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SEAMCRAFTER: ENHANCING MESH SEAM GENERA-
TION FOR ARTIST UV UNWRAPPING VIA REINFORCE-
MENT LEARNING
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Figure 1: SeamCrafter generates artist-quality seams on diverse meshes, from characters to hard-
surface models, balancing topology alignment with geometric coverage.

ABSTRACT

Mesh seams play a pivotal role in partitioning 3D surfaces for UV parametriza-
tion and texture mapping. Poorly placed seams often result in severe UV dis-
tortion or excessive fragmentation, thereby hindering texture synthesis and dis-
rupting artist workflows. Existing methods frequently trade one failure mode for
another—producing either high distortion or many scattered islands. To address
this, we introduce SeamCrafter, an autoregressive GPT-style seam generator con-
ditioned on point cloud inputs. SeamCrafter employs a dual-branch point-cloud
encoder that disentangles and captures complementary topological and geomet-
ric cues during pretraining. To further enhance seam quality, we fine-tune the
model using Direct Preference Optimization (DPO) on a preference dataset de-
rived from a novel seam-evaluation framework. This framework assesses seams
primarily by UV distortion and fragmentation, and provides pairwise preference
labels to guide optimization. Extensive experiments demonstrate that SeamCrafter
produces seams with substantially lower distortion and fragmentation than prior
approaches, while preserving topological consistency and visual fidelity.

1 INTRODUCTION

Mesh seams, the edges on a 3D surface that define where the surface is cut and unfolded into a 2D
UV domain, play a central role in UV parameterization and texture mapping. Well-chosen seams
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enable faithful texture alignment with minimal distortion, while poorly placed seams cause stretch-
ing, compression, and visible discontinuities. Because seams partition a surface into UV islands,
an ideal configuration both reduces fragmentation and produces compact, semantically coherent
islands, thereby supporting efficient texture synthesis and artist-friendly editing workflows.

A rich body of prior work has explored seam generation through geometric heuristics and global
optimization. Classical approaches such as region-growing (Sorkine et al., 2002; Yamauchi et al.,
2005; Zhou et al., 2004) and variational formulations (Sharp & Crane, 2018) aim to balance distor-
tion against cut complexity, but they frequently produce fragmented UV atlases and are sensitive to
initialization and parameter choices. Alternative strategies—geometry images (Gu et al., 2002) and
field-based methods (Lucquin et al., 2017)—regularize surfaces into structured domains but often
incur substantial computational cost and limited robustness across diverse shapes. Motivated by the
success of learning-based methods in related tasks, recent work has begun to explore neural seam
prediction (Groueix et al., 2018; Srinivasan et al., 2024; Zhang et al., 2024; Li et al., 2025). In par-
ticular, autoregressive formulations such as SeamGPT (Li et al., 2025) represent a promising data-
driven direction. However, SeamGPT tends to over-rely on topological cues while lacking sufficient
geometric awareness, and its outputs often misalign with human aesthetic and practical preferences.
As a result, it frequently generates redundant or fragmented cuts that degrade UV-friendliness for
downstream tasks such as parameterization and texture mapping.

To address these shortcomings, we propose SeamCrafter, a novel autoregressive seam generator that
(a) jointly leverages both topological and geometric cues of the input mesh, and (b) aligns predic-
tions with human preferences, i.e., seams that are UV-friendly for downstream texture workflows.
To better encode input mesh, we introduce a dual-branch encoder that disentangles geometry and
topology: we uniformly sample points on the mesh surface to capture local geometric detail and
sample points from the vertex–edge skeleton to capture topological structure. And each stream is
processed by a VecSet–based point-cloud encoder (Zhang et al., 2023) to produce complementary
representations. This enriched representation substantially improves robustness and generalization
across both artist-created and AI-generated meshes. Our training is divided into two stages. We
first conduct supervised pretraining on large-scale seam data to learn generalizable mappings from
meshes to seam layouts. Yet, supervised learning alone cannot capture the nuanced trade-offs be-
tween distortion and fragmentation, which are subjective and difficult to encode in explicit loss
functions. To address this, we introduce a second stage based on Direct Preference Optimization
(DPO) (Rafailov et al., 2023), leveraging a curated dataset of pairwise seam comparisons derived
from our evaluation framework. By aligning the model with preference signals that reflect desir-
able properties—low distortion, reduced fragmentation, and compact UV islands—DPO bridges the
gap between quantitative metrics and human judgments, guiding SeamCrafter toward seams that are
both UV-faithful and practical for downstream tasks.

In summary, our contributions are as follows:

• We propose a dual-branch encoder that disentangles geometric and topological aspects of the input
mesh, enabling richer shape understanding and improved generalization.

• We introduce a seam evaluation framework that provides pairwise preference signals, and apply
Direct Preference Optimization to align the model with human judgments of seam quality.

• We demonstrate through extensive experiments that SeamCrafter produces seams with lower UV
distortion and markedly reduced fragmentation compared to prior approaches.

2 RELATED WORK

2.1 TRADITIONAL APPROACHES TO SEAM GENERATION

Early research on seam construction was primarily motivated by surface parameterization and tex-
ture mapping. Classical approaches relied on geometric heuristics to balance distortion and cut
complexity. For instance, region-growing strategies (Sorkine et al., 2002; Yamauchi et al., 2005;
Zhou et al., 2004) iteratively expand local patches until distortion thresholds are reached, forming
the basis of widely used tools such as XAtlas (Young, 2022) and Blender’s Smart UV unwrapper.
While effective in practice, these approaches often produce fragmented atlases and provide limited
semantic control. To address these limitations, later works formulated seam placement as a global
optimization problem. Variational formulations (Sharp & Crane, 2018), for example, aim to mini-
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mize conformal distortion under user-specified or automatically generated seam layouts. Similarly,
OptCuts (Li et al., 2018) treats cutting and mapping as a coupled task, optimizing cut length and dis-
tortion jointly. Beyond explicit seam optimization, alternative representations have been explored to
regularize surface geometry into more structured forms. Geometry images (Gu et al., 2002) and their
multi-chart extensions (Sander et al., 2003; Carr et al., 2006) map meshes to grid-like domains, fa-
cilitating storage and downstream processing. Building on a different principle, field-based methods
such as SeamCut (Lucquin et al., 2017) automate segmentation without relying on mesh topology.
Despite their mathematical elegance, these approaches often need complex optimization and are
sensitive to initialization and parameters, limiting their robustness in practice.

2.2 LEARNING-BASED APPROACHES TO SEAM GENERATION

With the advent of deep learning, data-driven methods have been proposed to predict or refine UV
decompositions. Rather than solving each instance independently, neural models learn reusable pri-
ors that capture how surfaces can be partitioned and unfolded. Early explorations include neural
atlas approaches such as AtlasNet (Groueix et al., 2018), where local surface patches are parame-
terized using implicit functions or neural fields. Extending this idea, Nuvo (Srinivasan et al., 2024)
formulates parameterization as optimizing a set of neural fields under structural constraints, en-
abling more flexible surface representations. Subsequent work has sought greater modularity and
consistency. For example, FAM (Zhang et al., 2024) decomposes the task into three dedicated sub-
networks—cutting, deformation, and unwrapping—organized within a cycle-mapping framework
to enforce mutual consistency. These methods demonstrate that neural networks can capture struc-
tural regularities across shapes. However, most still require extensive per-scene fine-tuning and
lack explicit mechanisms for preserving semantic coherence in the predicted seams. More recently,
SeamGPT (Li et al., 2025) introduces an autoregressive formulation that is conceptually close to
our setting. Nevertheless, it shows weak geometric awareness and heavy reliance on topology, often
producing fragmented seams, redundant cuts, and limited generalization across diverse meshes.

2.3 UV UNWRAPPING APPROACHES

UV unwrapping aims to map 3D mesh surfaces onto 2D domains with minimal distortion, and
has traditionally been formulated as a numerical optimization problem. Classical methods, such as
LSCM (Lévy et al., 2023) and ABF++ (Sheffer et al., 2005), assume pre-defined seams and optimize
angular distortion, while bijective optimization techniques like SLIM (Rabinovich et al., 2017) and
SCAF (Jiang et al., 2017) explicitly enforce overlap constraints. Joint approaches, such as region-
growing strategies (Sorkine et al., 2002) or OptCuts (Li et al., 2018), attempt to optimize seams and
parameterization simultaneously, but often lead to fragmented or semantically incoherent UV maps.
More recently, learning-based methods such as Nuvo (Srinivasan et al., 2024) and FAM (Zhang
et al., 2024) decompose unwrapping into subtasks and leverage neural priors.

3 METHOD

Figure 2 presents an overview of our proposed framework, which consists of two main stages: pre-
training and post-training. In the pretraining stage, we employ supervised learning on large-scale
training data to establish a strong initialization of the model. Subsequently, in the post-training stage,
we adopt the Direct Preference Optimization (Rafailov et al., 2023) method to further fine-tune the
model. The fine-tuning process leverages a preference dataset constructed through our proposed
seam evaluation system, enabling the model to better align with human judgments of seam quality.

3.1 PRE-TRAINING OF SEAMCRAFTER

3.1.1 MESH SEAM TOKENIZATION

Following SeamGPT (Li et al., 2025) and wireframe generation (Ma et al., 2024), we represent mesh
seams as a sequence of segments SM = {si}Ni=1. Each segment si = [pi,1, pi,2] ∈ R2×3 is defined
by the 3D coordinates of its two endpoints, forming a hierarchical representation that consists of
seam segments, endpoints, and endpoint coordinates. To enable auto-regressive modeling, all vertex
coordinates are quantized into 1024 discrete bins and ordered according to a yzx scheme, where
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Figure 2: An overview of SeamCrafter. The pipeline consists of three stages: (1) supervised pretrain-
ing with point clouds and ground-truth seam sequences; (2) candidate seam generation and quality
assessment via our seam evaluation system to construct a preference dataset; and (3) post-training
with Direct Preference Optimization (DPO) to refine the model.

the y-axis corresponds to the vertical direction. The two endpoints of each segment are further
arranged in ascending order using a lexicographic rule. Finally, the entire set of seam segments
is ordered according to the first endpoint of each segment. During UV unwrapping, the predicted
seam segments are projected back onto the mesh. Specifically, the endpoints of each segment are
projected onto the nearest mesh vertices, and a topological edge path connecting these vertices is
identified and marked as seam edges. The mesh surface is then split and unfolded along the marked
seams to complete the unwrapping process.

3.1.2 SHAPE GEOMETRIC AND TOPOLOGICAL ENCODER

In this work, we address UV seam generation from 3D meshes. To encode the input mesh, we
adopt a VecSet-based point-cloud encoder (Zhang et al., 2023), as VecSet-style encoders have shown
strong performance in 3D shape representation (Hao et al., 2024; Zhao et al., 2025; Weng et al.,
2025). Given a point cloud sampled from the mesh, the encoder selects farthest-point sampled (FPS)
anchors and applies a point-query (cross-attention) mechanism with the full context, producing latent
tokens as conditional input to the seam generator. We next revisit point-cloud sampling strategies to
obtain more effective conditioning for UV seam generation.

SeamGPT (Li et al., 2025) samples points on vertices and edges instead of uniformly over the sur-
face, making seam predictions overly dependent on mesh topology and sensitive to small topological
changes. Although this captures topological cues, it overweights graph structure and under-covers
surface geometry, which limits generalization to complex or highly stylized meshes. To address
this limitation, we propose a dual-branch design for shape-condition encoding. Let M denote a
mesh, we built two point sets: PM

t ∈ RNt×3 from mesh vertices and edges to capture topological
structure, and PM

g ∈ RNg×3 from uniform sampling over the mesh surface to capture geometric
coverage. Here, Nt and Ng denote the respective numbers of sampled points. We encode both point
sets with two VecSet encoders of identical architectures but separate parameters:

Et : RNt×3 → Rℓ×d, Eg : RNg×3 → Rℓ×d, (1)
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and obtain the final latent shape embedding by concatenating the two encoded outputs:
eM =

[
Et(PM

t ) ∥ Eg(PM
g )
]
∈ R(2ℓ)×d, (2)

where l denotes the number of tokens per branch and d is the token dimensionality. This simple
fusion provides a more robust conditioning for artistic-style meshes, enabling the model to generate
seam layouts that are both concise and structurally rational, while also improving generalization to
denser meshes or those with suboptimal wiring.

3.1.3 HOURGLASS MESH SEAM DECODER

Similar to (Li et al., 2025; Hao et al., 2024), we employ an autoregressive hourglass transformer
decoder (Nawrot et al., 2021) which enables multiple levels sequence abstraction to generate the
endpoint coordinate codes of seam segments directly. The 3D shape condition embeddings are
injected into the first layer of the transformer stack at each level of the hourglass architecture via
cross-attention. The input coordinate code sequences are first downsampled by a factor of three
at the coordinate level and further downsampled by a factor of two at the segment-endpoint level,
followed by corresponding upsampling operations with factors of two and three, respectively. Both
downsampling and upsampling are implemented through a causality-preserving mechanism.

3.2 POST-TRAINING OF SEAMCRAFTER

Although our pre-trained model can generate high-quality mesh seams for UV unwrapping, it oc-
casionally produces over-segmented or highly distorted seams, which can hinder downstream tasks
such as texture mapping and editing. To further improve performance, we design a comprehen-
sive evaluation pipeline to curate a preference dataset and employ Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to align seam generation with human preferences, emphasizing both
high UV fidelity and low fragmentation.

3.2.1 MESH SEAMS EVALUATION SYSTEM

Constructing high-quality preference datasets is essential for effective direct preference learning.
However, manually selecting preference pairs is prohibitively time-consuming. To address this, we
introduce a set of automatic metrics for evaluating the quality of generated samples. Inspired by
optimization-based UV unwrapping methods, we primarily assess the quality of generated mesh
seams in UV space. Specifically, our seam evaluation system comprises two components, which
encourage preferences for mesh seams that yield UV mappings with high fidelity and low fragmen-
tation density.

UV Mapping Fidelity. Fidelity refers to the accuracy of the UV mapping process in preserving
the details and proportional relationships of the original 3D mesh. A high level of fidelity indicates
that the projection of textures onto the model’s surface does not introduce noticeable overlaps or
distortions. We quantify fidelity by measuring the amount of distortion, which is commonly used
as an energy term in optimization-based methods. The distortion is computed over the UV mapping
using the symmetric Dirichlet energy normalized by the surface area, and is formulated as follows:

Distortion(SM) =
1∑

t∈F |At|
∑
t∈F

|At|
∥∥σ2

t,1 − σ2
t,2

∥∥
1
, (3)

where F is the set of all triangles, |At| is the area of triangle t on the input surface, and σt,i is the
i-th singular value of the deformation gradient of triangle t.

UV Mapping Fragmentation Density. A high fragmentation density indicates that the UV space
or model surface is subdivided into numerous small islands. Such fragmentation complicates tex-
ture painting, as artists must constantly switch between scattered islands, disrupting continuity and
efficiency. To quantify this property, we simply compute the number of UV islands as a mea-
sure of fragmentation, encouraging fewer islands under the same level of distortion. We denote
Density(SM) as the number of UV islands in SM.

3.2.2 PREFERENCE DATASET CONSTRUCTION

We employ our proposed mesh seam evaluation system to construct a dataset of preference pairs.
Given an input point cloud PM sampled from a mesh M, the pre-trained model first generates
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five candidate mesh seams
{
Si
M
}5
i=1

. These candidates are then evaluated by our seam evaluation
system. A candidate Si

M is considered a positive sample and Sj
M a negative sample if and only if

Si
M strictly outperforms Sj

M across all evaluation metrics, i.e.,

Si
M ≻ Sj

M ⇐⇒

{
Distortion(Si

M) < Distortion(Sj
M)

Density(Si
M) < Density(Sj

M)
, (4)

Each such positive–negative pair constitutes a preference pair, where we denote S+
M as the positive

sample and S−
M as the negative sample. Figure 3 illustrates examples of the collected preference

pairs. In total, we construct a mesh seam preference dataset consisting of 4,000 preference pairs,
which is subsequently used to support the post-training of DPO.

UV Mapping Fidelity UV Mapping Fragmentation Density Fidelity & Fragmentation Density

Distortion=11.06↑
Fragment=39 ↓

Distortion=0.099↓
Fragment=32 ↓

Distortion=0.013 ↓
Fragment=15 ↓

Distortion=0.011 ↓
Fragment=77↑

Distortion=9.77↑
Fragment=70↑

Distortion=0.025 ↓
Fragment=31 ↓

Figure 3: Some examples of the collected preference pairs annotate based on the mesh seams evalu-
ation system. (In the UV map, regions with brighter yellow colors correspond to higher distortion.)

3.2.3 DIRECT PREFERENCE OPTIMIZATION

Direct Preference Optimization (DPO) is a recently proposed training paradigm for aligning models
with human preferences. Unlike traditional approaches that rely on separately trained reward models
or reinforcement learning, DPO provides a closed-form objective that directly optimizes the policy
using preference data. Specifically, it fine-tunes the pre-trained model by minimizing the following
loss:

L (πθ;πref) = −E(PM,S+
M,S−

M)∼D

[
log σ

(
β log

πθ

(
S+
M | PM

)
πref

(
S+
M | PM

) −β log
πθ

(
S−
M | PM

)
πref

(
S−
M | PM

))]
(5)

where β is a scaling factor that balances the contributions of preferred and dispreferred samples,
σ(·) denotes the sigmoid function, and D represents the constructed preference dataset. Here, πref

denotes the token-level probability distribution given by the reference model, which is identical
to the pre-trained model and kept frozen, while πθ denotes the token-level probability distribution
produced by the trainable policy model, which is initialized from the same pre-trained model. Using
this objective, we post-train the pre-trained model on our constructed preference pair dataset, thereby
encouraging the model to favor candidates with lower distortion, lower fragmentation density, and
higher semantic consistency.

4 EXPERIMENTS

4.1 PRE-TRAINING DATA CURATION

Building on the data pipeline introduced in SeamGPT (Li et al., 2025), we constructed our train-
ing corpus from several large-scale open-source 3D datasets, including Objaverse (Deitke et al.,
2022), Objaverse-XL (Deitke et al., 2023), and 3D-FUTURE (Fu et al., 2021). Our curation primar-
ily targeted meshes with valid UV coordinates, since these provide artist-defined seam annotations
that are critical for our task. To ensure data quality, we extended the original SeamGPT filtering
strategy with additional repair and refinement procedures. Specifically, we discarded meshes with
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poor topology and eliminated those with problematic UV unwrappings, such as overlapping islands,
arbitrary seams lacking semantic relevance, or excessive overcutting seams. Beyond filtering, we
introduced automated consistency checks and corrective operations to repair partially corrupted UV
layouts, thereby preserving structural coherence between seams and the underlying mesh geome-
try. After this multi-stage pipeline, we obtained a large-scale training set of approximately 700K
meshes. To further enhance generalization, we applied controlled geometric transformations, where
meshes were rotated around the y-axis in 10◦ increments, uniformly scaled within [0.9, 1.1], and
randomly translated within [−0.1, 0.1].

4.2 IMPLEMENTATION DETAILS

Our Hourglass Transformer model consists of 24 layers, with a repeating pattern of three self-
attention layers followed by one cross-attention layer conditioned on the point cloud features eM.
For each mesh input, we sample Ng = Nt = 30,720 points for the geometry and topology branches,
respectively. Each branch produces l = 3,072 tokens of dimensionality d = 1,024.During training,
the geometry point cloud encoder Eg is kept fixed, initialized from pre-trained weights learned on a
large mesh dataset, while the topology point cloud encoder Et is trained jointly with the rest of the
model. Pretraining is performed on 64 Nvidia H20 GPUs (98 GB memory per GPU) for 200K steps
with a batch size of 128. Post-training is conducted on 16 H20 GPUs for 2,500 steps using a fixed
learning rate of 1 × 10−6. At inference, the model can run on most consumer-grade GPUs with a
memory footprint not exceeding 16 GB, demonstrating both scalability and practical deployability.

4.3 SURFACE SEAM PROJECTION

In our framework, the model predicts the 3D coordinates of the two endpoints for each candidate cut
line. To enable reliable UV unwrapping, these predicted lines must be consistently mapped onto the
mesh surface, with their corresponding edges designated as seams. To achieve this, we first construct
a topological graph representation of the input mesh, where vertices correspond to mesh points and
edges capture their connectivity. For each predicted cut line, we identify the two surface points that
are closest to its endpoints via a nearest-neighbor search. Using these surface correspondences as
anchors, we compute the shortest geodesic path between the two points over the constructed graph.
All mesh edges along this path are then labeled as seams, thereby ensuring that the predicted cuts
are faithfully transferred to the mesh topology for subsequent UV parameterization.

4.4 BENCHMARK AND METRIC

We conducted a comprehensive comparison between our proposed method and several state-of-the-
art approaches on both publicly available benchmarks and our newly constructed AIGC-100 test set.
The public benchmarks include Toys4K (Stojanov et al., 2021), Shapenet (Chang et al., 2015), and
FAM (Zhang et al., 2024), whereas AIGC-100 is composed of 100 AI-generated 3D objects. To
ensure a rigorous evaluation, we adopted three widely used metrics: distortion, fragmentation, and
runtime. In particular, distortion is defined as the average conformal energy across all triangular
faces, while fragmentation is characterized by the number of UV islands present in the UV map.

4.5 COMPARISON RESULTS

Figure 4 highlights three advantages of SeamCrafter over XAtlas (Young, 2022), FAM (Zhang et al.,
2024), Nuvo (Srinivasan et al., 2024), and SeamGPT (Li et al., 2025): (1) compact yet complete
seams that avoid over-segmentation; (2) sufficient coverage that prevents large uncut regions and
thus mitigates flattening-induced distortion; and (3) semantic consistency across islands. These
gains are a direct consequence of our dual-branch point-cloud encoder, which separately encodes
topological skeletons and uniformly sampled surface geometry to provide complementary, glob-
ally consistent cues, and our preference-aligned post-training (DPO) that optimizes the trade-off
between distortion and fragmentation using pairwise preferences from our evaluation framework.
In contrast, heuristic region-growing methods (e.g., XAtlas) depend on local thresholds, leading to
over-fragmentation or missed semantically meaningful cuts; FAM and Nuvo optimize UVs directly
on vertices, remain agnostic to mesh connectivity and wiring, and therefore lack mesh-structure
constraints, which can lead to severe distortion, especially on complex or irregular geometry; and
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XAtlasInput Mesh FAM Nuvo SeamGPT Ours

Figure 4: Qualitative UV flattening results. Compared with existing methods, our approach produces
seams with lower distortion and fewer fragmented UV islands, yielding more coherent and visually
consistent layouts.

topology-heavy AR predictors (SeamGPT) under-utilize geometry, often producing redundant cuts
and unstable coverage. As a result, SeamCrafter yields more coherent, well-structured, and editing-
friendly UV maps suitable for professional workflows.

Toys4k Shapenet
Distortion ↓ Fragments ↓ Runtime(s) ↓ Distortion ↓ Fragments ↓ Runtime(s) ↓

XAtlas 1.86 44.71 19.28 35.82 800.43 18.58
Nuvo 11.43 / 2569.06 174.91 / 2352.48
Fam 8.05 / 3090.06 599.02 / 2609.94
SeamGPT 1.85 7.86 446.11 37.51 183.13 487.22
Ours w/o DPO 1.41 11.57 51.43 34.19 100.78 17.46
Ours w DPO 1.39 7.28 50.67 32.60 91.28 22.07

FAM-benchmark AIGC-100
Distortion ↓ Fragments ↓ Runtime(s) ↓ Distortion ↓ Fragments ↓ Runtime(s) ↓

XAtlas 10.51 74.67 80.36 14.75 135.42 2.56
Nuvo 20.37 / 2925.75 70.84 / 2154.23
Fam 12.33 / 5656.25 42.23 / 3544.78
SeamGPT 11.96 30.33 107.13 14.43 68.77 29.39
Ours w/o DPO 11.85 27.33 57.13 13.65 45.12 8.73
Ours w DPO 10.07 10.05 59.66 10.63 33.72 13.55

Table 1: Quantitative evaluation on Toys4k, ShapeNet, FAM-benchmark, and AIGC-100. Our
method achieves superior performance in terms of UV distortion, number of fragments, and run-
time compared to prior approaches.
The quantitative results are shown in Table 1, where our algorithm outperforms other methods
in all four benchmarks. Specifically, our method without DPO already achieves low distortion
and fragmentation across all benchmarks—for instance, 1.41 distortion and 11.57 fragments on
Toys4k—while maintaining competitive runtime. Adding DPO further improves performance, re-
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ducing distortion and fragments even more (1.39 and 7.28 on Toys4k) without significantly affecting
runtime. Compared to XAtlas and SeamGPT, which either produce more fragments or run slower,
our approach consistently provides a superior balance between quality and efficiency, demonstrating
its effectiveness and robustness across diverse datasets.

4.6 ABLATION STUDY

To rigorously assess the adequacy and effectiveness of the proposed Mesh Seams Evaluation System,
we conducted both qualitative and quantitative evaluations. As shown in Figure 5 and Table 2, when
the model is used without DPO training, it sometimes fails to generate sufficient seams in certain
regions, which leads to excessive UV map distortion. In other cases, it produces overly dense seams,
resulting in severe fragmentation of UV islands.

When DPO training pairs are built solely based on the Distortion metric, the finetuned model sup-
presses UV map distortion but introduces an excessive number of seams, causing highly fragmented
UV islands. Conversely, when optimizing exclusively with respect to the Fidelity metric, fragmen-
tation is mitigated, yet the reduced number of seams results in significant UV map distortion.

By jointly considering both metrics during DPO training, our method achieves a principled trade-off
between distortion and fragmentation. This optimization produces UV maps with low distortion and
well-preserved island integrity, while simultaneously enhancing the model’s robustness and aligning
it with human judgments of seam quality.

w/o DPOInput Mesh w /o Fragmentation w/o Fidelity w DPO

Figure 5: Qualitative results from the ablation study on DPO training. Joint optimization of Distor-
tion and Fidelity produces seams that balance low UV distortion with coherent, compact UV islands,
unlike models trained without DPO or with single-metric optimization.

w/o DPO w/o Fidelity w/o Fragmentation w DPO
Distortion ↓ 13.65 72.80 2.18 10.63
Fragments ↓ 45.12 22.72 127.20 33.72

Table 2: Quantitative ablation results on the effect of DPO metrics. Optimizing only Distortion or
Fidelity leads to extreme UV distortion or fragmentation, while joint DPO achieves a principled
trade-off with both low distortion and reduced fragmentation.

5 CONCLUSION

We presented SeamCrafter, an autoregressive framework for UV-friendly mesh seam generation that
combines a dual-branch encoder to disentangle geometry and topology with Direct Preference Opti-
mization (DPO) guided by a curated seam evaluation dataset. This design enables the model to cap-
ture both local detail and global shape semantics while aligning predictions with human judgments
of seam quality. Experiments show that SeamCrafter achieves lower distortion, reduced fragmen-
tation, and stronger semantic coherence compared to prior approaches. In future work, we plan to
extend preference-guided optimization to downstream tasks such as texture editing and animation.

9
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