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Abstract

Mixture of Experts (MoE) models have become central to scaling large
language models, yet their mechanistic differences from dense networks re-
main poorly understood. Previous work has explored how dense models
use superposition to represent more features than dimensions, and how su-
perposition is a function of feature sparsity and feature importance. MoE
models cannot be explained mechanistically through the same lens. We
find that neither feature sparsity nor feature importance cause discontinu-
ous phase changes, and that network sparsity (the ratio of active to total
experts) better characterizes MoEs. We develop new metrics for measuring
superposition across experts. Our findings demonstrate that models with
greater network sparsity exhibit greater monosemanticity. We propose a
new definition of expert specialization based on monosemantic feature rep-
resentation rather than load balancing, showing that experts naturally or-
ganize around coherent feature combinations when initialized appropriately.
These results suggest that network sparsity in MoEs may enable more inter-
pretable models without sacrificing performance, challenging the common
assumption that interpretability and capability are fundamentally at odds.

1 Introduction

Mixture of Experts (MoEs) have become prevalent in state-of-the-art language models, such
as Qwen3, Mixtral, and Gemini (Yang et al., 2025a; Jiang et al., 2024; Google DeepMind,
2025), primarily for their computational efficiency and performance gains (Shazeer et al.,
2017; Fedus et al., 2022). Subsequent work improve routing (e.g., Expert-Choice routing)
and training stability/transfer (e.g., ST-MoE) (Zhou et al., 2022; Zoph et al., 2022). Theo-
retical and empirical results further show that learnable routers can discover latent cluster
structure in data, providing insight for why experts specialize (Dikkala et al., 2023). How-
ever, despite their widespread adoption, MoEs remain poorly understood from a mechanistic
interpretability perspective.
Interpretability-oriented approaches have sought to make expert behavior more transparent.
Yang et al. (2025b) proposes MoE-X, which encourages sparsity-aware routing and uses
wide, ReLU-based experts to reduce polysemanticity. Park et al. (2025) introduce Monet,
scaling the number of experts to enable capability editing via expert activation. Yet these
works largely focus on architectural changes; we still lack a mechanistic understanding of how
MoEs represent features, how experts affect superposition, and whether experts naturally
specialize without extra regularization. Mu & Lin (2025) survey MoE research and identify
mechanistic interpretability as a key open challenge.
A fundamental challenge in interpreting neural networks is the phenomenon of superposition:
when models represent more features than they have dimensions. This allows networks to
pack many sparse features into fewer neurons at the cost of making individual neurons
polysemantic and difficult to interpret.
MoE architectures introduce a new dimension to this problem: network sparsity. Unlike
dense models that activate all neurons regardless of input, MoEs activate a fraction of their
total parameters (Shazeer et al., 2017). While dense models exploit feature sparsity by

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

packing many sparse features into shared neurons, MoEs can afford to be more selective,
potentially dedicating entire experts to specific feature combinations.
We investigate whether (1) MoEs exhibit less superposition than their dense counterparts,
(2) there is a discrete phase change in MoE experts as seen in dense models, and (3) we can
understand expert specialization through the lens of feature representation rather than just
load balancing.
We explore these questions using simple models that extend Elhage et al. (2022)’s frame-
work to MoEs. Our key contributions are as follows: (1) unlike dense models, MoEs do
not exhibit sharp phase changes, instead showing more continuous transitions as network
sparsity increases; and (2) MoEs consistently exhibit greater monosemanticity (less super-
position) than dense models with equivalent active and total parameters, with individual
experts representing features more cleanly; (3) we propose an interpretability-focused defi-
nition of expert specialization based on monosemantic feature representation, showing that
experts naturally organize around coherent feature combinations rather than arbitrary load
balancing.

2 Background

Learned representations of meaningful ‘features’—loosely, those ideas that have human-
interpretable meaning—are often assumed to be linear in terms of activations (Gorton &
Lewis, 2025). Thus, measuring activations directly corresponds to the intensity of meaning-
ful features. The superposition hypothesis contends that models are capable of representing
far more features than dimensions (Elhage et al., 2022).
In order to have many more features than dimensions in a latent space, features vectors
must be packed such that they are not all orthogonal. The Johnson–Lindenstrauss lemma
proves that this can be done efficiently by allowing for small amounts of interference. This is
an acceptable compromise because most features are extremely sparse (i.e., they are active
on only a tiny fraction of inputs). For example, in the complete corpus of all language text,
few sentences have to do with the feature of ‘Martin Luther King, Jr.’ Nonlinearities and
bias terms allow models to account for moderate interference.
Monosemantic features are defined as those that are well-aligned with individual neurons: a
single neuron’s activation cleanly reflects the presence or absence of the feature. Superpo-
sition, by contrast, refers to representations where multiple features are represented within
the same set of neurons, such that no single neuron corresponds to a single meaningful fea-
ture. In this setting, neurons and features are polysemantic: a neuron’s activation reflects
a linear combination of many features, and a feature is distributed across many neurons.
While superposition is efficient for capacity and generalization, it makes interpretation chal-
lenging, since observations and interventions on single neurons no longer correspond cleanly
to changes in single features.

3 Demonstrating Superposition

An intuitive way to think about MoEs is as composition of dense (feed forward) models,
where each expert behaves like a dense model in isolation. But it is unclear how to quantify or
justify this claim in terms of the mechanistic or representational similarity. We investigated
this question by exploring how models vary their representations in terms of superposition.
To test whether MoEs exhibit more or less superposition than the dense models, we extended
the standard toy models of Elhage et al. (2022) to include MoE variants, which allows us to
exactly measure superposition. It also allows us to characterize superposition as a function
of feature density (1 − sparsity) and the ratio of active experts (k) to the total number of
experts in a MoE (E), i.e. network sparsity.
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3.1 Toy Models

Our MoE model consists of E experts, each with m hidden dimensions. The input features,
n, are routed to the top-k experts as per the learned router g(x) = softmax(Wrx), where
Wr ∈ Rn×E . Each expert e processes the input through he = W ex, followed by the recon-
struction x′e = ReLU

(
(W e)⊤he + be

)
. The final output is a weighted combination of the

active experts given as x′ =
∑

e we x′e where we are the renormalized gating weights for the
top-k selected experts. No load balancing loss is used for this section so that the overall loss
simplifies to a reconstruction loss.
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(a) Norm of each feature’s weight vector
∥Wi∥, with colors indicating superposition
status (green for features in superposition,
purple for monosemantic features).
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Figure 1: Feature representation and superposition in a dense model with n = 20 features
and m = 6 hidden dimensions, with importance I = 0.7i and uniform feature density
(1− S) = 0.1.

3.2 Measuring feature capacity

To analyze feature representations across architectures, we compared two fundamental prop-
erties of the features: representation strength and interference with other features. We mea-
sured the norm of a feature weight vector in an expert e given by ∥W e

i ∥. It represents the
extent to which a feature is represented within the expert e. ∥W e

i ∥ ≈ 1 if feature i is fully
represented in expert e and zero if it is not learned. We also calculated the interference of
a feature i with other features in expert e by

∑
j ̸=i(Ŵ e

i ·W e
j )2 where Ŵ e

i is the unit vector
in the direction of W e

i .
As shown in Figures 1a and 2a, the dense and the MoE represent roughly the same number
of features with similar norms for equal total parameters. But the experts in a MoE exhibit
far less interference with other features than the dense model as observed in Figures 1b and
2b. This demonstrates that the MoEs allocate their representational capacity in a different
way than the dense models even though they represent the same number of features with
similar representational strength.
We want to understand how MoEs allocate their limited representation capacity differently
from the dense model. We measured feature dimensionality, which represents the “fraction
of a dimension” that a specific feature gets in a model (Elhage et al., 2022). For a feature
i, we define its dimensionality in expert e by

De
i = ∥W e

i ∥
2∑

j

(
Ŵ e

i ·W e
j

)2

De
i is bounded between zero (not learned) and one (monosemantic). The total capacity

for a MoE can thus be defined as D =
∑

e

∑n
i=1 De

i . When the features are “efficiently
packed” in a model’s representation space, the dimensionality of all the features add up to
the number of embedding dimensions, i.e.

∑n
i=1 De

i ≈ m (Cohen et al., 2014; Scherlis et al.,

3
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2025; Elhage et al., 2022). In the case of a MoE, the relation becomes
∑

e

∑n
i=1 De

i ≈ E ·m.
Empirically, we find that both dense and MoE models satisfy the above dimensionality
constraint, meaning that MoEs achieve the same efficiency in packing features as the dense
models for the same total parameters.
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Figure 2: Feature representation and superposition in a MoE with n = 20 features, 3 total
experts, and m = 2 hidden dimensions per expert (top-k = 1 routing), with importance
I = 0.7i and feature density 1− S = 0.1.

Since both dense and MoE models “efficiently pack” features in their representation space,
we compared the differences in number of features per dimension across the models. This
allowed us to exactly measure superposition in both models and how the number of experts
in a MoE affects superposition for different feature sparsities. If the features per dimension
is greater than one, then the features are in superposition since the model is representing
more features than there are dimensions. We define features per dimension for a MoE by

1
k

E∑
e=1

pe
∥W e∥2

F

m

where ||W ||2F is the Frobenius norm and pe is the expected probability that expert e is used
across a batch of input samples, i.e. the average renormalized gating weight after top-k
routing.
For MoEs with equal number of total parameters as the dense model, we observe that
the dense model has a higher number of features per dimension (Figure 3), i.e. more su-
perposition (see Appendix A.2 for an intuition). Furthermore, as we increase the total
number of experts in the MoE—keeping the total parameters and the ratio k/E roughly the
same—the number of features per dimension decreases or alternatively has less superposi-
tion. The greater the number of experts, the less superposition in the model. Concretely,
features become more monosemantic with increasing number of experts. Furthermore, more
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superposition in the dense model allows it to achieve consistently lower reconstruction loss
compared to the MoEs as shown in Figure 7 in Appendix A.1 with difference in loss at any
given sparsity of ∼ 0.03 − 0.08. But as the number of experts increases, the MoEs achieve
consistently comparable loss to the dense models. This shows that in our toy models for an
equal total number of parameters, MoEs represent the same number of features as the dense
model, but more monosemantically, with only a negligible difference in loss.

1 2 3 4 5 6 7 8 9 10
1

1−S (log scale) ← dense | sparse →

0

1

2

3

4

5

Fe
at

ur
es

Pe
r

D
im

en
sio

n

Dense
4 experts, k = 1
10 experts, k = 2
20 experts, k = 5

Figure 3: Features per dimension versus inverse feature density ( 1
1−S ) for dense and MoE

architectures with uniform feature importance (Ii = 1.0). The dense model (n = 100,
m = 20) has the most superposition, which decreases with increasing expert count: 4
experts with m = 5, k = 1 (orange); 10 experts with m = 2, k = 2 (green); 20 experts with
m = 1, k = 5 (red). All models have equal total parameters and similar k/E. The dashed
line at 1.0 marks monosemantic representation.

4 Phase Change

Although MoEs and dense models learn a similar number of features, MoEs distribute them
across experts with less interference. This suggests that network sparsity reshapes how
features are allocated rather than how many are learned. We examined how properties of
the input distribution—such as feature sparsity and importance—drive this allocation and
whether they induce physics-inspired phase changes in representation.
Models have a finite way of representing features; each feature may be ignored, superim-
posed, or monosemantic. Phase change is the observation that sometimes there are discrete
boundaries between regions, which are functions of feature sparsity and relative importance.
Dense toy models exhibit discontinuous ‘phase changes’ between internal feature represen-
tations (Elhage et al., 2022). By varying the sparsity and relative importance of features in
the input distribution, we can elicit different behavior; for example, more feature sparsity
encourages greater superposition. Analyzing the phase diagram of each expert in MoEs
demonstrates they employ different representational strategies compared to dense models.
We follow the same setup as Section 3.1. We sample data distributions such that each feature
xi has feature sparsity S ∈ (0, 1] and the last feature rx−1 has relative importance r ∈ R+.
Feature sparsity governs the likelihood a particular input feature dimension is zero. The
relative importance is a scalar on the magnitude of the last feature, so x ∈ {x1, x2, ...rxn} :
xi ∈ U(0, 1) with S likelihood that xi = 0.
We report the expert-specific phase diagram across all feature sparsity and last-feature
relative importance for varying network sparsity by increasing the experts (E) up to the
number of input feature dimensions (n). In this section we fix active parameters rather than
total parameters.
In all single-expert (dense) cases, we observed a clear phase change (Figure 4.X.1/1), af-
firming the work of Elhage et al. (2022). When we increased the total number of experts,
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Figure 4: Joint feature norm (||Wi||2) and superposition score (
∑

j ̸=i(Ŵi · Wj)2) across
varying feature sparsity S ∈ [0.1, 1] and relative last feature importance r ∈ [0.1, 3]. For
each cell, we train ten models and select the one with the lowest loss. We used load balancing
loss in this section. We plot joint feature norm and superposition for the last feature: low
L2 norm (||Wi||) is white, denoting the model is ignoring the last feature; otherwise a low
superposition score is blue-purple to indicate monosemantic representation of the last feature
and red for a high superposition score. Subfigure X.e/E denotes the weight matrix of expert
e of E total experts trained on architecture X; X.1/1 indicates a dense model.

discrete phase changes disappeared. Some experts in MoEs with E = 2 are reminiscent of
their respective dense cases (Figure 4.X.2/2), but exhibit more continuous transitions. In
each case, one expert became more monosemantic, specializing in the most important fea-
ture by relative importance. Experts dissimilar from the dense cases universally have much
lower superposition scores (they are bluer), indicating more monosemantic representations.
This aligns with the conclusions of the previous section—MoEs favor lower superposition
scores compared to their dense counterparts.
For the n = 2, m = 1 setup (Figure 4.A), the dense model does not represent the last feature
when feature sparsity is low. However, the comparable MoE model preserves the last feature
much more because it has the capacity. With three input dimensions (Figure 4.B), the MoEs
do not exhibit this behavior because the experts are superimposing the other two features;
there is no space for the third feature within one hidden dimension. Unlike the other two
cases, for architecture B the hidden dimension with superposition is not sufficient, in the
high-sparsity regime, to represent all features. Yet we do not see clear phase change—except
for the 0.5 – 0.7 feature sparsity region in 4.B.2/2, where it is mostly discrete but mixed.
For m = 2 the white region in the dense model (Figure 4.C.1/1) (in the mid- to low-feature
sparsity domain, when the feature is relatively less importance than the others) ignores
the last feature. However, as network sparsity increases—across all other Figure 4.C—the
models represent the last feature with greater L2 magnitude (||W 1

3 || < ||W 2
3 || < ||W 3

3 ||).
In other words, the dimensionality in the low relative-importance region increased with
increasing network sparsity, as demonstrated in Figure 3.
We observed a window of feature sparsity from roughly 0.48 to 0.7 in Figures 4.B.2/2,
4.C.1/2, and 4.C.2/2 where there is heavy mix of polysemanticity, monosemanticity, or
ignorance. This indicates there is a middleground in MoEs with comparable loss between
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polysemantic and monosemantic representations which make it difficult to consistently com-
mit to the strategies we observe in low and high feature sparsity domains. This is evidence
that MoEs learn different representational strategies than dense models.
These experiments are all top-k = 1, so only one expert is active at a time. Even so, we
see vastly different behavior even the in E = 2 case, including when the hidden dimension
capacity with superposition is sufficient to represent all features. This leads us to conclude
it is misleading to think of MoEs as an aggregation of dense models. The mechanism of the
router which allows experts to observe only a subset of the feature domain vastly modifies
the behavior and learning of the experts.

5 Expert Specialization

Since MoEs exhibit less superposition, we now examine the organization of such monose-
mantic features within experts and its relation to specialization.
Expert specialization in MoEs traditionally centers around load balancing between experts
across all inputs (Chaudhari et al., 2025). However, this fails to capture the natural intuition
of specialization, wherein an expert is only used when appropriate concepts—those the
expert is specialized in—are present in the input.
We define an expert as specialized if it occupies certain feature directions in the input space,
and if it represents said features relatively monosemantically. We demonstrate that these
two conditions are directly correlated, and show how the presence of these two conditions
encourages load balancing across experts.

Figure 5: Expert routing of three identical models with differing initialization schemes. We
use n = 2, E = 3, m = 1. The first model (left) has the worst performance (loss: 0.08) and
routes all inputs to one expert. The second model (middle) has better performance (loss:
0.04) and routes a small portion of inputs, specifically those when feature 1 is active, to a
second expert. The third model (right) has the lowest loss (loss: 0.025), and distributes
the input space among all experts. One expert is chosen when only feature 1 is active, one
when only feature 2 is active, and one when both are active.

Because we fix k = 1, the feature space is partitioned into convex cone regions (see Appendix
A.3), with each region routed to a particular expert. By definition, this means ∀s > 0, x ∈
C → sx ∈ C, where C is the set of points contained within the cone and s is any positive
scalar. If a particular feature vector x is routed to an expert, then all sx are routed to that
same expert. In this case, we say that feature x is contained within expert e, and as such
expert e “occupies” x.
There is a correlation between the distribution of experts across the feature space (the
variance of the volumes of the cones) and how well a model performs, as shown in Figure
5. Not only do models with better distribution of experts across the feature space perform
better, but they tend to align experts with particular features. This implies that experts
can specialize to specific features, and that doing so improves performance.
In models with n > 2, we explore whether initializing experts to occupy features in the
input space cause the experts to be more monosemantic w.r.t. those features. Separately,
we see if, for the features an expert has chosen to represent monosemantically, the expert
occupies those features in the input space.
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(a) Diagonal Initialization (b) Ordered K-hot initialization (c) Random K-hot initialization

Figure 6: ||W (e)
i ||2 and W T W results for three different initialization schemes, with n =

20, m = 5, E = 4, S = 0.1. In (a), the gate matrix is initialized along the diagonal, and
relative feature importance decreases exponentially in order from feature one to 20. In
(b), the gate matrix is initialized to an ”ordered k-hot”, such that the first expert aligns
with the first five features, and each subsequent expert aligns with the next five features.
Relative feature importance is the same as (a). In (c), the gate matrix is initialized to
a ”random k-hot”, where each expert is assigned five random features such that experts
share no common feature but cover all 20 features collectively. Relative feature importance
decreases exponentially but is randomly distributed across features.

When the gate matrix is initialized to the diagonal, such that ci = xi, each expert monose-
mantically represents the single feature it initially occupied, and only that feature, as shown
in Figure 6a. When the router is ordered k-hot initialized, the first expert monosemanti-
cally represents four of the five features it initially occupied, as shown in Figure 6b. The
other experts, initialized over other features, did not monosemantically represent these less
important features, nor did they monosemantically represent the five most important fea-
tures they were not initialized over. When we break the ordering of feature importance
and randomize the features each expert initially occupies, each expert monosemantically
represented only the most important feature it was initialized over, as shown in Figure 6c.
There is a strong correlation between the features that are initially routed to an expert
and which features that expert represents monosemantically. Furthermore, we observe that
experts only monosemantically represent important features. This is true if we initialize
each expert with one important feature explicitly, or if we give it a set of features, upon
which it selects the most important feature itself and represents it monosemantically.
In the case of uniform feature importance, all features are placed in superposition with
high polysemanticity scores. Despite this, the features an expert initially occupies are still
relatively more monosemantic, on average achieving polysemanticity scores 1.03 standard
deviations below the average for that expert.
We investigated whether there is a correlation between experts representing certain features
monosemantically, and said experts occupying those features in the input. To do this, we
measure usage statistics when those features are one of many active features, and when they
are the only active features. This second case is equivalent to measuring the probability that
the expert occupies these features. The correlation holds both in xavier and k-hot initial-
ization schemes, as seen in Table 1. Given E = 10, a mean expert usage of ∼10% indicates
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an even load balancing across experts. In all cases, when the corresponding monosemantic
feature(s) for an expert is active, the usage of the expert increases significantly. When this
feature(s) is the only active feature, the expert dominates the usage.

Table 1: Monosemantic feature and usage statistics per expert for n = 100, m = 10, E = 10.
One hundred models are trained for each initialization scheme (xavier and k-hot), providing
1000 experts in total for each. Each statistic is aggregated across models, classifying experts
based on the number of features they represent monosemantically. For the feature(s) an
expert represents monosemantically, we track the expert usage when said feature(s) is one
of several active features in the input, as well as the expert usage when said feature(s) is
the only active feature in the input.

Xavier Initialization
Number of

monosemantic
features per

expert

Number of
experts (out of

1000)
Mean expert

usage (%)

Mean expert
usage;

feature(s)
active (%)

Mean expert
usage; only
feature(s)
active (%)

0 461 – – –
1 387 9.595 17.94 67.18
2 138 9.599 30.29 95.65
3 13 8.363 40.19 100.0
4 1 1.428 14.69 100.0
5 0 – – –

K-Hot Initialization
Number of

monosemantic
features per

expert

Number of
experts (out of

1000)
Mean expert

usage (%)

Mean expert
usage

feature(s)
active (%)

Mean expert
usage only
feature(s)
active (%)

0 335 – – –
1 382 10.00 23.94 100.0
2 227 10.02 46.61 100.0
3 47 10.09 62.00 100.0
4 8 9.95 70.30 100.0
5 1 9.62 74.79 100.0

In the k-hot initialization scheme, 100% of all features monosemantically represented by an
expert are occupied by that same expert.
As experts represent more features monosemantically, they can be seen as more specialized.
Their usage on arbitrary input decreases, but conditional on their specialized features being
active, their usage increases far greater than other experts. This holds true for all cases
except the xavier initialized model with a four monosemantic feature expert, where there is
a significant drop in utilization.

6 Conclusion

We investigated how experts affect superposition in MoEs, showing that MoEs consistently
exhibit greater monosemanticity than dense networks while not exhibiting a phase change.
We proposed a feature-based definition of expert specialization, demonstrating that experts
naturally organize around coherent features when initialization encourages this specializa-
tion. However, our findings are based on simple autoencoder toy models with synthetic data,
leaving open questions about generalization to large-scale transformers where the feature
distribution is unknown. Despite these limitations, we show how toy MoEs achieve compa-
rable loss while maintaining more interpretable representations—challenging the prevalent
zeitgeist that mechanistic interpretability and model capability are fundamentally in tension.
Future work should explore what favors monosemanticity in MoEs, how training dynamics
of MoEs differ from those of the dense model, and when specialization emerges. Answer-
ing these questions can inform the design of more interpretable, high-performing language
models.
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A Appendix

A.1 Measuring loss for varying sparsity & experts
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Figure 7: Log average loss versus feature density ( 1
1−S ) for dense (m = 20) and MoE (4

experts, k = 1, m = 5), MoE (10 experts, k = 2, m = 2), and MoE (20 experts, k = 5,
m = 1) models, all with uniform feature importance (Ii = 1.0) for n = 100 input features.
Results are averaged over five runs per sparsity level. Although dense model outperforms
all MoEs at every sparsity level, as the number of experts increases, the MoE loss gets closer
to the dense model.

Figure 8: Model X/E uses X to denote the same model architectures and models used in
Figure 4 and E denotes the total number of experts (i.e. network sparsity). Increasing
network sparsity decreases mean loss while increasing localized variance—especially as the
number of experts reaches the input feature dimensions. This can attributed to the relatively
unstable training of MoEs compared to dense models (despite training ten models for each
cell and selecting the lowest loss).

A.2 Analytic Model Equivariance

For the toy setup of single-layer, single-nonlinearity, top-k = 1 MoEs, there exists a theo-
retical map between any dense model and a monosemantic MoE with an equivalent number
of active features under a sparsity constraint.
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Assume there exists an upper bound for the number of active features a for any input such
that ∀x ∈ D : |{i : xi ̸= 0}| ≤ a. Furthermore, assume that a is no greater than the hidden
dimensionality, m, of an expert, providing an upper bound on the number of features a
model has to represent. Assume also that the hidden dimensions is smaller than the total
number of input features n (a ≤ m ≤ n). To construct the monosemantic MoE, for each
possible subset S ⊆ {1, 2, . . . , n} with |S| ≤ a—meaning the size of the subset of active
features is smaller than or equal to a—create an expert which monosemantically preserves
those features. (In fact, you can take only the subsets such that |S| = a.) The router then
selects the expert which corresponds to those active features (of which there will never be
more than a, by assumption):

Router(x) = arg max
S

I[support(x) = S]

where support(x) = {i : xi ̸= 0}. Since |S| ≤ a ≤ m, each expert has sufficient capacity
to represent its assigned features without superposition. To reiterate, only a features are
active and every unique combination of active features receives its own dedicated expert
with sufficient capacity to represent those features monosemantically. So, the number of
possible experts needed is

(
n
m

)
.

The reconstruction for this theoretical MoE has zero loss only as the sparsity constraint
holds (or goes to one in these toy models) because there is the chance more than m features
could be active at one time (a ̸≤ m), which would exceed the monosemantic representational
capacity of the network (but the dense polysemantic could do no better unless features are
correlated in the distribution). Therefore, even if a ̸≤ m sometimes, the polysemantic model
encounters the same problem and the monosemantic MoE under this construction may still
outperform it under looser sparsity constraints.
Thus, for any dense model, fdense(x) = ReLU(Wx + b) under the sparsity constraint
|support(x)| ≤ a, there exists a MoE model fMoE(x) such that fdense(x) = fMoE(x) for
all valid inputs. In the toy settings described in this paper, the sparsity constraint holds in
the limit where sparsity goes to one. However, in practice there may be an upper bound
on the amount of features a particular amount of information can semantically encode,
indicated by the size of meaningful embeddings of that data. Therefore, a MoE model
with sufficient experts and a tractable amount of superposition (e.g. interpretable) may be
sufficient to encode all features present.

A.3 Router Subspaces are Convex Cones

In the regime of k = 1, the router function g(x) = softmax(Wrx) is equivalent to
argmax(Wrx). The region routed to expert i can be represented as ∀j ̸= i, (wi −wj)⊺x > 0
where wi and wj are row vectors of Wr. This is a homogeneous linear inequality. Regions
bounded by such inequalities are by definition convex cones. If a particular x satisfies this
inequality, then multiplying both sides by any positive scalar s will still satisfy the inequal-
ity. Furthermore, if x1 and x2 satisfy this inequality, then any x = x1λ + (1 − λ)x2 for
λ ∈ [0, 1] will also satisfy the inequality.
In the case of k > 1, the region of inputs which get sent to a particular expert e becomes
a union of convex cones. Generally, the union of a convex cone is not itself a convex cone.
Therefore, the understanding of experts occupying feature directions may not hold beyond
k = 1.
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