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Abstract

High-content genetic perturbation experiments provide insights into biomolecular
pathways at unprecedented resolution, yet experimental and analysis costs pose
barriers to their widespread adoption. In-silico modeling of unseen perturbations
has the potential to alleviate this burden by leveraging prior knowledge to enable
more efficient exploration of the perturbation space. However, current knowledge-
graph approaches neglect the semantic richness of the relevant biology, beyond
simple adjacency graphs. To enable holistic modeling, we hypothesize that natu-
ral language is an appropriate medium for interrogating experimental outcomes
and representing biological relationships. We propose PERTURBQA as a set of
real-world tasks for benchmarking large language model (LLM) reasoning over
structured, biological data. PERTURBQA is comprised of three tasks: prediction of
differential expression and change of direction for unseen perturbations, and gene
set enrichment. As a proof of concept, we present SUMMER (SUMMarize, retrievE,
and answeR), a simple LLM-based framework that matches or exceeds the current
state-of-the-art on this benchmark. We evaluated graph and language-based models
on differential expression and direction of change tasks, finding that SUMMER
performed best overall. Notably, SUMMER’s outputs, unlike models that solely
rely on knowledge graphs, are easily interpretable by domain experts, aiding in
understanding model limitations and contextualizing experimental outcomes. Ad-
ditionally, SUMMER excels in gene set enrichment, surpassing over-representation
analysis baselines in most cases and effectively summarizing clusters lacking a
manual annotation.

1 Introduction

Large-scale high-content genetic perturbation experiments provide insight into the function of genes
and enable the verification of biological hypotheses at an unprecedented scale (Replogle et al., 2022;
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Figure 1: Overview of the input space and the PERTURBQA benchmark. A) Perturb-seq experiments
result in a matrix of gene expression levels, which are converted into discrete outcomes. B) Textually-
rich, biological knowledge graphs are helpful for contextualizing experimental outcomes. C) We
introduce three tasks which draw upon both sources: predicting differential expression and direction
of change for unseen perturbations, and summarizing data-driven gene clusters into cohesive sets.

Ramezani et al., 2023; Fay et al., 2023). A highly interpretable way of performing these experiments
is Perturb-seq where genes are manipulated either at the protein- or transcription-level and single-cell
gene-expression levels are measured in a pooled format (Dixit et al., 2016; Datlinger et al., 2017;
Replogle et al., 2022). Yet, when applied at genome-scale, single-cell sequencing poses a significant
cost burden and yields datasets of varying statistical power (Nadig et al., 2024). These challenges
motivate in-silico approaches for predicting cellular responses to unseen perturbations to guide more
efficient experimental design, and methods for automatically extracting high-level insights from
perturbation screens.

Current approaches for perturbation response prediction generalize to unseen perturbations by relating
them to those perturbations that have been seen, often via knowledge graphs (Roohani et al., 2023).
However, converting complex biology to structured graphs inevitably leads to loss of information, as
textually-rich relationships between biological entities (e.g. genes) extracted from the literature are
reduced to adjacency matrices. Furthermore, these methods are trained to regress the change in levels
of genes upon perturbation: a task that is a precursor, but does not directly translate to downstream
analyses like differential gene expression (Love et al., 2014) and gene set enrichment (Subramanian
et al., 2005). Finally, most existing methods are black-box, revealing little about the learned biology
without post-hoc probing.

We posit that language is a natural medium for traversing the structured, biological knowledge
relevant to perturbation experiments. To test this hypothesis, we propose PERTURBQA, a set of
biological tasks that query discrete outcomes of perturbation experiments through question-answering.
For example, rather than predicting the real-valued change in gene, we might ask: “does perturbation
p cause differential expression of g?” These tasks are inspired by the standard analysis pipeline for
extracting insights from perturbation experiments and evaluated over five high-quality single-cell
RNA sequencing (scRNA-seq) datasets with CRISPR interference (CRISPRi) perturbations (Replogle
et al., 2022; Nadig et al., 2024). While state-of-the-art graph and language-based methods attain
reasonable performance on this benchmark, we find that these tasks are still far from solved.

To demonstrate that language-based reasoning is effective on these tasks, we develop a simple LLM-
based framework that matches or exceeds the current state-of-the-art on PERTURBQA. SUMMER
(SUMMarize, retrievE, and answeR) is an inference-time strategy that uses knowledge graph rela-
tionships and existing experimental results to guide chain-of-thought reasoning (Wei et al., 2022)
regarding perturbation outcomes. Specifically, an LLM is first asked to summarize textual descrip-
tions associated with genes or gene sets, as well as their relationships to other biological entities. In
addition to “featurizing” genes, this step can be applied iteratively to characterize clusters of genes
that exhibit similar responses or effects. Next, based on knowledge graph proximity, we retrieve
related perturbation-gene pairs from existing experimental data. Inspired by retrieval-augmented
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generation for language, this step helps ground the LLM’s reasoning and prevent hallucinations (Gao
et al., 2024). Finally, the LLM answers the biological question via chain-of-thought prompting (Wei
et al., 2022) with respect to the knowledge graph summaries and retrieved examples. To summarize,
our contributions are three-fold.

1. PERTURBQA is a set of real-world and currently unsolved tasks that evaluate how large
language models reason over structured data. We hope that this benchmark will increase the
accessibility of in-silico modeling for biological perturbations.

2. SUMMER is a LLM-based proof of concept that matches or exceeds state-of-the-art ap-
proaches on PERTURBQA without any finetuning, using a lightweight 8B model, while
operating natively in biologist-interpretable language.

3. We propose that perturbations should be modeled on the level of discrete outcomes, which
reflect downstream analyses; and to use LLMs to reason about the outcomes of such
experiments.

2 Related work

Perturbation response prediction Following Roohani et al. (2023), a number of works have
approached the task of unseen perturbation prediction, primarily through the regression objective.
Bai et al. (2024) replaces the MLPs in GEARS with a more expressive Transformer architecture,
but maintains the same objective and evaluation. Märtens et al. (2024) utilizes language-based
GenePT (Chen & Zou, 2024) embeddings, which we consider as a baseline. A related, but distinct
line of work predicts the effect of seen perturbations in different cell populations (Bunne et al.,
2023; Lotfollahi et al., 2019). Finally, there are also works that infer the effects of combinations of
perturbations (Roohani et al., 2023; Gaudelet et al., 2024; Lotfollahi et al., 2023), which this work
does not address, but could be extended to.

Large language models for biology With respect to natural language, LLMs have been applied to
a diverse set of areas, including but not limited to the following. Biological question-answering is a
common benchmark to assess LLM reasoning (Hendrycks et al., 2021; Hao et al., 2024a), but these
works primarily focus on tasks that humans are already able to do. Hsu et al. (2024) uses LLMs to
predict Gene Ontology terms (Ashburner et al., 2000) associated with known gene sets. In contrast,
the focus of our gene set enrichment task is to characterize data-driven gene clusters, which may not
be significantly enriched for any known gene set, but are of biological interest to understand. Finally,
LLMs have been used towards active experimental design (Roohani et al., 2024; Huang et al., 2024).

More broadly, there are a number of single-cell (Rosen et al., 2024; Hao et al., 2024b; Kalfon et al.,
2024) and biological sequence (Lin et al., 2023; Nguyen et al., 2024; Schiff et al., 2024) foundation
models, trained over raw biological data (gene count matrices, protein/DNA sequences). In this paper,
we approach biological knowledge as described by natural language, but multimodal integration of
foundation models could be a promising future direction (Wang et al., 2024).

Language-based reasoning and structured knowledge Significant research efforts have focused
on improving the reasoning capacity of LLMs. Chain of thought (Wei et al., 2022) first demonstrated
that explicitly instructing LLMs to reason enables them to solve much more complex tasks, com-
pared to directly asking for answers. Subsequent works have explored how to navigate the space of
“thoughts,” or in-progress generations (Yao et al., 2022; Zhang et al., 2024). Orthogonally, knowledge
graphs have been probed through language, both in the classical natural language processing litera-
ture (Guu et al., 2015) and in modern LLM literature (Jin et al., 2024; Besta et al., 2024). This work
is inspired by both directions, in the context of biological applications.

3 Background

Modeling perturbations A perturbation experiment can be represented by a matrix X ∈ RN×D,
where N is the number of perturbations, D is the number of measurable entities, and entries xp,g ∈ X
represent the change in levels of entity g under perturbation p, relative to a control p0 (Figure 1A). For
example, in a CRISPRi Perturb-seq experiment (Replogle et al., 2022), the transcription of individual
genes p is suppressed and the resultant change xp,g in all genes g is measured.
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Roohani et al. (2023) (GEARS) first proposed the task of predicting unseen perturbation outcomes in
Perturb-seq data. Given Xtrain ⊊ X , whose rows correspond to perturbations Ptrain, their goal was to
complete the rows Xtest, corresponding to unseen perturbations Ptest. To generalize to Ptest, GEARS
and subsequent works leverage knowledge graphs that relate the two sets of perturbations (Figure 1B).
That is, they solve a regression problem making use of a given directed graph G = (V,E), where V
is a set of biological entities (e.g., genes and pathways) and E is a set of relationships.

There are several aspects of this prevailing formulation that diverge from the insights biologists
extract from these experiments. First, when converting knowledge graphs into adjacency matrices,
the semantics of each edge are discarded, as they are typically annotated in free text (Ashburner
et al., 2000). This loss of information may negatively impact model performance, as biological
knowledge graphs often contain relationships of conflicting semantics, e.g. “enables” vs. “does
not enable.” Second, current machine learning methods are evaluated with respect to “differentially
expressed” genes, a small number of pre-selected features per perturbation, and often trained to
focus on these genes (Roohani et al., 2023; Bai et al., 2024). These genes are not known prior to
actual experimentation, and their actual identity is of high biological interest. Finally, the goal of
perturbation experiments is to understand the underlying biology, but current methods focus solely
on recapitulating the data distribution, errors in which may propagate to downstream analyses.

Statistical insights Biologists draw conclusions of the form “p impacts gene or pathway g” through
statistical techniques like differential expression (Love et al., 2014) and gene set (Subramanian et al.,
2005) analyses. In differential expression analysis, one assumes that x ∼ Px, where Px is often
taken to be approximately normal (Cui & Churchill, 2003) or negative binomial (Love et al., 2014;
Ahlmann-Eltze & Huber, 2020). The goal is to test between

H0 : xp,g = 0 and H1 : xp,g ̸= 0, (1)

where rejection of H0 translates to “g is differentially expressed under perturbation p compared to
the control perturbation p0.” Differentially expressed genes may also be assessed by their direction of
change, i.e. xp,g ≶ 0.

Due to biological and technical noise, the measurement of individual genes may be unreliable,
motivating statistical analyses at the level of gene sets. A data-driven approach for identifying gene
sets is to cluster the rows and/or columns of the expression matrix X and test whether more members
of well-characterized sets are present in these clusters than expected by chance (Huang et al., 2008).
While these “enriched” gene sets serve as the basis for annotating data-driven clusters, they do not
consider the context of each experiment, e.g., the profiled cell line. Furthermore, significance cutoffs
are difficult to assess, as the inclusion or exclusion of genes in gene sets was determined manually. As
a result, data-driven clusters may exhibit consistent behavior in the experiment but fail to be enriched
for known biological phenomena, thus eluding annotation (Replogle et al., 2022).

4 Contextualizing biological perturbations

Our hypothesis is that traversing biological knowledge through language not only enables us to
predict perturbation effects, but also to rationalize perturbation outcomes. To validate these ideas,
we develop PERTURBQA, a suite of tasks that assess language-based reasoning over structured
knowledge, in the context of biological perturbations (Section 4.1). These tasks are non-trivial, both
for graph-based methods and naive large language model (LLM) applications (Section 6). Thus, as
a proof of concept, we present SUMMER, a simple LLM-based approach that matches or exceeds
the current state-of-the-art on PERTURBQA by jointly considering the structure and semantics of
knowledge graphs (Section 4.2).

4.1 PERTURBQA

PERTURBQA is composed of three primary tasks evaluated over five real datasets (Figure 1C). These
tasks reflect the experimental and computational workflow associated with perturbation experiments.

1. Differential expression: Given a pair of entities (p, g), the goal is to predict yde
p,g ∈ {0, 1},

where 0 indicates that perturbing p results in no change to g, and 1 indicates that perturbing
p results in differential expression of g.
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Figure 2: PERTURBQA dataset statistics. A) Differential expression and direction of change, label
distribution across datasets. B) Distribution of genes per cluster, with examples of annotations of
gene set function. C) Knowledge graph sizes. D) Number of knowledge base entries describing each
gene, and relationships within 1-hop of each genes.

2. Direction of change: Given a pair of entities (p, g), the goal is to predict ydir
p,g ∈ {0, 1},

where 0 indicates that levels of g decrease under perturbation p, and 1 indicates that levels
of g increase. This task is only evaluated on pairs for which yde = 1.

3. Gene set enrichment: Given a set of genes P , the goal is to identify a description s that
characterizes why members of P exert a consistent effect when perturbed (“perturbation
cluster”), or respond similarly to perturbation (“gene cluster”). As ground truth, we leverage
expert gene set annotations, published by the authors of Replogle et al. (2022) (for example
annotations, see Table 3).

Perturb-seq datasets We constructed our benchmark based on five Perturb-seq datasets, derived
from Replogle et al. (2022) and Nadig et al. (2024). For each dataset, we identified differentially-
expressed genes (DEGs) per perturbation using the Wilcoxon signed-rank test (Wilcoxon, 1945),
resulting in pairs (p, g) with associated labels yde

p,g and ydir
p,g. Datasets are split 75:25 into train and

test along the perturbation axis, with similar distribution of number of DEGs. To ensure label quality,
we set a rigorous cut-off for DEGs and non-DEGs based on consistency across biological replicates
and/or adjusted p-value (details and statistical analyses in Appendix A.2). The label distribution on
the test set is depicted in Figure 2A.

Differential expression and direction of change are assessed at the granularity of single genes (K562,
RPE1, HepG2, Jurkat) and gene sets (K562-Set), where the gene set is represented as single entities,
with the mean expression of their constituents. Gene set enrichment is evaluated over K562-Set,
where human annotations are taken as the ground truth. Figure 2B illustrates the distribution of the
cluster sizes and example annotations. For example clusters, see Table 3.

Domain knowledge PERTURBQA tests whether LLM frameworks can effectively leverage struc-
tured domain knowledge and contextual information. Thus, in addition to test examples, we provide:

1. Harmonized knowledge graphs, with identifiers aligned to the perturbation data (Figure 2C).
These provide high-quality, biological insights to aid reasoning.

2. Train examples, to be used as a retrieval corpus or for downstream finetuning. These are
crucial for contextualizing the predictions on each dataset, as perturbation responses differ
by cell line (Nadig et al., 2024).

Specifically, for each gene v, we have prepared textual descriptions {tv}, as well as textual relation-
ships to other biological entities, {tv→v′} for (v, v′) ∈ E. To ensure coverage of poorly characterized
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Figure 3: Overview of SUMMER. A) Knowledge graph entries are summarized per gene as both a
perturbation p and as a downstream gene g. B) Given a new pair (p, g), sample related pairs (p′, g′)
with associated experimental outcomes. C) Concatenate summaries, examples, and guiding questions
as prompt for LLM. Depicted prompt edited for concision. Full prompts in Appendix C.

genes, we extracted descriptions from the union of several knowledge graphs and databases, including:
UniProt (Consortium, 2022), Ensembl (Martin et al., 2022), Gene Ontology (Ashburner et al., 2000;
Consortium et al., 2023), CORUM (Tsitsiridis et al., 2022), STRING (Szklarczyk et al., 2022),
Reactome (Milacic et al., 2023), and BioPlex (Huttlin et al., 2021). The first three were used for
gene-centric descriptions, while the latter five were used for relationship descriptions (Gene Ontology
used for both).

4.2 Overview of SUMMER

SUMMER is an inference-time framework that consists of three steps which draw inspiration from
different aspects of message-passing neural networks and large language model reasoning strategies
(Figure 3). First, to “featurize” each gene, we summarize database descriptions of the gene and its
relationships to other genes/pathways. To capture directionality, we generate two summaries for
each gene: as a perturbation, and as a downstream gene. Next, we incorporate the “train” set of seen
perturbations as a retrieval corpus, where perturbation-gene pairs are selected based on knowledge
graph proximity to (p, g). Finally, we formulate a set of questions to guide the LLM’s reasoning via
chain-of-thought prompting. Full prompts may be found in Appendix C.

Neighborhood aggregation as summarization Inspired by message-passing on graphs (Kipf
& Welling, 2017), we characterize genes and their relationships to other biological entities by
summarizing their knowledge graph neighborhoods. Given a gene v, we extract knowledge graph
entries {tv}, describing node v, and {tv→v′}, describing its relationships with neighbors v′. As
illustrated in Figure 3A, we concatenate all entries t to generate two versions of each gene summary
sv. One asks for the downstream pathways that may be affected by the gene (v as perturbation p),
and the other focuses on the upstream pathways that may affect the gene (v as downstream gene g).

We can apply this step hierarchically to characterize gene sets. Specifically, to summarize cluster
P , we concatenate single gene summaries [sv]v∈P as input to the LLM, with an emphasis on
downstream/upstream effects, as appropriate. A variant of this is used to address the gene-set
enrichment task, asking the LLM for both a short description (“desc”) and a “name” for the gene set.

Graph-based retrieval of relevant training samples Let N(v) represent the top k = 10 nodes v′
that share the most neighbors with v in G. For each pair (p, g), we sample up to 15 examples (p′, g′)
from Xtrain that match the following criteria.2

1. Up to 5 examples with any g′ and where the perturbation is related to p, i.e., p′ ̸= p, p′ ∈
N(p).

2The number of examples was chosen heuristically, so that all input prompts and potential outputs fit within
the Llama3 8k token context window.
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Table 1: Results on differential expression and direction of change as binary prediction. AUROC
is computed over the predictions associated with each downstream gene, and averaged over these
genes (macro AUROC). Standard deviation is reported over 3 runs (where applicable) or 3 rounds of
sub-sampling. For more details, see Appendix A.4.

Task Model K562 RPE1 HepG2 Jurkat K562-Set

DE

MLP 0.50±.02 0.50±.01 0.51±.00 0.49±.01 0.50±.00

GAT 0.55±.02 0.57±.02 0.57±.02 0.55±.03 0.54±.01

GEARS 0.54±.01 0.50±.01 0.48±.02 0.51±.01 0.49±.01

GENEPT-GENE 0.57±.02 0.54±.00 0.55±.02 0.55±.01 0.58±.01

GENEPT-PROT 0.57±.01 0.56±.00 0.54±.01 0.55±.01 0.58±.01

LLM (No CoT) 0.52±.01 0.51±.00 0.51±.01 0.52±.00 0.50±.00

LLM (No retrieval) 0.51±.01 0.48±.00 0.49±.01 0.49±.01 0.50±.01

Retrieval (No LLM) 0.58±.02 0.58±.01 0.55±.00 0.55±.01 0.64±.00

SUMMER 0.60±.00 0.58±.00 0.61±.00 0.58±.00 0.61±.00

Dir

MLP 0.51±.02 0.52±.01 0.52±.04 0.50±.05 0.49±.02

GAT 0.58±.06 0.60±.04 0.64±.05 0.59±.04 0.53±.03

GEARS 0.64±.01 0.60±.01 0.52±.01 0.51±.01 0.59±.02

GENEPT-GENE 0.53±.05 0.57±.03 0.58±.03 0.57±.02 0.56±.02

GENEPT-PROT 0.57±.01 0.57±.02 0.55±.01 0.58±.03 0.57±.02

LLM (No CoT) 0.50±.01 0.49±.00 0.49±.00 0.50±.01 0.50±.01

LLM (No retrieval) 0.49±.04 0.52±.03 0.51±.06 0.53±.05 0.45±.18

Retrieval (No LLM) 0.50±.00 0.50±.00 0.50±.00 0.50±.00 0.50±.00

SUMMER 0.62±.01 0.64±.01 0.65±.00 0.66±.01 0.69±.01

2. Up to 5 examples with any p′ and where the downstream gene is related to g, i.e., g′ = g, or
g′ ∈ N(g).

3. Up to 5 examples where both the perturbation as well as the downstream gene are related to
p and g, resp., i.e., p′ ̸= p, p′ ∈ N(p) and g′ ̸= g, g′ ∈ N(g).

These pairs are inserted into the prompt through their respective summaries (sp′ , sg′) and the ground-
truth experimental outcome yp′,g′ (Figure 3B, and examples in Appendix C.2).

Perturbation outcome prediction as question-answering We introduce a simple strategy to ensure
that the LLM’s reasoning incorporates both knowledge graph summaries and retrieved experimental
outcomes. For both p and g, we ask the LLM to identify the most similar p′ and g′ among those
sampled, and to summarize their downstream/upstream effects. Finally, we ask the LLM to answer
the overall question, while citing specific examples. A sketch of the overall prompt is depicted in
Figure 3C (for full template, see Appendix C; for an input/output pair example, see Appendix D.2).

Implementation details We ran all experiments with Llama3 (AI@Meta, 2024) with default
parameters of top p 0.9 and temperature 0.6, using the LMDeploy framework (Contributors, 2023).
Due to computational limitations, the gene summaries were generated by the 70B model, while all
other inference utilized the 8B model. To quantify uncertainty, we ran the retrieval step three times
and report the average prediction over these three trials.

5 Experimental setup

5.1 Baselines

Differential expression and direction of change We compare against a variety of baselines for
unseen perturbation response prediction. All baselines were run with their published code and best
reported hyperparameters, where applicable. We ran hyperparameter search for our implementations
of MLP and GAT (Appendix A.4). MLP is a multi-layer perceptron with access to gene identities
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Table 2: Gene set enrichment on K562 genome-wide clusters. Metrics reported are ROUGE-1 recall,
as well as BERT Score precision, recall, and F1, computed with BioBERT-1.2. Since the baselines
are statistical methods, they are not subject to stochasticity.

Gene clusters Perturbation clusters
Enrichment Top RROUGE1↑ PBERT↑ RBERT↑ FBERT↑ RROUGE1↑ PBERT↑ RBERT↑ FBERT↑
Gene Ontology 5 0.17 0.64 0.66 0.62 0.38 0.66 0.72 0.68
Gene Ontology 10 0.32 0.60 0.65 0.60 0.60 0.62 0.71 0.65
Reactome 5 0.18 0.60 0.65 0.60 0.49 0.60 0.68 0.62
Reactome 10 0.27 0.54 0.64 0.56 0.59 0.56 0.67 0.60
CORUM 5 0.07 0.63 0.45 0.42 0.45 0.64 0.63 0.60
CORUM 10 0.07 0.61 0.44 0.41 0.47 0.61 0.62 0.58
Combined 5 0.14 0.62 0.65 0.61 0.41 0.63 0.71 0.66
Combined 10 0.27 0.59 0.65 0.59 0.63 0.57 0.69 0.62

SUMMER (8b) desc 0.57 0.63 0.76 0.69 0.26 0.63 0.75 0.68
SUMMER (8b) name 0.20 0.74 0.76 0.75 0.12 0.75 0.76 0.75
SUMMER (70b) desc 0.45 0.63 0.77 0.69 0.59 0.65 0.80 0.72
SUMMER (70b) name 0.15 0.73 0.76 0.74 0.37 0.77 0.82 0.79

Table 3: Gene set enrichment on K562, example outputs. Left: Human annotation. Middle: Top over-
represented gene sets (combined). Right: Proposed gene set name in bold, followed by description.
Row 1 is a gene cluster. Rows 2-3 are perturbation clusters.

Genes Annotation Gene sets
(combined)

SUMMER (8B) output

SLC25A5,
EIF4B,

SLC25A3,
RPL3, . . . ,

RPL41

translation cytosol, RNA
binding, cytoplasm,
membrane, GTP
hydrolysis

Ribosomal and Translation Regulation Gene Set The
gene set is comprised of genes involved in protein synthe-
sis, translation, and ribosomal function, with a focus on
the regulation of protein synthesis and the assembly of
ribosomal subunits.

ZC3H13,
CBLL1,

METTL14,
METTL3,

PSMG1,
RBM15

m6A mRNA
methylation

nucleus, nucleo
plasm, RNA N6-
methyladenosine
methyltransferase
complex, mRNA
processing

M6A Methylation Complex-Associated Genes. The
gene set is composed of genes involved in the regulation
of N6-methyladenosine (m6A) methylation of RNAs, in-
fluencing mRNA splicing and RNA processing. These
genes are associated with the WMM complex and interact
with each other to modulate gene expression.

CMTR2,
RBM14-

RBM4,
RBM4,
UNCX,

WDFY3

unknown no significant sets RNA Processing and Regulation Gene Set. The gene
set is composed of genes involved in RNA processing and
regulation, including mRNA cap modification, alternative
splicing, and RNA-binding activities. These genes con-
verge on pathways related to mRNA stability, translation,
and cellular differentiation.

only, trained with a ternary classification objective (no change, up, down). This baseline does not
consider knowledge graphs at all. GEARS (Roohani et al., 2023) is a state-of-the-art Graph Attention
Network trained over the Gene Ontology (Ashburner et al., 2000) and gene co-expression graphs
with a regression objective that focuses on differentially expresses genes. Absolute predicted log-fold
change is normalized to (0, 1) for differential expression, and signed log-fold change is normalized
for direction of change. GAT (Velickovic et al., 2017) is a Graph Attention Network trained with
a ternary classification objective over the same knowledge graphs used to generate the prompts for
SUMMER. This setup quantifies the information content contained in graph adjacencies alone.

We also consider language-centric baselines and ablations for SUMMER. GENEPT (Chen & Zou,
2024) encodes textual descriptions of genes (-GENE) and their protein (-PROT) products using
commercial OpenAI embedding models, trained on natural language. These embeddings are input
to a logistic regression classifier, trained separately for differential expression and direction of
change. Recent work has reported that this baseline achieves the state-of-the-art on the regression
formulation (Märtens et al., 2024). LLM (No CoT) provides the LLM with two examples (one of
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each label) and directly asks for the final answer without explanation. LLM (No retrieval) emulates
our chain-of-thought style questioning, but does not retrieve any experimental outcomes. Instead, we
provide the LLM with a hypothesis (each answer option is sampled twice) and ask the LLM to extract
supporting and refuting evidence from the gene summaries, before answering the question. Finally,
to understand the information content in our retrieved samples, Retrieval (No LLM) takes the mean
label over (p′, g′) without appealing to the LLM for further processing.

Gene set enrichment We compare to gene set over-expression analysis (Fang et al., 2022), run
over the gene clusters with a variety of gene set libraries – Gene Ontology, Reactome, CORUM –
as well as their union (Combined). We take the concatenation of the top k gene set names as the
predicted summary, where gene sets are ordered by the size of their intersection with each cluster.

5.2 Metrics

For differential expression and direction of change, it has been reported that gene responses tend to
be correlated across perturbations (Kernfeld et al., 2023), e.g., stress response genes respond promis-
cuously. Thus, we compute binary AUROC over the predictions associated with each downstream
gene, and take the average over downstream genes, corresponding to a macro AUROC score over
downstream genes. For gene set enrichment, our ground truth consists of short textual descriptions
(under 10 words), while our predictions and baseline outputs are long and vary in style. Standard
text generation metrics like BLEU (Papineni et al., 2002) or ROUGE F1 (Lin, 2004) do not account
for this difference in length as they were designed for machine translation. To assess whether the
predictions adequately cover the ground truth annotation without penalizing for longer lengths, we
report ROUGE-1 recall and BERT Score (Zhang et al., 2020), using BioBERT 1.2 (Lee et al., 2020),
which was finetuned on 1M biological texts (18B words).

6 Results

6.1 Differential expression and direction of change

We evaluated both graph and language-based models on the differential expression (DE) and direction
of change (Dir) tasks (Table 1). SUMMER performs well overall, while other baselines vary in
performance depending on the dataset. These results indicate that PERTURBQA tasks are largely
unsolved, and may benefit from larger models or more sophisticated reasoning strategies. Of note,
compared to models that exclusively operate on knowledge graphs without making use of textual
representations, SUMMER’s outputs are immediately interpretable by domain experts (see AppendixD)
which can help in understanding model shortcomings and contextualize the observed experimental
outcomes beyond the predictive task considered here.

GENEPT is a strong baseline, demonstrating the benefits of textual information towards these tasks. In
terms of language-based reasoning, however, we observe that LLM (No CoT) and LLM (No retrieval)
both perform no better than random guessing – highlighting that retrieving existing experimental
outcomes and guiding LLM reasoning are both essential to completing this task. This is also reflected
in the strong performance of Retrieval (No LLM). While SUMMER is able to extract more value than
“sum of its (retrieved) parts” in 7 of 10 cases, direct access to numerical reasoning is valuable. GEARS
performance is close to random on 4 of the 5 differential expression datasets. This may be due to
the focus on differentially-expressed examples in their objective, which was designed to recapitulate
real-valued changes in DEGs, rather than distinguish between DEGs and non-differentially expressed
genes. On other hand, GEARS is decent at direction of change in 3 of 5 cases, reflecting that its
directionality loss may be more effective here.

6.2 Gene set enrichment

SUMMER is able to recapitulate human cluster annotations, exceeding over-representation analysis
baselines across the majority of cases (Table 2). In particular, SUMMER recovers the human anno-
tations much better than baselines on gene clusters, which are much larger than the perturbation
clusters (Figure 2B) and are enriched for more generic gene sets (Table 3, row 1). Finally, SUMMER
coherently summarizes clusters for which no gene sets were enriched, and thus could not be annotated
manually (Table 3, row 3).
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7 Conclusion

In this work, we proposed PERTURBQA, a benchmark for language-based reasoning over structured
data arising from real biological problems. We evaluated current state-of-the-art methods on these
tasks and showed that while feasible, they are far from solved. To address these tasks, we introduced
SUMMER, a LLM-based framework that draws upon both biological knowledge graphs and existing
experimental data. SUMMER outperforms baselines on PERTURBQA, but leaves ample room for
future study. We hope that this work will lower the barrier of entry into computational modeling
of biological perturbation experiments and enable richer, more interpretable methods for these
applications.
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A Experimental details

A.1 K562 gene sets

We downloaded K562 genome-wide gene sets from the supplementary data associated with Figure
4B of Replogle et al. (2022). These gene sets were obtained by “cluster[ing] genes into expression
programs based on their co-regulation.” We evaluated gene set enrichment over clusters that were
manually annotated, though we provide predictions over all gene sets (regardless of annotation status).

For differential expression analysis, we took the average of the Log(TP10k+1) values over each gene
set, for each cell, similar to a pathway activity score (Wagle et al., 2018).

A.2 Data processing

We normalized all gene counts to Log(TP10k+1) values (log-transformed UMI count per 10k), where
the count cij of gene j in cell i is mapped to

log

(
cij∑
j cij

· 10, 000 + 1

)
. (2)

To determine differentially expressed genes (DEGs), we ran the Wilcoxon signed-rank test (Wilcoxon,
1945) with Benjamini-Hochberg correction (Benjamini & Hochberg, 2000) between non-targeting
control (NTC) cells and perturbed cells, for each perturbation.

To focus on perturbations with phenotypic effect, we excluded all perturbations that resulted in ≤ 5
DEGs (p < 0.05), with the exception of 100 negative control perturbations (0 DEGs), sampled
uniformly at random per dataset.

Exploratory analyses revealed that DEG identities were not entirely consistent across biological
replicates, so we further restricted our selection of DEGs. For the two K562 datasets, we defined
“DE” perturbation - gene pairs as those shared between the datasets at p < 0.05. Non differentially-
expressed pairs were sampled from those that were not differentially-expressed in either dataset.
Since the remaining datasets lacked biological replicates, we defined “DE” pairs as those with
p < 0.01, and sampled “non-DE” pairs from those with p > 0.1. We selected the top 20 DEGs per
perturbation ranked by adjusted p-value as “positives.” We sampled 100 non-DEGs per perturbation
as “negatives.”

To ensure similar distributions between our training and testing splits, we sorted both selected
perturbations and DEGs based on prevalence. We split perturbations 75:25 between training and
testing. Validation data were sampled at random during training (10% of training).

Further details regarding dataset and data split statistics may be found in Tables 4 and 5.

Table 4: Data statistics. K562∗ non-targeting control cells were subsampled due to the size of the
genome-wide dataset. K562-es⋆ (essential) was only used to filter K562 DE and non-DE genes.

Dataset Cells Perturbations
Control Perturbed Total Train Test Features

K562∗ 5,000 919,124 9851 1564 267 4136
K562-es⋆ 10,691 299,645 2049 — — —
RPE1 11,485 236,164 2354 1596 406 4760
HepG2 4,976 140,497 2393 1086 278 7435
Jurkat 12,013 250,943 2392 1227 313 6842

K562-Set 5,000 919,124 9851 1401 357 20

A.3 LLM details

Due to the stochastic nature of LLM generations, we noticed that the LLM would occasionally abstain
from selecting one of the intended labels, due to insufficient evidence for either. To account for this,
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Table 5: Differential gene expression data split statistics. Number of perturbation - gene (set) pairs in
each setting.

Dataset Split Total non-DE Differentially expressed
Total Up Down

K562 Train 134,467 117,606 16,861 11,041 5,820
Test 23,212 20,093 3,119 2,530 589

RPE1 Train 149,147 127,860 21,287 8,381 12,906
Test 37,942 32,577 5,365 2,121 3,244

HepG2 Train 101,140 86,883 14,257 6,249 8,008
Test 25,749 22,146 3,603 1,599 2,004

Jurkat Train 113,684 97,747 15,937 5,119 10,818
Test 29,138 25,017 4,121 1,379 2,742

K562-Set Train 20,606 9,367 11,239 3,953 7,286
Test 5,235 2,403 2,832 995 1,837

Table 6: Abstain rate on differential expression (DE) and direction of change (Dir) across all datasets.

Model DE Dir

LLM (No Retrieval) 0.02 0.36
LLM (No CoT) 3.3× 10−6 0
SUMMER 8.9× 10−4 0.03

we intentionally added “insufficient information” as a third answer option. We ran inference on each
input sample at least 3 times and took the mean predicted label, after removing all abstaining outputs.

A small fraction of inputs (p, g) resulted in no predictions after this filtering, or were unable to
be parsed by our rule-based parsing. The latter is due to the insufficient capacity of Llama3 8B
(relatively small LLM) to follow instructions. Since these examples differed by model, we substituted
the prediction with an uninformed baseline (the mean label of g over the training set) for evaluation.
The final abstain rate varied based on LLM prompting strategy (Table 6). LLM (No Retrieval)
abstained nearly a third of the time on direction of change. In contrast, LLM (No CoT) only abstained
a single time, over all datasets. The improved instruction following may be due to the concise nature
of the expected output (only a single answer). Finally, SUMMER nearly always produced a prediction
over 3 runs (e.g. 0.08% abstain on DE).

A.4 Baselines

Table 7 documents the search space for MLP and GAT. We selected the top models based on validation
performance (arbitrary 10% of train). Both models were implemented with GELU activation, dropout
of 0.1, weight decay 1e-6, learning rate 1e-4, and residual connections. GAT employed additional
edge attributes, which were learned embeddings that indicated the source knowledge graph of each
edge.

For K562-Set, we pooled the mean embedding of each gene set’s genes before the prediction head
(MLP and GAT). On GEARS, we used the mean predicted log-fold change over each gene set’s genes
(mirrors data pre-processing).

A small number of genes (97 out of 11,234) did not map to GENEPT embeddings. We set the
embeddings for these genes to the mean perturbation / gene embedding in their respective training
sets.

For uncertainty quantification, we used the top 3 runs for MLP and GAT. Since GEARS operates over
single cells, rather than pseudo-bulk estimates, we subsampled 80% of the single cells before taking
the average for each of 3 evaluations. For GENEPT, since logistic regression does not inherently
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Table 7: MLP and GAT hyperparameter search space

Model Parameter Space

MLP
Layers 0, 1, 2, 4
Hidden size 256, 512, 1024
FFN size 1024, 2048

GAT
Layers 1, 2, 4, 8
Hidden size 64, 128, 256
FFN size 1024

introduce randomness (unless it fails to converge; it always converges here), we subsampled 80% of
the training set for each of 3 runs.

B Differential gene expression

We provide empirical analyses on the quality of our datasets and labels.
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Figure 4: Assessing p-value calibration over single-cell datasets. We split the non-targeting controls
(NTCs) randomly in half, and run the Wilcoxon test to compare the two halves. We would expect to
see that the (non-adjusted) p-values are uniformly distributed between 0 and 1. Here, we see that the
Wilcoxon test is slightly conservative, i.e. it leans towards reporting “non-differentially expressed.”
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Figure 5: K562 gene clusters show consistent response between biological replicates. We compute
the top k = 5, 10 significant gene clusters, sorted by adjusted p-value, for both K562 genome-wide
and K562 essential. For each perturbation, we compute the percentage of shared gene clusters
(normalizing by genome-wide and essential, respectively). We see that the clusters are relatively
consistent across both datasets, with a high fraction of perfect overlaps.

C Prompts

We share the prompts used by each stage of SUMMER, as well as the LLM baselines. All text
surrounded by {...} are replaced with example-specific inputs (Appendix D).
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Figure 6: K562 DEGs are reasonably consistent at the top (ranked by p-value). For each perturbation,
we plot the percentage of shared top = 5, 10, 20, 100 DEGs (normalizing by genome-wide and
essential, respectively). In our final dataset, we took the intersection of the top 20 DEGs as “DE” and
the intersection of the negatives as “non-DE.”

C.1 Summarization templates

We generate gene summaries at two levels: single node and 1-hop knowledge graph neighborhoods.
For both levels, we use two prompts per gene (as a perturbation, and as a downstream gene). Wherever
gene sets are the downstream entities, we replace “gene” with “gene set.”

The following is an example of a single-node summary of a perturbed gene.

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {gene}, with a focus on its molecular
and cellular functions. You will be provided a set of database entries about the gene. Ensure
that your overview remains faithful to this domain knowledge.

Format:

- Write one to two sentences describing the primary molecular and cellular function of gene
{gene}.

- Write one sentence describing the potential downstream impact of perturbing gene {gene} via
gene knockdown.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene. Focus only on its function.

Domain knowledge: {description}

Brief overview of gene {gene}:

To generate downstream gene descriptions, we replace the second formatting instruction with the
following.

Write one sentence describing what types of perturbations might impact the expression of
gene {gene}. For example, you might consider pathways that are upstream of the gene or
compensatory mechanisms.
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Single-node summaries are input alongside additional knowledge graph relationships for 1-hop
neighborhood summaries.

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

Task: You are writing a brief overview of the human gene {gene}, with a focus on the down-
stream effects of perturbing {gene} via gene knockdown (loss of function).

Inputs: You are provided

- Description of perturbed gene {gene}

- Database entries relating {gene} to other genes or pathways

Format: Write up to five sentences describing the molecular and cellular impact of perturbing
gene {gene} via gene knockdown.

Constraints:

- Remain faithful to all domain knowledge. Do not make up additional information.

- Summarize all common aspects succinctly, but point out notable differences within these sets
of genes.

- Maintain a professional tone throughout. Do not comment on your own writing. Do not add
any notes or references.

- Omit the importance or impact of the gene. Focus only on its function.

- Omit all non-specific information and obvious statements, e.g. “this gene is involved in cellular
processes.”

Description of gene {gene}: {single-node summary}

Relations to other genes: {relationships}

Downstream effects of perturbing {gene} via gene knockdown:

To generate downstream gene descriptions, we replace the “Task” instruction with the following.

Task: You are writing a brief overview of the human gene {gene}, with a focus on molecular
and cellular perturbations that may affect the levels of gene {gene}. For example, you might
consider pathways that are upstream of the gene or compensatory mechanisms.

To generate gene set summaries (for differential expression and direction of change), we used the
following prompt, where the manual annotation is provided as input.

You are an expert molecular biologist who studies how genes and pathways are related using
Perturb-seq.

Task: You are writing a brief overview of a gene set associated with {manual annotation} in
human cells. You will be provided descriptions of the constituent genes. Ensure that your
overview remains faithful to this domain knowledge.

Format:

- Write one to two sentences summarizing how the given genes are related. Be sure to charac-
terize how they are associated with {manual annotation}.

- Write one to two sentences describing what types of perturbations might impact the expression
of the genes in this gene set. For example, you might consider pathways that are upstream of
these genes or compensatory mechanisms.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene set. Focus only on its function.
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Descriptions of the constituent genes: {list of gene summaries}

Brief overview of gene set ({manual annotation}):

Finally, for the gene set enrichment task, we use the following prompt for hierarchical summarization
of gene sets. Note that the manual annotations are not provided here. We parse the outputs of “Brief
overview of gene set” and “Name of gene set” as the description and name in our evaluation.

[Start of Prompt]

You are an expert molecular biologist who studies how genes and pathways are related using
Perturb-seq.

Task: You are writing a brief overview of a gene set observed to have a similar transcriptional
response when upstream genes are perturbed.

Input: You will be provided descriptions of the constituent genes. Ensure that your overview
remains faithful to this domain knowledge.

Output format: Fill in each of these three sections.

1) Brief overview of gene set: Write one to two sentences summarizing how the given genes are
related. Focus on the most specific pathways that are common among these genes.

2) Upstream pathways may affect this gene set: Write one to two sentences describing what
types of perturbations might impact the expression of the genes in this gene set. For example,
you might consider pathways that are upstream of these genes or compensatory mechanisms.

3) Name of gene set: Summarize the gene set within ten words.

Constraints:

- Maintain a professional tone throughout.

- Do not comment on your own writing.

- Do not add any notes or references. Do not make up additional information.

- Do not discuss the importance or impact of the gene set. Focus only on its function.

[End of Prompt]

[Start of Input] {list of gene summaries} [End of Input]

C.2 Question-answering templates

For differential expression and direction of change, we used the following template for SUMMER.

[Start of Prompt]

You are an expert molecular biologist who studies how genes are related using Perturb-seq.
Your goal is to determine: Does a CRISPRi knockdown of {perturbation} in {cell line} result
in differential expression of {gene}?

You are given as input:

- Description of perturbed gene ({perturbation}): description of gene that is perturbed via
CRISPRi knockdown

- Description of gene of interest ({gene}): description of gene, the impact on which you wish to
infer

- Context: description of cell line in which the genes are expressed

- Examples: set of experimental observations that describe the impact of CRISPRi perturbations
on related genes

Output: Please extract the most relevant parts of the examples that address these five questions.
Be specific.

1) Which of the observed perturbed genes are most similar to {perturbation} (if any, including
{perturbation} itself)?
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2) When perturbing {perturbation} or similar genes, what downstream pathways or genes are
differentially expressed? Justify your answer with the observed outcomes.

3) Which of the observed genes of interest are most similar to {gene} (if any, including {gene}
itself)?

4) What perturbations of upstream pathways or genes result in differential expression of {gene}
or similar genes (if any)? Justify your answer with the observed outcomes.

5) Is a CRISPRi knockdown of {perturbation} in {cell line} likely to result in differential
expression of {gene}? For example, if 2) and 4) are unrelated or only indirectly related, it is
unlikely we will observe differential expression. On the other hand, if 2) and 4) significantly
overlap in specific genes or pathways, we may observe differential expression. Your final answer
should end with one of these three options and nothing else.

- No. Knockdown of {perturbation} does not impact {gene}.

- Yes. Knockdown of {perturbation} results in differential expression of {gene}.

- There is insufficient evidence to determine how knockdown of {perturbation} affects {gene}.

[End of Prompt]

[Start of Input]

- Description of perturbed gene ({perturbation}): {summary of perturbation}

- Description of gene of interest ({gene}): {summary of downstream gene}

- Context: {sentence describing cell line}

- Examples: {list of examples}

[End of Input]

For direction of change, we change the answer options to the following.

A) Knockdown of {perturbation} results in a decrease in expression of {gene}.

B) Knockdown of {perturbation} results in an increase in expression of {gene}.

The following template was used for the LLM (No CoT) baseline on differential expression.

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

You are given as Input:

- Perturbed gene: description of gene that is perturbed via CRISPRi knockdown

- Gene of interest: description of gene, the impact on which you wish to infer

Context: {sentence describing cell line}

Question: If you knockdown the perturbed gene using CRISPRi, how does the gene of interest’s
expression change?

Answer: Your answer must end with one of these two choices and nothing else.

A) Knockdown of the perturbed gene does not impact the gene of interest.

B) Knockdown of the perturbed gene results in differential expression of the gene of interest.

Format: Follow the same format as Examples 1 and 2, and complete Example 3.

Example 1.

Input:

- Perturbed gene: {summary of perturbation}

- Gene of interest: {summary of downstream gene}

Answer: {either A) ... or B) ...}

Example 2. {same format as Example 1, opposite Answer}

Example 3. {same format as Example 1, empty Answer}
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The following template was used for the LLM (No retrieval) baseline on differential expression. Both
answer options are provided twice each as hypotheses, regardless of the ground truth answer.

You are an expert molecular biologist who studies how genes are related using Perturb-seq.

You are given as Input:

- Perturbed gene: description of gene that is perturbed via CRISPRi knockdown

- Gene of interest: description of gene, the impact on which you wish to infer

- Hypothesis: hypothesis regarding how the specified perturbation affects the gene of interest

Context: {sentence describing cell line}

Question: If you knockdown the perturbed gene using CRISPRi, how does the gene of interest’s
expression change?

Task: Your goal is to identify evidence in the input that supports or refutes the hypothesis,
and explain whether the hypothesis is likely to be true.

Output format: Please fill in the following four sections. Preserve the formatting and add the
corresponding content.

1) Supporting evidence: Identify all relevant parts of the input that support the hypothesis.

2) Refuting evidence: Identify all relevant parts of the input that refute the hypothesis.

3) Explanation: Based on the evidence, explain how to answer the question, step by step. In
particular,

- if there is a causal relationship from the perturbed gene to the gene of interest, explain how
biological mechanisms relate the perturbed gene to the gene of interest.

- if there is no causal relationship from the perturbed gene to the gene of interest, explain why.
For example, the perturbed gene may be downstream of the gene of interest, or there may be
no relationship between the two genes.

- if there is insufficient evidence to answer the question, say so.

4) Answer: Your answer must end with one of these three choices and nothing else.

A) Knockdown of the perturbed gene does not impact the gene of interest.

B) Knockdown of the perturbed gene results in differential expression of the gene of interest.

C) There is insufficient evidence to determine how knockdown of the perturbed gene affects the
gene of interest.

Input:

- Perturbed gene: {summary of perturbation}

- Gene of interest: {summary of downstream gene}

- Hypothesis: {either A) ... or B) ...}

For direction of change, we change the answer options to the following.

A) Knockdown of the perturbed gene results in down-regulation of the gene of interest.

B) Knockdown of the perturbed gene results in up-regulation of the gene of interest.

D Examples

D.1 Summarization examples

Here is an example of the knowledge-base description for ABCE1, used as the {description} in the
single-node summary.

Description of gene: ATP binding cassette subfamily E member 1

Gene products: ATP-binding cassette sub-family E member 1
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Functions: (Microbial infection) May act as a chaperone for post-translational events dur-
ing HIV-1 capsid assembly., (Microbial infection) Plays a role in the down-regulation of the
2-5A/RNASEL pathway during encephalomyocarditis virus (EMCV) and HIV-1 infections.,
Nucleoside-triphosphatase (NTPase) involved in ribosome recycling by mediating ribosome dis-
assembly.

Quaternary structure: (Microbial infection) Interacts with HIV-1 proteins Vif and Gag. (Mi-
crobial infection) Interacts with HIV-2 protein Gag. Interacts with PINK1.

Interacts with: ABCE1, EIF3J, GAG_HV1B1, MATRX_CHAV, PHOSP_RABVE

Biological process: enables endoribonuclease inhibitor activity (Binds to and stops, prevents or
reduces the activity of endoribonuclease.)

Here is the corresponding output for the single-node summary, which is used as input to the 1-hop
neighborhood summary.

The primary molecular and cellular function of gene ABCE1 is to facilitate ribosome recycling
by mediating ribosome disassembly through its nucleoside-triphosphatase (NTPase) activity,
and to act as a chaperone for post-translational events during HIV-1 capsid assembly. Ad-
ditionally, ABCE1 plays a role in the down-regulation of the 2-5A/RNASEL pathway during
viral infections. Perturbing gene ABCE1 via gene knockdown may disrupt ribosome recycling
and viral capsid assembly, potentially leading to aberrant protein synthesis and altered viral
replication dynamics.

Here is an example of the knowledge graph relationships for ABCE1.

Relations to other genes:

- ABCE1 enables 4 iron, 4 sulfur cluster binding, ATP binding, ATP hydrolysis activity, CTPase
activity, GTPase activity, endoribonuclease inhibitor activity, iron ion binding, ribonucleoside
triphosphate phosphatase activity, ribosomal small subunit binding.

- ABCE1 is active in cytosolic ribosome

- ABCE1 is involved in negative regulation of endoribonuclease activity, regulation of transla-
tion, rescue of stalled ribosome, ribosomal subunit export from nucleus, ribosome disassembly,
translational initiation, translational termination, cytoplasm, cytosol, membrane, mitochondrial
matrix, mitochondrion.

- Based on evidence from experimental evidence in humans, database evidence in humans,
ABCE1 may physically interact with RNASEL.

- Based on evidence from experimental evidence in humans, experimental evidence in other ani-
mals, ABCE1 may physically interact with EIF1AX, EIF3A, EIF3B, EIF3C, EIF3D, EIF3E,
EIF3F, EIF3G, EIF3H, EIF3I, EIF3K, EIF3L, EIF3M, G3BP2, LTO1, MFGE8, PSMD14,
RACK1, RPL12, RPL23, RPL4, RPL7A, RPL9, RPL9P7, RPL9P8, RPL9P9, RPS10, RPS10-
NUDT3, RPS11, RPS12, RPS13, RPS14, RPS15, RPS15A, RPS16, RPS17, RPS18, RPS19,
RPS2, RPS20, RPS21, RPS24, RPS25, RPS26, RPS27, RPS27A, RPS28, RPS29, RPS3, RPS3A,
RPS4X, RPS5, RPS6, RPS7, RPS8, RPS9, RPSA, YAE1.

- Based on evidence from experimental evidence in humans, experimental evidence in other
animals, literature evidence in humans, ABCE1 may physically interact with EIF5, RPS23.

- Based on evidence from experimental evidence in humans, experimental evidence in other
animals, literature evidence in humans, literature evidence in other animals, ABCE1 may phys-
ically interact with EIF1, ETF1.

- Based on evidence from experimental evidence in humans, experimental evidence in other ani-
mals, literature evidence in other animals, ABCE1 may physically interact with EIF3J, RPLP0.

- Based on evidence from experimental evidence in humans, literature evidence in humans,
ABCE1 may physically interact with DCP2, EIF2S3, FDPS, PSMD1, PSMD4.

- Based on evidence from experimental evidence in humans, literature evidence in humans,
literature evidence in other animals, ABCE1 may physically interact with EIF2S1, EIF2S2.

- Based on evidence from experimental evidence in other animals, literature evidence in humans,
ABCE1 may physically interact with UBL4A.
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- Based on evidence from experimental evidence in other animals, literature evidence in other
animals, ABCE1 may physically interact with DENR, EIF1B, MRTO4.

- In 293T cells, ABCE1 may form a complex with IGF2R

- In the cytosol, ABCE1 enables OAS antiviral response, RNASEL binds 2’-5’ oligoadenylate,
ABCE1 binds RNASEL, OAS antiviral response, RNASEL binds 2’-5’ oligoadenylate, ABCE1
binds RNASEL

- In the mitochondrial matrix, ABCE1 enables Interferon alpha/beta signaling, ABCE1 binds
RNASEL, inhibiting it, Interferon alpha/beta signaling, ABCE1 binds RNASEL, inhibiting it

Here is the corresponding output for the 1-hop neighborhood summary.

Perturbations that may impact the levels of ABCE1 include alterations in the 2-5A/RNASEL
pathway, HIV-1 capsid assembly, or ribosome recycling, as well as changes in the interactions
with its binding partners, such as HIV-1 proteins Vif and Gag, HIV-2 protein Gag, PINK1,
EIF3J, and MATRX_CHAV. Additionally, perturbations in the regulation of translation, trans-
lational initiation, and translational termination may also affect ABCE1 levels. Furthermore,
changes in the activity of its binding partners, such as EIF1AX, EIF3A, EIF3B, and RPL12,
may also impact ABCE1 expression.

D.2 Question-answering examples

Here is an example prompting the LLM to predict whether AARS2 knockdown results in differential
expression of AAK1 in K562 cells.

[Start of Prompt]

You are an expert molecular biologist who studies how genes are related using Perturb-seq. Your
goal is to determine: Does a CRISPRi knockdown of AARS2 in K562 cells result in differential
expression of AAK1?

You are given as input:

- Description of perturbed gene (AARS2): description of gene that is perturbed via CRISPRi
knockdown

- Description of gene of interest (AAK1): description of gene, the impact on which you wish to
infer

- Context: description of cell line in which the genes are expressed

- Examples: set of experimental observations that describe the impact of CRISPRi perturbations
on related genes, to contextualize your answer

Output: Please extract the most relevant parts of the examples that address these five questions.
Be specific.

1) Which of the observed perturbed genes are most similar to AARS2 (if any, including AARS2
itself)?

2) When perturbing AARS2 or similar genes, what downstream pathways or genes are differen-
tially expressed? Justify your answer with the observed outcomes.

3) Which of the observed genes of interest are most similar to AAK1 (if any, including AAK1
itself)?

4) What perturbations of upstream pathways or genes result in differential expression of AAK1
or similar genes (if any)? Justify your answer with the observed outcomes.

5) Is a CRISPRi knockdown of AARS2 in K562 cells likely to result in differential expression of
AAK1? For example, if 2) and 4) are unrelated or only indirectly related, it is unlikely we will
observe differential expression. On the other hand, if 2) and 4) significantly overlap in specific
genes or pathways, we may observe differential expression. Your final answer should end with
one of these three options and nothing else.

- No. Knockdown of AARS2 does not impact AAK1.

- Yes. Knockdown of AARS2 results in differential expression of AAK1.

- There is insufficient evidence to determine how knockdown of AARS2 affects AAK1.
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[End of Prompt]
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[Start of Input]

- Description of perturbed gene (AARS2): The primary molecular and cellular function of
gene AARS2 is to catalyze the attachment of alanine to tRNA(Ala) in a two-step reaction,
thereby facilitating protein synthesis, and to edit incorrectly charged tRNA(Ala) via its editing
domain. Additionally, AARS2 enables zinc ion binding, which is essential for its enzymatic ac-
tivity. Perturbing AARS2 via gene knockdown may disrupt the proper attachment of alanine to
tRNA(Ala), leading to errors in protein synthesis and potentially affecting mitochondrial func-
tion. This may also impact the editing of incorrectly charged tRNA(Ala) and zinc ion binding,
essential for its enzymatic activity. As a result, mitochondrial alanyl-tRNA aminoacylation and
aminoacyl-tRNA metabolism involved in translational fidelity may be impaired. Additionally,
perturbing AARS2 may affect its interactions with other proteins, such as ATP5IF1, DARS2,
and RARS2, potentially leading to further downstream effects on mitochondrial function.

- Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry of
certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin via its
CBD domain and is involved in the regulation of protein localization. Perturbations that may
impact the levels of AAK1 include alterations to the clathrin-mediated endocytosis pathway,
changes in the activity of upstream regulators of AP-2, or disruptions to the interactions between
AAK1 and its binding partners, such as clathrin and AT132. Additionally, perturbations to
the Notch signaling pathway, protein localization, and membrane organization may also affect
AAK1 levels. Furthermore, changes in the activity of proteins that physically interact with
AAK1, such as AP1B1, AP2A1, AP2B1, AP2M1, AP2S1, CLTA, CLTB, CLTC, NECAP2, and
RALBP1, may also influence AAK1 expression.

- Context: K562 cells are immortalised myelogenous leukemia cells of the erythroleukemia type.
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- Examples:

Example 1: Impact of knocking down MTIF2 on SPHK1

Description of perturbed gene (MTIF2): The primary molecular and cellular function of
gene MTIF2 is to facilitate the initiation of protein synthesis in mitochondria by protecting
formylmethionyl-tRNA from spontaneous hydrolysis and promoting its binding to the 30S ri-
bosomal subunits, ultimately leading to the formation of the 70S ribosomal complex. This
process is crucial for the translation of mitochondrial DNA into functional proteins. Perturb-
ing gene MTIF2 via gene knockdown would likely disrupt the initiation of protein synthesis in
mitochondria, potentially leading to impaired mitochondrial function and protein synthesis.

Description of gene of interest (SPHK1): The primary molecular and cellular function of gene
SPHK1 is to catalyze the phosphorylation of sphingosine to form sphingosine 1-phosphate,
a lipid mediator with both intra- and extracellular functions, and to interact with various
proteins to regulate downstream cellular processes. Additionally, SPHK1 plays a role in the
sphingosine-1-phosphate receptor signaling pathway, which regulates transcription and other
cellular processes. Perturbations that might impact the expression of gene SPHK1 include
alterations in the sphingosine-1-phosphate receptor signaling pathway, changes in calmodulin
binding, or disruptions to its interactions with other proteins such as ACY1, CATB, EF1A1,
FHL2, LAMP2, SHLB1, SPHKAP, or TRAF6.

Outcome: A) Knockdown of MTIF2 does not impact SPHK1.

Example 2: Impact of knocking down CLPX on PTCD1

Description of perturbed gene (CLPX): The primary molecular and cellular function of gene
CLPX is to act as an ATP-dependent specificity component of the Clp protease complex, hy-
drolyzing ATP and forming a homohexamer ring structure that assembles with CLPP rings to
form the Clp complex. This complex is involved in protein degradation and quality control in
the mitochondrial matrix. Perturbing gene CLPX via gene knockdown may disrupt the proper
functioning of the Clp protease complex, leading to impaired protein degradation and potential
accumulation of misfolded or damaged proteins in the mitochondrial matrix.

Description of gene of interest (PTCD1): The primary molecular and cellular function of gene
PTCD1 is to negatively regulate leucine tRNA levels, mitochondria-encoded proteins, and COX
activity, while also affecting the 3’-processing of mitochondrial tRNAs, thereby influencing mito-
chondrial protein synthesis. As a mitochondrial protein, PTCD1 associates with mitochondrial
leucine tRNAs and interacts with various proteins, including ELAC2, to modulate its functions.
Perturbations that might impact the expression of gene PTCD1 include disruptions to mito-
chondrial tRNA metabolism, alterations in COX activity, or changes in the levels of interacting
proteins, such as ELAC2, which could in turn affect PTCD1’s regulatory roles in mitochondrial
protein synthesis.

Outcome: A) Knockdown of CLPX does not impact PTCD1.

Example 3: Impact of knocking down TARS2 on SLC35G2

Description of perturbed gene (TARS2): The primary molecular and cellular function of gene
TARS2 is to catalyze the attachment of threonine to tRNA(Thr) in a two-step reaction, thereby
enabling threonine-tRNA ligase activity, and to edit incorrectly charged tRNA(Thr) via its edit-
ing domain. This mitochondrial enzyme plays a crucial role in ensuring the accurate translation
of genetic information during protein synthesis. Perturbing gene TARS2 via gene knockdown
may disrupt the proper charging of tRNA(Thr) with threonine, potentially leading to errors in
protein synthesis and altered cellular function.

Description of gene of interest (SLC35G2): The primary molecular and cellular function of gene
SLC35G2 is to encode a solute carrier protein that facilitates the transport of molecules across
the plasma membrane, interacting with various proteins such as RAB37, AQP6, and SOAT to
regulate this process. This protein plays a crucial role in maintaining cellular homeostasis by
controlling the movement of solutes in and out of the cell. Perturbations that might impact
the expression of gene SLC35G2 include disruptions to the Rab GTPase signaling pathway,
alterations in plasma membrane composition, or changes in the activity of interacting proteins
such as AQP6 and SOAT.

Outcome: A) Knockdown of TARS2 does not impact SLC35G2.
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Example 4: Impact of knocking down MRM1 on LYRM7

Description of perturbed gene (MRM1): The primary molecular and cellular function of gene
MRM1 is to catalyze the formation of 2’-O-methylguanosine at position 1145 in the 16S
mitochondrial large subunit ribosomal RNA (mtLSU rRNA) as an S-adenosyl-L-methionine-
dependent 2’-O-ribose methyltransferase, playing a crucial role in ribosome biogenesis. This
enzymatic activity is essential for the proper modification of mitochondrial ribosomal RNA. Per-
turbing gene MRM1 via gene knockdown may disrupt the proper modification of mitochondrial
ribosomal RNA, potentially leading to defects in mitochondrial protein synthesis.

Description of gene of interest (LYRM7): The primary molecular and cellular function of gene
LYRM7 is to act as a chaperone, binding to the Rieske Fe-S protein UQCRFS1 in the mitochon-
drial matrix and stabilizing it prior to its translocation and insertion into the late cytochrome
b-c1 (CIII) complex, thereby facilitating the assembly of Complex III. This process enables
protein folding and ensures the proper incorporation of UQCRFS1 into the mitochondrial inner
membrane. Perturbations that might impact the expression of gene LYRM7 include disruptions
to the mitochondrial protein folding machinery, alterations in the levels or activity of interact-
ing proteins such as HSC20, SAT1, and UCRI, or changes in the mitochondrial inner membrane
dynamics that affect the assembly of Complex III.

Outcome: A) Knockdown of MRM1 does not impact LYRM7.

Example 5: Impact of knocking down HSPD1 on RTN2

Description of perturbed gene (HSPD1): The primary molecular and cellular function of gene
HSPD1 is to facilitate the correct folding of imported proteins in the mitochondrial matrix,
acting as a chaperonin to prevent misfolding and promote the refolding and proper assembly of
unfolded polypeptides, particularly under stress conditions. Additionally, HSPD1 is involved in
mitochondrial protein import and macromolecular assembly. Perturbing gene HSPD1 via gene
knockdown may disrupt the proper folding and assembly of mitochondrial proteins, leading to
potential defects in mitochondrial function and protein homeostasis.

Description of gene of interest (RTN2): The primary molecular and cellular function of gene
RTN2 is to inhibit amyloid precursor protein processing, likely by blocking the activity of
BACE1, and to interact with specific proteins such as TMEM33 and certain isoforms of SPAST,
within the endoplasmic reticulum membrane. This function is crucial for maintaining proper
protein processing and lipid bilayer structure in the endoplasmic reticulum. Perturbations that
might impact the expression of gene RTN2 include alterations to the BACE1 pathway, changes
in endoplasmic reticulum membrane composition, or disruptions to the interactions with its
binding partners TMEM33 and SPAST.

Outcome: A) Knockdown of HSPD1 does not impact RTN2.

Example 6: Impact of knocking down WDR82 on AAK1

Description of perturbed gene (WDR82): The primary molecular and cellular function of gene
WDR82 is to serve as a regulatory component of the SET1/COMPASS complex, facilitating
the tethering of this complex to transcriptional start sites of active genes, and to negatively
regulate the transcription of long non-coding RNA (lncRNA). This function is mediated through
its interaction with other components of the SET1/COMPASS complex, including the catalytic
subunit, WDR5, and other regulatory proteins. Perturbing gene WDR82 via gene knockdown
may lead to the dysregulation of lncRNA transcription, potentially resulting in aberrant gene
expression.

Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry
of certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin
via its CBD domain and is involved in the regulation of protein localization. Perturbations
that might impact the expression of gene AAK1 include alterations to the clathrin-mediated
endocytosis pathway, changes in the activity of upstream regulators of AP-2, or disruptions to
the interactions between AAK1 and its binding partners, such as clathrin and AT132.

Outcome: A) Knockdown of WDR82 does not impact AAK1.
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Example 7: Impact of knocking down CARF on AAK1

Description of perturbed gene (CARF): The primary molecular and cellular function of gene
CARF is to act as a transcriptional activator that mediates the calcium- and neuron-selective
induction of BDNF exon III transcription by binding to the consensus calcium-response element
CaRE1 sequence, thereby regulating transcription by RNA polymerase II. This function is
crucial for modulating gene expression in response to calcium signals in neurons. Perturbing
gene CARF via gene knockdown may disrupt the regulation of BDNF exon III transcription,
potentially affecting neuronal gene expression and response to calcium signals.

Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry
of certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin
via its CBD domain and is involved in the regulation of protein localization. Perturbations
that might impact the expression of gene AAK1 include alterations to the clathrin-mediated
endocytosis pathway, changes in the activity of upstream regulators of AP-2, or disruptions to
the interactions between AAK1 and its binding partners, such as clathrin and AT132.

Outcome: A) Knockdown of CARF does not impact AAK1.

Example 8: Impact of knocking down ELP5 on AAK1

Description of perturbed gene (ELP5): The primary molecular and cellular function of gene
ELP5 is to act as a component of the elongator complex, which is required for multiple tRNA
modifications, including mcm5U, mcm5s2U, and ncm5U, and to facilitate optimal binding of
ELP3 to ELP4 within the complex. Additionally, ELP5 is involved in the positive regulation
of cell migration. Perturbing gene ELP5 via gene knockdown may disrupt tRNA modification
and cell migration processes.

Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry
of certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin
via its CBD domain and is involved in the regulation of protein localization. Perturbations
that might impact the expression of gene AAK1 include alterations to the clathrin-mediated
endocytosis pathway, changes in the activity of upstream regulators of AP-2, or disruptions to
the interactions between AAK1 and its binding partners, such as clathrin and AT132.

Outcome: A) Knockdown of ELP5 does not impact AAK1.

Example 9: Impact of knocking down MICOS13 on AAK1 Description of perturbed gene (MI-
COS13): The primary molecular and cellular function of gene MICOS13 is to encode a subunit
of the mitochondrial contact site and cristae organizing system (MICOS) complex, which plays
crucial roles in maintaining crista junctions, inner membrane architecture, and forming contact
sites to the outer membrane. MICOS13 is a component of the MICOS complex, which associates
with other protein complexes to form the mitochondrial intermembrane space bridging (MIB)
complex. Perturbing gene MICOS13 via gene knockdown may disrupt the formation and main-
tenance of mitochondrial crista junctions and inner membrane architecture, potentially leading
to alterations in mitochondrial function and dynamics.

Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry
of certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin
via its CBD domain and is involved in the regulation of protein localization. Perturbations
that might impact the expression of gene AAK1 include alterations to the clathrin-mediated
endocytosis pathway, changes in the activity of upstream regulators of AP-2, or disruptions to
the interactions between AAK1 and its binding partners, such as clathrin and AT132.

Outcome: A) Knockdown of MICOS13 does not impact AAK1.
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Example 10: Impact of knocking down RPL10 on AAK1

Description of perturbed gene (RPL10): The primary molecular and cellular function of gene
RPL10 is to encode a component of the large ribosomal subunit, specifically the protein uL16,
which is essential for protein synthesis and translation. This protein plays a crucial role in the
assembly and function of mature ribosomes, facilitating the translation of messenger RNA into
polypeptide chains. Perturbing gene RPL10 via gene knockdown would likely disrupt protein
synthesis and translation, potentially leading to impaired cellular function and viability.

Description of gene of interest (AAK1): The primary molecular and cellular function of gene
AAK1 is to regulate clathrin-mediated endocytosis by phosphorylating the AP2M1/mu2 subunit
of the adaptor protein complex 2 (AP-2), ensuring high affinity binding of AP-2 to cargo
membrane proteins during the initial stages of endocytosis, and to play a role in the entry
of certain viruses such as hepatitis C, Ebola, and Dengue. AAK1 also interacts with clathrin
via its CBD domain and is involved in the regulation of protein localization. Perturbations
that might impact the expression of gene AAK1 include alterations to the clathrin-mediated
endocytosis pathway, changes in the activity of upstream regulators of AP-2, or disruptions to
the interactions between AAK1 and its binding partners, such as clathrin and AT132.

Outcome: A) Knockdown of RPL10 does not impact AAK1.

Example 11: Impact of knocking down RARS2 on NECAP2

Description of perturbed gene (RARS2): The primary molecular and cellular function of gene
RARS2 is to catalyze the attachment of arginine to tRNA(Arg) in a two-step reaction, facili-
tating mitochondrial translation, and to interact with other proteins such as COMT, SYRM,
and TGM2. This process is essential for the formation of proteins within the mitochondrion.
Perturbing gene RARS2 via gene knockdown may disrupt the proper attachment of arginine to
tRNA(Arg), potentially leading to impaired mitochondrial translation and protein synthesis.

Description of gene of interest (NECAP2): The primary molecular and cellular function of gene
NECAP2 is to facilitate endocytosis through its role as an adaptin ear-binding coat-associated
protein, interacting with components of adapter protein complexes AP-1 and AP-2, as well
as GAE domain proteins GGA1, GGA2, and GGA3. This interaction enables the formation
and trafficking of vesicles, mediating the transport of substances within the cell. Perturbations
that might impact the expression of gene NECAP2 include disruptions to the AP-1 and AP-2
adapter protein complexes, or alterations to the GAE domain proteins, which could affect the
proper formation and function of vesicles involved in endocytosis.

Outcome: A) Knockdown of RARS2 does not impact NECAP2.

Example 12: Impact of knocking down NARS2 on REPS1

Description of perturbed gene (NARS2): The primary molecular and cellular function of gene
NARS2 is to encode a mitochondrial aminoacyl-tRNA synthetase that catalyzes the attachment
of asparagine to its cognate tRNA, thereby participating in protein synthesis. This enzyme
enables asparagine-tRNA ligase activity, facilitating the formation of Asn-tRNA(Asn) from L-
asparagine and tRNA(Asn). Perturbing gene NARS2 via gene knockdown may disrupt the
proper charging of tRNA with asparagine, potentially leading to aberrant protein synthesis and
mitochondrial dysfunction.

Description of gene of interest (REPS1): The primary molecular and cellular function of gene
REPS1 is to coordinate the cellular actions of activated EGF receptors and Ral-GTPases, po-
tentially linking them to an EGF-responsive tyrosine kinase through its interactions with CRK
and GRB2. Additionally, REPS1 may be involved in clathrin-mediated endocytosis through
its interactions with AMPH, ITSN1, and SGIP1. Perturbations to the EGF signaling path-
way, Ral-GTPase activity, or clathrin-mediated endocytosis may impact the expression of gene
REPS1.

Outcome: A) Knockdown of NARS2 does not impact REPS1.

[End of Input]
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[Start of Output]

Based on the provided examples, I will extract the most relevant parts to address the five
questions.

1. Which of the observed perturbed genes are most similar to AARS2 (if any, including AARS2
itself)?

From the examples, we can see that AARS2 is a mitochondrial aminoacyl-tRNA synthetase,
specifically responsible for attaching alanine to tRNA(Ala). The most similar genes to AARS2
are likely to be other mitochondrial aminoacyl-tRNA synthetases, such as TARS2 (threonine-
tRNA ligase), RARS2 (arginine-tRNA ligase), and NARS2 (asparagine-tRNA ligase). These
genes share similar functions and are also involved in protein synthesis.

2. When perturbing AARS2 or similar genes, what downstream pathways or genes are differen-
tially expressed? Justify your answer with the observed outcomes.

From the examples, we can see that perturbing AARS2 or similar genes does not impact the
expression of downstream genes. For instance, knocking down AARS2 does not affect the
expression of SPHK1, PTCD1, SLC35G2, LYRM7, RTN2, AAK1, or NECAP2. Similarly,
knocking down TARS2, RARS2, or NARS2 does not impact the expression of SLC35G2, REPS1,
or NECAP2, respectively. This suggests that the perturbation of AARS2 or similar genes does
not significantly affect downstream pathways or genes.

3. Which of the observed genes of interest are most similar to AAK1 (if any, including AAK1
itself)?

From the examples, we can see that AAK1 is a gene involved in regulating clathrin-mediated
endocytosis and interacts with clathrin and other proteins. The most similar genes to AAK1
are likely to be other genes involved in clathrin-mediated endocytosis, such as NECAP2, which
facilitates endocytosis through its interactions with adapter protein complexes AP-1 and AP-2.
Other genes that interact with clathrin, such as RTN2, may also be similar to AAK1.

4. What perturbations of upstream pathways or genes result in differential expression of AAK1
or similar genes (if any)? Justify your answer with the observed outcomes.

From the examples, we can see that perturbing genes involved in clathrin-mediated endocytosis,
such as NECAP2, does not impact the expression of AAK1. Similarly, perturbing genes involved
in protein synthesis, such as RPL10, does not affect the expression of AAK1. This suggests that
the perturbation of upstream pathways or genes does not significantly affect the expression of
AAK1 or similar genes.

5. Is a CRISPRi knockdown of AARS2 in K562 cells likely to result in differential expression
of AAK1?

Based on the observed outcomes, it is unlikely that a CRISPRi knockdown of AARS2 in K562
cells will result in differential expression of AAK1. The perturbation of AARS2 or similar genes
does not impact the expression of downstream genes, including AAK1. Therefore, the answer
is:

No. Knockdown of AARS2 does not impact AAK1.

[End of Output]

D.3 Other examples

We use the following for {sentence describing cell line}, derived from Wikipedia.

K562 cells are immortalised myelogenous leukemia cells of the erythroleukemia type.

RPE1 cells are a non-cancerous, hTERT-immortalized, near-euploid, adherent, and p53-positive
cell line.

Jurkat cells are an immortalized line of human T lymphocyte cells.

HepG2 cells are a human liver cancer cell line, derived from a patient with a well-differentiated
hepatocellular carcinoma.
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