tween all metrics on both datasets. The Pearson 1460

scores were computed using the SciPy library (Vir- 1461

tanen et al., 2020) 1462

A.2 More on Prompt Design 1463

The prompt designs for each group mostly follow 1464

the format covered in section 3.2 but the entire 1465

taxonomy is best laid out by Figure 6. The exact 1466

prompts are laid out in the following passage. 1467

System Role Templates Our system role templates 1468

are made up of 2 AllSides-specific items, 2 3P 1469

specific-items and 6 for general purpose. These are 1470

written as follows 1471

• AllSides 1472
– you will be given two news articles to read. then you 1473

will be given an instruction. follow these instructions 1474
as closely as possible 1475

– you will read two news articles and answer any ques- 1476
tions about them 1477

• 3P 1478
– you are to read two privacy policies and briefly pro- 1479

vide information according to the user’s needs 1480
– you are to read two privacy policies and provide con- 1481

cise answers to the user 1482
• Both 1483

– you are to read several documents and briefly provide 1484
information according to the user’s needs 1485

– you are to read several documents and provide concise 1486
answers to the user 1487

– you will read two documents and give brief answers 1488
to user questions 1489

– you are a machine who is given 3 inputs: document 1490
1, document 2, and the instructions. your output will 1491
adhere to these 3 inputs. 1492

– you will be given 2 documents and a set of instruc- 1493
tions. follow the instructions as closely as possible. 1494

– you will be given 2 documents and a set of instruc- 1495
tions. your response to these instructions will rely on 1496
the material covered in the 2 documents. 1497

In-Context Learning Template: We use the fol- 1498

lowing for our in-context learning template: 1499
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Figure 4: Best scores over each TeLER prompt level for all 16 evaluated LLMs and for each dataset. Red shows
BERTscore, green shows ROUGE, and blue shows Sem-F1.

Figure 5: Correlation scores between all evaluation met-
rics.

• Document 1: {{Example Document 1}}1500
Document 2: {{Example Document 2}}1501
Summary: {{Example Reference}}1502

1503
Document 1: {{Document 1}}1504
Document 2: {{Document 2}}1505
Summary:1506

TELeR Level 0 Template: With no possibility1507

for variation, our TELeR L0 template is written as1508

follows:1509

• {Document 1} {Document 2} 1510

TELeR Level 1 Template: For our TELeR L1 1511

templates we have 3 AllSides-only items, 3 3P- 1512

only items, and 5 general-purpose items. 1513

• AllSides 1514
– Document 1: {{Document 1}} 1515

Document 2: {{Document 2}} 1516
1517

In one sentence, please tell me the overlapping infor- 1518
mation between article 1 and article 2 1519

– Document 1: {{Document 1}} 1520
Document 2: {{Document 2}} 1521

1522
summarize the overlapping information between the 1523
articles 1524

– Document 1: {{Document 1}} 1525
Document 2: {{Document 2}} 1526

1527
output the overlapping information of the events cov- 1528
ered in these articles 1529

• 3P 1530
– Policy 1: {{Document 1}} 1531

Policy 2: {{Document 2}} 1532
1533

In one sentence, please tell me the overlapping infor- 1534
mation between policy 1 and policy 2 1535

– Policy 1: {{Document 1}} 1536
Policy 2: {{Document 2}} 1537

1538
summarize the information that the two policies share 1539

– Policy 1: {{Document 1}} 1540
Policy 2: {{Document 2}} 1541

1542
what is the shared information between the two poli- 1543
cies 1544

• Both 1545
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Figure 6: TELeR Taxonomy proposed by Santu and Feng (2023): (<Turn, Expression, Level of Details, Role>)

– Document 1: {{Document 1}}1546
Document 2: {{Document 2}}1547

1548
In one sentence, please tell me the overlapping infor-1549
mation between Document 1 and Document 21550

– Document 1: {{Document 1}}1551
Document 2: {{Document 2}}1552

1553
summarize the overlapping information between the1554
documents.1555

– Document 1: {{Document 1}}1556
Document 2: {{Document 2}}1557

1558
output the overlapping information between the doc-1559
uments.1560

– Document 1: {{Document 1}}1561
Document 2: {{Document 2}}1562

1563
output the common information between the docu-1564
ments.1565

– Document 1: {{Document 1}}1566
Document 2: {{Document 2}}1567

1568
output only the overlapping information1569

TELeR Level 2 Templates: For our TELeR L21570

templates we have 3 AllSides-only items, 3 3P-only1571

items, and 3 general-purpose items.1572

• AllSides1573
– Document 1: {{Document 1}}1574

Document 2: {{Document 2}}1575
1576

these articles share similarities. output the informa-1577
tion that is shared between them. keep your output1578
short. to be as accurate as possible, cover the "who,1579
what, when, where, and why of the shared informa-1580
tion.1581

– Document 1: {{Document 1}} 1582
Document 2: {{Document 2}} 1583

1584
who or what are the common subjects of the two 1585
documents? what events are common between the 1586
documents? do the documents mention any locations 1587
that are the same between the two? give your response 1588
in a single sentence. 1589

– Document 1: {{Document 1}} 1590
Document 2: {{Document 2}} 1591

1592
summarize the overlap 1593

• 3P 1594

– Policy 1: {{Document 1}} 1595
Policy 2: {{Document 2}} 1596

1597
These policies are categorized under "Category". De- 1598
scribe the common aspects of these two policies in 1599
terms of this category. make sure to include the shared 1600
entities, actions and scope of the documents. Do not 1601
make any mention of information that is not shared 1602
between them. Keep your response short 1603

– Policy 1: {{Document 1}} 1604
Policy 2: {{Document 2}} 1605

1606
These policies are categorized under "Category". De- 1607
scribe the common aspects of these two policies in 1608
terms of this category. make sure to include the shared 1609
entities, actions and scope of the documents. Do not 1610
make any mention of information that is not shared 1611
between them. give your response in a single sen- 1612
tence. 1613

– Policy 1: {{Document 1}} 1614
Policy 2: {{Document 2}} 1615

1616
These privacy policy excerpts are tagged with the 1617
category: "Category". summarize the overlapping 1618
information between the documents. to be as accurate 1619

18



as possible, cover the who, what, when, where, and1620
why of the common information.1621

• Both1622
– Document 1: {{Document 1}}1623

Document 2: {{Document 2}}1624
1625

summarize the overlapping information between the1626
two documents. explain the who, what, when, where,1627
and why to give full context.1628

– Document 1: {{Document 1}}1629
Document 2: {{Document 2}}1630

1631
summarize the overlapping information between the1632
two documents. explain the who, what, when, where,1633
and why to give full context. the output should be1634
two sentences at most.1635

– Document 1: {{Document 1}}1636
Document 2: {{Document 2}}1637

1638
output the shared information between the documents.1639
do not include any information outside of the shared1640
information. keep your response short.1641

TELeR Level 3 Templates: For our TELeR L31642

templates we have 3 AllSides-only items, 3 3P-only1643

items, and 2 general-purpose items.1644

• AllSides1645
– Document 1: {{Document 1}}1646

Document 2: {{Document 2}}1647
1648

please answer the following:1649
- who or what are the common subjects of the two1650
documents1651
- what events are common between the documents1652
- do the documents mention any locations that are the1653
same between the two1654
- keep your response brief. 2 sentences max.1655

– Document 1: {{Document 1}}1656
Document 2: {{Document 2}}1657

1658
Consider the following questions and respond in a1659
single sentence:1660
- who or what are the common subjects of the two1661
documents1662
- what events are common between the documents1663
- do the documents mention any locations that are the1664
same between the two1665

• 3P1666
– Policy 1: {{Document 1}}1667

Policy 2: {{Document 2}}1668
1669

These policies are categorized under "Category".1670
With this in mind, please answer the following:1671
- Describe the common aspects of these two policies1672
in terms of this category.1673
- make sure to include the shared entities, actions and1674
scope of the documents.1675
- Do not make any mention of information that is not1676
shared between them.1677
- Do not respond in a list format and instead respond1678
normally.1679
- Keep your response to 3 sentences at most1680

– Policy 1: {{Document 1}}1681
Policy 2: {{Document 2}}1682

1683

These policies are labelled under the "Category" cat- 1684
egory. With this in mind, use a single sentence that 1685
answers the following: 1686
- Describe the common aspects of these two policies 1687
in terms of this category. 1688
- make sure to include the shared entities, actions and 1689
scope of the documents. 1690
- Do not make any mention of information that is not 1691
shared between them. 1692
- Do not respond in a list format and instead respond 1693
normally. 1694

– Policy 1: {{Document 1}} 1695
Policy 2: {{Document 2}} 1696

1697
These policies are labelled under the "Category" cat- 1698
egory. With this in mind, use a single sentence that 1699
answers the following: 1700
- summarize the information that is shared between 1701
the policies 1702
- cover the who, what, when, where, and why of the 1703
common information 1704
- respond in as few sentences as possible 1705

• Both 1706

– Document 1: {{Document 1}} 1707
Document 2: {{Document 2}} 1708

1709
please answer the following: 1710
- who or what are the common subjects of the two 1711
documents 1712
- what events are common between the documents 1713
- do the documents mention any locations that are the 1714
same between the two 1715
- keep your response brief. 2 sentences max. 1716

– Document 1: {{Document 1}} 1717
Document 2: {{Document 2}} 1718

1719
Consider the following questions and respond in a 1720
single sentence: 1721
- who or what are the common subjects of the two 1722
documents 1723
- what events are common between the documents 1724
- do the documents mention any locations that are the 1725
same between the two 1726

TELeR Level 4 Templates For our TELeR L4 1727

templates we have 3 AllSides-only items, 3 3P- 1728

only items, and 2 general-purpose items. 1729

• AllSides 1730

– Document 1: {{Document 1}} 1731
Document 2: {{Document 2}} 1732

1733
your goal is to describe all the common information 1734
between the given documents. to accomplish this you 1735
will need to answer the following: 1736
- who or what are the common subjects of the two 1737
documents 1738
- what events are common between the documents 1739
- do the documents mention any locations that are the 1740
same between the two 1741
- keep your response brief. 2 sentences max. 1742

1743
For Example: 1744
Doc1: i have a dog. it’s pretty fast. 1745
Doc2: i have a dog. he is a slow runner 1746
Reference Summary: i have a dog. 1747
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– Document 1: {{Document 1}}1748
Document 2: {{Document 2}}1749

1750
your goal is to describe all the common information1751
between the given documents. to accomplish this you1752
will need to answer the following:1753
- who or what are the common subjects of the two1754
documents1755
- what events are common between the documents1756
- do the documents mention any locations that are the1757
same between the two1758

1759
your response will be evaluated according to how1760
similar it is to a "reference summary".1761
Example:1762
Question: what is common between the sentence "the1763
dog is slow" and "the dog is fast"1764
Reference Summary: Both sentences talk about the1765
speed of a dog1766

– Document 1: {{Document 1}}1767
Document 2: {{Document 2}}1768

1769
your goal is to describe all the common information1770
between the given documents in one sentence. your1771
single-sentence response will need to capture the1772
following:1773
- the common events1774
- common people1775
- common locations1776
- the overlapping narrative of the documents1777

1778
your response will be evaluated according to how1779
similar it is to a "reference summary".1780
Example:1781
Doc1: the dog is slow1782
Doc2: the dog is fast1783
Reference Summary: Both sentences talk about the1784
speed of a dog1785

• 3P1786

– Policy 1: {{Document 1}}1787
Policy 2: {{Document 2}}1788

1789
your goal is to describe all the common information1790
between the given privacy policies. to accomplish1791
this you will need to answer according to the1792
following:1793
- Describe the common aspects of these two policies1794
in terms of this category.1795
- make sure to include the shared entities, actions and1796
scope of the documents.1797
- Do not make any mention of information that is not1798
shared between them.1799
- Do not respond in a list format and instead respond1800
normally.1801
- Keep your response to 3 sentences at most1802

1803
your response will be evaluated according to how1804
similar it is to a "reference summary".1805
For example, an output of "cat" could be compared to1806
"light" to get a score of 0 but that same output could1807
be compared to "cat" to receive a score of 100. These1808
reference summaries are usually quite short so it is1809
important to keep your response to 3 sentences or less.1810

1811
your response will be evaluated according to how1812
similar it is to a "reference summary". Example:1813
Doc1: the dog is slow1814
Doc2: the dog is fast1815

Reference Summary: Both sentences talk about the 1816
speed of a dog 1817

– Policy 1: {{Document 1}} 1818
Policy 2: {{Document 2}} 1819

1820
your goal is to describe all the common information 1821
between the given documents in one sentence. your 1822
single-sentence response will need to include the 1823
following: 1824
- common aspects related to the given category 1825
- common entities 1826
- common applications 1827

1828
your response will be evaluated according to how 1829
similar it is to a "reference summary". 1830

1831
Example Documents: 1832
Doc1: the dog is slow 1833
Doc2: the dog is fast 1834

1835
Example Response: 1836
Both sentences talk about the speed of a dog 1837

– Policy 1: {{Document 1}} 1838
Policy 2: {{Document 2}} 1839

1840
your goal is to describe all the common information 1841
between the given documents in one sentence. your 1842
single-sentence response will need to include the 1843
following: 1844
- common aspects related to the given category 1845
- common entities 1846
- common applications 1847

1848
your response will be evaluated according to how 1849
similar it is to a "reference summary". 1850

1851
Example Documents: 1852
Doc1: the dog is slow 1853
Doc2: the dog is fast 1854

1855
Example Response: 1856
Both sentences talk about the speed of a dog 1857

• Both 1858
– Document 1: {{Document 1}} 1859

Document 2: {{Document 2}} 1860
1861

Write a summary of the given documents that follows 1862
these instructions: 1863
- who or what are the common subjects of the two 1864
documents 1865
- what events are common between the documents 1866
- do the documents mention any locations that are the 1867
same between the two 1868
- keep your response brief. 2 sentences max. 1869

1870
your response will be evaluated according to how 1871
similar it is to a "reference summary". 1872
For Example: 1873
Doc1: i have a dog. it’s pretty fast. 1874
Doc2: i have a dog. he is a slow runner 1875
Reference Summary: i have a dog. 1876

– Document 1: {{Document 1}} 1877
Document 2: {{Document 2}} 1878

1879
Summarize the overlapping information between 1880
these documents. your summary should follow these 1881
instructions: 1882
- exclude any information that is similar but differing 1883
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or contradictory1884
- write the summary as if you were summarizing a1885
single document.1886
- your summary should be short. keep it within 21887
sentences.1888

1889
your response will be evaluated according to how1890
similar it is to a "reference summary".1891
For Example:1892
Doc1: i have a dog. it’s pretty fast.1893
Doc2: i have a dog. he is a slow runner1894
Reference Summary: i have a dog.1895
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