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Abstract

Large Language Models have become the
de facto approach to sequence-to-sequence
text generation tasks, but for specialized
tasks/domains, a pretrained LLM lacks spe-
cific capabilities to produce accurate or well-
formatted responses. Supervised fine-tuning
specializes a LLM by training it on dataset
of example prompts with desired target re-
sponses, but real-world data tends to be noisy.
While many fine-tuning algorithms exist, here
we consider a data-centric Al perspective on
LLM fine-tuning, studying how to systemat-
ically curate the training dataset to improve
the LLM produced via any fine-tuning algo-
rithm. We introduce an automated data cura-
tion pipeline CLEAR (Confidence-based LLM
Evaluation And Rectification) for instruction
tuning datasets, that can be used with any LLM
and fine-tuning procedure. CLEAR estimates
which training data is low-quality and either
filters or corrects it. Quality scoring and the
decision to filter or correct are based on LLM-
derived confidence estimates, which ensure al-
gorithmic modifications to the dataset remain
suitably conservative. Unlike existing data cu-
ration techniques, CLEAR is a comprehensive
framework that can improve a dataset (and
trained model outputs) without additional fine-
tuning computations. Importantly, we don’t as-
sume access to a stronger LLM than the model
being fine-tuned (e.g. relying on GPT-4 when
fine-tuning GPT-3.5), to see whether CLEAR
can meaningfully improve the capabilities of
any LLM. Our experiments reveal that CLEAR
consistently improves the performance of fine-
tuned models across many datasets and models
(like GPT-3.5 and Llama?2).

1 Introduction

Large Language Models (LLMs) pretrained on
an internet-scale text corpus have shown remark-
able capabilities in generating helpful human-like
text (Brown et al., 2020; Touvron et al., 2023).

However, the efficacy of LLMs in specialized do-
mains or tasks is heavily reliant on the process
of instruction tuning (i.e. supervised fine-tuning,
or alignment), where pretrained models are fur-
ther trained using datasets that well-represent the
domain (Wei et al., 2022). Here we specifically
consider sequence-to-sequence training datasets of
(prompt, target response) pairs. After training, we
feed the LLM new prompts from the same domain
and want it to produce responses that match the
corresponding targets.

Since LLMs are billion parameter neural net-
works that indiscriminately absorb patterns and
information across a massive dataset, the quality
of these instruction tuning datasets is paramount to
effective fine-tuning (Zhou et al., 2023; Xu et al.,
2023). Unfortunately, most real-world instruction
tuning datasets are noisy, containing many exam-
ples that are low-quality in various ways: the tar-
get response may be inaccurate, poorly written,
the prompt may be nonsensical/incomplete/vague,
or the two may be unrelated due to data en-
try/processing mistakes. Such flawed training data
leads to fine-tuned models whose outputs are incor-
rect, irrelevant, biased, poorly formatted, or flawed
in other ways. Finding and fixing low-quality data
can be challenging in large datasets without exten-
sive manual labor.

While most machine learning research iterates
over modeling strategies (architectures, loss func-
tions, training algorithms, ...) for a fixed dataset
to produce better results, the emerging science of
Data-centric Al asks how we can systematically
iterate on the dataset while holding the modeling
strategy fixed to produce better results (Mazumder
et al., 2022). Success in real-world Al projects
typically requires both approaches. Since many
existing fine-tuning algorithms have been proposed
(Zhang et al., 2023), we follow the spirit of data-
centric Al and propose CLEAR, a comprehensive
and automated data curation pipeline to enhance



the effectiveness of instruction tuning datasets for
any LLM and fine-tuning algorithm.

Our CLEAR pipeline involves two stages: Auto-
Filter and Auto-Correct which together offer a
holistic solution to improving data quality for fine-
tuning purposes. The Auto-Filter stage removes
data that is confidently low-quality from the dataset
without any LLM fine-tuning. It is already able to
significantly improve the dataset, such that we can
produce better fine-tuned LLMs without any extra
LLM fine-tuning computation. For settings where
one is able to fine-tune the LLM multiple times,
the Auto-Correct stages uses the current fine-tuned
LLM to revise certain examples that can be con-
fidently improved, such that fine-tuning the LLM
again on the resulting corrected dataset yields im-
proved performance.

Algorithmic modifications to a dataset are gen-
erally dangerous and unlikely to improve perfor-
mance unless done with extreme care. Filtering
too much data limits the number of examples to
learn from, and editing data can introduce various
biases or amplify flaws in existing model outputs.
Thus, all data modifications in CLEAR are con-
servatively applied based on careful measures of
confidence. Specifically, we rely on BSDetector
(Chen and Mueller, 2023), a method that can be
used with any LLM to obtain trustworthy confi-
dence scores for its own outputs as well as estimat-
ing the confidence that given outputs (e.g. target
responses) are good. CLEAR only filters data that
is confidently identified as low-quality, and only
revises data where the LLM-corrected response
is confidently identified to be better than the cur-
rent dataset response. Our experiments reveal this
careful treatment of confidence to be vital for devel-
oping a data filtering + correction solution that is
effective across diverse instruction-tuning datasets
without any manual modifications.

2 Related Work
2.1 Data Curation for ML

Data curation has been key in real-world deploy-
ment of classical machine learning models, with a
broad spectrum of methods developed to address
dataset mislabeling, outliers, noise, duplicates, and
other data issues (Mazumder et al., 2022). Algo-
rithmic strategies such as noise identification and
removal (Northcutt et al., 2021), active learning for
data prioritization (Settles, 2009), crowdsourcing
for labeling (Snow et al., 2008), and self-supervised

learning for error detection (Lan et al., 2020) have
demonstrated how to produce better models by pro-
ducing better data. These foundational strategies
were mostly designed for classic machine learning
tasks like classification with less complex datasets
than instruction tuning for LLMs.

2.2 Instruction Fine-tuning

Significant research has been conducted into in-
struction tuning to specialize/improve LLMs (Ku-
mar et al., 2016; Raffel et al., 2020; Efrat and
Levy, 2020; Li and Liang, 2021; Wei et al., 2022;
Wang et al., 2023a). FLAN (Wei et al., 2022)
is a popular approach that employs a 137 billion
parameter pre-trained language model, which is
fine-tuned using instructions on more than 60 NLP
datasets verbalized in natural language instruction
templates. Wang et al. (2023a) showed how vari-
ous instruction-tuning datasets can induce specific
skills in a model, though no single dataset (or their
combination) provides optimal performance across
all assessments. Contrary to previous efforts aimed
at creating a general foundation model capable of
generalizing across a wide range of unseen tasks,
here our aim is to train the best possible LLM for a
specific narrow task.

2.3 Data Curation for Instruction Fine-tuning

The quality of training data in text generation appli-
cations has such significance that previous instruc-
tion tuning datasets were often crafted by hand
(Khashabi et al., 2020; Ye et al., 2021; Wei et al.,
2022; Wang et al., 2023b; Honovich et al., 2023).
Wang et al. (2023b) introduced automated tech-
niques by using GPT-3 (Brown et al., 2020) to pro-
duce 52,000 unique instructions not directly linked
to specific tasks. This innovation opened new av-
enues for creating instruction datasets by extract-
ing knowledge from teacher models. Following
the introduction of Meta LLaMa (Touvron et al.,
2023), there was a significant increase in the avail-
ability of open-source instruction tuning datasets
and large language models (LLMs). Alpaca (Taori
et al., 2023) introduces a self-instruct method that
enables the autonomous creation of instructions,
thereby minimizing the reliance on manual input.
Vicuna (Chiang et al., 2023) capitalizes on the var-
ied data accessible via ShareGPT, which naturally
includes a wide array of data types and structures.
WizardLM (Xu et al., 2023) employs an evolution-
ary approach to refine and diversify instructions,
increasing their complexity and variability. Ultra-
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Figure 1: Pipeline of CLEAR.

Chat (Ding et al., 2023) sets up different scopes
and systematically produces numerous instructions
within each defined scope to improve task-specific
performance. Meanwhile, LIMA (Xu et al., 2023)
selects a thousand high-quality data samples strate-
gically, showing notable improvements in LLM
performance. Li et al. (2023a) introduces the in-
struction following metric to autonomously select
good samples from vast open-source datasets.
However, much of this existing LLM fine-tuning
research has focused on distilling teacher models
such as ChatGPT that are more powerful than the
LLM being fine-tuned (Taori et al., 2023; Chiang
et al., 2023). Many existing LLM-based data cura-
tion techniques also utilize more powerful LLMs
for the data curation process than the LLM being
fine-tuned. In contrast, we aim to produce the best
LLM:s for specific tasks, in which even the most ad-
vanced LLMs like GPT-4 struggle to perform. Thus
all data curation throughout this paper is performed
using the same LLM as is being fine-tuned, to truly
assess how effectively this data curation is able to
boost LLM performance beyond the frontier.

3 CLEAR: Auto Data Curation Pipeline

When having instruction tuning datasets I =
{(xs,yi)i—,} specific to a certain domain, our goal
is to fine-tune the language model to improve its

comprehension and execution of instructions. How-
ever, in practical scenarios, the instruction tuning
data might contain noise, such as some mislabel-
ing issue, which arise during the data collection
phase. Moreover, this flawed data could adversely
impact the training process and degrade the model’s
performance. The critical challenge lies in detect-
ing these mislabeling errors and rectifying the la-
bels accordingly. Inspired by this situation, we
introduce an automated data curation pipeline that
comprises two main components: Auto-Filter and
Auto-Correct, which aim to detect problematic
labels and rectify them, respectively. Auto-Filter
employs a confidence-based answer quality evalua-
tor (Chen and Mueller, 2023), to assign confidence
scores to each pair of data. The language model is
then fine-tuned only on the high confidence data.
This fine-tuned LLM is utilized to assist in correct-
ing mislabeled issues within the dataset. It achieves
this by comparing the response generated by fine-
tuned LLM with the original response and select-
ing the more preferable answer. Subsequently, the
LLM is updated with this curated data, and this
cycle of refinement and correction can be repeated
(show in Figure 1).
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Figure 2: In this comparison, we assess two types of answer quality evaluators: confidence-based and score-based.
The confidence-based evaluator provides a confidence score within the range of 0 to 1, where higher values indicate
greater confidence. The score-based evaluator queries GPT-3.5-Turbo using a specific prompt shown in Table 5
and assigns scores within the range of 1 to 5, with higher scores indicating better quality. For the wrong response
(above figure), the confidence-based evaluator assigns a very low confidence score, while the score-based evaluator
assigns a score of 4.0. Conversely, for a correct answer (below figure), the confidence-based evaluator assigns
a very high confidence score, while the score-based evaluator still assigns a score of 4.0. This suggests that the
confidence-based evaluator is more reliable and trustworthy than the score-based evaluator.

4 Auto-Filter

In our work, we explore a novel approach to evalu-
ating the quality of responses in instruction tuning
tasks, diverging from the conventional method of
using large language models like ChatGPT for as-
signing quality scoring through input-output pair
analysis shown in Table 5. Our methodology em-
ploys a confidence-based evaluator, specifically
BSDetector as introduced by Chen and Mueller
(2023), which assesses the confidence that a re-
sponse is good in terms of two factors: observed
consistency and self-reflection certainty. BSDetec-
tor uses our same LLM to generate multiple candi-
date responses to a given prompt (via temperature
sampling), then evaluates the semantic alignment
between these candidate responses and the target
response in the dataset (via natural language in-
ference), and additionally integrates direct LLM
evaluations of the target response (directly prompt-
ing the LLM to report its confidence). The result-
ing confidence estimates account for both aleatoric
and epistemic uncertainty, without requiring any
modification/training of the LLM. Our subsequent
experiments reveal that this confidence-based ap-
proach to assessing answer quality is more precise
compared to traditional LLM-ratings based answer

quality evaluation (see Figure 2).

Given a instruction fine-tuning datasets compris-
ing input-output pairs {(x;, ;)" }, we use BSDe-
tector with the base pretrained LLM (before it is
fine-tuned) to estimate a confidence score C; for
each pair (x;, y;). We then filter out data pairs with
low confidence scores, below a predefined thresh-
old ~:

F={(zi,yi)lei > v}

Subsequently, we fine-tune the large language
model on the remaining training data F'.

4.1 Auto-Correct

In the automated filtering stage, we exclude data
characterized by low confidence, indicative of a
discrepancy between the input and its correspond-
ing response. This raises the immediate question of
how to rectify the inaccuracies in these mismatched
data pairs. The most direct approach involves sub-
stituting the incorrect response with one generated
by another large language model. Nonetheless, for
certain specialized fields, the utilization of even
the most advanced LLMs, such as GPT-4, may
still result in inadequate capabilities in managing
these specific responses. Having fine-tuned the lan-
guage model with data of high confidence, we then



explore the utilization of this enhanced LLM for
automatic corrections. Given that the fine-tuned
LLM now exceeds the capabilities of other models,
such as GPT-4, we proceed to generate responses
(x4, y;)"_, through queries to this fine-tuned model.
The subsequent step involves determining whether
to adopt the newly generated response y' or to
retain the original response y. In this approach,
we engage the LLM such as GPT-4 to determine
the preferable choice among y and ¢/, recognizing
that while the GPT-4 may not directly provide cor-
rect answers to specific queries, it possesses the
capacity to evaluate and identify the superior re-
sponse among two candidate response (Burns et al.,
2023). Following the process of label correction,
we achieve an improved quality dataset for instruc-
tion fine-tuning. Subsequently, this curated dataset
is used to further improve the LLM fine-tuning.
The prompt we used to determine the preferable
choice among y and 3 shown in Table 1.

5 Experiments

Datasets. We evaluate the effectiveness of our
data curation process across three supervised fine-
tuning (sequence to sequence text generation)
datasets. SQuAD (Rajpurkar et al., 2016): prompts
are articles and target responses are answers to
questions created by crowdworkers based on a col-
lection of Wikipedia articles, with each answer be-
ing a specific text fragment or span from the related
article. Emails ': prompts are emails and target re-
sponses include categorizing the email into one of
seven predefined themes by examining the email’s
subject and body content and also vary based on
the email’s length (whether the email content is
short, medium, or long affects how the response is
written). DROP (Dua et al., 2019): prompts are
articles and target responses are answers to read-
ing comprehension questions that require discrete
reasoning over paragraphs (correctly answering re-
quires resolving references in a question, perhaps
to multiple places in the article, and performing
basic operations over the references like addition,
counting, or sorting).

To study our approach for noisy data that re-
quires curation, we perturbed 20% of each train-
ing dataset (not the corresponding test set). For
the emails dataset, the perturbation was to ran-

1h'ctps ://huggingface.co/datasets/neelblabla/
enron_labeled_emails_with_subjects-1lama2-7b_
finetuning

domly swap target responses across different ex-
amples. To perturb a subset of the SQuAD and
DROP datasets, where the answers are contained
within the provided context, we randomly selected
a different sentence from the context as the target
response.

Evaluation metrics. For each dataset, our LLM
fine-tuning performance evaluation focuses on two
metrics (computed over a fixed held out test set):
how often the model’s response format adheres to
a valid JSON structure and how often the model’s
responses are correct. For each model produced via
a fine-tuning method, we report the proportion of
model responses that are in valid JSON format,
and the accuracy of model responses (which is
computed via the proportion of exact matches to
target reference responses, since we expect a well-
supervised model to able to match the types of
target responses it was fine-tuned on).

Baseline Methods. Our study also evaluates the
following non fine-tuning methods: Zero-shot
on GPT-3.5-turbo/GPT-4.0/Llama-2-7b-chat is di-
rectly querying these foundation models. Few-
shot on GPT-3.5-turbo/GPT-4.0/Llama-2-7b-chat
is directly asking the foundation models using in-
context learning. For the fine-tuning methods, we
use the full model fine-tuning on Llama-2-7b-chat
and GPT-3.5 Turbo fine-tuning API. Fine-tuning
on the noisy data refers to the process of fine-
tuning the model on the original datasets without
any data curation. Auto-Filter involves fine-tuning
the model on newly created datasets, where data
with low confidence levels are eliminated. This
procedure sets a median value as the confidence
score threshold, excluding any data falling below
this threshold. Auto-Correct represents the strat-
egy of fine-tuning the model using data that has
undergone a correction process. This involves first
applying the fine-tuned LLM to generate responses
for each query. The next step is to compare the
generated responses with the original ones, select
the more preferable response from the two, and
proceed to fine-tune the model on this curated set
of responses. Importantly, the fine-tuning routine
stays exactly the same when evaluating different
data curation strategies — we only alter the dataset
itself, not the model or training algorithm.

Other Details. We study the effectiveness of data
curation strategies across two different fine-tuning
methods. On the Llama-2-7b-chat model, we con-
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Question: [. . . ]

Please review two answers carefully and select the one that you believe is superior. Consider
factors such as accuracy, completeness, relevance to the question.

You are provided with two responses to the same question:
[The Start of Answer Al:[. .. ] [The End of Answer Al
[The Start of Answer B]:[. . . ] [The End of Answer B]

Please provide a brief reasoning you used to derive it. After providing your explanation,
output your final verdict by strictly following this format: “[[A]]” if Answer A is better,
“C[BI]” if Answer B is better, and “[[C]]” for a tie.

Table 1: Prompt (Zheng et al., 2023) used to determine the preferable choice among y and 3/'.

SQuUAD Email DROP
Training Data Model Valid JSON  Accuracy  Valid JSON  Accuracy  Valid JSON  Accuracy
or Prompting (%) (%) (%) (%) (%) (%)

GPT-3.5  99.85 66.65 93.5 23.25 99.50 33.40
Zero-Shot GPT-4.0  99.90 75.93 100.0 48.25 100 39.80
Llama-2  94.90 51.85 2.0 3.50 84.20 16.80

Pretrained GPT-3.5  99.20 69.50 99.0 38.75 99.60 40.80

g\[f(’)dgne_ One-Shot GPT-4.0 1000  79.40 98.0 48.0 1000 43.0

Tuning) Llama-2  24.65 9.70 17.25 19.50 32.0 4.90

GPT-3.5 87.60 61.20 95.75 47.0 98.50 41.80
Three-Shot GPT-4.0 99.94 80.08 100.0 49.75 99.0 46.10

Llama-2  13.10 2.55 1.75 5.75 20.60 4.60
Original Data ~ Llama-2  92.45 49.86 99.30 50.67 99.30 44.70
Auto-Filter Data Llama-2  96.90 59.86 100.00 49.67 100.0 47.40

Fine- Auto-Correct Data Llama-2  96.90 71.44 99.67 52.33 100.0 50.50

Tuning Original Data ~ GPT-3.5 97.90 64.50 100.0 43.0 100.0 56.80
Auto-Filter Data GPT-3.5  99.20 81.51 100.0 46.67 100.0 71.70
Auto-Correct Data GPT-3.5  100.0 81.90 100.0 56.33 100.0 73.0

Table 2: We present the results for non fine-tuning baselines and with fine-tuning across various Large Language
Models. For the non fine-tuning approach, we highlight the top-performing results by underlining them. For the
fine-tuning method, we emphasize the best results by making them bold. Across three datasets, it’s evident that
fine-tuned results surpass those of the non fine-tuning approach, even outperforming the most advanced LLM,
GPT-4, in a three-shot setting. This underscores the critical need for fine-tuning in specific domains. Within the
fine-tuning approach, we note a significant improvement from utilizing noisy data, particularly when only half of the
data is used. Further improvements are observed when fine-tuning with corrected labeled data for both llama-2-7b

and GPT-3.5 turbo fine-tuning API.

duct full model fine-tuning, in which all param-
eters of the neural network are updated via the
Adam optimizer. We set the batch size at 128,
and train for 3 epochs, using a learning rate of
1x 1075 with an accompanying cosine learning rate

schedule. For the GPT-3.5 Turbo model, we use
OpenAl’s fine-tuning API. The exact training al-
gorithm/hyperparameters used remain undisclosed
to us, but this API has been observed to be highly
effective for LLM fine-tuning. When evaluating
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Figure 3: We show a bad target response detected in the Auto-Filter stage and then rectified in the Auto-Correct

stage, from each of our three datasets.

outputs from our models at test time, we perform
all text generation without any sampling, and limit
the maximum number of new tokens to 512.

6 Results

Table 2 presents the results of all baselines and our
methodology. In the non fine-tuning parts, GPT-
4.0 stands out as the superior LLM, demonstrat-
ing the strongest performance across three datasets.
It is observed that few-shot learning outperforms
zero-shot learning. However, in the case of Llama-
7B-chat, few-shot learning exhibits inferior results
compared to zero-shot learning, attributed to the
smaller model’s heightened sensitivity to the selec-
tion of demonstrations. Regarding the fine-tuned
models, it is noted that employing the entire dataset
without selective curation can significantly degrade
model performance. Conversely, fine-tuning with
only half of the data, refined through automatic fil-
tering, yields better results than utilizing the com-
plete, uncurated dataset. Moreover, data that has
undergone Auto-Correct further enhances model
performance. Remarkably, the fine-tuned model
outperforms even the most advanced model, GPT-4
in a three-shot setting. This highlights that even
the most powerful LLMs may lack the capability
to adequately address specific domain challenges.
Additionally, we present a case study in Figure 3
where, for each dataset, the wrong responses iden-
tified by Auto-Filter were subsequently corrected
by Auto-Correct, covering three different datasets.

6.1 Using Confidence based answer quality
evaluator in Auto-Filter

In this section, we aim to highlight the advantages
of using a confidence-based answer quality eval-
uator in the Auto-Filter procedure. We compare
with score based evaluator, which directly prompts
the GPT-3.5-turbo to rate the input-output pairs (Li
et al., 2023b) and return the score from 1 to 5. The
prompt we used is depicted in Table 5.

After assigning scores to each data pair, we
discard 50% data with lowest scores. Subse-
quently, we fine-tune the model exclusively on
the high-scoring data. This approach is compared
against our confidence-based evaluator across var-
ious datasets. The fine-tuning process is applied
to GPT-3.5 API. We additionally consider results
based on randomly selected 50% of the data. The
results of this comparison are presented in the ta-
ble 3. The confidence-based evaluator is either
on par with or exceeds the performance of the
score-based evaluator and random selection, which
demonstrates the benefits of confidence based eval-
uator over score based. As discussed in Chen and
Mueller (2023), the confidence-based method in-
volves directly asking the Large Language Model
to assess whether a response is accurate or not.
Additionally, it takes into account observed consis-
tency, enabling it to provide a more precise evalua-
tion of the response quality.

6.2 Using fined-tuned LLM in Auto-Correct

In the Auto-Correct process, we choose the pre-
ferred response by comparing the original response



SQuAD Email DROP
Evaluator Valid JSON  Accuracy Valid JSON Accuracy Valid JSON Accuracy
(%) (%) (%) (%) (%) (%)
Random 97.50 62.90 100.0 43.0 100.0 65.20
Score-based Evaluator 99.50 78.40 100.0 39.67 100.0 73.00
confidence-based Evaluator 99.20 81.51 100.0 46.67 100.0 71.70

Table 3: In the Auto-Filtering procedure, we use random, score-based evaluator and confidence-based evaluator to
select 50% data and fine-tune the GPT-3.5 Turbo model. We show the performance of each data filtering method

across three datasets.

SQuAD
Model used to generate
the candidate response

Email DROP

Valid JSON  Accuracy Valid JSON Accuracy Valid JSON Accuracy

(%) (%) (%) (%) (%) (%)
GPT-3.5 Turbo 99.20 77.80 100.0 6.0 100.0 63.00
Fine-tuned LLM 100.0 81.90 100.0 56.33 100.0 73.0

Table 4: In the Auto-Correct procedure, we fine-tune the GPT-3.5 Turbo model on preferred response either from
fine-tuned LLM or original response. Similarly, we apply this process between responses generated by the GPT-3.5
Turbo and the original response. The effectiveness of each approach is assessed across three datasets.

with that generated by fine-tuned LLMs. Consider
an alternative approach where we obtain responses
from a different, advanced LLM, such as ChatGPT,
and then choose the more preferable response be-
tween the original and ChatGPT’s. Specifically,
we use GPT-3.5 Turbo to generate responses to all
prompts, and then select the preferable one using
the prompt in Table 1. The findings, shown in Table
4, illustrate that our method still exceeds the effi-
cacy of choosing responses from GPT-3.5 Turbo.
This emphasizes the importance of employing fine-
tuned LLMs to produce candidate responses in the
Auto-Correct process. As demonstrated in Table
2, the inferior performance in a zero-shot setting
already suggests that relying on other LLMs for
generating candidate responses might not be a vi-
able strategy. Furthermore, considering that we
use a model from the GPT family to select the
preferable response, there could be an inherent bias
towards responses it generates itself.

7 Conclusion

This paper presents CLEAR, a pipeline for curat-
ing data that can detect and rectify errors in datasets.
It employs a confidence-based evaluator for assess-
ing the quality of each question-answer pair, se-
lecting only those with high confidence for fine-
tuning a large language model. Subsequently, the
fine-tuned LLM is utilized to address and correct
issues of mislabeling. Following this data curation
process, we observe substantial enhancements in
the performance of the fine-tuned LLM. One open
question is how can automated data curation be
effectively integrated with other data augmentation
techniques to further enhance model performance?
For instance, creating additional synthetic datasets
in situations where available data is scarce, and
how to integrate these synthetic dataset with the
original dataset to further enhance the performance
of the fine-tuned large language model.

Limitations

While our automated data curation pipeline
presents a significant advancement in enhancing the



quality of instruction tuning datasets for large lan-
guage models (LLMs), it is important to acknowl-
edge its limitations. The pipeline’s current frame-
work does not explicitly account for the possibility
of biases within the original dataset or those intro-
duced during the automated curation process. Since
the model’s performance and the quality of its out-
put are contingent upon the data it was trained on,
any inherent biases could be perpetuated or am-
plified through successive iterations of fine-tuning
and correction.
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A Prompt for Score-based Answer Quality Evaluator

Below is an instruction from an user and a candidate answer. Evaluate whether or not the
answer is a good example of how Al Assistant should respond to the user’s instruction. Please
assign a score using the following 5-point scale: 1: It means the answer is incomplete, vague,
off-topic, controversial, or not exactly what the user asked for. For example, some content
seems missing, numbered list does not start from the beginning, the opening sentence repeats
user’s question. Or the response is from another person’s perspective with their personal
experience (e.g. taken from blog posts), or looks like an answer from a forum. Or it contains
promotional text, navigation text, or other irrelevant information. 2: It means the answer
addresses most of the asks from the user. It does not directly address the user’s question. For
example, it only provides a high-level methodology instead of the exact solution to user’s
question. 3: It means the answer is helpful but not written by an Al Assistant. It addresses
all the basic asks from the user. It is complete and self contained with the drawback that the
response is not written from an Al assistant’s perspective, but from other people’s perspective.
The content looks like an excerpt from a blog post, web page, or web search results. For
example, it contains personal experience or opinion, mentions comments section, or share on
social media, etc. 4: It means the answer is written from an Al assistant’s perspective with a
clear focus of addressing the instruction. It provide a complete, clear, and comprehensive
response to user’s question or instruction without missing or irrelevant information. It is well
organized, self-contained, and written in a helpful tone. It has minor room for improvement,
e.g. more concise and focused. 5: It means it is a perfect answer from an Al Assistant. It
has a clear focus on being a helpful Al Assistant, where the response looks like intentionally
written to address the user’s question or instruction without any irrelevant sentences. The
answer provides high quality content, demonstrating expert knowledge in the area, is very
well written, logical, easy-to-follow, engaging and insightful. Please first provide a brief
reasoning you used to derive the rating score, and then write "Score: " in the last line.

Input: []

Response: []

Table 5: The prompt (Li et al., 2023b) used to request the LLLMs to assess the quality score of input-output pairs.
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