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Abstract

Large Language Models have become the001
de facto approach to sequence-to-sequence002
text generation tasks, but for specialized003
tasks/domains, a pretrained LLM lacks spe-004
cific capabilities to produce accurate or well-005
formatted responses. Supervised fine-tuning006
specializes a LLM by training it on dataset007
of example prompts with desired target re-008
sponses, but real-world data tends to be noisy.009
While many fine-tuning algorithms exist, here010
we consider a data-centric AI perspective on011
LLM fine-tuning, studying how to systemat-012
ically curate the training dataset to improve013
the LLM produced via any fine-tuning algo-014
rithm. We introduce an automated data cura-015
tion pipeline CLEAR (Confidence-based LLM016
Evaluation And Rectification) for instruction017
tuning datasets, that can be used with any LLM018
and fine-tuning procedure. CLEAR estimates019
which training data is low-quality and either020
filters or corrects it. Quality scoring and the021
decision to filter or correct are based on LLM-022
derived confidence estimates, which ensure al-023
gorithmic modifications to the dataset remain024
suitably conservative. Unlike existing data cu-025
ration techniques, CLEAR is a comprehensive026
framework that can improve a dataset (and027
trained model outputs) without additional fine-028
tuning computations. Importantly, we don’t as-029
sume access to a stronger LLM than the model030
being fine-tuned (e.g. relying on GPT-4 when031
fine-tuning GPT-3.5), to see whether CLEAR032
can meaningfully improve the capabilities of033
any LLM. Our experiments reveal that CLEAR034
consistently improves the performance of fine-035
tuned models across many datasets and models036
(like GPT-3.5 and Llama2).037

1 Introduction038

Large Language Models (LLMs) pretrained on039

an internet-scale text corpus have shown remark-040

able capabilities in generating helpful human-like041

text (Brown et al., 2020; Touvron et al., 2023).042

However, the efficacy of LLMs in specialized do- 043

mains or tasks is heavily reliant on the process 044

of instruction tuning (i.e. supervised fine-tuning, 045

or alignment), where pretrained models are fur- 046

ther trained using datasets that well-represent the 047

domain (Wei et al., 2022). Here we specifically 048

consider sequence-to-sequence training datasets of 049

(prompt, target response) pairs. After training, we 050

feed the LLM new prompts from the same domain 051

and want it to produce responses that match the 052

corresponding targets. 053

Since LLMs are billion parameter neural net- 054

works that indiscriminately absorb patterns and 055

information across a massive dataset, the quality 056

of these instruction tuning datasets is paramount to 057

effective fine-tuning (Zhou et al., 2023; Xu et al., 058

2023). Unfortunately, most real-world instruction 059

tuning datasets are noisy, containing many exam- 060

ples that are low-quality in various ways: the tar- 061

get response may be inaccurate, poorly written, 062

the prompt may be nonsensical/incomplete/vague, 063

or the two may be unrelated due to data en- 064

try/processing mistakes. Such flawed training data 065

leads to fine-tuned models whose outputs are incor- 066

rect, irrelevant, biased, poorly formatted, or flawed 067

in other ways. Finding and fixing low-quality data 068

can be challenging in large datasets without exten- 069

sive manual labor. 070

While most machine learning research iterates 071

over modeling strategies (architectures, loss func- 072

tions, training algorithms, ...) for a fixed dataset 073

to produce better results, the emerging science of 074

Data-centric AI asks how we can systematically 075

iterate on the dataset while holding the modeling 076

strategy fixed to produce better results (Mazumder 077

et al., 2022). Success in real-world AI projects 078

typically requires both approaches. Since many 079

existing fine-tuning algorithms have been proposed 080

(Zhang et al., 2023), we follow the spirit of data- 081

centric AI and propose CLEAR, a comprehensive 082

and automated data curation pipeline to enhance 083
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the effectiveness of instruction tuning datasets for084

any LLM and fine-tuning algorithm.085

Our CLEAR pipeline involves two stages: Auto-086

Filter and Auto-Correct which together offer a087

holistic solution to improving data quality for fine-088

tuning purposes. The Auto-Filter stage removes089

data that is confidently low-quality from the dataset090

without any LLM fine-tuning. It is already able to091

significantly improve the dataset, such that we can092

produce better fine-tuned LLMs without any extra093

LLM fine-tuning computation. For settings where094

one is able to fine-tune the LLM multiple times,095

the Auto-Correct stages uses the current fine-tuned096

LLM to revise certain examples that can be con-097

fidently improved, such that fine-tuning the LLM098

again on the resulting corrected dataset yields im-099

proved performance.100

Algorithmic modifications to a dataset are gen-101

erally dangerous and unlikely to improve perfor-102

mance unless done with extreme care. Filtering103

too much data limits the number of examples to104

learn from, and editing data can introduce various105

biases or amplify flaws in existing model outputs.106

Thus, all data modifications in CLEAR are con-107

servatively applied based on careful measures of108

confidence. Specifically, we rely on BSDetector109

(Chen and Mueller, 2023), a method that can be110

used with any LLM to obtain trustworthy confi-111

dence scores for its own outputs as well as estimat-112

ing the confidence that given outputs (e.g. target113

responses) are good. CLEAR only filters data that114

is confidently identified as low-quality, and only115

revises data where the LLM-corrected response116

is confidently identified to be better than the cur-117

rent dataset response. Our experiments reveal this118

careful treatment of confidence to be vital for devel-119

oping a data filtering + correction solution that is120

effective across diverse instruction-tuning datasets121

without any manual modifications.122

2 Related Work123

2.1 Data Curation for ML124

Data curation has been key in real-world deploy-125

ment of classical machine learning models, with a126

broad spectrum of methods developed to address127

dataset mislabeling, outliers, noise, duplicates, and128

other data issues (Mazumder et al., 2022). Algo-129

rithmic strategies such as noise identification and130

removal (Northcutt et al., 2021), active learning for131

data prioritization (Settles, 2009), crowdsourcing132

for labeling (Snow et al., 2008), and self-supervised133

learning for error detection (Lan et al., 2020) have 134

demonstrated how to produce better models by pro- 135

ducing better data. These foundational strategies 136

were mostly designed for classic machine learning 137

tasks like classification with less complex datasets 138

than instruction tuning for LLMs. 139

2.2 Instruction Fine-tuning 140

Significant research has been conducted into in- 141

struction tuning to specialize/improve LLMs (Ku- 142

mar et al., 2016; Raffel et al., 2020; Efrat and 143

Levy, 2020; Li and Liang, 2021; Wei et al., 2022; 144

Wang et al., 2023a). FLAN (Wei et al., 2022) 145

is a popular approach that employs a 137 billion 146

parameter pre-trained language model, which is 147

fine-tuned using instructions on more than 60 NLP 148

datasets verbalized in natural language instruction 149

templates. Wang et al. (2023a) showed how vari- 150

ous instruction-tuning datasets can induce specific 151

skills in a model, though no single dataset (or their 152

combination) provides optimal performance across 153

all assessments. Contrary to previous efforts aimed 154

at creating a general foundation model capable of 155

generalizing across a wide range of unseen tasks, 156

here our aim is to train the best possible LLM for a 157

specific narrow task. 158

2.3 Data Curation for Instruction Fine-tuning 159

The quality of training data in text generation appli- 160

cations has such significance that previous instruc- 161

tion tuning datasets were often crafted by hand 162

(Khashabi et al., 2020; Ye et al., 2021; Wei et al., 163

2022; Wang et al., 2023b; Honovich et al., 2023). 164

Wang et al. (2023b) introduced automated tech- 165

niques by using GPT-3 (Brown et al., 2020) to pro- 166

duce 52,000 unique instructions not directly linked 167

to specific tasks. This innovation opened new av- 168

enues for creating instruction datasets by extract- 169

ing knowledge from teacher models. Following 170

the introduction of Meta LLaMa (Touvron et al., 171

2023), there was a significant increase in the avail- 172

ability of open-source instruction tuning datasets 173

and large language models (LLMs). Alpaca (Taori 174

et al., 2023) introduces a self-instruct method that 175

enables the autonomous creation of instructions, 176

thereby minimizing the reliance on manual input. 177

Vicuna (Chiang et al., 2023) capitalizes on the var- 178

ied data accessible via ShareGPT, which naturally 179

includes a wide array of data types and structures. 180

WizardLM (Xu et al., 2023) employs an evolution- 181

ary approach to refine and diversify instructions, 182

increasing their complexity and variability. Ultra- 183
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Figure 1: Pipeline of CLEAR.

Chat (Ding et al., 2023) sets up different scopes184

and systematically produces numerous instructions185

within each defined scope to improve task-specific186

performance. Meanwhile, LIMA (Xu et al., 2023)187

selects a thousand high-quality data samples strate-188

gically, showing notable improvements in LLM189

performance. Li et al. (2023a) introduces the in-190

struction following metric to autonomously select191

good samples from vast open-source datasets.192

However, much of this existing LLM fine-tuning193

research has focused on distilling teacher models194

such as ChatGPT that are more powerful than the195

LLM being fine-tuned (Taori et al., 2023; Chiang196

et al., 2023). Many existing LLM-based data cura-197

tion techniques also utilize more powerful LLMs198

for the data curation process than the LLM being199

fine-tuned. In contrast, we aim to produce the best200

LLMs for specific tasks, in which even the most ad-201

vanced LLMs like GPT-4 struggle to perform. Thus202

all data curation throughout this paper is performed203

using the same LLM as is being fine-tuned, to truly204

assess how effectively this data curation is able to205

boost LLM performance beyond the frontier.206

3 CLEAR: Auto Data Curation Pipeline207

When having instruction tuning datasets I =208

{(xi, yi)ni=1} specific to a certain domain, our goal209

is to fine-tune the language model to improve its210

comprehension and execution of instructions. How- 211

ever, in practical scenarios, the instruction tuning 212

data might contain noise, such as some mislabel- 213

ing issue, which arise during the data collection 214

phase. Moreover, this flawed data could adversely 215

impact the training process and degrade the model’s 216

performance. The critical challenge lies in detect- 217

ing these mislabeling errors and rectifying the la- 218

bels accordingly. Inspired by this situation, we 219

introduce an automated data curation pipeline that 220

comprises two main components: Auto-Filter and 221

Auto-Correct, which aim to detect problematic 222

labels and rectify them, respectively. Auto-Filter 223

employs a confidence-based answer quality evalua- 224

tor (Chen and Mueller, 2023), to assign confidence 225

scores to each pair of data. The language model is 226

then fine-tuned only on the high confidence data. 227

This fine-tuned LLM is utilized to assist in correct- 228

ing mislabeled issues within the dataset. It achieves 229

this by comparing the response generated by fine- 230

tuned LLM with the original response and select- 231

ing the more preferable answer. Subsequently, the 232

LLM is updated with this curated data, and this 233

cycle of refinement and correction can be repeated 234

(show in Figure 1). 235
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Who invented the 
airplane?

The airplane was invented by 
Santos Dumont, a Brazilian 

inventor. He flew for the first time 
in France, in the year of 1906.

Prompt Wrong Response Confidence Based 
Evaluator (0-1)

Score Based 
Evaluator (1-5)

0.00075

4.0

Answer Quality 
Evaluator

Who invented the 
airplane?

The airplane was invented by the 
Wright brothers, Orville and 

Wilbur Wright, in 1903.

Prompt Correct Response Confidence Based 
Evaluator (0-1)

Score Based 
Evaluator (1-5)

0.93957

4.0

Figure 2: In this comparison, we assess two types of answer quality evaluators: confidence-based and score-based.
The confidence-based evaluator provides a confidence score within the range of 0 to 1, where higher values indicate
greater confidence. The score-based evaluator queries GPT-3.5-Turbo using a specific prompt shown in Table 5
and assigns scores within the range of 1 to 5, with higher scores indicating better quality. For the wrong response
(above figure), the confidence-based evaluator assigns a very low confidence score, while the score-based evaluator
assigns a score of 4.0. Conversely, for a correct answer (below figure), the confidence-based evaluator assigns
a very high confidence score, while the score-based evaluator still assigns a score of 4.0. This suggests that the
confidence-based evaluator is more reliable and trustworthy than the score-based evaluator.

4 Auto-Filter236

In our work, we explore a novel approach to evalu-237

ating the quality of responses in instruction tuning238

tasks, diverging from the conventional method of239

using large language models like ChatGPT for as-240

signing quality scoring through input-output pair241

analysis shown in Table 5. Our methodology em-242

ploys a confidence-based evaluator, specifically243

BSDetector as introduced by Chen and Mueller244

(2023), which assesses the confidence that a re-245

sponse is good in terms of two factors: observed246

consistency and self-reflection certainty. BSDetec-247

tor uses our same LLM to generate multiple candi-248

date responses to a given prompt (via temperature249

sampling), then evaluates the semantic alignment250

between these candidate responses and the target251

response in the dataset (via natural language in-252

ference), and additionally integrates direct LLM253

evaluations of the target response (directly prompt-254

ing the LLM to report its confidence). The result-255

ing confidence estimates account for both aleatoric256

and epistemic uncertainty, without requiring any257

modification/training of the LLM. Our subsequent258

experiments reveal that this confidence-based ap-259

proach to assessing answer quality is more precise260

compared to traditional LLM-ratings based answer261

quality evaluation (see Figure 2). 262

Given a instruction fine-tuning datasets compris- 263

ing input-output pairs {(xi, yi)ni=1}, we use BSDe- 264

tector with the base pretrained LLM (before it is 265

fine-tuned) to estimate a confidence score Ci for 266

each pair (xi, yi). We then filter out data pairs with 267

low confidence scores, below a predefined thresh- 268

old γ: 269

F = {(xi, yi)|ci > γ}. 270

Subsequently, we fine-tune the large language 271

model on the remaining training data F . 272

4.1 Auto-Correct 273

In the automated filtering stage, we exclude data 274

characterized by low confidence, indicative of a 275

discrepancy between the input and its correspond- 276

ing response. This raises the immediate question of 277

how to rectify the inaccuracies in these mismatched 278

data pairs. The most direct approach involves sub- 279

stituting the incorrect response with one generated 280

by another large language model. Nonetheless, for 281

certain specialized fields, the utilization of even 282

the most advanced LLMs, such as GPT-4, may 283

still result in inadequate capabilities in managing 284

these specific responses. Having fine-tuned the lan- 285

guage model with data of high confidence, we then 286
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explore the utilization of this enhanced LLM for287

automatic corrections. Given that the fine-tuned288

LLM now exceeds the capabilities of other models,289

such as GPT-4, we proceed to generate responses290

(xi, y
′
i)
n
i=1 through queries to this fine-tuned model.291

The subsequent step involves determining whether292

to adopt the newly generated response y′ or to293

retain the original response y. In this approach,294

we engage the LLM such as GPT-4 to determine295

the preferable choice among y and y′, recognizing296

that while the GPT-4 may not directly provide cor-297

rect answers to specific queries, it possesses the298

capacity to evaluate and identify the superior re-299

sponse among two candidate response (Burns et al.,300

2023). Following the process of label correction,301

we achieve an improved quality dataset for instruc-302

tion fine-tuning. Subsequently, this curated dataset303

is used to further improve the LLM fine-tuning.304

The prompt we used to determine the preferable305

choice among y and y′ shown in Table 1.306

5 Experiments307

Datasets. We evaluate the effectiveness of our308

data curation process across three supervised fine-309

tuning (sequence to sequence text generation)310

datasets. SQuAD (Rajpurkar et al., 2016): prompts311

are articles and target responses are answers to312

questions created by crowdworkers based on a col-313

lection of Wikipedia articles, with each answer be-314

ing a specific text fragment or span from the related315

article. Emails 1: prompts are emails and target re-316

sponses include categorizing the email into one of317

seven predefined themes by examining the email’s318

subject and body content and also vary based on319

the email’s length (whether the email content is320

short, medium, or long affects how the response is321

written). DROP (Dua et al., 2019): prompts are322

articles and target responses are answers to read-323

ing comprehension questions that require discrete324

reasoning over paragraphs (correctly answering re-325

quires resolving references in a question, perhaps326

to multiple places in the article, and performing327

basic operations over the references like addition,328

counting, or sorting).329

To study our approach for noisy data that re-330

quires curation, we perturbed 20% of each train-331

ing dataset (not the corresponding test set). For332

the emails dataset, the perturbation was to ran-333

1https://huggingface.co/datasets/neelblabla/
enron_labeled_emails_with_subjects-llama2-7b_
finetuning

domly swap target responses across different ex- 334

amples. To perturb a subset of the SQuAD and 335

DROP datasets, where the answers are contained 336

within the provided context, we randomly selected 337

a different sentence from the context as the target 338

response. 339

Evaluation metrics. For each dataset, our LLM 340

fine-tuning performance evaluation focuses on two 341

metrics (computed over a fixed held out test set): 342

how often the model’s response format adheres to 343

a valid JSON structure and how often the model’s 344

responses are correct. For each model produced via 345

a fine-tuning method, we report the proportion of 346

model responses that are in valid JSON format, 347

and the accuracy of model responses (which is 348

computed via the proportion of exact matches to 349

target reference responses, since we expect a well- 350

supervised model to able to match the types of 351

target responses it was fine-tuned on). 352

Baseline Methods. Our study also evaluates the 353

following non fine-tuning methods: Zero-shot 354

on GPT-3.5-turbo/GPT-4.0/Llama-2-7b-chat is di- 355

rectly querying these foundation models. Few- 356

shot on GPT-3.5-turbo/GPT-4.0/Llama-2-7b-chat 357

is directly asking the foundation models using in- 358

context learning. For the fine-tuning methods, we 359

use the full model fine-tuning on Llama-2-7b-chat 360

and GPT-3.5 Turbo fine-tuning API. Fine-tuning 361

on the noisy data refers to the process of fine- 362

tuning the model on the original datasets without 363

any data curation. Auto-Filter involves fine-tuning 364

the model on newly created datasets, where data 365

with low confidence levels are eliminated. This 366

procedure sets a median value as the confidence 367

score threshold, excluding any data falling below 368

this threshold. Auto-Correct represents the strat- 369

egy of fine-tuning the model using data that has 370

undergone a correction process. This involves first 371

applying the fine-tuned LLM to generate responses 372

for each query. The next step is to compare the 373

generated responses with the original ones, select 374

the more preferable response from the two, and 375

proceed to fine-tune the model on this curated set 376

of responses. Importantly, the fine-tuning routine 377

stays exactly the same when evaluating different 378

data curation strategies – we only alter the dataset 379

itself, not the model or training algorithm. 380

Other Details. We study the effectiveness of data 381

curation strategies across two different fine-tuning 382

methods. On the Llama-2-7b-chat model, we con- 383
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Please review two answers carefully and select the one that you believe is superior. Consider
factors such as accuracy, completeness, relevance to the question.

Question: [. . . ]

You are provided with two responses to the same question:

[The Start of Answer A]: [. . . ] [The End of Answer A]

[The Start of Answer B]: [. . . ] [The End of Answer B]

Please provide a brief reasoning you used to derive it. After providing your explanation,
output your final verdict by strictly following this format: “[[A]]” if Answer A is better,
“[[B]]” if Answer B is better, and “[[C]]” for a tie.

Table 1: Prompt (Zheng et al., 2023) used to determine the preferable choice among y and y′.

Training Data Model

SQuAD Email DROP

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

or Prompting (%) (%) (%) (%) (%) (%)

Pretrained
Model
(No Fine-
Tuning)

Zero-Shot

GPT-3.5 99.85 66.65 93.5 23.25 99.50 33.40

GPT-4.0 99.90 75.93 100.0 48.25 100 39.80

Llama-2 94.90 51.85 2.0 3.50 84.20 16.80

One-Shot

GPT-3.5 99.20 69.50 99.0 38.75 99.60 40.80

GPT-4.0 100.0 79.40 98.0 48.0 100.0 43.0

Llama-2 24.65 9.70 17.25 19.50 32.0 4.90

Three-Shot

GPT-3.5 87.60 61.20 95.75 47.0 98.50 41.80

GPT-4.0 99.94 80.08 100.0 49.75 99.0 46.10

Llama-2 13.10 2.55 1.75 5.75 20.60 4.60

Fine-
Tuning

Original Data Llama-2 92.45 49.86 99.30 50.67 99.30 44.70

Auto-Filter Data Llama-2 96.90 59.86 100.00 49.67 100.0 47.40

Auto-Correct Data Llama-2 96.90 71.44 99.67 52.33 100.0 50.50

Original Data GPT-3.5 97.90 64.50 100.0 43.0 100.0 56.80

Auto-Filter Data GPT-3.5 99.20 81.51 100.0 46.67 100.0 71.70

Auto-Correct Data GPT-3.5 100.0 81.90 100.0 56.33 100.0 73.0

Table 2: We present the results for non fine-tuning baselines and with fine-tuning across various Large Language
Models. For the non fine-tuning approach, we highlight the top-performing results by underlining them. For the
fine-tuning method, we emphasize the best results by making them bold. Across three datasets, it’s evident that
fine-tuned results surpass those of the non fine-tuning approach, even outperforming the most advanced LLM,
GPT-4, in a three-shot setting. This underscores the critical need for fine-tuning in specific domains. Within the
fine-tuning approach, we note a significant improvement from utilizing noisy data, particularly when only half of the
data is used. Further improvements are observed when fine-tuning with corrected labeled data for both llama-2-7b
and GPT-3.5 turbo fine-tuning API.

duct full model fine-tuning, in which all param-384

eters of the neural network are updated via the385

Adam optimizer. We set the batch size at 128,386

and train for 3 epochs, using a learning rate of387

1×10−5 with an accompanying cosine learning rate388

schedule. For the GPT-3.5 Turbo model, we use 389

OpenAI’s fine-tuning API. The exact training al- 390

gorithm/hyperparameters used remain undisclosed 391

to us, but this API has been observed to be highly 392

effective for LLM fine-tuning. When evaluating 393
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Context: Egypt has hosted several international 
competitions. the last one was 2009 FIFA U-20 World 

Cup which took place between 24 September - 16 
October 2009. On Friday 19 …

Question: What was the last international 
competition Egypt hosted?

Egypt has hosted several 
international 
competitions

2009 FIFA U-20 World 
Cup

Context:  California Changes Stance on Refunds Two 
Sides Far Apart In Energy Talks By Peter Behr 

Washington Post Staff Writer Friday July 6 2001 Page 
E01 California officials …

Question: What should this email be categorized as ?

This medium length email 
categorized under 

Document editing/checking

This long length email 
categorized under Company 

Business, Strategy, etc.

Context: San Francisco … Although the Cowboys 
outgained the 49ers in total offensive yards (451–

294)…
Question: How many more total offensive yards did 

the Cowboys make than the 49ers?

451 157

Prompt Wrong Response Detected 
by Auto-Filter

Correct Response Rectified 
by Auto-Correct

Figure 3: We show a bad target response detected in the Auto-Filter stage and then rectified in the Auto-Correct
stage, from each of our three datasets.

outputs from our models at test time, we perform394

all text generation without any sampling, and limit395

the maximum number of new tokens to 512.396

6 Results397

Table 2 presents the results of all baselines and our398

methodology. In the non fine-tuning parts, GPT-399

4.0 stands out as the superior LLM, demonstrat-400

ing the strongest performance across three datasets.401

It is observed that few-shot learning outperforms402

zero-shot learning. However, in the case of Llama-403

7B-chat, few-shot learning exhibits inferior results404

compared to zero-shot learning, attributed to the405

smaller model’s heightened sensitivity to the selec-406

tion of demonstrations. Regarding the fine-tuned407

models, it is noted that employing the entire dataset408

without selective curation can significantly degrade409

model performance. Conversely, fine-tuning with410

only half of the data, refined through automatic fil-411

tering, yields better results than utilizing the com-412

plete, uncurated dataset. Moreover, data that has413

undergone Auto-Correct further enhances model414

performance. Remarkably, the fine-tuned model415

outperforms even the most advanced model, GPT-4416

in a three-shot setting. This highlights that even417

the most powerful LLMs may lack the capability418

to adequately address specific domain challenges.419

Additionally, we present a case study in Figure 3420

where, for each dataset, the wrong responses iden-421

tified by Auto-Filter were subsequently corrected422

by Auto-Correct, covering three different datasets.423

6.1 Using Confidence based answer quality 424

evaluator in Auto-Filter 425

In this section, we aim to highlight the advantages 426

of using a confidence-based answer quality eval- 427

uator in the Auto-Filter procedure. We compare 428

with score based evaluator, which directly prompts 429

the GPT-3.5-turbo to rate the input-output pairs (Li 430

et al., 2023b) and return the score from 1 to 5. The 431

prompt we used is depicted in Table 5. 432

After assigning scores to each data pair, we 433

discard 50% data with lowest scores. Subse- 434

quently, we fine-tune the model exclusively on 435

the high-scoring data. This approach is compared 436

against our confidence-based evaluator across var- 437

ious datasets. The fine-tuning process is applied 438

to GPT-3.5 API. We additionally consider results 439

based on randomly selected 50% of the data. The 440

results of this comparison are presented in the ta- 441

ble 3. The confidence-based evaluator is either 442

on par with or exceeds the performance of the 443

score-based evaluator and random selection, which 444

demonstrates the benefits of confidence based eval- 445

uator over score based. As discussed in Chen and 446

Mueller (2023), the confidence-based method in- 447

volves directly asking the Large Language Model 448

to assess whether a response is accurate or not. 449

Additionally, it takes into account observed consis- 450

tency, enabling it to provide a more precise evalua- 451

tion of the response quality. 452

6.2 Using fined-tuned LLM in Auto-Correct 453

In the Auto-Correct process, we choose the pre- 454

ferred response by comparing the original response 455

7



Evaluator

SQuAD Email DROP

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

(%) (%) (%) (%) (%) (%)

Random 97.50 62.90 100.0 43.0 100.0 65.20

Score-based Evaluator 99.50 78.40 100.0 39.67 100.0 73.00

confidence-based Evaluator 99.20 81.51 100.0 46.67 100.0 71.70

Table 3: In the Auto-Filtering procedure, we use random, score-based evaluator and confidence-based evaluator to
select 50% data and fine-tune the GPT-3.5 Turbo model. We show the performance of each data filtering method
across three datasets.

Model used to generate
the candidate response

SQuAD Email DROP

Valid JSON Accuracy Valid JSON Accuracy Valid JSON Accuracy

(%) (%) (%) (%) (%) (%)

GPT-3.5 Turbo 99.20 77.80 100.0 6.0 100.0 63.00

Fine-tuned LLM 100.0 81.90 100.0 56.33 100.0 73.0

Table 4: In the Auto-Correct procedure, we fine-tune the GPT-3.5 Turbo model on preferred response either from
fine-tuned LLM or original response. Similarly, we apply this process between responses generated by the GPT-3.5
Turbo and the original response. The effectiveness of each approach is assessed across three datasets.

with that generated by fine-tuned LLMs. Consider456

an alternative approach where we obtain responses457

from a different, advanced LLM, such as ChatGPT,458

and then choose the more preferable response be-459

tween the original and ChatGPT’s. Specifically,460

we use GPT-3.5 Turbo to generate responses to all461

prompts, and then select the preferable one using462

the prompt in Table 1. The findings, shown in Table463

4, illustrate that our method still exceeds the effi-464

cacy of choosing responses from GPT-3.5 Turbo.465

This emphasizes the importance of employing fine-466

tuned LLMs to produce candidate responses in the467

Auto-Correct process. As demonstrated in Table468

2, the inferior performance in a zero-shot setting469

already suggests that relying on other LLMs for470

generating candidate responses might not be a vi-471

able strategy. Furthermore, considering that we472

use a model from the GPT family to select the473

preferable response, there could be an inherent bias474

towards responses it generates itself.475

7 Conclusion 476

This paper presents CLEAR, a pipeline for curat- 477

ing data that can detect and rectify errors in datasets. 478

It employs a confidence-based evaluator for assess- 479

ing the quality of each question-answer pair, se- 480

lecting only those with high confidence for fine- 481

tuning a large language model. Subsequently, the 482

fine-tuned LLM is utilized to address and correct 483

issues of mislabeling. Following this data curation 484

process, we observe substantial enhancements in 485

the performance of the fine-tuned LLM. One open 486

question is how can automated data curation be 487

effectively integrated with other data augmentation 488

techniques to further enhance model performance? 489

For instance, creating additional synthetic datasets 490

in situations where available data is scarce, and 491

how to integrate these synthetic dataset with the 492

original dataset to further enhance the performance 493

of the fine-tuned large language model. 494

Limitations 495

While our automated data curation pipeline 496

presents a significant advancement in enhancing the 497

8



quality of instruction tuning datasets for large lan-498

guage models (LLMs), it is important to acknowl-499

edge its limitations. The pipeline’s current frame-500

work does not explicitly account for the possibility501

of biases within the original dataset or those intro-502

duced during the automated curation process. Since503

the model’s performance and the quality of its out-504

put are contingent upon the data it was trained on,505

any inherent biases could be perpetuated or am-506

plified through successive iterations of fine-tuning507

and correction.508
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A Prompt for Score-based Answer Quality Evaluator 702

Below is an instruction from an user and a candidate answer. Evaluate whether or not the
answer is a good example of how AI Assistant should respond to the user’s instruction. Please
assign a score using the following 5-point scale: 1: It means the answer is incomplete, vague,
off-topic, controversial, or not exactly what the user asked for. For example, some content
seems missing, numbered list does not start from the beginning, the opening sentence repeats
user’s question. Or the response is from another person’s perspective with their personal
experience (e.g. taken from blog posts), or looks like an answer from a forum. Or it contains
promotional text, navigation text, or other irrelevant information. 2: It means the answer
addresses most of the asks from the user. It does not directly address the user’s question. For
example, it only provides a high-level methodology instead of the exact solution to user’s
question. 3: It means the answer is helpful but not written by an AI Assistant. It addresses
all the basic asks from the user. It is complete and self contained with the drawback that the
response is not written from an AI assistant’s perspective, but from other people’s perspective.
The content looks like an excerpt from a blog post, web page, or web search results. For
example, it contains personal experience or opinion, mentions comments section, or share on
social media, etc. 4: It means the answer is written from an AI assistant’s perspective with a
clear focus of addressing the instruction. It provide a complete, clear, and comprehensive
response to user’s question or instruction without missing or irrelevant information. It is well
organized, self-contained, and written in a helpful tone. It has minor room for improvement,
e.g. more concise and focused. 5: It means it is a perfect answer from an AI Assistant. It
has a clear focus on being a helpful AI Assistant, where the response looks like intentionally
written to address the user’s question or instruction without any irrelevant sentences. The
answer provides high quality content, demonstrating expert knowledge in the area, is very
well written, logical, easy-to-follow, engaging and insightful. Please first provide a brief
reasoning you used to derive the rating score, and then write "Score: " in the last line.

Input: []

Response: []

Table 5: The prompt (Li et al., 2023b) used to request the LLMs to assess the quality score of input-output pairs.
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