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Abstract

Mixture of Experts (MoE) models have become central to scaling large
language models, yet their mechanistic differences from dense networks re-
main poorly understood. Previous work has explored how dense models
use superposition to represent more features than dimensions, and how su-
perposition is a function of feature sparsity and feature importance. MoE
models cannot be explained mechanistically through the same lens. We
find that neither feature sparsity nor feature importance cause discontinu-
ous phase changes, and that network sparsity (the ratio of active to total
experts) better characterizes MoEs. We develop new metrics for measuring
superposition across experts. Our findings demonstrate that models with
greater network sparsity exhibit greater monosemanticity. We propose a
new definition of expert specialization based on monosemantic feature rep-
resentation rather than load balancing, showing that experts naturally or-
ganize around coherent feature combinations when initialized appropriately.
These results suggest that network sparsity in MoEs may enable more inter-
pretable models without sacrificing performance, challenging the common
assumption that interpretability and capability are fundamentally at odds.

1 Introduction

Mixture of Experts (MoEs) have become prevalent in state-of-the-art language models, such
as Qwen3, Mixtral, and Gemini (Yang et al., 2025a; Jiang et al., 2024; Google DeepMind,
2025), primarily for their computational efficiency and performance gains (Shazeer et al.,
2017; Fedus et al., 2022). Subsequent work improve routing (e.g., Expert-Choice routing)
and training stability/transfer (e.g., ST-MoE) (Zhou et al., 2022; Zoph et al., 2022). Theo-
retical and empirical results further show that learnable routers can discover latent cluster
structure in data, providing insight for why experts specialize (Dikkala et al., 2023). How-
ever, despite their widespread adoption, MoEs remain poorly understood from a mechanistic
interpretability perspective.
Interpretability-oriented approaches have sought to make expert behavior more transparent.
Yang et al. (2025b) proposes MoE-X, which encourages sparsity-aware routing and uses
wide, ReLU-based experts to reduce polysemanticity. Park et al. (2025) introduce Monet,
scaling the number of experts to enable capability editing via expert activation. Yet these
works largely focus on architectural changes; we still lack a mechanistic understanding of how
MoEs represent features, how experts affect superposition, and whether experts naturally
specialize without extra regularization. Mu & Lin (2025) survey MoE research and identify
mechanistic interpretability as a key open challenge.
A fundamental challenge in interpreting neural networks is the phenomenon of superposition:
when models represent more features than they have dimensions. This allows networks to
pack many sparse features into fewer neurons at the cost of making individual neurons
polysemantic and difficult to interpret.
MoE architectures introduce a new dimension to this problem: network sparsity. Unlike
dense models that activate all neurons regardless of input, MoEs activate a fraction of their
total parameters (Shazeer et al., 2017). While dense models exploit feature sparsity by
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packing many sparse features into shared neurons, MoEs can afford to be more selective,
potentially dedicating entire experts to specific feature combinations.
We investigate whether (1) MoEs exhibit less superposition than their dense counterparts,
(2) there is a discrete phase change in the amount of superposition of a particular fea-
ture in MoE experts across its relative importance and overall feature sparsity, as seen in
dense models, and (3) we can understand expert specialization through the lens of feature
representation rather than just load balancing.
We explore these questions using simple models that extend Elhage et al. (2022)’s frame-
work to MoEs. Our key contributions are as follows: (1) unlike dense models, MoEs do
not exhibit sharp phase changes, instead showing more continuous transitions as network
sparsity increases; and (2) MoEs consistently exhibit greater monosemanticity (less super-
position) than dense models with equivalent active and total parameters, with individual
experts representing features more cleanly; (3) we propose an interpretability-focused defi-
nition of expert specialization based on monosemantic feature representation, showing that
experts naturally organize around coherent feature combinations rather than arbitrary load
balancing.

2 Related Work

Superposition and Feature Representations. The Linear Representation Hypothesis
suggests networks represent concepts as directions in activation space (Park et al., 2024), yet
the number of interpretable features often exceeds the available dimensions. Elhage et al.
(2022) formalized this phenomenon as superposition, demonstrating that dense models rely
on non-orthogonal feature packing to maximize capacity at the cost of polysemanticity.
While superposition is theoretically efficient (Scherlis et al., 2025), it necessitates complex
post-hoc disentanglement methods, such as Sparse Autoencoders, to recover monosemantic
features (Bricken et al., 2023). Recent work has examined how data correlations shape su-
perposition (Prieto et al., 2025), and how interference patterns emerge and can be mitigated
(Gurnee et al., 2023). Our work extends this line of inquiry to MoE architectures, demon-
strating that network sparsity—rather than feature sparsity alone—governs representational
strategies.
Interpretability of MoEs. While MoEs have become the standard for scaling large lan-
guage models (Shazeer et al., 2017; Fedus et al., 2022; Jiang et al., 2024), mechanistic
understanding of their internal representations lags behind their dense counterparts. Ex-
isting analysis largely focuses on macroscopic behaviors, such as routing stability (Zoph
et al., 2022), expert choice statistics (Zhou et al., 2022), or latent cluster discovery (Dikkala
et al., 2023). More recent interpretability-focused approaches attempt to force specialization
through architectural constraints, such as predefined concept routing (Yang et al., 2025b)
or scaling expert counts to match vocabulary sizes (Park et al., 2025). However, these ap-
proaches often prioritize capability editing over explaining intrinsic feature geometry. We
address this gap by analyzing how experts affect superposition, demonstrating that MoEs
exhibit greater monosemanticity than dense models and proposing a feature-based definition
of expert specialization.

3 Background

A primary focus of Mechanistic Interpretability is to reverse engineer neural networks; one
method is to decompose model representations into a set of human interpretable concepts
named ‘features’. These features are often assumed to be linear, that is, any hidden state h
can be described as

h =
∑
i∈F

αif⃗i + b⃗

where f⃗i is the direction corresponding to feature i, αi is the activation strength of this
feature (roughly, the degree to which feature i is present in the input), and F is the set of
all represented features.
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The superposition hypothesis contends that models are capable of representing far more
features than dimensions, i.e. |F | > m for h ∈ Rm (Elhage et al., 2022). In order to have
many more features than dimensions in a latent space, features vectors in F must be packed
such that they are not all orthogonal. When two features have interference ⟨f⃗i, f⃗j⟩ ≠ 0,
we say they are in superposition. This superposition is acceptable so long as features are
sparsely active (a characteristic of most online text data), though it comes at the cost of
interpretability, as αi contains spurious activations unrelated to feature i being present in
the input.
Monosemanticity is a characteristic of individual neurons, where a neuron’s activation
cleanly corresponds with a single αi (i.e., features are basis-aligned). When features are
orthogonal (not in superposition) but not basis-aligned, neurons remain polysemantic even
though feature interference is minimal. In this paper, we focus on reducing superposition
rather than enforcing basis-alignment. For brevity, when we describe models, experts, or
features as “more monosemantic,” we mean they display less superposition.

4 Demonstrating Superposition

MoEs are often conceptualized as compositions of dense models, where each expert behaves
like an independent dense network. However, whether experts actually represent features
similarly to dense models remains unclear. We investigated this by comparing how MoEs
and dense models differ in superposition.
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(a) Norm of each feature’s weight vector
∥Wi∥, with colors indicating superposition
status (green for features in superposition,
purple for monosemantic features).
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Figure 1: Feature representation and superposition in a dense model with n = 20 features
and m = 6 hidden dimensions, with importance I = 0.7i and uniform feature density
(1− S) = 0.1. Superposition (color) is given by

∑
j(Ŵi ·Wj)2.

4.1 Experimental Setup

Our goal is to explore how a MoE can project a high-dimensional vector, x ∈ Rn into lower-
dimensional expert representations, h ∈ Rm and then accurately recover it. This extends
the framework of Elhage et al. (2022) to the MoE setting.
The input distribution. The input vector x represents the activations of an idealized,
disentangled model, where each dimension xi corresponds to a distinct, independent fea-
ture—effectively, a perfectly neuron-aligned and monosemantic representation. We take
xi ∼ U(0, 1), except for a given sparsity S ∈ [0, 1), P (xi = 0) = S. Not all features con-
tribute equally to the loss. To model that features vary in utility, we assign each feature xi

a scalar importance Ii which weights the reconstruction loss. Additionally, to isolate and
study phase transitions for a single feature, we scale the magnitude of the last feature by
a factor r ∈ R+, such that I = (1, 1, ...r). Thus, Ii and r vary the signal strength of the
features, allowing us to test expert sensitivity to feature magnitude.
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Model Architecture. The MoE consists of E experts, where each expert e is parame-
terized by a weight matrix W e ∈ Rm×n and a bias be ∈ Rn. Inputs are assigned to the
top-k experts via a learned router g(x) = softmax(W rx) where W r ∈ RE×n. Each active
expert projects the input to a lower-dimensional hidden state he = W ex and generates a
reconstruction x̂e = ReLU((W e)⊤he + be) 1. The final output is the weighted sum of the
active experts: x′ =

∑
e∈top-k wex̂e where we are the renormalized gating weights.

We train our models with an L2 reconstruction loss weighted by feature importances, Ii given
by L =

∑
x

∑
i Ii (xi − x′

i)2. In Section 4, to prevent expert collapse, we add the standard
auxiliary load balancing loss (Fedus et al., 2022), defined as Laux = αN

∑N
e=1 fePe. Here,

N is the total number of experts, fe is the fraction of samples in a batch routed to expert
e, Pe is the average gating probability assigned to expert e across the batch, and α = 0.01
controlling the penalty strength. We deliberately omit auxiliary load balancing in Section
4 to isolate the intrinsic architectural bias of the MoE regarding superposition.

4.2 Measuring feature capacity

To analyze feature representations across architectures, we compared two fundamental prop-
erties of the features: representation strength and interference with other features. We
measured the norm of a feature weight vector in an expert e given by ∥W e

i ∥. It represents
the extent to which a feature is represented within the expert e. ∥W e

i ∥ ≈ 1 if feature i is
fully represented in expert e and zero if it is not learned. We visualize the interference of a
feature i with other features in expert e using the Gram matrix W ⊤W , where off-diagonal
elements represent pairwise interference.
As shown in Figures 1a and 2a, the dense and the MoE represent a comparable number of
features (10 vs 8) with similar norms for equal total parameters (mdense =

∑
mexperts = 6).

While the MoE experts exhibit some local superposition (e.g., Expert 0 in Fig 2b), the global
interference structure is strictly partitioned. Unlike the dense model (Figure 1b, where any
feature can interfere with any other, the MoE enforces a block-diagonal structure where
features routed to different experts have zero interference. This demonstrates that MoEs
allocate representational capacity by partitioning the feature space, reducing the global
scope of interference.
Expert Feature Dimensionality. We want to understand how MoEs allocate their limited
representation capacity differently from the dense model. We measured feature dimension-
ality, which represents the “fraction of a dimension” that a specific feature gets in a model
(Elhage et al., 2022). For a feature i, we define its dimensionality in expert e by

De
i = ∥W e

i ∥
2∑

j

(
Ŵ e

i ·W e
j

)2 (1)

De
i is bounded between zero (not learned) and one (monosemantic). The total capacity for

a MoE can thus be defined as D =
∑

e

∑n
i=1 De

i .
Efficient Packing. When the features are “efficiently packed” in a model’s representation
space, the dimensionality of all the features add up to the number of embedding dimensions,
i.e.

∑n
i=1 De

i ≈ m (Cohen et al., 2014; Scherlis et al., 2025; Elhage et al., 2022). In the case
of a MoE, the relation becomes

∑
e

∑n
i=1 De

i ≈ E ·m. Empirically, we find that both dense
and MoE models satisfy the above dimensionality constraint, meaning that MoEs achieve
the same efficiency in packing features as the dense models for the same total parameters.
Features per Dimension & Network Sparsity. Since both dense and MoE models
“efficiently pack” features in their representation space, we compared the differences in

1The ReLU at the output ensures non-negative reconstructions, which matches our input dis-
tribution where xi ∈ [0, 1] when nonzero. Furthermore, the off-diagonal terms in (W e)⊤W e create
negative interference and ReLU suppresses these negative components. When features are sparse,
negative interference becomes effectively “free” as it is filtered to zero, incentivizing model config-
urations with negative off-diagonal terms (e.g., antipodal pairs).
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Figure 2: Feature representation and superposition in a MoE with n = 20 features, 3 total
experts, and m = 2 hidden dimensions per expert (top-k = 1 routing), with importance
I = 0.7i and feature density 1− S = 0.1.
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Figure 3: Features per dimension versus inverse feature density ( 1
1−S ) for dense and MoE

architectures with uniform feature importance (Ii = 1.0). The dense model (n = 100,
m = 20) has the most superposition, which decreases with increasing expert count: 4
experts with m = 5, k = 1 (orange); 10 experts with m = 2, k = 2 (green); 20 experts with
m = 1, k = 5 (red). All models have equal total parameters and similar k/E. The dashed
line at 1.0 marks monosemantic representation.

number of features per dimension across the models. This allowed us to exactly measure
superposition in both models and how the number of experts in a MoE affects superposition
for different feature sparsities. If the features per dimension is greater than one, then the
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features are in superposition since the model is representing more features than there are
dimensions. We define features per dimension for a MoE by

1
k

E∑
e=1

pe
∥W e∥2

F

m
(2)

where ||W ||2F is the Frobenius norm and pe is the expected probability that expert e is used
across a batch of input samples, i.e. the average renormalized gating weight after top-k
routing.
For MoEs with equal number of total parameters as the dense model, we observe that the
dense model has a higher number of features per dimension (Figure 3), i.e. more super-
position. This indicates that the dense model utilizes superposition to represent a greater
total number of features (nlearned > mtotal), whereas the MoE tends to cap its representa-
tion at the monosemantic limit (nlearned ≈ mtotal). Furthermore, as we increase the total
number of experts in the MoE—keeping the total parameters and the ratio k/E roughly the
same—the number of features per dimension decreases or alternatively has less superposi-
tion. The greater the number of experts, the less superposition in the model. Concretely,
features become more monosemantic with increasing number of experts. Furthermore, more
superposition in the dense model allows it to achieve consistently lower reconstruction loss
compared to the MoEs as shown in Figure 6 in Appendix A.1 with difference in loss at any
given sparsity of ∼ 0.03 − 0.08. But as the number of experts increases, the MoEs achieve
consistently comparable loss to the dense models. See Appendix A.2 for a theoretical intu-
ition.

5 Phase Change

Although MoEs and dense models learn a similar number of features, MoEs distribute them
across experts with less interference. This suggests that network sparsity reshapes how
features are allocated rather than how many are learned. We examined how properties of
the input distribution—such as feature sparsity and importance—drive this allocation and
whether they induce physics-inspired phase changes in representation.
Models have a finite way of representing features; each feature may be ignored, superim-
posed, or monosemantic. Phase change is the observation that sometimes there are discrete
boundaries between regions, which are functions of feature sparsity and relative importance.
Dense toy models exhibit discontinuous ‘phase changes’ between internal feature represen-
tations (Elhage et al., 2022). By varying the sparsity and relative importance of features in
the input distribution, we can elicit different behavior; for example, more feature sparsity
encourages greater superposition. Analyzing the phase diagram of each expert in MoEs
demonstrates they employ different representational strategies compared to dense models.
Setup. We follow the same setup as Section 4.1, except with load balancing loss to avoid
specialization collapse—when experts and routers fall into local minima where certain ex-
perts are entirely ignored—in certain setups. There are three models setups, all with one
active expert (k = 1): (A) n=2, m=1; (B) n=3, m=1; and (C) n=3, m=2. We report the
expert-specific phase diagram across feature sparsity and last-feature relative importance
for varying network sparsity by increasing the experts (E) up to the number of input feature
dimensions (n).
In this section we fix active parameters rather than total parameters such that mdense =
kmmoe (ignoring router parameters). The reason is to compare within model architectures;
otherwise, any observed differences could be attributed to architectural changes instead of
the number of active parameters. Coincidentally, 4.C.1/1 has the same number of active
parameters as 4.B.X/2. But the latter has only one hidden dimension (m = 1) to encode the
same number of input features (n = 3) as the former, with two hidden dimensions (m = 2),
making it difficult to use superposition to understand specialization.
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Figure 4: For a particular expert and input dimension (feature), we can decode how it is
embedded in the hidden dimension—whether it is ignored (white), monosemantic (blue-
purple), or superimposed (red). We plot joint feature norm (||Wn||2) and superposition
score (

∑
j<n(Ŵn ·Wj)2) across varying feature sparsity S ∈ [0.1, 1] and relative last feature

importance In ∈ [0.1, 3], where the subscript n denotes the last feature of n total features.
For each cell, we train ten models and select the one with the lowest loss. We used load
balancing loss in this section. We plot joint feature norm and superposition for the last
feature: low L2 norm (||Wn||) is white, denoting the model is ignoring the last feature;
otherwise a low superposition score is blue-purple to indicate monosemantic representation
of the last feature. Red indicates the feature is represented in superposition. Cell (i, j) in
subfigure X.e/E denotes the expert e of E total experts trained on architecture X for last
feature importance In = i and sparsity S = j; X.1/1 indicates a dense model.

Results and Takeaways. In all single-expert (dense) cases, we observed a clear phase
change (Figure 4.X.1/1), affirming the work of Elhage et al. (2022). When we increased the
total number of experts, discrete phase changes disappeared. Some experts in MoEs with
E = 2 are reminiscent of their respective dense cases (Figure 4.X.2/2), but exhibit more
continuous transitions. In each case, one expert became more monosemantic, specializing in
the most important feature by relative importance. Experts dissimilar from the dense cases
universally have much lower superposition scores (they are bluer), indicating more monose-
mantic representations. This aligns with the conclusions of the previous section—MoEs
favor lower superposition scores compared to their dense counterparts.
For the n = 2, m = 1 setup (Figure 4.A), the dense model does not represent the last feature
when feature sparsity is low. However, the comparable MoE model preserves the last feature
much more because it has the capacity. With three input dimensions (Figure 4.B), the MoEs
do not exhibit this behavior because the experts are superimposing the other two features;
there is no space for the third feature within one hidden dimension. Unlike the other two
cases, for architecture B the hidden dimension with superposition is not sufficient, in the
high-sparsity regime, to represent all features. Yet we do not see clear phase change—except
for the 0.5 – 0.7 feature sparsity region in 4.B.2/2, where it is mostly discrete but mixed.
For m = 2 the white region in the dense model (Figure 4.C.1/1) (in the mid- to low-feature
sparsity domain, when the feature is relatively less importance than the others) ignores
the last feature. However, as network sparsity increases—across all other Figure 4.C—the
models represent the last feature with greater L2 magnitude (||W 1

3 || < ||W 2
3 || < ||W 3

3 ||).
In other words, the dimensionality in the low relative-importance region increased with
increasing network sparsity, as demonstrated in Figure 3.
We observed a window of feature sparsity from roughly 0.48 to 0.7 in Figures 4.B.2/2,
4.C.1/2, and 4.C.2/2 where there is heavy mix of polysemanticity, monosemanticity, or
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ignorance. This indicates there is a middleground in MoEs with comparable loss between
polysemantic and monosemantic representations which make it difficult to consistently com-
mit to the strategies we observe in low and high feature sparsity domains. We see no such
pattern in dense models—evidence that MoEs learn different representational strategies.
Conclusion. These experiments are all top-k = 1, so only one expert is active at a time.
Even so, we see vastly different behavior even the in E = 2 case, including when the hidden
dimension capacity with superposition is sufficient to represent all features. This leads
us to conclude it is misleading to think of MoEs as an aggregation of dense models. The
mechanism of the router which allows experts to observe only a subset of the feature domain
vastly modifies the behavior and learning of the experts.

6 Expert Specialization

Since MoEs exhibit less superposition, we now examine the organization of such monose-
mantic features within experts and its relation to specialization.
Expert specialization in MoEs traditionally centers around load balancing between experts
across all inputs (Chaudhari et al., 2025). However, this fails to capture the natural intuition
of specialization, wherein an expert is only used when appropriate concepts—those the
expert is specialized in—are present in the input.
We define an expert as specialized if it occupies certain feature directions in the input space,
and if it represents said features relatively monosemantically. We demonstrate that these
two conditions are directly correlated, and show how the presence of these two conditions
encourages load balancing across experts.
Because we fix k = 1, the feature space is partitioned into convex cone regions (see Appendix
A.3), with each region routed to a particular expert. By definition, this means ∀s > 0, x⃗ ∈
C → sx⃗ ∈ C, where C is the set of points contained within the cone and s is any positive
scalar. If a particular feature vector x⃗ is routed to an expert, then all sx⃗ are routed to that
same expert. In this case, we say that feature x is contained within expert e, and as such
expert e occupies x.
We empirically find that small models that distribute the input space across more experts
tend to achieve lower loss (see Appendix A.4). This warrants a question: does the allocation
of the input space to certain experts imply any characteristics regarding those experts? Our
definition of expert specialization suggests that this allocation implies monosemanticity,
which we will see is a correlation that holds for larger toy models (e.g., m = 10).
In models with n > 2, we explore whether initializing experts to occupy features in the
input space cause the experts to be more monosemantic w.r.t. those features. Separately,
we see if, for the features an expert has chosen to represent monosemantically, the expert
occupies those features in the input space.
When the gate matrix is initialized with ones along the main diagonal, each expert monose-
mantically represents the single feature it initially occupied, and only that feature, as shown
in Figure 5a. When the router is ordered k-hot initialized, the first expert monosemanti-
cally represents four of the five features it initially occupied, as shown in Figure 5b. The
other experts, initialized over other features, did not monosemantically represent these less
important features, nor did they monosemantically represent the five most important fea-
tures they were not initialized over. When we break the ordering of feature importance
and randomize the features each expert initially occupies, each expert monosemantically
represented only the most important feature(s) it was initialized over, as shown in Figure
5c.
There is a strong correlation between the features that are initially routed to an expert
and which features that expert represents monosemantically. Furthermore, we observe that
experts only monosemantically represent important features. This is true if we initialize
each expert with one important feature explicitly, or if we give it a set of features, upon
which it selects the most important feature itself and represents it monosemantically.
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(a) Diagonal Initialization
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(b) Ordered K-hot initialization
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(c) Random K-hot initialization

Figure 5: Expert feature norms ||W (e)
i || and superposition (color) results for three different

initialization schemes, with n = 20, m = 5, E = 4, S = 0.1. In (a), the gate matrix is
initialized along the main diagonal (W r

i = êi, the basis vector for that dimension), and
relative feature importance decreases exponentially in order from feature one to 20. In
(b), the gate matrix is initialized to an “ordered k-hot”, such that the first expert aligns
with the first five features, and each subsequent expert aligns with the next five features.
Relative feature importance is the same as (a). In (c), the gate matrix is initialized to
a “random k-hot”, where each expert is assigned five random features such that experts
share no common feature but cover all 20 features collectively. Relative feature importance
decreases exponentially but is randomly distributed across features.

In the case of uniform feature importance, experts place all features in superposition with
higher levels of interference. Despite this, the features an expert initially occupies are
still relatively more monosemantic, on average achieving superposition scores 1.03 standard
deviations below the average for that expert.
We investigated whether there is a correlation between experts representing certain features
monosemantically, and said experts occupying those features in the input. To do this, we
measure usage statistics when those features are one of many active features, and when they
are the only active features. This second case is equivalent to measuring the probability that
the expert occupies these features. The correlation holds both in xavier and k-hot initial-
ization schemes, as seen in Table 1. Given E = 10, a mean expert usage of ∼10% indicates
an even load balancing across experts. In all cases, when the corresponding monosemantic
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feature(s) for an expert is active, the usage of the expert increases significantly. When this
feature(s) is the only active feature, the expert dominates the usage. In the k-hot initializa-
tion scheme, 100% of all features monosemantically represented by an expert are occupied
by that same expert.

Table 1: Monosemantic feature and usage statistics per expert for n = 100, m = 10, E = 10.
One hundred models are trained for each initialization scheme (xavier and k-hot), providing
1000 experts in total for each. Each statistic is aggregated across models, classifying experts
based on the number of features they represent monosemantically. For the feature(s) an
expert represents monosemantically, we track the expert usage when said feature(s) is one
of several active features in the input, as well as the expert usage when said feature(s) is
the only active feature in the input.

Xavier Initialization
Number of

monosemantic
features per

expert

Number of
experts (out of

1000)
Mean expert

usage (%)

Mean expert
usage;

feature(s)
active (%)

Mean expert
usage; only
feature(s)
active (%)

0 461 – – –
1 387 9.595 17.94 67.18
2 138 9.599 30.29 95.65
3 13 8.363 40.19 100.0
4 1 1.428 14.69 100.0
5 0 – – –

K-Hot Initialization
Number of

monosemantic
features per

expert

Number of
experts (out of

1000)
Mean expert

usage (%)

Mean expert
usage

feature(s)
active (%)

Mean expert
usage only
feature(s)
active (%)

0 335 – – –
1 382 10.00 23.94 100.0
2 227 10.02 46.61 100.0
3 47 10.09 62.00 100.0
4 8 9.95 70.30 100.0
5 1 9.62 74.79 100.0

As experts represent more features monosemantically, they can be seen as more specialized.
Their usage on arbitrary input decreases, but conditional on their specialized features being
active, their usage increases far greater than other experts. This holds true for all cases
except the xavier initialized model with a four monosemantic feature expert, where there is
a significant drop in utilization.

7 Conclusion

We investigated how experts affect superposition in MoEs, showing that MoEs consistently
exhibit greater monosemanticity than dense networks while not exhibiting a phase change.
We proposed a feature-based definition of expert specialization, demonstrating that experts
naturally organize around coherent features when initialization encourages this specializa-
tion. However, our findings are based on simple autoencoder toy models with synthetic data,
leaving open questions about generalization to large-scale transformers where the feature dis-
tribution is unknown (see Appendix A.6). Despite these limitations, we show how toy MoEs
achieve comparable loss while maintaining more interpretable representations—challenging
the prevalent zeitgeist that mechanistic interpretability and model capability are funda-
mentally in tension. Future work should explore what favors monosemanticity in MoEs,
how training dynamics of MoEs differ from those of the dense model, and when special-
ization emerges. Answering these questions can inform the design of more interpretable,
high-performing language models.
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A Appendix

A.1 Measuring loss for varying sparsity & experts
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Figure 6: Log average loss versus feature density ( 1
1−S ) for dense (m = 20) and MoE (4

experts, k = 1, m = 5), MoE (10 experts, k = 2, m = 2), and MoE (20 experts, k = 5,
m = 1) models, all with uniform feature importance (Ii = 1.0) for n = 100 input features.
Results are averaged over five runs per sparsity level. Although dense model outperforms
all MoEs at every sparsity level, as the number of experts increases, the MoE loss gets closer
to the dense model.

A.2 Theoretical Intuition for Superposition

In dense models, superposition emerges to exploit the gap between sparse features and dense
computation, compressing rarely active features into shared dimensions. MoEs, however,
“eat this same gap” structurally through conditional computation. By aligning activation
sparsity with feature sparsity, MoEs remove the computational penalty for having dedicated,
rarely-activating neurons. As noted by Elhage et al. (2022), when a model only expends
computation on active features, splitting polysemantic neurons into dedicated monosemantic
ones becomes the optimal strategy, effectively trading the compression of superposition for
the selection of routing.
The structural change manifests geometrically as a reduction in interference. While the
global ratio of number of features represented to parameters remains constant, the router
effectively partitions the feature space, ensuring that a feature routed to expert e only com-
petes for capacity with the subset of features also assigned to that expert. Consequently,
interference is governed by the local expert matrix (W e)⊤W e rather than the global W ⊤W
of a dense model. This partitioning drastically reduces the number of interfering features
for any given feature vector, minimizing the optimization pressure to pack features in su-
perposition and allowing experts to learn monosemantic representations.

A.3 Router Subspaces are Convex Cones

In the regime of k = 1, the router function g(x) = softmax(W rx) is equivalent to
argmax(W rx). The region routed to expert i can be represented as ∀j ̸= i, (wi−wj)⊺x > 0
where wi and wj are row vectors of W r. This is a homogeneous linear inequality. Regions
bounded by such inequalities are by definition convex cones. If a particular x satisfies this
inequality, then multiplying both sides by any positive scalar s will still satisfy the inequal-
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ity. Furthermore, if x1 and x2 satisfy this inequality, then any x = x1λ + (1 − λ)x2 for
λ ∈ [0, 1] will also satisfy the inequality.
In the case of k > 1, the region of inputs which get sent to a particular expert e becomes
a union of convex cones. Generally, the union of a convex cone is not itself a convex cone.
Therefore, the understanding of experts occupying feature directions may not hold beyond
k = 1.

A.4 Expert Routing with Different Initialization Schemes
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Figure 7: Expert routing of three identical models with differing initialization schemes. We
use n = 2, E = 3, m = 1. The first model (left) has the worst performance (loss: 0.08) and
routes all inputs to one expert. The second model (middle) has better performance (loss:
0.04) and routes a small portion of inputs, specifically those when feature 1 is active, to a
second expert. The third model (right) has the lowest loss (loss: 0.025), and distributes
the input space among all experts. One expert is chosen when only feature 1 is active, one
when only feature 2 is active, and one when both are active.

In small models (n = 2, m = 1, E > 1), we empirically find that models that distribute the
input space across more experts tend to achieve lower loss, testing with E ∈ [2, 7]. Holding
n = 2 allows us to visualize which portions of the input space get routed to which experts,
as seen in Figure 7.

A.5 Analytic Model Equivariance

For the toy setup of single-layer, single-nonlinearity, top-k = 1 MoEs, there exists a theo-
retical map between any dense model and a monosemantic MoE with an equivalent number
of active features under a sparsity constraint.
Assume there exists an upper bound for the number of active features a for any input such
that ∀x ∈ D : |{i : xi ̸= 0}| ≤ a. Furthermore, assume that a is no greater than the hidden
dimensionality, m, of an expert, providing an upper bound on the number of features a
model has to represent. Assume also that the hidden dimensions is smaller than the total
number of input features n (a ≤ m ≤ n). To construct the monosemantic MoE, for each
possible subset S ⊆ {1, 2, . . . , n} with |S| ≤ a—meaning the size of the subset of active
features is smaller than or equal to a—create an expert which monosemantically preserves
those features. (In fact, you can take only the subsets such that |S| = a.) The router then
selects the expert which corresponds to those active features (of which there will never be
more than a, by assumption):

Router(x) = arg max
S

I[support(x) = S]

where support(x) = {i : xi ̸= 0}. Since |S| ≤ a ≤ m, each expert has sufficient capacity
to represent its assigned features without superposition. To reiterate, only a features are
active and every unique combination of active features receives its own dedicated expert
with sufficient capacity to represent those features monosemantically. So, the number of
possible experts needed is

(
n
m

)
.
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Figure 8: Model X/E uses X to denote the same model architectures and models used in
Figure 4 and E denotes the total number of experts (i.e. network sparsity). Increasing
network sparsity decreases mean loss while increasing localized variance—especially as the
number of experts reaches the input feature dimensions. This can attributed to the relatively
unstable training of MoEs compared to dense models (despite training ten models for each
cell and selecting the lowest loss).

The reconstruction for this theoretical MoE has zero loss only as the sparsity constraint
holds (or goes to one in these toy models) because there is the chance more than m features
could be active at one time (a ̸≤ m), which would exceed the monosemantic representational
capacity of the network (but the dense polysemantic could do no better unless features are
correlated in the distribution). Therefore, even if a ̸≤ m sometimes, the polysemantic model
encounters the same problem and the monosemantic MoE under this construction may still
outperform it under looser sparsity constraints.
Thus, for any dense model, fdense(x) = ReLU(Wx + b) under the sparsity constraint
|support(x)| ≤ a, there exists a MoE model fMoE(x) such that fdense(x) = fMoE(x) for
all valid inputs. In the toy settings described in this paper, the sparsity constraint holds in
the limit where sparsity goes to one. However, in practice there may be an upper bound
on the amount of features a particular amount of information can semantically encode,
indicated by the size of meaningful embeddings of that data. Therefore, a MoE model
with sufficient experts and a tractable amount of superposition (e.g. interpretable) may be
sufficient to encode all features present.

A.6 Limitations

Our results should be interpreted in light of several limitations. First, all experiments are
conducted in controlled toy-model settings derived from superposition studies in sparse au-
toencoders (Elhage et al., 2022). While this enables precise measurement of interference and
monosemanticity, it abstracts away many complexities of large-scale transformers, including
multiple computation, attention, heterogeneous feature distributions, and realistic routing
dynamics. Consequently, the transferability of our findings to real-world MoE architectures
remains uncertain.
Second, our architectural and routing choices are intentionally restricted: we use simple
experts, fixed top-k routing (often k = 1), equal parameter budgets between dense and
MoE models, and no auxiliary load-balancing losses. Practical MoEs often employ richer
routing mechanisms, variable expert capacities, and multi-task objectives (Lepikhin et al.,
2021; Fedus et al., 2022) or expanding beyond the task of reconstruction to next token
prediction, for example, which may yield qualitatively different representational behaviors.
Third, the feature distributions in our synthetic tasks—including sparsity patterns, feature
importance, and independence assumptions—are significantly simpler than those found in
natural data.
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Finally, although we observe increased monosemanticity and reduced superposition in MoEs
under fixed conditions, we do not evaluate downstream performance trade-offs, training
stability, or specialization dynamics at scale. Prior work suggests such dynamics can shift
substantially with model size, optimization regime, and data diversity (Krajewski et al.,
2024).
Overall, our study provides mechanistic insights under clean experimental conditions, but
further work is required to validate these patterns in large, realistic MoE systems. Unfor-
tunately, our methods do not scale naturally to larger models and this is a clear direction
for future work in this space.
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