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Figure 1: The significant gap between human, machine, and robot visual systems. Humans and
Machines are sensitive to different distortions, while Robots have Decision and Execution steps
beyond Cognition, highlighting the importance of a Perception quality index for Embodied Al

ABSTRACT

Embodied Al has developed rapidly in recent years, but it is still mainly deployed
in laboratories, with various distortions in the Real-world limiting its application.
Traditionally, Image Quality Assessment (IQA) methods are applied to predict
human preferences for distorted images; however, there is no IQA method to assess
the usability of an image in embodied tasks, namely, the perceptual quality for
robots. To provide accurate and reliable quality indicators for future embodied
scenarios, we first propose the topic: IQA for Embodied Al Specifically, we (1)
based on the Mertonian system and meta-cognitive theory, constructed a perception-
cognition-decision-execution pipeline and defined a comprehensive subjective score
collection process; (2) established the Embodied-IQA database, containing over
30k reference/distorted image pairs, with more than 5m fine-grained annotations
provided by Vision Language Models/Vision Language Action-models/Real-world
robots; (3) trained and validated the performance of mainstream IQA methods on
Embodied-IQA, demonstrating the need to develop more accurate quality indicators
for Embodied Al. We sincerely hope that through evaluation, we can promote the
application of Embodied Al under complex distortions in the Real-world.

1 INTRODUCTION

To achieve Artificial General Intelligence (AGI), Embodied Al, as a bridge connecting external
and internal realities, has developed rapidly in recent years. Relying on its ability to interact with
the physical environment, Embodied Al|Duan et al.[(2022); Savva et al.| (2019); Liu et al.| (2024b)
has been applied to simple scenarios such as factories and warehouses, but it is not yet capable
of handling complex environments like autonomous driving and wilderness exploration. Unlike
traditional robotics driven by fixed algorithms, Embodied Al collects signals from the Real-world
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and is therefore susceptible to distortions. For example, a pick-and-place task may be successfully
debugged in the laboratory, but it may fail in Real-world applications due to slight lens shaking.
Therefore, the preferences of Embodied Al should be analyzed to filter out these low-quality images.

For human viewers, this problem can be solved through Image Quality Assessment (IQA) metrics.
For example, in streaming media, collect human subjective preferences for distorted images. Since
human resources are expensive, IQA will develop objective quality indicators to fit subjective scores.
Similarly, for Embodied Al it is also necessary to collect the success rate of downstream tasks using
distorted images, quantifying the fidelity with the reference results, and developing IQA metrics.

Unfortunately, due to the significant differences between Human/Machine/Robot Visual Systems
(HVS/MVS/RVS), previous IQA methods cannot be directly transferred to Embodied Al scenarios,
as shown in Figure[I} First, HVS and MVS are sensitive to different types of distortions. Humans are
sensitive to distortions such as noise and compression, which do not affect the downstream tasks of
machines. Brightness and contrast are the opposite. Therefore, as a machine, Embodied Al cannot use
the past human-oriented processing methods. Second, although MVS and RVS are sensitive to some
common distortions, the perceptual quality of a general machine only depends on the performance
of segmentation and detection tasks that belong to Cognition. Robots, however, have subsequent
Decision and Execution steps. High fidelity in the previous step does not guarantee the success of the
next. Therefore, unlike a general machine, it is necessary to fully consider Cognition, Decision, and
Execution to characterize the Perception of Embodied Al. Considering these issues, we first attempt
to implement IQA metrics into Embodied Al Our contributions are summarized as follows:

* Theory: We refer to the Mertonian Law in robotic intelligence to construct the Perception-
Cognition-Decision-Execution pipeline. We define tasks related to Embodied Perception
and specify the subjects for each step in Cognition, Decision, and Execution.

e Data: We add corruption to images in Embodied tasks, collecting over 36k refer-
ence/distorted image pairs. We perform inference using Vision Language Models (VLM)
and Vision Language Action-model (VLA) for over 5 million annotations. This large-scale
database can effectively drive the development of quality metrics for Embodied Al

» Experiment: We experiment with 15 advanced IQA methods on our database, proving that
more sophisticated IQA metrics are needed for Embodied Al. Additionally, we first conduct
real-world experiments in the IQA field, executing 1.5k Embodied tasks in the Real-world,
revealing the internal connections between Cognition, Decision, and Execution.

2 RELATED WORKS
2.1 MERTONIAN SYSTEM FOR ROBOTIC INTELLIGENCE

Intelligent models are divided into Newtonian and Mertonian (Wang| (2012) systems. Newtonian
systems typically refer to those systems that can be precisely described and predicted by deterministic
physical laws, such as classical mechanical systems. In contrast, Mertonian systems involve systems
that include ‘free will’, whose behavior is influenced by feedback between beliefs and actions. The
characteristic of such systems is that even given the current state and control conditions, the next state
of the system cannot be accurately obtained by solving, so its behavior is difficult to predict precisely.

HVS and MVS can both be simplified as Newtonian systems, since their Decision and Execution
processes are robust. However, the Decision and Execution of RVS do not fully match Cognition.
For example, a deviation of one character in Cognition may greatly change the pose in Decision; a
one-centimeter path offset in Decision may also cause Execution to hit obstacles. Since the impact of
distortion on these steps is unpredictable, it is necessary to handle them separately for the IQA task.

2.2 IMAGE QUALITY ASSESSMENT FOR MACHINE

Since 1999, Perception has been recognized as the first step in the interaction between Al agents
and external reality, whose mechanism Rickel & Johnson|(1999)); Cassimatis et al.|(2004); Lepora &
Pezzulo| (2015); |[Balke & Gilbert| (2014) has been revealed. However, no perceptual quality score has
been assigned to each distorted image like current IQA [Li et al.|(2024bf, |2025b)); ILiu et al.| (2024a)
metrics, which is exactly Embodied Al needs in Real-world applications. In the past decades, IQA
has been widely studied as shown in Table |1} but none of them meet the above needs of Embodied Al.
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Table 1: Comparison of Embodied-IQA with other perceptual quality databases. As a machine-
oriented database, Embodied-IQA has not only more image samples and a larger annotation scale,
but also comprehensive labels on three downstream steps. [Keys: Cognition, Decision, Execution]

paabase Imege | Compfon | . Amofafion _____________
Reference Distorted Resolution | Types Strength | Num Dimension Subjects Cog. Dec. Exe.
LIVEMoorthy & Bovik (201 1) 29 779 768 5 5 25k 1 Human (General)
TID2013Ponomarenko et al.|(2015) 25 3k 512 24 5 514k 1 Human (General)
KADID-10KLin et al.|(2019) 81 10k 1k 25 5 304k 1 Human (General)
CLIC2021Ballé & et al.|(2020}) 585 3k 1k 10 3 484k 1 Human (General)
NTIRE2022Gu et al.|(2022) 250 29k 288 40 5 1.13m 1 Human (General)
AGIQA-3KLi et al.|(2023} - 3k 1k - - 125k 1+1 Human (Multimodal)
NTIRE2024Li et al.|(2024a) - 20k 1k - - 420k 1+1 Human (Multimodal)
MPD|Li et al.|(2025a) 1k 30k 1k 30 5 2.25m 5 Machine (General)
EPD|Zhang et al.|(2024a) 100 2.5k 256 25 5 30k 2 Machine (General)
Embodied-IQA (ours) 1.23k 36.9k 1k 30 5 553m  3+3+1 Machine (Robot)

First, most databases are human-oriented, with only two coarse-grained Zhang et al.| (2024cid)), two
fine-grained|Li et al.| (2025a); Zhang et al.| (2024a)) machines as subjects (VLM and reinforcement
learning); second, as mentioned above, no database covers Cognition, Decision, and Execution
altogether. Considering the characteristics of Embodied Al it is necessary to establish a new dataset
in accordance with the requirements of the Mertonian system.

3 DATABASE CONSTRUCTION

3.1 REFERENCE & DISTORTED IMAGE COLLECTION

To comprehensively characterize the data in Embodied scenarios, we collect 1,230 high-quality
samples as reference images. (see Supplementary for data source) All data are pre-processed by
Q-Align Wu et al.| (2024)) to avoid pre-distortion before adding distortion. We focused on two aspects,
Sim2Real and Perspective, to ensure coverage of both real and simulation, as well as first-person and
third-person perspectives. In addition, we divided the subjects and backgrounds into five categories
each, as shown in Figure [2] to ensure versatility by involving each category in the database.

For the distorted images, according to the corruption caused by the current communication protocols,
30 distortion types are considered and classified into 7 categories: Blur, various types of unclear image;
Luminance, global brightness changes; Chrominance, global color changes; Noise, random noise of
different distributions; Compression, codec algorithm like JPEG; Spatial, local pixel-level changes;
and others. For each distortion, we defined 5 intensity levels, ensuring the quality degradation
perceived by the HVS is aligned at the same level. Thus, for each reference image, we randomly
selected the intensity to add all the corruptions mentioned above, resulting in 36,900 distorted images.
The reference/distorted image pairs will then be annotated by Embodied Al subjects.

3.2 PERCEPTION: TASK DEFINITION

Perception refers to receiving information about the external environment, where Embodied Al
obtains information through sensors, similar to human sensory organs. Considering that more than
82% of human external input signals come from vision, we simplify this step of Embodied Al to the
camera. First of all, we need to clarify the factors that Embodied Al focuses on in Perception. When
viewing an image, HVS pays attention to factors such as brightness/chromaticity, while MVS/RVS
relies on specific downstream tasks. Therefore, based on information such as objects, layout, and
environment in the image, we manually annotate 5 tasks for each reference sample in natural language,
as in previous MVS [Li et al.|(2025a) works. The difficulty of the tasks here increases in sequence and
is limited to [Cover, Insert, Move, Pick, Place, Pour, Press, Pull, Push, Twist] to
avoid being too difficult. All subsequent steps are based on the task corresponding to each image, and
the image quality depends on the similarity of the reference/distorted image pair inference results.

3.3 COGNITION: VLM ANNOTATION

Cognition refers to the process of processing and understanding information after perception, includ-
ing recognition, classification, memory, and reasoning. This function of Embodied Al is implemented
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Figure 2: Database construction of the Embodied-IQA, with 30k+ large-scale reference/distorted
image pairs, meticulously annotated with 2m+ fine-grained Cognition score from 15 mainstream
VLMs, 2m+ Decision score from 15 VLAs, and 1.5k real-world experiments as Execution score.

through VLM, which corresponds to the human cerebrum. Specifically, we selected 15 commonly
used VLMs for cognition, including: Mini-InternVL |Gao et al. (2024), InternLM-Xcomposer2
Dong et al.|(2024), InternLM-Xcomposer2.5 2024b), InternVL2 (2024b),
InternVL2.5 Chen et al| (2025)), InternVL3 (2025), MPlugOwl3 Ye et al.| (2024), Ovis1.5-
Gemma [Team et al.| (2025)), Ovis1.6-Llama Touvron et al.|(2023), Ovis2|Lu et al.|(2024), Phi3-Vision
(2024b), Phi3.5-Vision [Abdin et al.|(2024a)), Phi4-Multimodal Microsoft et al.| (2025),
Qwen2-VL [Yang et al (2024), and Qwen2.5-VL (2025). To ensure usability in the

Real-world, the parameter size we selected is all below 8B to ensure real-time inference.

Considering the output modality is textual, VLMs will be required to solve the pre-defined task in
about 10 words, and the difference between reference/distorted output sentences will be measured.
Specifically, the difference between the two output sentences includes three dimensions: accuracy,
recall, and semantics, which are realized by the average of three classic indicators: BLEU

(2002)), ROUGE |Vedantam et al.| (2015), and CIDEr|[Vedantam et al.| (2013).

3.4 DECISION: VLA ANNOTATION

Decision refers to selecting the best course of action based on goals, rules, and experience, according

to Cognition results. This function of Embodied Al is implemented through VLA, which corresponds

to the human cerebellum. Specifically, we selected 15 commonly used VLA for Decision, including:
CogACT [Li et al.| (2024c), Embodied-CoT Zawalski et al.|(2025), Octo[Team et al.| (2024), OpenVLA

Kim et al.| (2024a), OpenVLA-Libero [Kim et al| (2024c), OpenVLA-Goal Kim et al. (2024b),
OpenVLA-Libero-Object [Kim et al.| (2024b), OpenVLA-Libero-Spatial [Kim et al.| (2024b), Pi0-
Aloha-Pen [Black et al.| (2024b)), Pi0-Aloha-Towel [Black et al.| (2024b)), Pi0-Aloha-Tupperware
2024b), Pi0-Base Black et al.|(2024a), Pi0-Droid [Pertsch et al.| (2025)), PiO-Fast [Pertsch et al.|
(2025), and RT-X-1 |Collaboration et al.| (2025), whose parameter size is controlled at 8B.

Noted that since Embodied-IQA first introduced VLA into the IQA task, we define the quality of
VLA as three dimensions. First, we parse the 7-DoF PoseEl output field. According to the mechanism
of VLA, the first three represent positionEl (translation of the operator along the three-dimensional
coordinate system, in mm), the middle three represent rotation (rotation of the operator along the
three-dimensional coordinate system, in rad), and the last one represents state (opening and closing of
the operator, range [0-1]). The position score is based on the spatial distance of the coordinate points

'We will discard information beyond the above 7-DoF like depth, for alignment between VLAs.
2For two-arm VLAs, we only select the arm with the larger movement range.
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Figure 3: Benchmarking VL.Ms&VLAs in 3 different score dimensions and 5 distortion levels. Their
performance varies in 3 dimensions and decreases with the distortion. (Zoom in for detail)

Precision (0.31) Recall (0.31) Semantic (0.30) Position (0.25) Rotation (0.23)  State (0.28)

Figure 4: Correlation matrix of VLMs&VLAs subjects, the a-o order follows Section[3.3]3.4} Darker
colors denote a higher SRCC, with the averaged SRCC attached to the bottom of the matrix.

obtained from the reference/distorted image, the rotation score is based on the cosine similarity of
directional vectors, and the last one is the absolute difference. The three dimensions are averaged
after 0-1 normalization, and report the sum of the five task results as the final Decision score.

3.5 EXECUTION: REAL-WORLD VALIDATION

Execution refers to the process of transforming decisions into actual movements. This part of
Embodied Al relies on specific actuators, corresponding to the human motor system. Based on
kinematic statistics, the upper limbs dominate among all muscles and complete over 50% of daily
movements. Therefore, we use the robotic arm as the most representative actuator. Specifically, we
execute tasks based on the inference results of VLA, with three scenarios: (1) Success: Directly
assign score 100 to the sample; (2) Failure: Measure the Euclidean distance between the reference
and distorted results based on the final pose of the actuator, and deduct points in centimeters; (3)
Emergency stop: If the actuator hits the table or wall, directly assign score 0. Considering the
uncontrollable factors in real-machine experiments, we only execute the task with the lowest difficulty
level among the 5 tasks to verify whether the results of VLM and VLA align with the Real-world.

4 DATABASE ANALYSIS

This section analyzes Embodied-IQA database from four dimensions: On the model level, we (1)
Benchmark the VLMs and VLAs when processing the distorted images; (2) Explore the internal
correlation between VLMs and VLAs; On the instance level, we (3) Compare the score distributions
under different categories and distortions; (4) Analyze the distortion sensitivity of VLMs/VLAs.

[Benchmark] We select 6 representative VLM and VLA in Figure[3] As the distortion level increases,
the total scores of both VLM and VLA gradually decrease. However, the differences among the
three scoring dimensions of VLM are much greater than the level of distortion. After distortion, the
Semantic score of the image decreases relatively little, followed by Recall, and then Precision. In
VLM, the reference/distorted output of MPlugOwI3 is the most consistent, while advanced models
like Qwen2.5-VL are less robust. Therefore, distortion usually affects VLM at the character level
rather than the semantic level, and it is more likely to output redundant text than to lose information.
Meanwhile, there are also significant differences among the three scoring dimensions of VLA. In
VLA, Octo shows strong robustness to distortion in Position and Rotation, while models like CogACT
and OpenVLA are more faithful in State. Among them, State changes little after distortion, Position
changes more, and Rotation is the most easily affected by distortion. This indicates that distortion
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Figure 5: Decision score visualized in 30 distortion subsets. Different color denotes distortion
-Level 2-Level 3- -Level 5. Different distortions affecting VLAs vary significantly.

usually does not affect the end operator but has a significant impact on the robot arm. Therefore,
VLA needs to be carefully selected to ensure high-quality output of the first 6-DoF.

[Correlation] We visualize the correlation between subject models in Figure (4| according to the
order of models in Section through Spearman Rank-order Correlation Coefficient (SRCC).
According to past IQA |Li et al.| (2025a) work, the correlation of HVS is usually above 0.6, while that
of MVS is often less than 0.5. In specific machine tasks, detection has better correlation, while Visual
Question Answering (VQA) may even be less than 0.4. For Cognition, which uses VLM to solve
embodied tasks (a degraded form of VQA), the correlation is only about 0.3. Moreover, we find that
the correlation of VLA is even lower than that of VLM, at around 0.25. Therefore, when evaluating
VLM and VLA, using only one model as the subject is far from sufficient, especially for VLA. It
is necessary to collect their general preference. This also reflects the necessity of constructing the
Embodied-IQA database and the separation of Cognition and Decision in the RVS.

[Distribution] Since Decision is more downstream than Cognition and has never been deeply
investigated in IQA, we show the distribution of Decision and put Cognition in the supplementary.
Figure [5|shows the Decision score distribution under 30 types of distortions and 5 intensity levels.
Results show that RVS and the traditional HVS have significant differences. Taking brightness as an
example, Embodied Al is highly sensitive to ‘Maximum brighten/darken’, and the quality significantly
decreases with the distortion level; however, it is rarely affected by ‘Mean brighten/darken’, and
there is no significant distribution change from level 1 to 5. These findings emphasize the differences
between RVS and HVS. Figure [6lists the relation of the three Decision dimensions and the score
distributions corresponding to different image categories. Overall, Position, Rotation, and State
show independent distributions. In the Sim2Real distribution, the real scores are relatively high,
indicating that VLA is better at Real-World data; the first-person results are far worse than the
third-person results, indicating that in the training data of VLA, the sampling tools and actuators
are rarely integrated, which needs to be improved in the future. These findings jointly support the
rationality of the division of source image data and annotation dimensions in Embodied-IQA.

[Sensitivity] The difference between MVS and HVS causes VLM to be highly sensitive to some
distortion categories, but robust to others; the difference between RVS and HVS also causes VLA to
have a similar phenomenon. We combined the Just-Noticable-Difference (JND) theory to analyze
the similarities and differences in the distortion sensitivity of VLM and VLA, as shown in Figure
The sensitivity is divided into three levels, Mild, Medium, and Severe, each accounting for one-third
of all image samples, according to the Cognition and Decision scores. Results shows although
VLM and VLA have certain commonalities in sensitivity, there are also distortions such as Dis02
‘Lens blur’ that mainly affect VLM, or Dis15 (Multiplicative noise) that mainly affect VLA. This
VLM&VLA-based partition further explains the gap between Cognition and Decision, and can serve
as an important reference in the IQA for the Embodied Al topic in the future.
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Figure 6: Correlation between the general Decision score and the 3 dimensions from VLAs, and the
score distribution in Sim2Real, First/Third perspectives, Main object, and Background sub-categories.
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5 EXPERIMENT

5.1 EXPERIMENT SETUPS

We randomly partitioned the Embodied-IQA database into the train/val set, with 29,520 and 7,380
reference/distorted image pairs according to an 8:2 ratio. Since VLA is more downstream than VLM
in the Mertonian system of Embodied Al, and previous machine-oriented IQA works are all based on
VLM, we use the Decision scores from VLA in the main experiment and put the Cognition scores
from VLM in the supplementary. 15 objective IQA metrics are implemented to predict the Decision

score, including: (1) 5 baseline metrics: PSNR, SSIM [Wang| (2004), Brisque Mittal et al.| (2012),
Q-Align (2024), and Q-Align+ [Zhang et al| (2025). Q-Align and Q-Align+ are loaded
in quality/aesthetic weights. As the most commonly used IQA metrics, they are performed in a
Zero-shot setting; (2) 5 Full-Reference (FR) metrics: AHIQ|Lao et al.| (2022), CKDN [Zheng et al/|
(2021), DISTS (2020), LPIPS [Zhang et al (2018a), and TOPIQ-FR [Chen et al| (2024a).

Those learning-based metrics are fine-tuned on our training set, which takes both reference/distorted
images as inputs; (3) 5 No-Reference (NR) metrics: CLIPIQA [Wang et al.| (2023), CNNIQA [Kang
et al.| (2014), DBCNN [Zhang et al.| (2018b), QualiClip [Agnolucci et al.| (2025), and TOPIQ-NR (Chen|
et al.| (2024a). They are also fine-tuned on a training set, which takes only distorted images as inputs.

To benchmark the performance of quality metrics, three global indicators were employed: SRCC,
Kendall Rank-order Correlation Coefficient (KRCC), and Pearson Linear Correlation Coefficient
(PLCCQ), to evaluate the consistency between the objective quality score and the subjective MOS.
Among these, SRCC and KRCC represent the prediction monotonicity, while PLCC measures the
accuracy. We train the FR/NR metrics on Embodied-IQA with the learning rate as 10~° for 50
epochs, under the default settings in pyiqa toolbox, and evaluate the performance on (1) 3 scoring
dimension; (2) 3 JND-based distortion sensitivity in Figure[7} (3) First/Third person perspective; (4)
Sim2Real; (5) 5 Distortion level. The partitioning, training, and testing pipeline is repeated 10 times,
and the mean value is reported as the experimental result. The perception module is based on the
Intel RealSense D455 array, supporting both First-person (wrist) and Third-person (top, side) as input.
Cognition and Decision annotations are collected on two servers with 16 xNVIDIA A800 SXM4
80GB GPUs, and then conduct IQA training/validation on one GPU above. Execution is achieved
through the URS robotic arm and Robotiq 2F-140 gripper, with a working radius of 85cm.

5.2 RESULT AND DISCUSSION

Table 2| presents the performance of advanced quality metrics on the Embodied-IQA database. For
the three dimensions of the 7-DoF VLA output, Position is the easiest to predict, followed by State,
with Rotation being the most difficult. The SRCC of FR IQA methods with subjective labels is less
than 0.65, while NR is even less than 0.6. Note that these methods have a correlation close to 0.9
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Table 2: Using 15 advanced IQA metrics to evaluate the Decision score from VLAs, including
zero-shot, FR, and NR metrics. [Keys: Best/Second best in group; Baseline; Lower than baseline.]

Di Position Rotation State First Perspective Third Perspective

Group Metric SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCY | SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT | SRCCT KRCCP PLCCT
02762 0.1872 0.3094 | 02594 0.1756 0.3035 | 0.2284 0.1522 02271 | 0.4059 0.2763 0.4373 | 0.3949 0.2693 0.4376
04862 03345 04438 | 04246 02891 03912 | 0.3607 02468 03216 | 0.5834 04101 05256 | 0.5478 0.3815 0.5132
Zero 03073 02051 02707 | 0.2752 0.1826 0.2519 | 0.3335 0.2255 0.2986 | 03302 0.2210 0.2634 | 0.4020 0.2688 0.3836
0.5325 0.3641 0.4869 | 0.5387 0.3758 0.5329 | 0.3791 0.2552 0.3346 | 0.6658 0.4715 0.5992 | 0.5854 0.4030 0.5578
03275 02157 02410 | 0.3596 0.2465 0.2818 | 0.1492 0.0972 0.1272 | 0.4663 03167 0.4283 | 0.3104 02021 0.2649
o Laoetal | 77074817 05496 ~ 0.7467 [ 0.6454 0.4655 0.6435 | 0.6465 0.4609 0.6590 | 0.8011 0.6014 0.8025 | 0.7989 0.6007 0.7959 ~
0.6748 04807 0.6771 | 0.6061 0.4278 0.6001 | 0.6324 0.4515 0.6410 | 0.7716 05720 0.7610 | 0.7641 0.5624 0.7596
FR Ding et al.|{2020) 0.5797 04010 0.5846 | 0.5366 0.3746 0.5390 | 0.4653 03180 0.4611 | 0.6458 0.4624 0.6249 | 0.6545 04654 0.6642
Zhang et al. |201¢ 03922 02642 03511 | 0.2972 0.1994 0.2378 | 0.4210 0.2890 0.3852 | 0.4697 03205 0.4168 | 0.4821 0.3313 0.4805
0.7748 0.5794 07827 | 0.6428 0.4607 0.6480 | 0.6684 0.4826 0.6727 | 0.8307 0.6371 0.8297 | 0.8322 0.6404 0.8298
" 7 [CLIPIQA|Wang et al.|[(2023] | 0.1784  0.1172  0.1246 | 0.0708 ~0.0193 0.0468 | 0.1348  0.0770  0.0622 | 0.0048 ~0.0043 0.0821 | 0.2155 0.1287 0.1415
CNNIQA [Kang et al. (2014] 05189 03642 0.5318 | 04618 03221 04587 | 0.4601 03203 0.4667 | 0.5441 03770 05618 | 0.6407 0.4579 0.6468
NR | PBCNNJZ 0.6045 04303 0.6094 | 05325 03687 0.5341 | 0.5419 03761 05441 | 0.6399 0.4593 0.6408 | 0.6565 0.4653 0.6609
QualiClip! 0.6463 0.4619 0.6643 | 0.5387 0.3768 0.5384 | 0.5589 03912 0.5518 | 0.5428 03870 0.5490 | 0.7208 0.5240 0.7175
TOPIQ-NR|Chen et al|{2024a] | 0.7496 0.5549 0.7606 | 0.5981 0.4253 0.6020 | 0.7036 0.5100 0.6960 | 0.7791 0.5804 0.7810 | 0.8269 0.6341 0.8211

Dimension Mild Distortion Medium Distortion Severe Distortion Real-world Simulation
Group Metric SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT |SRCCT KRCCP PLCCT
03518 02396 04935 | 02292 0.1555 02175 | 0.1190 0.0806 0.1443 | 0.3794 02575 03767 | 0.2617 0.1778 0.3905
03778 0.2620 02581 | 0.1993 0.1333  0.1617 | 0.2387 0.1604 02754 | 0.5405 03754 0.4848 | 0.5336 0.3724 0.4990
Zero 02088 0.1334  0.1502 | 0.1503 0.0967 0.1168 | 0.1525 0.1017 0.1205 | 0.4143 02798 03907 | 0.0636 0.0421 0.0423
03541 0.2403 0.3097 | 0.4090 0.2873 0.3899 | 0.3258 0.2206 0.3723 | 0.6179 0.4302 0.5639 | 0.6565 0.4690 0.6333
0.1699 0.1132 0.1375 | 0.2799 0.1908 0.2287 | 0.0618 0.0425 0.1506 | 0.4167 0.2753 0.3820 | 0.4846 0.3285 04711
o 77066837 04831 7 0.6932 [ 0.6653 0.4821 0.7130 | 07218~ 05308  0.7278 | 0.8138 ~0.6223 0.8270 | 0.7515 0.5583  0.7520
05733 04060 0.5743 | 0.6610 0.4841 0.6979 | 0.6909 05024 0.6867 | 0.7227 0.5303 0.7311 | 0.7676 0.5769 0.7769
FR 04564 03191 04507 | 0.2343 0.1604 0.2735 | 0.3177 02155 03731 | 0.6443 0.4551 0.6394 | 0.6408 0.4589 0.6560
03004 0.1986 02102 | 0.4208 0.2884 04581 | 0.4672 03220 04719 | 03605 0.2429 03999 | 0.4665 03181 0.4442
0.7128 0.5257 07626 | 0.7238 0.5371 0.7581 | 0.7355 0.5434 0.7434 | 0.8104 0.6210 0.8250 | 0.7815 0.5910 0.8053
" 7 [CLIPIQA|Wang et al.[(2023] | 0.0848 ~ 0.0563  0.0568 | 0.0413 ~0.0300 0.0779 | 02198  0.1509 ~ 0.2150 [ 0.1576 ~0.1040 0.1293 | 0.1298  0.0863 0.1093
CNNIQA Kang et al. (2014} 03766 0.2607 0.3847 | 0.3367 0.2314 0.3907 | 0.3921 0.2696 0.3957 | 0.5651 0.3967 0.5875 | 0.5835 04117 0.5901
NR ang et : 04488 03056 0.4309 | 0.4283  0.2994 0.4699 | 0.4622 0.3195 0.4459 | 0.6728 0.4833 0.6806 | 0.6468 0.4613 0.6345
04941 0.3425 04794 | 0.4390 03094 04607 | 0.3752 02633 03917 | 0.6712 0.4882 0.6952 | 0.6308 0.4468 0.6292
0.7035 0.5164 07263 | 0.7174 0.5312 0.7374 | 07227 05312 0.7310 | 0.7995 0.6072 0.8148 | 0.7697 0.5771 0.7777

Dimension Dis-level-1 Dis-level-2 Dis-level-3 Dis-level-4 Dis-level-5
Group Metric SRCCT KRCCT PLCCT|SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT | SRCCT KRCCP PLCCT | SRCCT KRCCT PLCCT
PSNR 02932 0.1987 0.3856 | 0.2322 0.1532 0.2837 | 0.2215 0.1484 02749 | 02379 0.1591 02642 | 0.3575 02444 03571
SSIM 04397 03035 04038 | 0.4638 0.3198 0.4208 | 0.4865 03329 0.4446 | 0.4927 03383 0.4745 | 0.5558 0.3832 0.5327
Zero | Brisque|Mittal et al| 02650 0.1786 02472 | 0.2446 0.1618 0.2443 | 0.3516 0.2346 0.3033 | 02928 0.1933 0.2604 | 0.3632 0.2434 0.3269
Q-Align|Wu et al. (2024 0.5049 0.3488 0.4924 | 0.5534 0.3865 0.4951 | 0.5609 0.3876 0.5132 | 0.5753 0.4015 0.5124 | 0.5567 0.3818 0.5275
Q-Align+ 02909 0.1923 0.2210 | 04074 0.2763 0.3862 03145 | 0.3274  0.2200 0.2694
"~ |AHIQ[Lao et al.|(2022) T 77074537 05531 0.7722 | 07610 0.5671 0.7741 [ 0.7486 0.5518 0.7692 | 0.7655 05698 0.7820
CKDN|Zheng et al (2 0.6253 04513 0.6806 | 0.6612 0.4785 0.6888 | 0.7036 05106 0.7124 | 0.7030 0.5131 07035 | 0.7194 0.5271 0.7290
FR | DISTS |Ding et al.[{2020) 05659 03962 0.5710 | 0.5774 04079 05753 | 0.5611 03903 0.5636 | 0.5431 03766 0.5727 | 0.5834 04015 0.5967
LPIPS|Zhang et al. (2018a| 02736 0.1810 02813 | 0.3723 0.2550 04003 | 0.4354 0.2927 04208 | 0.4619 03156 0.4567 | 0.4824 03322 0.4526
TOPIQ-FR Chen et al. ( 0.7861  0.5939  0.8034 | 0.7765 0.5828 0.8012 | 0.7741 0.5809 0.7871 | 0.7629 0.5682 0.7773 | 0.7763 0.5766 0.7873
" |CLIPIQAWang et al.[(2023] "~ | 0.1541  0.1054  0.0822 [ 0.1204 0.0772 0.0635 | 0.1291 0.0831 0.0726 | 0.1564 0.1041 0.1129 | 0.1130 0.0732  0.0846
CNNIQA Kang et al. (2014] 04871 03362 0.5207 | 0.5215 0.3669 0.5522 | 0.5441 03835 0.5710 | 0.5433 03787 0.5570 | 0.6083 04274 0.6078
NR |DBCNN[Zhang 0.5982 04225 0.6213 | 0.6194 04431 06210 | 0.6235 0.4386 0.6146 | 0.6189 04394 0.6163 | 0.6141 0.4335 0.6282
QualiClip|Agnolucci et al 05805 04137 0.5787 | 0.6029 04342 0.6389 | 0.6044 04372 0.6101 | 0.6333 0.4509 0.6469 | 0.6030 0.4265 0.6399
TOPIQ-NR|Chen et al.|(2024a] | 0.7547 0.5626 0.7781 | 0.7868 0.5937 0.7989 | 0.7566 0.5601 0.7695 | 0.7480 0.5532 0.7658 | 0.7529 0.5558 0.7670

with HVS in traditional human-oriented IQA tasks, which is sufficiently excellent, but they cannot
adapt to the database we proposed, indicating that IQA for Embodied Al needs further research. For
distortion sensitivity, the Decision scores are high under mild distortions, with small internal gaps and
difficulty in prediction; whereas when the distortion becomes severe, the Distortion scores fluctuate
more, resulting in a higher SRCC. For Perspective and Sim2Real, most IQA methods perform better
on third-person, real images. Therefore, in Embodied scenarios, more content captured by the robotic
arm itself or from simulation software should be used. For the five absolute distortion levels, the
performance of IQA methods does not change much. This further proves that dividing distortion
levels based on HVS is insufficient, and the distortion levels of Embodied Al should be divided by
the JND of RVS itself, as we have done in the Embodied-IQA database. Comparing various IQA
methods longitudinally, FR is superior to NR in most cases, with TOPIQ maintaining the leading
performance in most cases, with an SRCC of about 0.75, which still needs improvement compared to
human-oriented IQA. It is worth mentioning that the main parameters of some methods have been
frozen based on HVS, such as LPIPS, DISTS, and CLIPIQA. Thus, although after training, they are
even worse than the zero-shot baseline. This further reflects the gap between HVS and RVS, implying
the significance of proposing the Embodied IQA task.

5.3 CROSS DATABASE VALIDATION

To further analyze the performance of RVS-oriented IQA on HVS/MVS, we conducted cross-
validation using Embodied-IQA VLA Decision score for training, VLM Cognition score, and two of
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Method

LIVE

TID

VLM

SRCCt PLCCH

SRCCT PLCCt

SRCCT PLCCt

0.5746  0.6402
0.5154 0.5379
0.7074 0.7075
0.5449 0.5713

0.2477 0.1147
0.2352 0.2316
0.7106 0.7570
0.3025 0.2708

0.7240 0.6902
0.6977 0.6798
0.4307 0.2102
0.3430 0.3340

AHIQ (Lao et al. 2022
CKDN (Zheng et al.| 2021}
DISTS (Ding et al. 2020

LPIPS (Zhang et al.12018a
TOPIQ-FR (Chen et al.2024a;
"CLIPIQA (Wang et al.|2023]
CNNIQA (Kang et al.[2014]
DBCNN (Zhang et al.{2018b)
QualiClip (Agnolucci et al.|[2025
TOPIQ-NR (Chen et al.||2024a;

Real-world Euclidean Score
Real-world Euclidean Score

0.5253 0.5577 | 0.2183 0.1291 | 0.6806 0.6357

0 1 2 3 4 5
VLA Inference (SRCC: 0.671)

(¢) VLA & Real-world

0 1 2 3 4 5
VLM Inference (SRCC: 0.448)

(a) Cross Validation (b) VLM & Real-world

Figure 8: Cross database validation on Cognition and human-oriented score, and the correlation
between VLM&VLA and Real-world. % denotes distortions with greater Real-world impact.
T ¥ .= i N Y

I
-\

Task: Pull out a book from the shelf.

Task: Place the wooden block outside.
Dis: Noise i Result: 0.8cm

Task: Pick up the red block.

Task: Twist tap on the board.
Dis: Compression ﬁa Result: 3.2cm

Dis: Others /@ Result: 0.0cm Dis: Spatial@ Result: 42.8cm A\

Figure 9: Positive/Negative cases of real-world experiment. The score of successful examples is 100,
and deduct the Euclidean distance for failed examples. Triggering interruption will be scored as 0.

the most commonly human-oriented databases, LIVE2008 |Moorthy & Bovik| (2011} and TID2013
Ponomarenko et al| (2015) for validation, employing the same parameter settings as Section [5.1]
According to the results in Table[§](a), IQA methods fine-tuned on Embodied Al data lose certain
human-oriented evaluation capabilities, where the SRCC is even lower than 0.4 in the LIVE database.
Fortunately, the IQA model trained with VLA annotations can also predict VLM scores, and the
SRCC of AHIQ can reach 0.7, revealing the internal connection between Cognition and Decision.

5.4 REAL-WORLD EXPERIMENT

Since Embodied Al is ultimately applied in the Real-world, we compare Execution with Cog-
nition/Decision to link External and Internal Reality, thereby proving the reliability of the Sm+
annotations in the Embodied-IQA database. Specifically, we selected 5 VLA that support multi-step
output and executed the 10 tasks in Section[3.2on 30 types of distorted images. Note that among the
five difficulty levels in Perception, we only executed the simplest one to ensure that the execution
result of the reference image is correct. Thus, we ensured that the reason for execution failure came
from the added distortion, not the image itself. Figure [9]shows examples of successful execution,
results deviating from the ground truth, and emergency stops triggered by collisions with the table.
We calculate the average Execution score under 30 distortion types and compare it with the Cognition
and Decision scores, as shown in Figure|§| (b)(c), where findings are summarized as follows:

Cognition VS Execution: The SRCC of VLM results with the real world is less than 0.5. This
corroborates the necessity of using VLA as subjects in the Embodied IQA task beyond VLM.
Decision VS Execution: The SRCC of VLA results with the real world exceeds 0.6, indicating that
Decision can represent Execution to some extent. However, this correlation is still not high enough,
proving that certain real-world experiments are still indispensable for Embodied AI development.
Perception VS Cognition&Decision: Existing quality metrics have initially demonstrated the ability
to handle Embodied IQA tasks, but there is still a gap compared to the traditional human-oriented
paradigm. More advanced metrics should be developed in the upcoming Embodied Al era.

6 CONCLUSION

In this paper, we extend the application of IQA from a traditional human-oriented paradigm to Em-
bodied Al To study which distortions have a negative impact on Embodied Al, we built a Perception-
Cognition-Decision-Execution pipeline based on Mertonian Law and established a database for
Embodied subjective preferences. Experiments show that more advanced IQA methods are needed
to identify quality degradation for Embodied AI. We sincerely hope this Embodied IQA task can
promote the application of Robotic Intelligence under complex distortions in the Real-world.
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A  STATEMENT

[LLM Usage]: LLM is applied to aid and polish writing, including grammar, rhetoric, and proper
citation format. No scientific conclusions, experimental designs, or technical contributions are
generated by LLM.

[Ethics statement]: This article covers Embodied AI’s four steps: perception, cognition, decision,
and execution. Most experiments focus on machine intelligence and humans are involved only in the
perception annotation phases. We obtained consent from each participant before data collection and
ensured that the experimental procedures adhered to the Declaration of Helsinki. For Embodied Al
execution, we implemented an emergency stop mechanism for the robotic arm to ensure compliance
with the Three AI Laws (do no harm to humans/the environment/itself).

[Reproducibility]: We will release all quality-related issue for non-commercial use, including the
quality score from each VLMs/VLAs, the fidelity of position/rotation/state, and the overall score.

B LIMITATION & BROADER IMPACT

[Limitation 1]: As the first Embodied IQA work, we simplify the Perception to vision and Execution
to robotic arms. Since the visual signals processed by humans account for 80% of the total signals,
while upper limb movements account for 50% of all movements. Considering the consistency between
humans and machines and the current limitations of Embodied Al, our simplification is reasonable.
This will not affect the current main applications of Embodied Al, such as industrial assembly and
home services. After the future vision-tactile fusion (Perception), quadruped robot dog (Execution),
and other task scenarios are improved, we will further update the quality assessment data.

[Limitation 2]: The scale of our Real-world data is relatively small compared to Cognition and
Decision. In the VLM and VLA steps, we already have the largest amount of data (millions) compared
to previous IQA work. This is because the high cost of real machine data requires a lot of manpower
in the site layout and verification stages. Although 1,500 annotation samples are not enough as quality
labels, they are sufficient to verify the Sim2Real consistency of Cognition-Execution and Decision-
Execution. With the further development of Embodied Al, we believe an automated Real-world
pipeline will be developed, from which we will expand the scale of Execution labels.

[Broader Impact] (Positive): IQA can expand the application scenarios of Embodied Al, extending
it from the in-lab environment to distortions in the Real-world. We collect the subjective preferences
of Embodied Al, thus objectively judge the ‘utility’ of images before executing specific tasks. In this
way, distorted images such as jitter and blur can be effectively filtered. Such quality indicators can be
used for all visual applications for Embodied Al, such as video coding, super-resolution, defogging,
denoising, etc. Considering that the amount of visual signals consumed by machines has exceeded
humans since 2023, visual quality indicators for Embodied Al can fill this research gap.

[Broader Impact] (Negative): The general use of visual quality indicators in Embodied Al may affect
traditional human-oriented tasks. Considering that humans, VLM (Cognition), and VLA (Decision)
have different preferences, only evaluating the preferences of VLM and VLA will inevitably lead to
scores that are not relevant to humans. Therefore, in future international protocols, it is recommended
to integrate the three IQA paradigms for humans, VLM, and VLA together, and select appropriate
quality indicators based on the user end.

C ROBOTICS SETTINGS

This section provides a detailed derivation of the forward and inverse kinematics for the Universal
Robots (URS5), a 6-DoF collaborative robot. The Denavit-Hartenberg (D-H) convention is used to
establish the kinematic model.

In the experiments part, the initial pose is obtained through forward kinematics by recording the
initial rotational angles of the six joints and calculating the end-effector’s pose relative to the base
coordinate frame. The incremental pose output by the VLA is then multiplied with the initial pose to
derive the step-by-step poses. The robotic arm’s actual motion is resolved via inverse kinematics,
which computes the required rotational angles for each joint motor to achieve the target configuration.
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Table 3: Parameter settings of Robotic arm URS D-H. The specific action depends on 6 frames.
Joint Frame i  «;_q (rad) a;—1 (m) d; (m) 6; (rad)

1 0 0 dy o;
2 /2 0 0 03
3 0 a9 0 09§
4 0 as dy 0;
5 /2 0 ds 0z
6 —7/2 0 dg 0;

The D-H parameters define the geometry of the robot manipulator by establishing a coordinate frame
{4} attached to each link i. The transformation from frame {i — 1} to frame {4}, denoted A: !, is
described by four parameters associated with link ¢ — 1 and joint ¢:

* 0;: Joint Angle - the rotation about the z;_; axis, from x;_1 to z;. For a revolute joint, 6; is
the joint variable.

* d;: Link Offset - the distance along the z;_; axis from the origin of frame {i — 1} to the
intersection of the z;_; axis with the x; axis. For a prismatic joint, d; is the joint variable.

* a,;_1: Link Length - the distance along the z; axis (which is the common normal between
z;—1 and z;) from the intersection of z;_; and x; axis to the origin of frame {i}.

* «;_1: Link Twist - the angle about the x; axis, from z;_; to z;.
The URS D-H parameters used in this paper shown in Table 3} Where a5, ags are physical link lengths

associated with links 2 and 3 respectively (used as a;_; parameters in the table for joints 3 and 4),
and dy, da, ds, dg are link offsets. The 6 are the joint variables.

Typical URS parameter values (example, signs depend on coordinate frame choices): d; = 0.089159
m, as = 0.42500 m (often negative in some tables: —0.42500), as = 0.39225 m (often negative:
—0.39225), dg = 0.10915 m, d5 = 0.09465 m, dg = 0.0823 m.

D FORWARD KINEMATICS

The standard D-H transformation matrix A}~ from frame {i — 1} to frame {4} is defined as a product
of four basic transformations:

ATt =R, (6;)Tr,(di) Try(ai—1)Ra (1), (D
cos(f;) —sin(6;)cos(a;—1)  sin(6;)sin(a;—1)  a;—1 cos(6;)
Qi1 sin(6;)  cos(#;)cos(a;—1) —cos(6;)sin(a;—1) a;—1sin(6;) )
i 0 sin(@;—1) cos(@;—1) d; ) @
0 0 0 1

where Tr(-) and R(-) denote the trajectory and rotation matrix projected on a certain axis. For
simplicity, the following symbols will be defined in the subsequent sections: ¢; = cos(6;), s; =
sin(6;). ¢;; = cos(b; + 60;), si; = sin(6; + 0;). Using the D-H parameters from Table [3| the
individual transformation matrix A%~ for robotic manipulators are:

cos(f;) —sin(61) 0 O

o _ [sin(@y) cos(fy) 0 O
Al - 0 0 1 dl ) (3)

0 0 0 1

cos(f2) 0 sin(fy) O

1_ | sin(d2) 0 —cos(f2) O
A2 - 0 1 0 01"’ (4)

0 0 0 1
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‘ Robotic Manipulation Task Annotation Interface : £3|§ Robotic Manipulation Task Annotation Interface x|

TASKS (Progressive Difficulty): IMAGE: TASKS (Progressive Difficulty):

Task 1: Touch the cup on the table. Task 1: Touch the cup on the table.

Task 2: Twist the black pen vertically. Task 2: Twist the black pen vertically.

Task 3: Pull the black bracket on the table.

Task 3: Pull the black bracket on the table.

Task 4: Move the metal cup to the yellow board.

-
| GUIDELINES: ‘ GUIDELINES: Task 5: Place the black pen inside the metal cup.
| o i

# Each task is independent. S # Each task is independent. "
1 # Use short and clear sentences. Type here to enter task 4: # Use short and clear sentences. Type here to modify task:

# Difficulty should increase progres- # Difficulty should increase progres- | pjace the black pen inside the metal cup.

sively. sively.
| # Specify all object names clearly. # Specify all object names clearly.
Report: Display || NsFw Offensive Move: | Up Modfy || Down
| << Previous ‘ Next >> ‘ ‘ << Previous ‘ ‘ Next >> ‘
|
(a) Annotation (b) Verification

Figure 10: Human annotation and verification Interface. Subjects will cyclically define five tasks
with different contents and increasing difficulty, and submit them to robotic experts for verification.

cos(f3) —sin(f3) 0 agcos(f3)
o |sin(f3) cos(f3) 0 agsin(fz)
AS - 0 0 1 0 ’ (5)
0 0 0 1
cos(fy) —sin(6y) 0 azcos(fy)
3 | sin(fg) cos(fy) 0 azsin(f4)
A= 0 1 d | ©)
0 0 0 1
cos(f5) 0 sin(d5) O
4 |sin(@5) 0 —cos(f5) O
AS - 0 1 0 s |0 (7)
0 0 0 1
cos(fg) 0 —sin(fg) O
5 | sin(@g) 0  cos(ds) O
A=1"0" 1 0 d| ®)
0 0 0 1

The total transformation matrix 7¢ from the base frame {0} to the end-effector frame {6} is:

Ng Sx Gz Pgo

RS 6 Ny Sy Ay P
T6 — A9AL A2 43 A% 45 — 0o Po) _ y Sy Yy Py 9
0 141243341445 O1x3 1 ng S, ay P’ ©)
0O 0 0 1
where RS = [n,s,a] refers to the rotation matrix part of 79, where n = [ng,ny,n.|", s =

(82, 8y, 8:]7, and a = [a;,a,,a,]" are column vectors representing the x,y, z axes of frame {6}

expressed in frame {0}, respectively. p = [p., py, p-]" represents the translation vector part of T¢,
namely the position of the origin of frame {6} expressed in frame {0}.

E INVERSE KINEMATICS

The objective of Inverse Kinematics (IK) is to determine the set of joint angles (61, ...,6) that
achieve a desired end-effector pose 7¢. The URS possesses a spherical wrist (axes of joints 4, 5, and
6 intersect at a common point, the wrist center), which allows for a decoupled analytical solution.
First, the position of the wrist center is determined, which allows solving for the first three joints.
Then, the orientation of the end-effector is used to solve for the remaining three wrist joints.
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v

Real Simulation First Third Mechanical Daily Electronic Tool  Others Home IndustrialSoftware Lab  Others
Sim2Real Perspective Main Object Background

Figure 11: Correlation between the general Cognition score and the 3 dimensions from VLMs, and the
score distribution in Sim2Real, First/Third perspectives, Main object, and Background sub-categories.

E.1 CALCULATION OF THE WRIST CENTER POINT

The wrist center point (WCP), py., is typically defined as the origin of frame {5}. Its position can be
found by translating from the end-effector origin, p$, backwards along the approach vector a (the
zg-axis expressed in frame {0}) by a distance dg:

G G O x Qg DPx — dﬁaI
Pwe=Dg— Ry | O | =|py| —ds|ay]| =Dy — d6ay s (10)
dﬁ Dz Ay Dz — dﬁa'z
where pue = (Twe, Ywe, zwc)T means position vector of the wrist center point in frame {0}.

E.2 SOLVING FOR BASE JOINTS

The y-coordinate of p,,. when expressed in frame {1}, denoted p}ﬂc)y, can be shown to be d4 + ds
for this specific D-H parameterization (where p,,. is the origin of frame {5}). We have p}wy =
—Zaye SIN(61) + Ywe cos(61) = dg + ds. This equation can be solved for 6;:

01 = atan2(Yuwe, Twe) — atan2(dy + ds, o1 \/x?w +y2. — (da +ds)?), 11

where 01 = +1 denotes two possible solutions for 6;. Function atan2(-, -) transforms two Cartesian
coordinates to polar. If the term under the square root is negative, the target p,,. is unreachable.

E.3 SOLVING FOR ELBOW JOINTS

With 6; known, transform p,,. into frame {1}. Let K, and K, be coordinates of p,,. relevant
for the planar geometry of links 2 and 3: K, = zy.co8(01) + ywesin(br) K, = zye — di.
From the geometry of the first three links (considering a; = /2 which introduces a rotation
making z; horizontal in the new projected plane if 05 = 0): K, = ag cos(62) + az cos(bs + 03)
K. = —aysin(fy) — agsin(fy + 03). Squaring and adding these two equations yields: K2 + K2 =
a3 + a3 + 2azas cos(3). This allows solving for 65:

2 2,2 2
K+ K7 — a3 —aj

2(12 as

cos(f3) = (12)

where o3 = £1 corresponds to up/down configurations. From sin(f3) = o34/1 — cos(f3)? we have:
03 = atan2(sin(fs), cos(fs3)). (13)

To solve for 05, rearrange the equations for K, and K ,: Let k1 = as+as cos(f3) and ko = as sin(63).
Then K, = ky cos(2) — kasin(f2) and K, = —k; sin(fs) — ko cos(62). Solving this system for
sin(fy) and cos(0z): sin(f2) = — (k1 K, + ko K,.)/ (k3 + k3) cos(02) = (k1 K, — ko K,/ (k3 + k3)
(Note: k% + k3 = K2 + K?2):

02 = atan?(f(lez + kQKf), lez — szz). (14)
Alternatively, a more robust form is often ; = atan2(—K,, K,) — atan2(ks, k1).
E.4 SOLVING FOR WRIST JOINTS
Once 01,64, 03 are known, the rotation matrix Rj from the base to frame {3} can be computed:

R} = (A9ALA2), ;. The rotation matrix from frame {3} to frame {6} is then RS = (R3)TRS. Let
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Table 4: Using 15 advanced IQA metrics to evaluate the Cognition score from VLMs, including
zero-shot, FR, and NR metrics. [Keys: Best/Second best in group; Baseline; Lower than baseline.]

Dimension Precision Recall Semantic First Perspective Third Perspective
Group Metric SRCCT KRCC{ PLCCT | SRCCT KRCCP PLCCT|SRCCT KRCCT PLCCT|SRCCT KRCCT PLCCT |SRCCT KRCCT PLCCT
03432 02339 03661 | 0.3186 02168 03369 | 0.3257 02225 03520 | 04142 02831 04393 | 03605 02477 04140
0.5809 0.4055 05561 | 0.5558 03871 05241 | 0.5798 0.4057 05521 | 0.6244 0.4383 0.5805 | 0.5849 0.4094 0.5438
03527 02380 03342 | 0.3537 02412 03319 | 0.3596 0.2442 03375 | 0.3232 02187 02987 | 0.3751 02545 0.3554
07045 0.5067 0.6721 | 0.6755 0.4798 0.6278 | 0.7040 0.5058 0.6687 | 0.6622 0.4767 0.6214 | 0.7321 0.5349 0.6970
04697 03184 04049 | 04524 03063 03623 | 04722 03202 03958 | 0.4687 03188 04263 | 0.5082 03421 04351
0.7941  0.5930 0.7901 3 0.5976  0.7919 | 0.8035 0.6039 0.8015 | 0.8288 0.6342 0.8292
0.7461  0.5460 0.7444 | 0.7387 0.5380 0.7332 | 0.7516 05508 0.7470 | 0.7556 0.5587 0.7547 | 0.7836 0.5808 0.7810
07017 05128 0.7052 | 0.6887 0.5010 0.6863 | 0.7080 0.5188 0.7096 | 0.7307 0.5424 0.7299 | 0.7535 05584 0.7530
0.6681 0.4785 0.6165 | 0.6463 04610 0.5975 | 0.6714 04812 0.6179 | 0.6797 0.4929 0.6292 | 0.6893 0.5008 0.6485
0.8209 0.6241 0.8194 | 0.8160 0.6170 0.8126 | 0.8326 0.6363 0.8289 | 0.7997 0.5967 0.7932 | 0.8521 0.6574 0.8462
CLIPIQA[Wang et al.[(2023] | 03111 ~ 02101 03185 | 0.3013 0.2038  0.3141 | 03167 02156 03257 | 0.1748 0.1198 0.1778 | 0.3889 0.2620 0.3821
CNNIQA |Kang et al. (2014 04864 03359 04818 | 0.4793 03312 04761 | 04880 03368 04861 | 04719 03247 04735 | 0.5336 03744 0.5431
DBCNN|Zhang et al. 0.5687 03921 05553 | 0.5349 03650 05183 | 0.5596 03835 0.5453 | 0.5341 03578 0.5346 | 0.6622 04699 0.6489
QualiCliA; i ctal. 0.7416 0.5425 07389 | 0.7399 0.5399 0.7383 | 0.7524 0.5514 0.7499 | 0.6960 0.5022 0.6913 | 0.7864 0.5832 0.7711
TOPIQ-NR|Chen et al.|{2024a] | 0.7941 05933 0.7897 | 0.7818 0.5812 0.7761 | 0.8031 0.6039 0.7958 | 0.7854 0.5846 0.7819 | 0.8512 0.6577 0.8449

Zero

FR

NR

Di i Mild Distortion Medium Distortion Severe Distortion Real-world Simulation

Group Metric SRCCT KRCC{ PLCCT |SRCCT KRCCP PLCCT|SRCCT KRCCT PLCCT|SRCCT KRCCT PLCCT |SRCCT KRCCT PLCCT
0.2350  0.1588 03725 | 0.1122 0.0751 0.1527 | 0.0811 0.0566 0.0763 | 0.4390 03056 04575 | 03613 02466 0.3945
03263 0.2229 03133 | 0.1434 00972 0.1080 | 0.2102 0.1375 02402 | 0.6319 04507 0.5916 | 0.6645 0.4688 0.6449
0.1525 0.1205 0.1017 | 0.1503 0.1168 0.0967 | 0.2088 0.1502 0.1334 | 0.4143 03907 02798 | 0.0636 0.0423 0.0421
0.5092 03572 0.4793 | 0.4491 03071 0.4360 | 0.4056 0.2775 0.5047 | 0.7764 05739 0.7475 | 0.6642 0.4648 0.6319
0.2995 02006 0.2657 | 0.3422 02268 0.2990 | 0.2154 0.1440 0.2240 | 0.5643 03898 0.5316 | 0.4804 03302 0.4709
1o 42 [ 05538 0.3895 0.5644 | 0.5580 0.3968  0.6064 | 0.8293 0.6339 0.8214 | 0.8138° 0.6117 0.8041
0.5497 03846 05672 | 0.5539 03872 05537 | 0.5087 03533 0.5287 | 0.7480 0.5494 0.7457 | 0.7706 0.5651 0.7727
0.5376 03796 05179 | 0.2957 0.2030 02894 | 0.3258 0.2215 03657 | 0.7606 0.5695 0.7566 | 0.7675 0.5686 0.7677
04635 03229 04285 | 0.3876 02661 03700 | 0.3168 02148 03225 | 0.7128 05190 0.6493 | 0.6693 0.4825 0.6030
0.6755 0.4873 0.6661 | 0.6152 0.4355 0.6194 | 0.5798 0.4070 0.6125 | 0.8392 0.6398 0.8232 | 0.8449 0.6501 0.8442
CLIPIQA [Wang et al.[(2023] | 0.1542 ~ 0.1031 ~0.1350 | 0.0375 0.0262 0.0319 | 0.0974 0.0645 0.1245 [ 0.3944 0.2624 0.3853 | 0.6178 0.4305 0.5342
CNNIQA |Kang et al. (2014} 0.2697 0.1797 02238 | 0.1948 0.1310 0.1801 | 0.2033 0.1382 0.1871 | 0.5317 03732 0.5419 | 0.5280 03659 0.5380
03227 0.2200 03453 | 0.2421 0.1591 02323 | 0.2218 0.1480 0.2486 | 0.6688 0.4743 0.6579 | 0.6285 0.4306 0.5990
05795 0.4074 0.5388 | 0.4769 0.3258 0.4673 | 0.4846 0.3371 0.5112 | 0.7847 0.5849 0.7739 | 0.7691 0.5667 0.7420
0.6443  0.4550 0.6295 | 0.6006 0.4248 0.5996 | 0.5703 0.4014 0.6153 | 0.8403 0.6454 0.8320 | 0.8322 0.6307 0.8241

Dis-level-1 Dis-level-2 Dis-level-3 Dis-level-4 Dis-level-5

Group Metric SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT|SRCCT KRCCT PLCCT | SRCCT KRCCT PLCCT
0.2405 0.1665 03445 | 0.2447 0.1644 02930 | 0.2261 0.1512 02695 | 0.2065 0.1357 02323 | 04268 02894 0.4473
0.5085 03520 04753 | 0.4888 03380 0.4547 | 0.5601 03878 0.5299 | 0.5646 03852 0.5450 | 0.6977 0.4997 0.6846
0.1471 00971 0.1276 | 0.2153 0.1466 0.2050 | 0.3106 0.2093 02767 | 0.3112 0.2058 02929 | 0.4560 03109 0.4301
0.6748  0.4887 0.6579 | 0.6826 0.4943 0.6539 | 0.7060 0.5079 0.6656 | 0.7316 0.5250 0.6937 | 0.7055 0.5040 0.6775
04598 03136 04055 | 0.5730 0.5013 | 0.5487 03758 0.4988 | 0.5392 03684 0.5110 | 04769 0.3238 0.4140
[0.7917 05935 0.78437] 07462 0.5506 0.7434 | 0.7828 0.5810 0.7761 | 0.8124  0.6122 0.8149 ~
0.6883  0.5044 07448 | 07236 0.5217 07186 | 0.7024 05085 0.7073 | 0.6989 0.5030 0.6868 | 0.6997 0.5076 0.7045
0.6557 04749 0.6641 | 0.6385 0.4582 0.6488 | 0.6720 0.4856 0.6686 | 0.6875 0.4945 0.7040 | 0.7541 05540 0.7571
0.6174 04401 0.6323 | 0.6742 04853 0.6405 | 0.6098 0.4374 0.5895 | 0.6188 0.4358 0.5678 | 0.6842 0.4844 0.6248
0.7876 0.5949 0.8192 | 0.8030 0.6011 0.8001 | 0.7944 0.5941 0.7898 | 0.8161 0.6111 0.8051 | 0.8084 0.6033 0.8160
CLIPIQA Wang et al.[(2023] | 02597 ~0.1727 02715 [ 0.3258 0.2201 0.3295 | 0.2608 0.1768 0.2473 [ 0.3331 ~0.2252 0.3480 | 0.4283 0.2921 0.4228
CNNIQA [Kang et al. (2014 0.3490 0.2356 03572 | 0.3909 02676 03737 | 0.5042 03497 0.4942 | 0.5044 03412 05092 | 0.6176 0.4311 0.6028
NR |DBCNN|Zhang etal. (2018b] | 05077 03527 0.5513 | 0.5553 03855 0.5580 | 0.6177 04259 0.6008 | 0.6373 04404 06217 | 0.6472 04496 0.6435
QualiClifAgnolucci et al {2025} | 07072 0.5115 07188 | 0.7337 05366 0.7187 | 0.7027 0.5048 0.6866 | 0.7602 0.5537 0.7493 | 0.7352 0.5418 0.7379
TOPIQ-NR|Chen et al.|[2024a] | 0.7788 05818 0.8044 | 0.7974 0.6014 0.7993 | 0.7966 0.6011 0.7911 | 0.8071 0.6035 0.7967 | 0.7965 0.5952 0.8027

Zero

FR

NR

Zero

FR

RS =[r! ;] The matrix RS can also be expressed as the product of rotations for joints 4, 5, 6 using
their D-H parameters: RS = R, (04)Ru(a3)R.(05) R, ()R (06) Ry (5). For the URS D-H
parameters in Table RS =R.(04)R.(05)R.(7/2)R..(05)R,.(—7/2). The symbolic product is:

C4C5C6 — S485C6 C4S5 + S4C5 C4C586 — S455S6
Rg = | s4C5C6 + C485C S4S5 — C4C5  S4C5S¢ + C4S5S6 | . (15)
Sg 0 —Cg

By comparing elements of the numerically computed RS = [r! j] with this symbolic form:

1. r4, must be 0. If the computed ((R3)T R§)s2 is significantly non-zero, it indicates no
solution for this wrist structure or a modeling error.

2. From 7%, = sg and r4y = —cg:
05 = atan2(rfyy, —rhs). (16)

This provides a unique solution for 6g in (—, 7]. Another solution is 85 & 7 (if sg, cg are
flipped), but usually we seek solutions within joint limits.

3. From r{y = 485 + S4¢5 = S445 and 75y = 8485 — C4C5 = —Cyt5:
/ /
04 + 05 = atan2(riy, —75s). (17)

Consider the movement of these two elements as a whole, we have ¢45 = 04 + 65.
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Figure 12: Low-level feature distribution of MPD, normalized and visualized in 30 corruption subsets.
Different colors denote , Contrast, Chrominance, , and Spatial Information.

4. To find 05 and 6, separately: s5 = €47+ S4Thy = Ca4Sp,s + Sa(—Cp,y) = sin(@as —04) =
Sinfs. c5 = SaTy — CaThy = SaSp,; — Ca(—Cp,;) = €08(Pas — 04) = cos 5. A common
method to solve for 65 (wrist roll) for many spherical wrists involves:

/ !/ S4
Tt T2y,

05 = o5 arccos | ————=—
S
co(ca — s422)

(18)

According to 85 we have 64 = ¢45 — 5. Thus all rotation angles can be retrieved.

Typically, URS has 8 unique inverse kinematics solutions (¢; = 1,03 = +1,05 = +£1 for the
choice of s5). Singularities (e.g., s5 = 0) lead to infinite solutions where 64 and 6g are coupled.

E.5 HANDLING SINGULARITIES

* Shoulder Singularity: Occurs if 22, + y2. — (d4 + d5)? = 0. The wrist center lies on the
zo axis (for dy + ds = 0) or a cylinder around zy. €7 is not uniquely defined.

* Elbow Singularity: Occurs if K2 + K? — a3 — a2 = +2aa3, meaning cos(f3) = +1
(arm fully extended or folded). sin(f3) = 0, so 63 solution becomes simpler but an infinite
number of 05 might exist if p,,. is on 2.

e Wrist Singularity: Occurs if s5 = 0 (i.e., 85 = 0 or 7). Axes z4 and z¢ align. In this case,
only the sum or difference (64 £ 6¢) can be determined according to Section D.4. One angle
can be chosen arbitrarily, and the other is then fixed.

F SUBJECTIVE PERCEPTION TASK DEFINITION

Before VLM and VLA inference, we organized five Ph. D. candidates as a panel to define five
downstream tasks for each image as shown in Figure[T0] To avoid bias from a single subject, each
sample is sent to five subjects in a random order to design specific tasks based on the image. The 1,230

samples to be annotated come from seven Robotic database [Khazatsky et al.| (2024); Kalashnikov et al.
(2018); [Kerr et al.| (2023)); [Depierre et al.| (2018); Tziafas et al.| (2023));|Gu et al.| (2023)); Rosete-Beas|
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4 | Distortion:
I Type: Block interpolotaion
: : Strength level: 5

Distortion:
Type: Block interpolotaion
Strength level: 2

|

VLA: CogACT j VLA: OpenVLA

Decision score: 4.93 |_De£ision_sc_0rs: 452 1
» Task: Pick up the green cup from the table. * Task: Place the red block on top of the gray block.
Reference result: Distorted result: Reference result: Distorted result:
Position: [-0.02, 0.00,-0.03] Position: [-0.02, 0.00,-0.04]| | Position: [-0.02,-0.01,-0.10] Position: [-0.02, 0.00,-0.05]
Rotation: [ 0.09,-0.01, 0.01] Rotation: [ 0.10,-0.01, 0.01]| | Rotation: [ 0.22, 0.05,-0.02] Rotation: [ 0.11, 0.00, 0.02]
State: 1.0 State: 1.0 State: 1 State: 1

I Distortion:
I Type: Block lost
: Strength level: 1

| Distortion: :
| I Type: Block exchange I
: Strength level: 4 |

|

I

1

1
__ | VLA: Octo
| Decision score: 2.47

1 .
1 VLA: Pi0
| Decision score: 2.98

« Task: Pick up the black object from the floor. * Task: Place the pen at the right side of the table.

Reference result: Distorted result: Reference result: Distorted result:

Position: [ 0.06,-0.09, 0.11] Position: [-0.08, 0.15,-0.14]| | Position: [ 0.01, 0.01, 0.05] Position: [-0.04, 0.01,-0.05]
Rotation: [ 0.51, 0.35, 0.15] Rotation: [ 0.19,-0.10, 0.07]| | Rotation: [ 0.24, 0.06, 0.11] Rotation: [-0.07,-0.21,-0.01]
State: 1 State: 1 State: 1.0 State: 0.0

Figure 13: Positive and negative cases. Slight distortion may significantly affect the inference result
of Embodied Al, while severe distortion may not. Emphasizing the significance of Embodied IQA.

(2022)), and are filtered according to the settings in the main text, to retain only high-quality
images. Subjects can see the previous tasks, and the new tasks they design need to be more difficult
than them and test different abilities (for example, if an object has been pushed, try not to grab it
again). Images with display errors, NSFW, or offensive content will be removed. After each image
has five task labels, a professional robotics engineer will adjust the specific samples. Based on
operational experience, the difficulty of the five tasks will be re-ranked, and unreasonable tasks will
be modified.

G COGNITION IQA EXPERIMENT

Due to space limitations in the main text, we mainly discuss the Decision step (specific to Embodied
Al), and the Cognition step (common to general machines) is listed in this section. First, the Cognition
score given by VLM is shown in Figure [IT] Compared with the three dimensions of Decision in
Figure[6] the correlation between the Cognition dimensions is higher, and the distribution difference
between different categories of data is smaller. This fully demonstrates the difference between the
reasoning mechanisms of VLM and VLA, and proves the rationality of separating these two steps.

Therefore, in addition to Decision, we also conducted IQA experiments on Cognition, following the
training/testing settings in the main text. Table[d] presents the performance of advanced quality metrics
on Cognition, compared with Decision in Table 2] current IQA metrics has better prediction results
on Cognition. Since the current IQA method is more related to VLM than VLA, the quality indicators
that general machines already have are initially available, but Embodied Al cannot be effectively
evaluated. It is worth mentioning that the zero-shot baseline method on Cognition can occasionally
even achieve an SRCC of more than 0.7, surpassing a number of fine-tuned methods; while the
baseline on Decision is significantly weaker. This is exactly why we separated the Robot Visual
System from the Machine Visual System and used the Mortonian system to model the Intelligent
System in four steps. In short, we hope that the Embodied IQA database can promote more complete
quality indicators, whether applied for VLM or VLA as subjects in Embodied tasks.

H LOW-LEVEL ATTRIBUTE DISTRIBUTION

Figure 2] shows the distribution of low-level features of all instances of Embodied IQA. After overall
regularization, 30 types of corruption are grouped and displayed. The features considered include
Luminance, Contrast, Chrominance, Blur, and Spatial Information. There are significant differences
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Figure 14: Visualization of 30 distortion types. Strength from left (Level 1) to right (Level 5).

in these low-level attributes for different corruptions. For example, in the first three blurry cases, the
blur curve is left-biased and becomes right-biased after sharpening. In general, similar corruption
categories will lead to similar results (such as five noise-related and four block-related). Two of
the denoises have the sharpest distributions; Color quantization, Grayscale quantization, Sharpness
change, and Contrast change are the most irregular. These findings deserve further exploration.
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I CASES STUDY

Figure|13|shows four typical examples from the Embodied IQA database (center-cropped for visu-
alization), including the VLA inference results for reference/distorted image pairs under different
distortions. The results in the upper left and lower right corners are as expected, the more severe the
distortion, the lower the score. However, for the distortion level 5 in the upper righ, since it does
not affect any objects on the desktop, the ‘gray block’ as the target of the task is not affected, so the
subjective score is as high as 4.52; on the contrary, although the distortion level in the lower left
corner is only 1, the ‘lost macro block’ happens to be the target object, so the VLA Position and
Rotation are greatly changed with a score only 2.98. Figure [[4]shows 30 distortion types at different
strength levels from 1 to 5. In the previous human-oriented scenario, the visual quality of different
corruptions is similar at the same strength. However, from the example above, the preference of
Embodied AI depends on the task, which significantly differs from traditional IQA paradigm. We
hope that our database can further inspire better quality metrics for Embodied Al

J DISCLAIMER

The main purpose of this study is to apply IQA to Embodied Al to promote its Real-world application,
rather than to praise or criticize any VLM, VLA, or IQA model. We evaluate image samples rather
than models. Lower scores do not mean that the performance of downstream VLM/VLA is poor, but
distortion has a greater impact on it; similarly, lower correlation coefficients do not mean defects
in the IQA method, but rather indicate the huge difference between Embodied and traditional IQA.
Considering the scale of the database, we will open it in several stages for non-commercial use, and
sincerely hope that future robotic-oriented IQA metrics can drive the development of Embodied Al.
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