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Human Visual System Machine Visual System

Robot Visual System

[Perception] is poor. Since 
[Cognition] of table objects 
is affected by the noise. 
[Decision] and [Execution] 
are aligned with [Cognition].

[Perception] is good. Since 
[Cognition] of the semantic 
map remains unchanged. 
[Decision] and [Execution] 
are aligned with [Cognition].

[Perception] [Cognition] [Decision] [Execution]

H: Eye
R: Camera

H: Cerebrum
R: VLM

H: Cerebellum
R: VLA

H: Arm
R: Motor

Task: 
Remove 
the blue 
slide on
LEGO board

Route

[Cognition] VS [Decision]

<reference>                        <distorted>
Task: Pick up the banana next to the orange.
Result: VLM chose the right banana on <dis> 
and <ref>, but VLA cannot locate the grab 
coordinate point, thus takes the left banana.

    [Decision] VS [Execution]

<reference>                        <distorted>
Task: Put the red cube into the blue bowl.
Result: The path planned by VLA on <dis> is 
only slightly off the <ref>, but such difference 
caused the gripper to hit the obstacle cup.

×
External
Reality

Internal
Reality

[Perception]: Quality Indicator

Embodied IQA

Distortion

Evaluate the negative impact of distortion on 
[Cognition], [Decision], and [Execution]  

Figure 1: The significant gap between human, machine, and robot visual systems. Humans and
Machines are sensitive to different distortions, while Robots have Decision and Execution steps
beyond Cognition, highlighting the importance of a Perception quality index for Embodied AI.

ABSTRACT

Embodied AI has developed rapidly in recent years, but it is still mainly deployed
in laboratories, with various distortions in the Real-world limiting its application.
Traditionally, Image Quality Assessment (IQA) methods are applied to predict
human preferences for distorted images; however, there is no IQA method to assess
the usability of an image in embodied tasks, namely, the perceptual quality for
robots. To provide accurate and reliable quality indicators for future embodied
scenarios, we first propose the topic: IQA for Embodied AI. Specifically, we (1)
based on the Mertonian system and meta-cognitive theory, constructed a perception-
cognition-decision-execution pipeline and defined a comprehensive subjective score
collection process; (2) established the Embodied-IQA database, containing over
30k reference/distorted image pairs, with more than 5m fine-grained annotations
provided by Vision Language Models/Vision Language Action-models/Real-world
robots; (3) trained and validated the performance of mainstream IQA methods on
Embodied-IQA, demonstrating the need to develop more accurate quality indicators
for Embodied AI. We sincerely hope that through evaluation, we can promote the
application of Embodied AI under complex distortions in the Real-world.

1 INTRODUCTION

To achieve Artificial General Intelligence (AGI), Embodied AI, as a bridge connecting external
and internal realities, has developed rapidly in recent years. Relying on its ability to interact with
the physical environment, Embodied AI Duan et al. (2022); Savva et al. (2019); Liu et al. (2024b)
has been applied to simple scenarios such as factories and warehouses, but it is not yet capable
of handling complex environments like autonomous driving and wilderness exploration. Unlike
traditional robotics driven by fixed algorithms, Embodied AI collects signals from the Real-world
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and is therefore susceptible to distortions. For example, a pick-and-place task may be successfully
debugged in the laboratory, but it may fail in Real-world applications due to slight lens shaking.
Therefore, the preferences of Embodied AI should be analyzed to filter out these low-quality images.

For human viewers, this problem can be solved through Image Quality Assessment (IQA) metrics.
For example, in streaming media, collect human subjective preferences for distorted images. Since
human resources are expensive, IQA will develop objective quality indicators to fit subjective scores.
Similarly, for Embodied AI, it is also necessary to collect the success rate of downstream tasks using
distorted images, quantifying the fidelity with the reference results, and developing IQA metrics.

Unfortunately, due to the significant differences between Human/Machine/Robot Visual Systems
(HVS/MVS/RVS), previous IQA methods cannot be directly transferred to Embodied AI scenarios,
as shown in Figure 1. First, HVS and MVS are sensitive to different types of distortions. Humans are
sensitive to distortions such as noise and compression, which do not affect the downstream tasks of
machines. Brightness and contrast are the opposite. Therefore, as a machine, Embodied AI cannot use
the past human-oriented processing methods. Second, although MVS and RVS are sensitive to some
common distortions, the perceptual quality of a general machine only depends on the performance
of segmentation and detection tasks that belong to Cognition. Robots, however, have subsequent
Decision and Execution steps. High fidelity in the previous step does not guarantee the success of the
next. Therefore, unlike a general machine, it is necessary to fully consider Cognition, Decision, and
Execution to characterize the Perception of Embodied AI. Considering these issues, we first attempt
to implement IQA metrics into Embodied AI. Our contributions are summarized as follows:

• Theory: We refer to the Mertonian Law in robotic intelligence to construct the Perception-
Cognition-Decision-Execution pipeline. We define tasks related to Embodied Perception
and specify the subjects for each step in Cognition, Decision, and Execution.

• Data: We add corruption to images in Embodied tasks, collecting over 36k refer-
ence/distorted image pairs. We perform inference using Vision Language Models (VLM)
and Vision Language Action-model (VLA) for over 5 million annotations. This large-scale
database can effectively drive the development of quality metrics for Embodied AI.

• Experiment: We experiment with 15 advanced IQA methods on our database, proving that
more sophisticated IQA metrics are needed for Embodied AI. Additionally, we first conduct
real-world experiments in the IQA field, executing 1.5k Embodied tasks in the Real-world,
revealing the internal connections between Cognition, Decision, and Execution.

2 RELATED WORKS

2.1 MERTONIAN SYSTEM FOR ROBOTIC INTELLIGENCE

Intelligent models are divided into Newtonian and Mertonian Wang (2012) systems. Newtonian
systems typically refer to those systems that can be precisely described and predicted by deterministic
physical laws, such as classical mechanical systems. In contrast, Mertonian systems involve systems
that include ‘free will’, whose behavior is influenced by feedback between beliefs and actions. The
characteristic of such systems is that even given the current state and control conditions, the next state
of the system cannot be accurately obtained by solving, so its behavior is difficult to predict precisely.

HVS and MVS can both be simplified as Newtonian systems, since their Decision and Execution
processes are robust. However, the Decision and Execution of RVS do not fully match Cognition.
For example, a deviation of one character in Cognition may greatly change the pose in Decision; a
one-centimeter path offset in Decision may also cause Execution to hit obstacles. Since the impact of
distortion on these steps is unpredictable, it is necessary to handle them separately for the IQA task.

2.2 IMAGE QUALITY ASSESSMENT FOR MACHINE

Since 1999, Perception has been recognized as the first step in the interaction between AI agents
and external reality, whose mechanism Rickel & Johnson (1999); Cassimatis et al. (2004); Lepora &
Pezzulo (2015); Balke & Gilbert (2014) has been revealed. However, no perceptual quality score has
been assigned to each distorted image like current IQA Li et al. (2024b; 2025b); Liu et al. (2024a)
metrics, which is exactly Embodied AI needs in Real-world applications. In the past decades, IQA
has been widely studied as shown in Table 1, but none of them meet the above needs of Embodied AI.
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Table 1: Comparison of Embodied-IQA with other perceptual quality databases. As a machine-
oriented database, Embodied-IQA has not only more image samples and a larger annotation scale,
but also comprehensive labels on three downstream steps. [Keys: Cognition, Decision, Execution]

Database
Image Corruption Annotation

Reference Distorted Resolution Types Strength Num Dimension Subjects Cog. Dec. Exe.
LIVEMoorthy & Bovik (2011) 29 779 768 5 5 25k 1 Human (General) ✓

TID2013Ponomarenko et al. (2015) 25 3k 512 24 5 514k 1 Human (General) ✓

KADID-10KLin et al. (2019) 81 10k 1k 25 5 304k 1 Human (General) ✓

CLIC2021Ballé & et al. (2020) 585 3k 1k 10 3 484k 1 Human (General) ✓

NTIRE2022Gu et al. (2022) 250 29k 288 40 5 1.13m 1 Human (General) ✓

AGIQA-3KLi et al. (2023) - 3k 1k - - 125k 1+1 Human (Multimodal) ✓ ✓

NTIRE2024Li et al. (2024a) - 20k 1k - - 420k 1+1 Human (Multimodal) ✓ ✓

MPD Li et al. (2025a) 1k 30k 1k 30 5 2.25m 5 Machine (General) ✓

EPD Zhang et al. (2024a) 100 2.5k 256 25 5 30k 2 Machine (General) ✓

Embodied-IQA (ours) 1.23k 36.9k 1k 30 5 5.53m 3+3+1 Machine (Robot) ✓ ✓ ✓

First, most databases are human-oriented, with only two coarse-grained Zhang et al. (2024c;d), two
fine-grained Li et al. (2025a); Zhang et al. (2024a) machines as subjects (VLM and reinforcement
learning); second, as mentioned above, no database covers Cognition, Decision, and Execution
altogether. Considering the characteristics of Embodied AI, it is necessary to establish a new dataset
in accordance with the requirements of the Mertonian system.

3 DATABASE CONSTRUCTION

3.1 REFERENCE & DISTORTED IMAGE COLLECTION

To comprehensively characterize the data in Embodied scenarios, we collect 1,230 high-quality
samples as reference images. (see Supplementary for data source) All data are pre-processed by
Q-Align Wu et al. (2024) to avoid pre-distortion before adding distortion. We focused on two aspects,
Sim2Real and Perspective, to ensure coverage of both real and simulation, as well as first-person and
third-person perspectives. In addition, we divided the subjects and backgrounds into five categories
each, as shown in Figure 2, to ensure versatility by involving each category in the database.

For the distorted images, according to the corruption caused by the current communication protocols,
30 distortion types are considered and classified into 7 categories: Blur, various types of unclear image;
Luminance, global brightness changes; Chrominance, global color changes; Noise, random noise of
different distributions; Compression, codec algorithm like JPEG; Spatial, local pixel-level changes;
and others. For each distortion, we defined 5 intensity levels, ensuring the quality degradation
perceived by the HVS is aligned at the same level. Thus, for each reference image, we randomly
selected the intensity to add all the corruptions mentioned above, resulting in 36,900 distorted images.
The reference/distorted image pairs will then be annotated by Embodied AI subjects.

3.2 PERCEPTION: TASK DEFINITION

Perception refers to receiving information about the external environment, where Embodied AI
obtains information through sensors, similar to human sensory organs. Considering that more than
82% of human external input signals come from vision, we simplify this step of Embodied AI to the
camera. First of all, we need to clarify the factors that Embodied AI focuses on in Perception. When
viewing an image, HVS pays attention to factors such as brightness/chromaticity, while MVS/RVS
relies on specific downstream tasks. Therefore, based on information such as objects, layout, and
environment in the image, we manually annotate 5 tasks for each reference sample in natural language,
as in previous MVS Li et al. (2025a) works. The difficulty of the tasks here increases in sequence and
is limited to [Cover, Insert, Move, Pick, Place, Pour, Press, Pull, Push, Twist] to
avoid being too difficult. All subsequent steps are based on the task corresponding to each image, and
the image quality depends on the similarity of the reference/distorted image pair inference results.

3.3 COGNITION: VLM ANNOTATION

Cognition refers to the process of processing and understanding information after perception, includ-
ing recognition, classification, memory, and reasoning. This function of Embodied AI is implemented

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reference Data Collection (1,230 instance) 

(c) Mechanical (c) Daily (c) Electronic (c) Tools (c) Other

(d) Home (d) Industrial (d) Software (d) Lab (d) Other

(a) Real (a) Simulation (b) First-person (b) Third-person

Type:
(a) Sim2Real
(b) Perspective
(c) Main Object
(d) Background

Si
m

ua
lti

on

Embodied

IQA
Database

Distorted Data Collection (36,900 instance) 

Spatial

10%

Luminance

Others Blur

Chrominance 

Compression

Noise

17%

10%

20%

13%

23%

7%

Cognition Annotation (2,767,500 labels)

 <ref>: Move toward the green board.
 <dis1>: Move toward the black board. (score: 4.2/5)
 <dis2>: There is no board on the table. (score: 1.3/5)

Decision Annotation (2,767,500 labels)

 <ref>: [0.03,0.00,0.05],[0.11,0.01,0.02],[1]
 <dis1>: [0.03,0.01,0.01],[0.15,0.02,0.02],[1] (score: 3.8/5)
 <dis2>: [0.42,0.41,0.05],[0.13,0.10,0.00],[0] (score: 0.8/5) 

Execution Vaildation (1,500 labels) 

15 mainstream VLM
Perception Question (6,150 tasks)
Difficulty1: Push back the board on the table.
Difficulty2: Lower the yellow object to the left.
... 
Difficulty5: Move the red block two squares horizontally to 
the right, keeping the vertical position unchanged.

15 mainstream VLA

Real-world pipeline  <dis1>: [3.2cm, 4.4cm] away from result <ref>; <dis2>: Hit desktop forces an interruption

Figure 2: Database construction of the Embodied-IQA, with 30k+ large-scale reference/distorted
image pairs, meticulously annotated with 2m+ fine-grained Cognition score from 15 mainstream
VLMs, 2m+ Decision score from 15 VLAs, and 1.5k real-world experiments as Execution score.

through VLM, which corresponds to the human cerebrum. Specifically, we selected 15 commonly
used VLMs for cognition, including: Mini-InternVL Gao et al. (2024), InternLM-Xcomposer2
Dong et al. (2024), InternLM-Xcomposer2.5 Zhang et al. (2024b), InternVL2 Chen et al. (2024b),
InternVL2.5 Chen et al. (2025), InternVL3 Zhu et al. (2025), MPlugOwl3 Ye et al. (2024), Ovis1.5-
Gemma Team et al. (2025), Ovis1.6-Llama Touvron et al. (2023), Ovis2 Lu et al. (2024), Phi3-Vision
Abdin et al. (2024b), Phi3.5-Vision Abdin et al. (2024a), Phi4-Multimodal Microsoft et al. (2025),
Qwen2-VL Yang et al. (2024), and Qwen2.5-VL Bai et al. (2025). To ensure usability in the
Real-world, the parameter size we selected is all below 8B to ensure real-time inference.

Considering the output modality is textual, VLMs will be required to solve the pre-defined task in
about 10 words, and the difference between reference/distorted output sentences will be measured.
Specifically, the difference between the two output sentences includes three dimensions: accuracy,
recall, and semantics, which are realized by the average of three classic indicators: BLEU Papineni
et al. (2002), ROUGE Vedantam et al. (2015), and CIDEr Vedantam et al. (2015).

3.4 DECISION: VLA ANNOTATION

Decision refers to selecting the best course of action based on goals, rules, and experience, according
to Cognition results. This function of Embodied AI is implemented through VLA, which corresponds
to the human cerebellum. Specifically, we selected 15 commonly used VLA for Decision, including:
CogACT Li et al. (2024c), Embodied-CoT Zawalski et al. (2025), Octo Team et al. (2024), OpenVLA
Kim et al. (2024a), OpenVLA-Libero Kim et al. (2024c), OpenVLA-Goal Kim et al. (2024b),
OpenVLA-Libero-Object Kim et al. (2024b), OpenVLA-Libero-Spatial Kim et al. (2024b), Pi0-
Aloha-Pen Black et al. (2024b), Pi0-Aloha-Towel Black et al. (2024b), Pi0-Aloha-Tupperware Black
et al. (2024b), Pi0-Base Black et al. (2024a), Pi0-Droid Pertsch et al. (2025), Pi0-Fast Pertsch et al.
(2025), and RT-X-1 Collaboration et al. (2025), whose parameter size is controlled at 8B.

Noted that since Embodied-IQA first introduced VLA into the IQA task, we define the quality of
VLA as three dimensions. First, we parse the 7-DoF Pose1 output field. According to the mechanism
of VLA, the first three represent position 2 (translation of the operator along the three-dimensional
coordinate system, in mm), the middle three represent rotation (rotation of the operator along the
three-dimensional coordinate system, in rad), and the last one represents state (opening and closing of
the operator, range [0-1]). The position score is based on the spatial distance of the coordinate points

1We will discard information beyond the above 7-DoF like depth, for alignment between VLAs.
2For two-arm VLAs, we only select the arm with the larger movement range.
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Figure 3: Benchmarking VLMs&VLAs in 3 different score dimensions and 5 distortion levels. Their
performance varies in 3 dimensions and decreases with the distortion. (Zoom in for detail)
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1.00 0.07 0.40 0.54 0.56 0.10 0.42 0.21 0.62 0.28 0.63 0.12 0.08 0.26 0.55

0.07 1.00 0.17 0.01 0.07 0.07 0.20 0.05 0.07 0.08 0.10 0.01 0.20 0.28 0.06

0.40 0.17 1.00 0.16 0.09 0.14 0.35 0.04 0.55 0.15 0.09 0.08 0.26 0.20 0.27

0.54 0.01 0.16 1.00 0.59 0.13 0.49 0.35 0.38 0.45 0.56 0.24 0.38 0.46 0.61

0.56 0.07 0.09 0.59 1.00 0.02 0.51 0.13 0.52 0.44 0.55 0.14 0.11 0.05 0.70

0.10 0.07 0.14 0.13 0.02 1.00 0.04 0.24 0.00 0.22 0.06 0.06 0.21 0.25 0.15

0.42 0.20 0.35 0.49 0.51 0.04 1.00 0.12 0.44 0.48 0.34 0.09 0.26 0.24 0.37

0.21 0.05 0.04 0.35 0.13 0.24 0.12 1.00 0.03 0.16 0.04 0.22 0.29 0.00 0.17

0.62 0.07 0.55 0.38 0.52 0.00 0.44 0.03 1.00 0.27 0.51 0.06 0.17 0.17 0.54

0.28 0.08 0.15 0.45 0.44 0.22 0.48 0.16 0.27 1.00 0.32 0.33 0.36 0.19 0.58

0.63 0.10 0.09 0.56 0.55 0.06 0.34 0.04 0.51 0.32 1.00 0.19 0.26 0.34 0.50

0.12 0.01 0.08 0.24 0.14 0.06 0.09 0.22 0.06 0.33 0.19 1.00 0.51 0.05 0.05

0.08 0.20 0.26 0.38 0.11 0.21 0.26 0.29 0.17 0.36 0.26 0.51 1.00 0.26 0.31

0.26 0.28 0.20 0.46 0.05 0.25 0.24 0.00 0.17 0.19 0.34 0.05 0.26 1.00 0.02

0.55 0.06 0.27 0.61 0.70 0.15 0.37 0.17 0.54 0.58 0.50 0.05 0.31 0.02 1.00

Precision (0.31)
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1.00 0.17 0.47 0.58 0.60 0.06 0.44 0.19 0.59 0.29 0.67 0.02 0.03 0.41 0.64

0.17 1.00 0.03 0.01 0.03 0.04 0.17 0.01 0.02 0.00 0.08 0.08 0.09 0.20 0.05

0.47 0.03 1.00 0.25 0.18 0.14 0.42 0.03 0.47 0.24 0.13 0.18 0.04 0.36 0.35

0.58 0.01 0.25 1.00 0.58 0.20 0.46 0.34 0.37 0.37 0.53 0.12 0.39 0.42 0.57

0.60 0.03 0.18 0.58 1.00 0.06 0.48 0.08 0.51 0.41 0.61 0.09 0.16 0.21 0.68

0.06 0.04 0.14 0.20 0.06 1.00 0.08 0.27 0.05 0.21 0.04 0.08 0.26 0.07 0.19

0.44 0.17 0.42 0.46 0.48 0.08 1.00 0.15 0.39 0.49 0.40 0.08 0.20 0.30 0.39

0.19 0.01 0.03 0.34 0.08 0.27 0.15 1.00 0.03 0.07 0.12 0.08 0.33 0.08 0.09

0.59 0.02 0.47 0.37 0.51 0.05 0.39 0.03 1.00 0.35 0.57 0.02 0.15 0.32 0.57

0.29 0.00 0.24 0.37 0.41 0.21 0.49 0.07 0.35 1.00 0.42 0.32 0.37 0.09 0.59

0.67 0.08 0.13 0.53 0.61 0.04 0.40 0.12 0.57 0.42 1.00 0.12 0.27 0.41 0.55

0.02 0.08 0.18 0.12 0.09 0.08 0.08 0.08 0.02 0.32 0.12 1.00 0.50 0.04 0.01

0.03 0.09 0.04 0.39 0.16 0.26 0.20 0.33 0.15 0.37 0.27 0.50 1.00 0.21 0.23

0.41 0.20 0.36 0.42 0.21 0.07 0.30 0.08 0.32 0.09 0.41 0.04 0.21 1.00 0.29
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0.01 0.14 0.11 1.00 0.08 0.03 0.08 0.44 0.07 0.00 0.05 0.29 0.40 0.15 0.03
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Figure 4: Correlation matrix of VLMs&VLAs subjects, the a-o order follows Section 3.3,3.4. Darker
colors denote a higher SRCC, with the averaged SRCC attached to the bottom of the matrix.

obtained from the reference/distorted image, the rotation score is based on the cosine similarity of
directional vectors, and the last one is the absolute difference. The three dimensions are averaged
after 0-1 normalization, and report the sum of the five task results as the final Decision score.

3.5 EXECUTION: REAL-WORLD VALIDATION

Execution refers to the process of transforming decisions into actual movements. This part of
Embodied AI relies on specific actuators, corresponding to the human motor system. Based on
kinematic statistics, the upper limbs dominate among all muscles and complete over 50% of daily
movements. Therefore, we use the robotic arm as the most representative actuator. Specifically, we
execute tasks based on the inference results of VLA, with three scenarios: (1) Success: Directly
assign score 100 to the sample; (2) Failure: Measure the Euclidean distance between the reference
and distorted results based on the final pose of the actuator, and deduct points in centimeters; (3)
Emergency stop: If the actuator hits the table or wall, directly assign score 0. Considering the
uncontrollable factors in real-machine experiments, we only execute the task with the lowest difficulty
level among the 5 tasks to verify whether the results of VLM and VLA align with the Real-world.

4 DATABASE ANALYSIS

This section analyzes Embodied-IQA database from four dimensions: On the model level, we (1)
Benchmark the VLMs and VLAs when processing the distorted images; (2) Explore the internal
correlation between VLMs and VLAs; On the instance level, we (3) Compare the score distributions
under different categories and distortions; (4) Analyze the distortion sensitivity of VLMs/VLAs.

[Benchmark] We select 6 representative VLM and VLA in Figure 3. As the distortion level increases,
the total scores of both VLM and VLA gradually decrease. However, the differences among the
three scoring dimensions of VLM are much greater than the level of distortion. After distortion, the
Semantic score of the image decreases relatively little, followed by Recall, and then Precision. In
VLM, the reference/distorted output of MPlugOwl3 is the most consistent, while advanced models
like Qwen2.5-VL are less robust. Therefore, distortion usually affects VLM at the character level
rather than the semantic level, and it is more likely to output redundant text than to lose information.
Meanwhile, there are also significant differences among the three scoring dimensions of VLA. In
VLA, Octo shows strong robustness to distortion in Position and Rotation, while models like CogACT
and OpenVLA are more faithful in State. Among them, State changes little after distortion, Position
changes more, and Rotation is the most easily affected by distortion. This indicates that distortion
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Figure 5: Decision score visualized in 30 distortion subsets. Different color denotes distortion Level
1-Level 2-Level 3-Level 4-Level 5. Different distortions affecting VLAs vary significantly.

usually does not affect the end operator but has a significant impact on the robot arm. Therefore,
VLA needs to be carefully selected to ensure high-quality output of the first 6-DoF.

[Correlation] We visualize the correlation between subject models in Figure 4 according to the
order of models in Section 3.3,3.4 through Spearman Rank-order Correlation Coefficient (SRCC).
According to past IQA Li et al. (2025a) work, the correlation of HVS is usually above 0.6, while that
of MVS is often less than 0.5. In specific machine tasks, detection has better correlation, while Visual
Question Answering (VQA) may even be less than 0.4. For Cognition, which uses VLM to solve
embodied tasks (a degraded form of VQA), the correlation is only about 0.3. Moreover, we find that
the correlation of VLA is even lower than that of VLM, at around 0.25. Therefore, when evaluating
VLM and VLA, using only one model as the subject is far from sufficient, especially for VLA. It
is necessary to collect their general preference. This also reflects the necessity of constructing the
Embodied-IQA database and the separation of Cognition and Decision in the RVS.

[Distribution] Since Decision is more downstream than Cognition and has never been deeply
investigated in IQA, we show the distribution of Decision and put Cognition in the supplementary.
Figure 5 shows the Decision score distribution under 30 types of distortions and 5 intensity levels.
Results show that RVS and the traditional HVS have significant differences. Taking brightness as an
example, Embodied AI is highly sensitive to ‘Maximum brighten/darken’, and the quality significantly
decreases with the distortion level; however, it is rarely affected by ‘Mean brighten/darken’, and
there is no significant distribution change from level 1 to 5. These findings emphasize the differences
between RVS and HVS. Figure 6 lists the relation of the three Decision dimensions and the score
distributions corresponding to different image categories. Overall, Position, Rotation, and State
show independent distributions. In the Sim2Real distribution, the real scores are relatively high,
indicating that VLA is better at Real-World data; the first-person results are far worse than the
third-person results, indicating that in the training data of VLA, the sampling tools and actuators
are rarely integrated, which needs to be improved in the future. These findings jointly support the
rationality of the division of source image data and annotation dimensions in Embodied-IQA.

[Sensitivity] The difference between MVS and HVS causes VLM to be highly sensitive to some
distortion categories, but robust to others; the difference between RVS and HVS also causes VLA to
have a similar phenomenon. We combined the Just-Noticable-Difference (JND) theory to analyze
the similarities and differences in the distortion sensitivity of VLM and VLA, as shown in Figure 7.
The sensitivity is divided into three levels, Mild, Medium, and Severe, each accounting for one-third
of all image samples, according to the Cognition and Decision scores. Results shows although
VLM and VLA have certain commonalities in sensitivity, there are also distortions such as Dis02
‘Lens blur’ that mainly affect VLM, or Dis15 (Multiplicative noise) that mainly affect VLA. This
VLM&VLA-based partition further explains the gap between Cognition and Decision, and can serve
as an important reference in the IQA for the Embodied AI topic in the future.
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Figure 6: Correlation between the general Decision score and the 3 dimensions from VLAs, and the
score distribution in Sim2Real, First/Third perspectives, Main object, and Background sub-categories.
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Figure 7: Just-Noticable-Difference (JND) of VLMs and VLAs. Distortion order follows Figure 5.

5 EXPERIMENT

5.1 EXPERIMENT SETUPS

We randomly partitioned the Embodied-IQA database into the train/val set, with 29,520 and 7,380
reference/distorted image pairs according to an 8:2 ratio. Since VLA is more downstream than VLM
in the Mertonian system of Embodied AI, and previous machine-oriented IQA works are all based on
VLM, we use the Decision scores from VLA in the main experiment and put the Cognition scores
from VLM in the supplementary. 15 objective IQA metrics are implemented to predict the Decision
score, including: (1) 5 baseline metrics: PSNR, SSIM Wang (2004), Brisque Mittal et al. (2012),
Q-Align Wu et al. (2024), and Q-Align+ Zhang et al. (2025). Q-Align and Q-Align+ are loaded
in quality/aesthetic weights. As the most commonly used IQA metrics, they are performed in a
Zero-shot setting; (2) 5 Full-Reference (FR) metrics: AHIQ Lao et al. (2022), CKDN Zheng et al.
(2021), DISTS Ding et al. (2020), LPIPS Zhang et al. (2018a), and TOPIQ-FR Chen et al. (2024a).
Those learning-based metrics are fine-tuned on our training set, which takes both reference/distorted
images as inputs; (3) 5 No-Reference (NR) metrics: CLIPIQA Wang et al. (2023), CNNIQA Kang
et al. (2014), DBCNN Zhang et al. (2018b), QualiClip Agnolucci et al. (2025), and TOPIQ-NR Chen
et al. (2024a). They are also fine-tuned on a training set, which takes only distorted images as inputs.

To benchmark the performance of quality metrics, three global indicators were employed: SRCC,
Kendall Rank-order Correlation Coefficient (KRCC), and Pearson Linear Correlation Coefficient
(PLCC), to evaluate the consistency between the objective quality score and the subjective MOS.
Among these, SRCC and KRCC represent the prediction monotonicity, while PLCC measures the
accuracy. We train the FR/NR metrics on Embodied-IQA with the learning rate as 10−5 for 50
epochs, under the default settings in pyiqa toolbox, and evaluate the performance on (1) 3 scoring
dimension; (2) 3 JND-based distortion sensitivity in Figure 7; (3) First/Third person perspective; (4)
Sim2Real; (5) 5 Distortion level. The partitioning, training, and testing pipeline is repeated 10 times,
and the mean value is reported as the experimental result. The perception module is based on the
Intel RealSense D455 array, supporting both First-person (wrist) and Third-person (top, side) as input.
Cognition and Decision annotations are collected on two servers with 16×NVIDIA A800 SXM4
80GB GPUs, and then conduct IQA training/validation on one GPU above. Execution is achieved
through the UR5 robotic arm and Robotiq 2F-140 gripper, with a working radius of 85cm.

5.2 RESULT AND DISCUSSION

Table 2 presents the performance of advanced quality metrics on the Embodied-IQA database. For
the three dimensions of the 7-DoF VLA output, Position is the easiest to predict, followed by State,
with Rotation being the most difficult. The SRCC of FR IQA methods with subjective labels is less
than 0.65, while NR is even less than 0.6. Note that these methods have a correlation close to 0.9
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Table 2: Using 15 advanced IQA metrics to evaluate the Decision score from VLAs, including
zero-shot, FR, and NR metrics. [Keys: Best/Second best in group; Baseline; Lower than baseline.]

Dimension Position Rotation State First Perspective Third Perspective
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.2762 0.1872 0.3094 0.2594 0.1756 0.3035 0.2284 0.1522 0.2271 0.4059 0.2763 0.4373 0.3949 0.2693 0.4376
SSIM Wang (2004) 0.4862 0.3345 0.4438 0.4246 0.2891 0.3912 0.3607 0.2468 0.3216 0.5834 0.4101 0.5256 0.5478 0.3815 0.5132
Brisque Mittal et al. (2012) 0.3073 0.2051 0.2707 0.2752 0.1826 0.2519 0.3335 0.2255 0.2986 0.3302 0.2210 0.2634 0.4020 0.2688 0.3836
Q-Align Wu et al. (2024) 0.5325 0.3641 0.4869 0.5387 0.3758 0.5329 0.3791 0.2552 0.3346 0.6658 0.4715 0.5992 0.5854 0.4030 0.5578
Q-Align+ Zhang et al. (2025) 0.3275 0.2157 0.2410 0.3596 0.2465 0.2818 0.1492 0.0972 0.1272 0.4663 0.3167 0.4283 0.3104 0.2021 0.2649

FR

AHIQ Lao et al. (2022) 0.7481 0.5496 0.7467 0.6454 0.4655 0.6435 0.6465 0.4609 0.6590 0.8011 0.6014 0.8025 0.7989 0.6007 0.7959
CKDN Zheng et al. (2021) 0.6748 0.4807 0.6771 0.6061 0.4278 0.6001 0.6324 0.4515 0.6410 0.7716 0.5720 0.7610 0.7641 0.5624 0.7596
DISTS Ding et al. (2020) 0.5797 0.4010 0.5846 0.5366 0.3746 0.5390 0.4653 0.3180 0.4611 0.6458 0.4624 0.6249 0.6545 0.4654 0.6642
LPIPS Zhang et al. (2018a) 0.3922 0.2642 0.3511 0.2972 0.1994 0.2378 0.4210 0.2890 0.3852 0.4697 0.3205 0.4168 0.4821 0.3313 0.4805
TOPIQ-FR Chen et al. (2024a) 0.7748 0.5794 0.7827 0.6428 0.4607 0.6480 0.6684 0.4826 0.6727 0.8307 0.6371 0.8297 0.8322 0.6404 0.8298

NR

CLIPIQA Wang et al. (2023) 0.1784 0.1172 0.1246 0.0708 0.0193 0.0468 0.1348 0.0770 0.0622 0.0048 0.0043 0.0821 0.2155 0.1287 0.1415
CNNIQA Kang et al. (2014) 0.5189 0.3642 0.5318 0.4618 0.3221 0.4587 0.4601 0.3203 0.4667 0.5441 0.3770 0.5618 0.6407 0.4579 0.6468
DBCNN Zhang et al. (2018b) 0.6045 0.4303 0.6094 0.5325 0.3687 0.5341 0.5419 0.3761 0.5441 0.6399 0.4593 0.6408 0.6565 0.4653 0.6609
QualiClip Agnolucci et al. (2025) 0.6463 0.4619 0.6643 0.5387 0.3768 0.5384 0.5589 0.3912 0.5518 0.5428 0.3870 0.5490 0.7208 0.5240 0.7175
TOPIQ-NR Chen et al. (2024a) 0.7496 0.5549 0.7606 0.5981 0.4253 0.6020 0.7036 0.5100 0.6960 0.7791 0.5804 0.7810 0.8269 0.6341 0.8211

Dimension Mild Distortion Medium Distortion Severe Distortion Real-world Simulation
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.3518 0.2396 0.4935 0.2292 0.1555 0.2175 0.1190 0.0806 0.1443 0.3794 0.2575 0.3767 0.2617 0.1778 0.3905
SSIM Wang (2004) 0.3778 0.2620 0.2581 0.1993 0.1333 0.1617 0.2387 0.1604 0.2754 0.5405 0.3754 0.4848 0.5336 0.3724 0.4990
Brisque Mittal et al. (2012) 0.2088 0.1334 0.1502 0.1503 0.0967 0.1168 0.1525 0.1017 0.1205 0.4143 0.2798 0.3907 0.0636 0.0421 0.0423
Q-Align Wu et al. (2024) 0.3541 0.2403 0.3097 0.4090 0.2873 0.3899 0.3258 0.2206 0.3723 0.6179 0.4302 0.5639 0.6565 0.4690 0.6333
Q-Align+ Zhang et al. (2025) 0.1699 0.1132 0.1375 0.2799 0.1908 0.2287 0.0618 0.0425 0.1506 0.4167 0.2753 0.3820 0.4846 0.3285 0.4711

FR

AHIQ Lao et al. (2022) 0.6683 0.4831 0.6932 0.6653 0.4821 0.7130 0.7218 0.5308 0.7278 0.8138 0.6223 0.8270 0.7515 0.5583 0.7520
CKDN Zheng et al. (2021) 0.5733 0.4060 0.5743 0.6610 0.4841 0.6979 0.6909 0.5024 0.6867 0.7227 0.5303 0.7311 0.7676 0.5769 0.7769
DISTS Ding et al. (2020) 0.4564 0.3191 0.4507 0.2343 0.1604 0.2735 0.3177 0.2155 0.3731 0.6443 0.4551 0.6394 0.6408 0.4589 0.6560
LPIPS Zhang et al. (2018a) 0.3004 0.1986 0.2102 0.4208 0.2884 0.4581 0.4672 0.3220 0.4719 0.3605 0.2429 0.3999 0.4665 0.3181 0.4442
TOPIQ-FR Chen et al. (2024a) 0.7128 0.5257 0.7626 0.7238 0.5371 0.7581 0.7355 0.5434 0.7434 0.8104 0.6210 0.8250 0.7815 0.5910 0.8053

NR

CLIPIQA Wang et al. (2023) 0.0848 0.0563 0.0568 0.0413 0.0300 0.0779 0.2198 0.1509 0.2150 0.1576 0.1040 0.1293 0.1298 0.0863 0.1093
CNNIQA Kang et al. (2014) 0.3766 0.2607 0.3847 0.3367 0.2314 0.3907 0.3921 0.2696 0.3957 0.5651 0.3967 0.5875 0.5835 0.4117 0.5901
DBCNN Zhang et al. (2018b) 0.4488 0.3056 0.4309 0.4283 0.2994 0.4699 0.4622 0.3195 0.4459 0.6728 0.4833 0.6806 0.6468 0.4613 0.6345
QualiClip Agnolucci et al. (2025) 0.4941 0.3425 0.4794 0.4390 0.3094 0.4607 0.3752 0.2633 0.3917 0.6712 0.4882 0.6952 0.6308 0.4468 0.6292
TOPIQ-NR Chen et al. (2024a) 0.7035 0.5164 0.7263 0.7174 0.5312 0.7374 0.7227 0.5312 0.7310 0.7995 0.6072 0.8148 0.7697 0.5771 0.7777

Dimension Dis-level-1 Dis-level-2 Dis-level-3 Dis-level-4 Dis-level-5
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.2932 0.1987 0.3856 0.2322 0.1532 0.2837 0.2215 0.1484 0.2749 0.2379 0.1591 0.2642 0.3575 0.2444 0.3571
SSIM Wang (2004) 0.4397 0.3035 0.4038 0.4638 0.3198 0.4208 0.4865 0.3329 0.4446 0.4927 0.3383 0.4745 0.5558 0.3832 0.5327
Brisque Mittal et al. (2012) 0.2650 0.1786 0.2472 0.2446 0.1618 0.2443 0.3516 0.2346 0.3033 0.2928 0.1933 0.2604 0.3632 0.2434 0.3269
Q-Align Wu et al. (2024) 0.5049 0.3488 0.4924 0.5534 0.3865 0.4951 0.5609 0.3876 0.5132 0.5753 0.4015 0.5124 0.5567 0.3818 0.5275
Q-Align+ Zhang et al. (2025) 0.2909 0.1923 0.2210 0.4074 0.2763 0.3245 0.3828 0.2537 0.3241 0.3862 0.2585 0.3145 0.3274 0.2200 0.2694

FR

AHIQ Lao et al. (2022) 0.7453 0.5531 0.7722 0.7610 0.5671 0.7741 0.7389 0.5397 0.7546 0.7486 0.5518 0.7692 0.7655 0.5698 0.7820
CKDN Zheng et al. (2021) 0.6253 0.4513 0.6806 0.6612 0.4785 0.6888 0.7036 0.5106 0.7124 0.7030 0.5131 0.7035 0.7194 0.5271 0.7290
DISTS Ding et al. (2020) 0.5659 0.3962 0.5710 0.5774 0.4079 0.5753 0.5611 0.3903 0.5636 0.5431 0.3766 0.5727 0.5834 0.4015 0.5967
LPIPS Zhang et al. (2018a) 0.2736 0.1810 0.2813 0.3723 0.2550 0.4003 0.4354 0.2927 0.4208 0.4619 0.3156 0.4567 0.4824 0.3322 0.4526
TOPIQ-FR Chen et al. (2024a) 0.7861 0.5939 0.8034 0.7765 0.5828 0.8012 0.7741 0.5809 0.7871 0.7629 0.5682 0.7773 0.7763 0.5766 0.7873

NR

CLIPIQA Wang et al. (2023) 0.1541 0.1054 0.0822 0.1204 0.0772 0.0635 0.1291 0.0831 0.0726 0.1564 0.1041 0.1129 0.1130 0.0732 0.0846
CNNIQA Kang et al. (2014) 0.4871 0.3362 0.5207 0.5215 0.3669 0.5522 0.5441 0.3835 0.5710 0.5433 0.3787 0.5570 0.6083 0.4274 0.6078
DBCNN Zhang et al. (2018b) 0.5982 0.4225 0.6213 0.6194 0.4431 0.6210 0.6235 0.4386 0.6146 0.6189 0.4394 0.6163 0.6141 0.4335 0.6282
QualiClip Agnolucci et al. (2025) 0.5805 0.4137 0.5787 0.6029 0.4342 0.6389 0.6044 0.4372 0.6101 0.6333 0.4509 0.6469 0.6030 0.4265 0.6399
TOPIQ-NR Chen et al. (2024a) 0.7547 0.5626 0.7781 0.7868 0.5937 0.7989 0.7566 0.5601 0.7695 0.7480 0.5532 0.7658 0.7529 0.5558 0.7670

with HVS in traditional human-oriented IQA tasks, which is sufficiently excellent, but they cannot
adapt to the database we proposed, indicating that IQA for Embodied AI needs further research. For
distortion sensitivity, the Decision scores are high under mild distortions, with small internal gaps and
difficulty in prediction; whereas when the distortion becomes severe, the Distortion scores fluctuate
more, resulting in a higher SRCC. For Perspective and Sim2Real, most IQA methods perform better
on third-person, real images. Therefore, in Embodied scenarios, more content captured by the robotic
arm itself or from simulation software should be used. For the five absolute distortion levels, the
performance of IQA methods does not change much. This further proves that dividing distortion
levels based on HVS is insufficient, and the distortion levels of Embodied AI should be divided by
the JND of RVS itself, as we have done in the Embodied-IQA database. Comparing various IQA
methods longitudinally, FR is superior to NR in most cases, with TOPIQ maintaining the leading
performance in most cases, with an SRCC of about 0.75, which still needs improvement compared to
human-oriented IQA. It is worth mentioning that the main parameters of some methods have been
frozen based on HVS, such as LPIPS, DISTS, and CLIPIQA. Thus, although after training, they are
even worse than the zero-shot baseline. This further reflects the gap between HVS and RVS, implying
the significance of proposing the Embodied IQA task.

5.3 CROSS DATABASE VALIDATION

To further analyze the performance of RVS-oriented IQA on HVS/MVS, we conducted cross-
validation using Embodied-IQA VLA Decision score for training, VLM Cognition score, and two of
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Method
LIVE TID VLM

SRCC↑ PLCC↑ SRCC↑ PLCC↑ SRCC↑ PLCC↑
AHIQ (Lao et al., 2022) 0.5746 0.6402 0.2477 0.1147 0.7240 0.6902
CKDN (Zheng et al., 2021) 0.5154 0.5379 0.2352 0.2316 0.6977 0.6798
DISTS (Ding et al., 2020) 0.7074 0.7075 0.7106 0.7570 0.4307 0.2102
LPIPS (Zhang et al., 2018a) 0.5449 0.5713 0.3025 0.2708 0.3430 0.3340
TOPIQ-FR (Chen et al., 2024a) 0.7285 0.7550 0.4510 0.2277 0.7115 0.6788
CLIPIQA (Wang et al., 2023) 0.0472 0.0530 0.0222 0.0044 0.0245 0.0307
CNNIQA (Kang et al., 2014) 0.3477 0.4218 0.1074 0.0383 0.4962 0.4755
DBCNN (Zhang et al., 2018b) 0.4801 0.5806 0.1891 0.0270 0.5964 0.5855
QualiClip (Agnolucci et al., 2025) 0.6018 0.6531 0.2472 0.0769 0.5890 0.5648
TOPIQ-NR (Chen et al., 2024a) 0.5253 0.5577 0.2183 0.1291 0.6806 0.6357

(a) Cross Validation
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(b) VLM & Real-world

0 1 2 3 4 5
VLA Inference (SRCC: 0.671)

0

20

40

60

80

100

R
ea

l-w
or

ld
 E

uc
lid

ea
n 

Sc
or

e

(c) VLA & Real-world

Figure 8: Cross database validation on Cognition and human-oriented score, and the correlation
between VLM&VLA and Real-world. ★ denotes distortions with greater Real-world impact.

Task: Twist tap on the board.
Dis: Others     Result: 0.0cm      

Task: Pick up the red block.
Dis: Compression         Result: 3.2cm  

Task: Place the wooden block outside.
Dis: Noise                 Result: 0.8cm     

Task: Pull out a book from the shelf.
Dis: Spatial             Result: 42.8cm    ✅ ✅ ❎ ⚠

Figure 9: Positive/Negative cases of real-world experiment. The score of successful examples is 100,
and deduct the Euclidean distance for failed examples. Triggering interruption will be scored as 0.

the most commonly human-oriented databases, LIVE2008 Moorthy & Bovik (2011) and TID2013
Ponomarenko et al. (2015) for validation, employing the same parameter settings as Section 5.1.
According to the results in Table 8 (a), IQA methods fine-tuned on Embodied AI data lose certain
human-oriented evaluation capabilities, where the SRCC is even lower than 0.4 in the LIVE database.
Fortunately, the IQA model trained with VLA annotations can also predict VLM scores, and the
SRCC of AHIQ can reach 0.7, revealing the internal connection between Cognition and Decision.

5.4 REAL-WORLD EXPERIMENT

Since Embodied AI is ultimately applied in the Real-world, we compare Execution with Cog-
nition/Decision to link External and Internal Reality, thereby proving the reliability of the 5m+
annotations in the Embodied-IQA database. Specifically, we selected 5 VLA that support multi-step
output and executed the 10 tasks in Section 3.2 on 30 types of distorted images. Note that among the
five difficulty levels in Perception, we only executed the simplest one to ensure that the execution
result of the reference image is correct. Thus, we ensured that the reason for execution failure came
from the added distortion, not the image itself. Figure 9 shows examples of successful execution,
results deviating from the ground truth, and emergency stops triggered by collisions with the table.
We calculate the average Execution score under 30 distortion types and compare it with the Cognition
and Decision scores, as shown in Figure 8 (b)(c), where findings are summarized as follows:

Cognition VS Execution: The SRCC of VLM results with the real world is less than 0.5. This
corroborates the necessity of using VLA as subjects in the Embodied IQA task beyond VLM.
Decision VS Execution: The SRCC of VLA results with the real world exceeds 0.6, indicating that
Decision can represent Execution to some extent. However, this correlation is still not high enough,
proving that certain real-world experiments are still indispensable for Embodied AI development.
Perception VS Cognition&Decision: Existing quality metrics have initially demonstrated the ability
to handle Embodied IQA tasks, but there is still a gap compared to the traditional human-oriented
paradigm. More advanced metrics should be developed in the upcoming Embodied AI era.

6 CONCLUSION

In this paper, we extend the application of IQA from a traditional human-oriented paradigm to Em-
bodied AI. To study which distortions have a negative impact on Embodied AI, we built a Perception-
Cognition-Decision-Execution pipeline based on Mertonian Law and established a database for
Embodied subjective preferences. Experiments show that more advanced IQA methods are needed
to identify quality degradation for Embodied AI. We sincerely hope this Embodied IQA task can
promote the application of Robotic Intelligence under complex distortions in the Real-world.
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A STATEMENT

[LLM Usage]: LLM is applied to aid and polish writing, including grammar, rhetoric, and proper
citation format. No scientific conclusions, experimental designs, or technical contributions are
generated by LLM.

[Ethics statement]: This article covers Embodied AI’s four steps: perception, cognition, decision,
and execution. Most experiments focus on machine intelligence and humans are involved only in the
perception annotation phases. We obtained consent from each participant before data collection and
ensured that the experimental procedures adhered to the Declaration of Helsinki. For Embodied AI
execution, we implemented an emergency stop mechanism for the robotic arm to ensure compliance
with the Three AI Laws (do no harm to humans/the environment/itself).

[Reproducibility]: We will release all quality-related issue for non-commercial use, including the
quality score from each VLMs/VLAs, the fidelity of position/rotation/state, and the overall score.

B LIMITATION & BROADER IMPACT

[Limitation 1]: As the first Embodied IQA work, we simplify the Perception to vision and Execution
to robotic arms. Since the visual signals processed by humans account for 80% of the total signals,
while upper limb movements account for 50% of all movements. Considering the consistency between
humans and machines and the current limitations of Embodied AI, our simplification is reasonable.
This will not affect the current main applications of Embodied AI, such as industrial assembly and
home services. After the future vision-tactile fusion (Perception), quadruped robot dog (Execution),
and other task scenarios are improved, we will further update the quality assessment data.

[Limitation 2]: The scale of our Real-world data is relatively small compared to Cognition and
Decision. In the VLM and VLA steps, we already have the largest amount of data (millions) compared
to previous IQA work. This is because the high cost of real machine data requires a lot of manpower
in the site layout and verification stages. Although 1,500 annotation samples are not enough as quality
labels, they are sufficient to verify the Sim2Real consistency of Cognition-Execution and Decision-
Execution. With the further development of Embodied AI, we believe an automated Real-world
pipeline will be developed, from which we will expand the scale of Execution labels.

[Broader Impact] (Positive): IQA can expand the application scenarios of Embodied AI, extending
it from the in-lab environment to distortions in the Real-world. We collect the subjective preferences
of Embodied AI, thus objectively judge the ‘utility’ of images before executing specific tasks. In this
way, distorted images such as jitter and blur can be effectively filtered. Such quality indicators can be
used for all visual applications for Embodied AI, such as video coding, super-resolution, defogging,
denoising, etc. Considering that the amount of visual signals consumed by machines has exceeded
humans since 2023, visual quality indicators for Embodied AI can fill this research gap.

[Broader Impact] (Negative): The general use of visual quality indicators in Embodied AI may affect
traditional human-oriented tasks. Considering that humans, VLM (Cognition), and VLA (Decision)
have different preferences, only evaluating the preferences of VLM and VLA will inevitably lead to
scores that are not relevant to humans. Therefore, in future international protocols, it is recommended
to integrate the three IQA paradigms for humans, VLM, and VLA together, and select appropriate
quality indicators based on the user end.

C ROBOTICS SETTINGS

This section provides a detailed derivation of the forward and inverse kinematics for the Universal
Robots (UR5), a 6-DoF collaborative robot. The Denavit-Hartenberg (D-H) convention is used to
establish the kinematic model.

In the experiments part, the initial pose is obtained through forward kinematics by recording the
initial rotational angles of the six joints and calculating the end-effector’s pose relative to the base
coordinate frame. The incremental pose output by the VLA is then multiplied with the initial pose to
derive the step-by-step poses. The robotic arm’s actual motion is resolved via inverse kinematics,
which computes the required rotational angles for each joint motor to achieve the target configuration.
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Table 3: Parameter settings of Robotic arm UR5 D-H. The specific action depends on 6 frames.
Joint Frame i αi−1 (rad) ai−1 (m) di (m) θi (rad)

1 0 0 d1 θ∗1
2 π/2 0 0 θ∗2
3 0 a2 0 θ∗3
4 0 a3 d4 θ∗4
5 π/2 0 d5 θ∗5
6 −π/2 0 d6 θ∗6

The D-H parameters define the geometry of the robot manipulator by establishing a coordinate frame
{i} attached to each link i. The transformation from frame {i− 1} to frame {i}, denoted Ai−1

i , is
described by four parameters associated with link i− 1 and joint i:

• θi: Joint Angle - the rotation about the zi−1 axis, from xi−1 to xi. For a revolute joint, θi is
the joint variable.

• di: Link Offset - the distance along the zi−1 axis from the origin of frame {i − 1} to the
intersection of the zi−1 axis with the xi axis. For a prismatic joint, di is the joint variable.

• ai−1: Link Length - the distance along the xi axis (which is the common normal between
zi−1 and zi) from the intersection of zi−1 and xi axis to the origin of frame {i}.

• αi−1: Link Twist - the angle about the xi axis, from zi−1 to zi.

The UR5 D-H parameters used in this paper shown in Table 3. Where a2, a3 are physical link lengths
associated with links 2 and 3 respectively (used as ai−1 parameters in the table for joints 3 and 4),
and d1, d4, d5, d6 are link offsets. The θ∗i are the joint variables.

Typical UR5 parameter values (example, signs depend on coordinate frame choices): d1 = 0.089159
m, a2 = 0.42500 m (often negative in some tables: −0.42500), a3 = 0.39225 m (often negative:
−0.39225), d4 = 0.10915 m, d5 = 0.09465 m, d6 = 0.0823 m.

D FORWARD KINEMATICS

The standard D-H transformation matrix Ai−1
i from frame {i−1} to frame {i} is defined as a product

of four basic transformations:

Ai−1
i = Rz(θi)Trz(di)Trx(ai−1)Rx(αi−1), (1)

Ai−1
i =

cos(θi) − sin(θi) cos(αi−1) sin(θi) sin(αi−1) ai−1 cos(θi)
sin(θi) cos(θi) cos(αi−1) − cos(θi) sin(αi−1) ai−1 sin(θi)

0 sin(αi−1) cos(αi−1) di
0 0 0 1

 , (2)

where Tr(·) and R(·) denote the trajectory and rotation matrix projected on a certain axis. For
simplicity, the following symbols will be defined in the subsequent sections: ci = cos(θi), si =
sin(θi). cij = cos(θi + θj), sij = sin(θi + θj). Using the D-H parameters from Table 3, the
individual transformation matrix Ai−1

i for robotic manipulators are:

A0
1 =

cos(θ1) − sin(θ1) 0 0
sin(θ1) cos(θ1) 0 0

0 0 1 d1
0 0 0 1

 , (3)

A1
2 =

cos(θ2) 0 sin(θ2) 0
sin(θ2) 0 − cos(θ2) 0

0 1 0 0
0 0 0 1

 , (4)
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(a) Annotation (b) Verification

Figure 10: Human annotation and verification Interface. Subjects will cyclically define five tasks
with different contents and increasing difficulty, and submit them to robotic experts for verification.

A2
3 =

cos(θ3) − sin(θ3) 0 a2 cos(θ3)
sin(θ3) cos(θ3) 0 a2 sin(θ3)

0 0 1 0
0 0 0 1

 , (5)

A3
4 =

cos(θ4) − sin(θ4) 0 a3 cos(θ4)
sin(θ4) cos(θ4) 0 a3 sin(θ4)

0 0 1 d4
0 0 0 1

 , (6)

A4
5 =

cos(θ5) 0 sin(θ5) 0
sin(θ5) 0 − cos(θ5) 0

0 1 0 d5
0 0 0 1

 , (7)

A5
6 =

cos(θ6) 0 − sin(θ6) 0
sin(θ6) 0 cos(θ6) 0

0 −1 0 d6
0 0 0 1

 . (8)

The total transformation matrix T 6
0 from the base frame {0} to the end-effector frame {6} is:

T 6
0 = A0

1A
1
2A

2
3A

3
4A

4
5A

5
6 =

(
R6

0 p60
01×3 1

)
=

nx sx ax px
ny sy ay py
nz sz az pz
0 0 0 1

 , (9)

where R6
0 = [n, s, a] refers to the rotation matrix part of T 6

0 , where n = [nx, ny, nz]
T, s =

[sx, sy, sz]
T, and a = [ax, ay, az]

T are column vectors representing the x, y, z axes of frame {6}
expressed in frame {0}, respectively. p60 = [px, py, pz]

T represents the translation vector part of T 6
0 ,

namely the position of the origin of frame {6} expressed in frame {0}.

E INVERSE KINEMATICS

The objective of Inverse Kinematics (IK) is to determine the set of joint angles (θ1, . . . , θ6) that
achieve a desired end-effector pose T 6

0 . The UR5 possesses a spherical wrist (axes of joints 4, 5, and
6 intersect at a common point, the wrist center), which allows for a decoupled analytical solution.
First, the position of the wrist center is determined, which allows solving for the first three joints.
Then, the orientation of the end-effector is used to solve for the remaining three wrist joints.
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Figure 11: Correlation between the general Cognition score and the 3 dimensions from VLMs, and the
score distribution in Sim2Real, First/Third perspectives, Main object, and Background sub-categories.

E.1 CALCULATION OF THE WRIST CENTER POINT

The wrist center point (WCP), pwc, is typically defined as the origin of frame {5}. Its position can be
found by translating from the end-effector origin, p60, backwards along the approach vector a (the
z6-axis expressed in frame {0}) by a distance d6:

pwc = p60 −R6
0

(
0
0
d6

)
=

(
px
py
pz

)
− d6

(
ax
ay
az

)
=

(
px − d6ax
py − d6ay
pz − d6az

)
, (10)

where pwc = (xwc, ywc, zwc)
T means position vector of the wrist center point in frame {0}.

E.2 SOLVING FOR BASE JOINTS

The y-coordinate of pwc when expressed in frame {1}, denoted p1wc,y, can be shown to be d4 + d5
for this specific D-H parameterization (where pwc is the origin of frame {5}). We have p1wc,y =
−xwc sin(θ1) + ywc cos(θ1) = d4 + d5. This equation can be solved for θ1:

θ1 = atan2(ywc, xwc)− atan2(d4 + d5, σ1

√
x2
wc + y2wc − (d4 + d5)2), (11)

where σ1 = ±1 denotes two possible solutions for θ1. Function atan2(·, ·) transforms two Cartesian
coordinates to polar. If the term under the square root is negative, the target pwc is unreachable.

E.3 SOLVING FOR ELBOW JOINTS

With θ1 known, transform pwc into frame {1}. Let Kx and Kz be coordinates of pwc relevant
for the planar geometry of links 2 and 3: Kx = xwc cos(θ1) + ywc sin(θ1) Kz = zwc − d1.
From the geometry of the first three links (considering α1 = π/2 which introduces a rotation
making z1 horizontal in the new projected plane if θ2 = 0): Kx = a2 cos(θ2) + a3 cos(θ2 + θ3)
Kz = −a2 sin(θ2)− a3 sin(θ2 + θ3). Squaring and adding these two equations yields: K2

x +K2
z =

a22 + a23 + 2a2a3 cos(θ3). This allows solving for θ3:

cos(θ3) =
K2

x +K2
z − a22 − a23
2a2a3

, (12)

where σ3 = ±1 corresponds to up/down configurations. From sin(θ3) = σ3

√
1− cos(θ3)2 we have:

θ3 = atan2(sin(θ3), cos(θ3)). (13)

To solve for θ2, rearrange the equations for Kx and Kz: Let k1 = a2+a3 cos(θ3) and k2 = a3 sin(θ3).
Then Kx = k1 cos(θ2) − k2 sin(θ2) and Kz = −k1 sin(θ2) − k2 cos(θ2). Solving this system for
sin(θ2) and cos(θ2): sin(θ2) = −(k1Kz + k2Kx)/(k

2
1 + k22) cos(θ2) = (k1Kx − k2Kz)/(k

2
1 + k22)

(Note: k21 + k22 = K2
x +K2

z ):

θ2 = atan2(−(k1Kz + k2Kx), k1Kx − k2Kz). (14)

Alternatively, a more robust form is often θ2 = atan2(−Kz,Kx)− atan2(k2, k1).

E.4 SOLVING FOR WRIST JOINTS

Once θ1, θ2, θ3 are known, the rotation matrix R3
0 from the base to frame {3} can be computed:

R3
0 = (A0

1A
1
2A

2
3)rot. The rotation matrix from frame {3} to frame {6} is then R6

3 = (R3
0)

TR6
0. Let
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Table 4: Using 15 advanced IQA metrics to evaluate the Cognition score from VLMs, including
zero-shot, FR, and NR metrics. [Keys: Best/Second best in group; Baseline; Lower than baseline.]

Dimension Precision Recall Semantic First Perspective Third Perspective
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.3432 0.2339 0.3661 0.3186 0.2168 0.3369 0.3257 0.2225 0.3520 0.4142 0.2831 0.4393 0.3605 0.2477 0.4140
SSIM Wang (2004) 0.5809 0.4055 0.5561 0.5558 0.3871 0.5241 0.5798 0.4057 0.5521 0.6244 0.4383 0.5805 0.5849 0.4094 0.5438
Brisque Mittal et al. (2012) 0.3527 0.2380 0.3342 0.3537 0.2412 0.3319 0.3596 0.2442 0.3375 0.3232 0.2187 0.2987 0.3751 0.2545 0.3554
Q-Align Wu et al. (2024) 0.7045 0.5067 0.6721 0.6755 0.4798 0.6278 0.7040 0.5058 0.6687 0.6622 0.4767 0.6214 0.7321 0.5349 0.6970
Q-Align+ Zhang et al. (2025) 0.4697 0.3184 0.4049 0.4524 0.3063 0.3623 0.4722 0.3202 0.3958 0.4687 0.3188 0.4263 0.5082 0.3421 0.4351

FR

AHIQ Lao et al. (2022) 0.7941 0.5930 0.7901 0.7747 0.5753 0.7683 0.7983 0.5976 0.7919 0.8035 0.6039 0.8015 0.8288 0.6342 0.8292
CKDN Zheng et al. (2021) 0.7461 0.5460 0.7444 0.7387 0.5380 0.7332 0.7516 0.5508 0.7470 0.7556 0.5587 0.7547 0.7836 0.5808 0.7810
DISTS Ding et al. (2020) 0.7017 0.5128 0.7052 0.6887 0.5010 0.6863 0.7080 0.5188 0.7096 0.7307 0.5424 0.7299 0.7535 0.5584 0.7530
LPIPS Zhang et al. (2018a) 0.6681 0.4785 0.6165 0.6463 0.4610 0.5975 0.6714 0.4812 0.6179 0.6797 0.4929 0.6292 0.6893 0.5008 0.6485
TOPIQ-FR Chen et al. (2024a) 0.8209 0.6241 0.8194 0.8160 0.6170 0.8126 0.8326 0.6363 0.8289 0.7997 0.5967 0.7932 0.8521 0.6574 0.8462

NR

CLIPIQA Wang et al. (2023) 0.3111 0.2101 0.3185 0.3013 0.2038 0.3141 0.3167 0.2156 0.3257 0.1748 0.1198 0.1778 0.3889 0.2620 0.3821
CNNIQA Kang et al. (2014) 0.4864 0.3359 0.4818 0.4793 0.3312 0.4761 0.4880 0.3368 0.4861 0.4719 0.3247 0.4735 0.5336 0.3744 0.5431
DBCNN Zhang et al. (2018b) 0.5687 0.3921 0.5553 0.5349 0.3650 0.5183 0.5596 0.3835 0.5453 0.5341 0.3578 0.5346 0.6622 0.4699 0.6489
QualiClipAgnolucci et al. (2025) 0.7416 0.5425 0.7389 0.7399 0.5399 0.7383 0.7524 0.5514 0.7499 0.6960 0.5022 0.6913 0.7864 0.5832 0.7711
TOPIQ-NR Chen et al. (2024a) 0.7941 0.5933 0.7897 0.7818 0.5812 0.7761 0.8031 0.6039 0.7958 0.7854 0.5846 0.7819 0.8512 0.6577 0.8449

Dimension Mild Distortion Medium Distortion Severe Distortion Real-world Simulation
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.2350 0.1588 0.3725 0.1122 0.0751 0.1527 0.0811 0.0566 0.0763 0.4390 0.3056 0.4575 0.3613 0.2466 0.3945
SSIM Wang (2004) 0.3263 0.2229 0.3133 0.1434 0.0972 0.1080 0.2102 0.1375 0.2402 0.6319 0.4507 0.5916 0.6645 0.4688 0.6449
Brisque Mittal et al. (2012) 0.1525 0.1205 0.1017 0.1503 0.1168 0.0967 0.2088 0.1502 0.1334 0.4143 0.3907 0.2798 0.0636 0.0423 0.0421
Q-Align Wu et al. (2024) 0.5092 0.3572 0.4793 0.4491 0.3071 0.4360 0.4056 0.2775 0.5047 0.7764 0.5739 0.7475 0.6642 0.4648 0.6319
Q-Align+ Zhang et al. (2025) 0.2995 0.2006 0.2657 0.3422 0.2268 0.2990 0.2154 0.1440 0.2240 0.5643 0.3898 0.5316 0.4804 0.3302 0.4709

FR

AHIQ Lao et al. (2022) 0.5921 0.4191 0.5842 0.5538 0.3895 0.5644 0.5580 0.3968 0.6064 0.8293 0.6339 0.8214 0.8138 0.6117 0.8041
CKDN Zheng et al. (2021) 0.5497 0.3846 0.5672 0.5539 0.3872 0.5537 0.5087 0.3533 0.5287 0.7480 0.5494 0.7457 0.7706 0.5651 0.7727
DISTS Ding et al. (2020) 0.5376 0.3796 0.5179 0.2957 0.2030 0.2894 0.3258 0.2215 0.3657 0.7606 0.5695 0.7566 0.7675 0.5686 0.7677
LPIPS Zhang et al. (2018a) 0.4635 0.3229 0.4285 0.3876 0.2661 0.3700 0.3168 0.2148 0.3225 0.7128 0.5190 0.6493 0.6693 0.4825 0.6030
TOPIQ-FR Chen et al. (2024a) 0.6755 0.4873 0.6661 0.6152 0.4355 0.6194 0.5798 0.4070 0.6125 0.8392 0.6398 0.8232 0.8449 0.6501 0.8442

NR

CLIPIQA Wang et al. (2023) 0.1542 0.1031 0.1350 0.0375 0.0262 0.0319 0.0974 0.0645 0.1245 0.3944 0.2624 0.3853 0.6178 0.4305 0.5342
CNNIQA Kang et al. (2014) 0.2697 0.1797 0.2238 0.1948 0.1310 0.1801 0.2033 0.1382 0.1871 0.5317 0.3732 0.5419 0.5280 0.3659 0.5380
DBCNN Zhang et al. (2018b) 0.3227 0.2200 0.3453 0.2421 0.1591 0.2323 0.2218 0.1480 0.2486 0.6688 0.4743 0.6579 0.6285 0.4306 0.5990
QualiClipAgnolucci et al. (2025) 0.5795 0.4074 0.5388 0.4769 0.3258 0.4673 0.4846 0.3371 0.5112 0.7847 0.5849 0.7739 0.7691 0.5667 0.7420
TOPIQ-NR Chen et al. (2024a) 0.6443 0.4550 0.6295 0.6006 0.4248 0.5996 0.5703 0.4014 0.6153 0.8403 0.6454 0.8320 0.8322 0.6307 0.8241

Dimension Dis-level-1 Dis-level-2 Dis-level-3 Dis-level-4 Dis-level-5
Group Metric SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑ SRCC↑ KRCC↑ PLCC↑

Zero

PSNR 0.2405 0.1665 0.3445 0.2447 0.1644 0.2930 0.2261 0.1512 0.2695 0.2065 0.1357 0.2323 0.4268 0.2894 0.4473
SSIM Wang (2004) 0.5085 0.3520 0.4753 0.4888 0.3389 0.4547 0.5601 0.3878 0.5299 0.5646 0.3852 0.5450 0.6977 0.4997 0.6846
Brisque Mittal et al. (2012) 0.1471 0.0971 0.1276 0.2153 0.1466 0.2050 0.3106 0.2093 0.2767 0.3112 0.2058 0.2929 0.4560 0.3109 0.4301
Q-Align Wu et al. (2024) 0.6748 0.4887 0.6579 0.6826 0.4943 0.6539 0.7060 0.5079 0.6656 0.7316 0.5250 0.6937 0.7055 0.5040 0.6775
Q-Align+ Zhang et al. (2025) 0.4598 0.3136 0.4055 0.5730 0.4006 0.5013 0.5487 0.3758 0.4988 0.5392 0.3684 0.5110 0.4769 0.3238 0.4140

FR

AHIQ Lao et al. (2022) 0.7138 0.5226 0.7554 0.7917 0.5935 0.7843 0.7462 0.5506 0.7434 0.7828 0.5810 0.7761 0.8124 0.6122 0.8149
CKDN Zheng et al. (2021) 0.6883 0.5044 0.7448 0.7236 0.5217 0.7186 0.7024 0.5085 0.7073 0.6989 0.5030 0.6868 0.6997 0.5076 0.7045
DISTS Ding et al. (2020) 0.6557 0.4749 0.6641 0.6385 0.4582 0.6488 0.6720 0.4856 0.6686 0.6875 0.4945 0.7040 0.7541 0.5540 0.7571
LPIPS Zhang et al. (2018a) 0.6174 0.4401 0.6323 0.6742 0.4853 0.6405 0.6098 0.4374 0.5895 0.6188 0.4358 0.5678 0.6842 0.4844 0.6248
TOPIQ-FR Chen et al. (2024a) 0.7876 0.5949 0.8192 0.8030 0.6011 0.8001 0.7944 0.5941 0.7898 0.8161 0.6111 0.8051 0.8084 0.6033 0.8160

NR

CLIPIQA Wang et al. (2023) 0.2597 0.1727 0.2715 0.3258 0.2201 0.3295 0.2608 0.1768 0.2473 0.3331 0.2252 0.3480 0.4283 0.2921 0.4228
CNNIQA Kang et al. (2014) 0.3490 0.2356 0.3572 0.3909 0.2676 0.3737 0.5042 0.3497 0.4942 0.5044 0.3412 0.5092 0.6176 0.4311 0.6028
DBCNN Zhang et al. (2018b) 0.5077 0.3527 0.5513 0.5553 0.3855 0.5580 0.6177 0.4259 0.6008 0.6373 0.4404 0.6217 0.6472 0.4496 0.6435
QualiClipAgnolucci et al. (2025) 0.7072 0.5115 0.7188 0.7337 0.5366 0.7187 0.7027 0.5048 0.6866 0.7602 0.5537 0.7493 0.7352 0.5418 0.7379
TOPIQ-NR Chen et al. (2024a) 0.7788 0.5818 0.8044 0.7974 0.6014 0.7993 0.7966 0.6011 0.7911 0.8071 0.6035 0.7967 0.7965 0.5952 0.8027

R6
3 = [r′ij ]. The matrix R6

3 can also be expressed as the product of rotations for joints 4, 5, 6 using
their D-H parameters: R6

3 = Rz(θ4)Rx(α3)Rz(θ5)Rx(α4)Rz(θ6)Rx(α5). For the UR5 D-H
parameters in Table 3: R6

3 = Rz(θ4)Rz(θ5)Rx(π/2)Rz(θ6)Rx(−π/2). The symbolic product is:

R6
3 =

(
c4c5c6 − s4s5c6 c4s5 + s4c5 c4c5s6 − s4s5s6
s4c5c6 + c4s5c6 s4s5 − c4c5 s4c5s6 + c4s5s6

s6 0 −c6

)
. (15)

By comparing elements of the numerically computed R6
3 = [r′ij ] with this symbolic form:

1. r′32 must be 0. If the computed ((R3
0)

TR6
0)32 is significantly non-zero, it indicates no

solution for this wrist structure or a modeling error.
2. From r′31 = s6 and r′33 = −c6:

θ6 = atan2(r′31,−r′33). (16)

This provides a unique solution for θ6 in (−π, π]. Another solution is θ6 ± π (if s6, c6 are
flipped), but usually we seek solutions within joint limits.

3. From r′12 = c4s5 + s4c5 = s4+5 and r′22 = s4s5 − c4c5 = −c4+5:

θ4 + θ5 = atan2(r′12,−r′22). (17)

Consider the movement of these two elements as a whole, we have ϕ45 = θ4 + θ5.
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Figure 12: Low-level feature distribution of MPD, normalized and visualized in 30 corruption subsets.
Different colors denote Luminance, Contrast, Chrominance, Blur, and Spatial Information.

4. To find θ5 and θ4 separately: s5 = c4r
′
12+ s4r

′
22 = c4sϕ45 + s4(−cϕ45) = sin(ϕ45− θ4) =

sin θ5. c5 = s4r
′
12 − c4r

′
22 = s4sϕ45 − c4(−cϕ45) = cos(ϕ45 − θ4) = cos θ5. A common

method to solve for θ5 (wrist roll) for many spherical wrists involves:

θ5 = σ5 arccos

(
r′11 + r′22

s4
c4

c6(c4 − s4
s4
c4
)

)
. (18)

According to θ5 we have θ4 = ϕ45 − θ5. Thus all rotation angles can be retrieved.

Typically, UR5 has 8 unique inverse kinematics solutions (σ1 = ±1, σ3 = ±1, σ5 = ±1 for the
choice of s5). Singularities (e.g., s5 = 0) lead to infinite solutions where θ4 and θ6 are coupled.

E.5 HANDLING SINGULARITIES

• Shoulder Singularity: Occurs if x2
wc + y2wc − (d4 + d5)

2 = 0. The wrist center lies on the
z0 axis (for d4 + d5 = 0) or a cylinder around z0. θ1 is not uniquely defined.

• Elbow Singularity: Occurs if K2
x + K2

z − a22 − a23 = ±2a2a3, meaning cos(θ3) = ±1
(arm fully extended or folded). sin(θ3) = 0, so θ2 solution becomes simpler but an infinite
number of θ2 might exist if pwc is on z1.

• Wrist Singularity: Occurs if s5 = 0 (i.e., θ5 = 0 or π). Axes z4 and z6 align. In this case,
only the sum or difference (θ4 ± θ6) can be determined according to Section D.4. One angle
can be chosen arbitrarily, and the other is then fixed.

F SUBJECTIVE PERCEPTION TASK DEFINITION

Before VLM and VLA inference, we organized five Ph. D. candidates as a panel to define five
downstream tasks for each image as shown in Figure 10. To avoid bias from a single subject, each
sample is sent to five subjects in a random order to design specific tasks based on the image. The 1,230
samples to be annotated come from seven Robotic database Khazatsky et al. (2024); Kalashnikov et al.
(2018); Kerr et al. (2023); Depierre et al. (2018); Tziafas et al. (2023); Gu et al. (2023); Rosete-Beas
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Reference result：
Position: [-0.02, 0.00,-0.03]
Rotation: [ 0.09,-0.01, 0.01]
State: 1.0

• Task: Pick up the green cup from the table.

Distortion: 
Type: Block interpolotaion
Strength level: 2

VLA: CogACT
Decision score: 4.93

Distorted result：
Position: [-0.02, 0.00,-0.04]
Rotation: [ 0.10,-0.01, 0.01]
State: 1.0

Reference result：
Position: [-0.02,-0.01,-0.10]
Rotation: [ 0.22, 0.05,-0.02]
State: 1

• Task: Place the red block on top of the gray block.

Distortion: 
Type: Block interpolotaion
Strength level: 5

VLA: OpenVLA
Decision score: 4.52

Distorted result：
Position: [-0.02, 0.00,-0.05]
Rotation: [ 0.11, 0.00, 0.02]
State: 1

Reference result：
Position: [ 0.06,-0.09, 0.11]
Rotation: [ 0.51, 0.35, 0.15]
State: 1

• Task: Pick up the black object from the floor.

Distortion: 
Type: Block lost
Strength level: 1

VLA: Pi0
Decision score: 2.98

Distorted result：
Position: [-0.08, 0.15,-0.14]
Rotation: [ 0.19,-0.10, 0.07]
State: 1

Reference result：
Position: [ 0.01, 0.01, 0.05]
Rotation: [ 0.24, 0.06, 0.11]
State: 1.0

• Task: Place the pen at the right side of the table. 

Distortion: 
Type: Block exchange
Strength level: 4

VLA: Octo
Decision score: 2.47

Distorted result：
Position: [-0.04, 0.01,-0.05]
Rotation: [-0.07,-0.21,-0.01]
State: 0.0

Figure 13: Positive and negative cases. Slight distortion may significantly affect the inference result
of Embodied AI, while severe distortion may not. Emphasizing the significance of Embodied IQA.

et al. (2022), and are filtered according to the settings in the main text, to retain only high-quality
images. Subjects can see the previous tasks, and the new tasks they design need to be more difficult
than them and test different abilities (for example, if an object has been pushed, try not to grab it
again). Images with display errors, NSFW, or offensive content will be removed. After each image
has five task labels, a professional robotics engineer will adjust the specific samples. Based on
operational experience, the difficulty of the five tasks will be re-ranked, and unreasonable tasks will
be modified.

G COGNITION IQA EXPERIMENT

Due to space limitations in the main text, we mainly discuss the Decision step (specific to Embodied
AI), and the Cognition step (common to general machines) is listed in this section. First, the Cognition
score given by VLM is shown in Figure 11. Compared with the three dimensions of Decision in
Figure 6, the correlation between the Cognition dimensions is higher, and the distribution difference
between different categories of data is smaller. This fully demonstrates the difference between the
reasoning mechanisms of VLM and VLA, and proves the rationality of separating these two steps.

Therefore, in addition to Decision, we also conducted IQA experiments on Cognition, following the
training/testing settings in the main text. Table 4 presents the performance of advanced quality metrics
on Cognition, compared with Decision in Table 2, current IQA metrics has better prediction results
on Cognition. Since the current IQA method is more related to VLM than VLA, the quality indicators
that general machines already have are initially available, but Embodied AI cannot be effectively
evaluated. It is worth mentioning that the zero-shot baseline method on Cognition can occasionally
even achieve an SRCC of more than 0.7, surpassing a number of fine-tuned methods; while the
baseline on Decision is significantly weaker. This is exactly why we separated the Robot Visual
System from the Machine Visual System and used the Mortonian system to model the Intelligent
System in four steps. In short, we hope that the Embodied IQA database can promote more complete
quality indicators, whether applied for VLM or VLA as subjects in Embodied tasks.

H LOW-LEVEL ATTRIBUTE DISTRIBUTION

Figure 12 shows the distribution of low-level features of all instances of Embodied IQA. After overall
regularization, 30 types of corruption are grouped and displayed. The features considered include
Luminance, Contrast, Chrominance, Blur, and Spatial Information. There are significant differences
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Motion blur Color diffusion
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HSV saturation Lab saturation
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CNN denoise Maximum brighten
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Figure 14: Visualization of 30 distortion types. Strength from left (Level 1) to right (Level 5).

in these low-level attributes for different corruptions. For example, in the first three blurry cases, the
blur curve is left-biased and becomes right-biased after sharpening. In general, similar corruption
categories will lead to similar results (such as five noise-related and four block-related). Two of
the denoises have the sharpest distributions; Color quantization, Grayscale quantization, Sharpness
change, and Contrast change are the most irregular. These findings deserve further exploration.
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I CASES STUDY

Figure 13 shows four typical examples from the Embodied IQA database (center-cropped for visu-
alization), including the VLA inference results for reference/distorted image pairs under different
distortions. The results in the upper left and lower right corners are as expected, the more severe the
distortion, the lower the score. However, for the distortion level 5 in the upper righ, since it does
not affect any objects on the desktop, the ‘gray block’ as the target of the task is not affected, so the
subjective score is as high as 4.52; on the contrary, although the distortion level in the lower left
corner is only 1, the ‘lost macro block’ happens to be the target object, so the VLA Position and
Rotation are greatly changed with a score only 2.98. Figure 14 shows 30 distortion types at different
strength levels from 1 to 5. In the previous human-oriented scenario, the visual quality of different
corruptions is similar at the same strength. However, from the example above, the preference of
Embodied AI depends on the task, which significantly differs from traditional IQA paradigm. We
hope that our database can further inspire better quality metrics for Embodied AI.

J DISCLAIMER

The main purpose of this study is to apply IQA to Embodied AI to promote its Real-world application,
rather than to praise or criticize any VLM, VLA, or IQA model. We evaluate image samples rather
than models. Lower scores do not mean that the performance of downstream VLM/VLA is poor, but
distortion has a greater impact on it; similarly, lower correlation coefficients do not mean defects
in the IQA method, but rather indicate the huge difference between Embodied and traditional IQA.
Considering the scale of the database, we will open it in several stages for non-commercial use, and
sincerely hope that future robotic-oriented IQA metrics can drive the development of Embodied AI.
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