
AO-Net: Efficient Neural Network for Ambient Occlusion
Jiayi Wang*

Tsinghua University
Fan Zhou†

Tsinghua University
Xiang Zhou‡

Tsinghua University
Yongle Li§

Tsinghua University
Xueqian Wang¶

Tsinghua University

ABSTRACT

Screen space based ambient occlusion is widely applied in real-time
3D applications due to its high efficiency, however, it frequently
exhibits artifacts including banding and blurring. In this paper, we
propose AO-Net, a learning-based method for fast and high-quality
ambient occlusion generation. Our neural network is built upon
kernel prediction-based architecture with careful input screen space
feature selection, leading to a light-weight and compact solution.
Experiment results indicate that our approach can achieve visual
quality to a level in comparable with ray-traced solutions, meanwhile
maintaining real-time performance. In addition, our method can
be easily integrated into existing rendering pipelines and shows
robustness for unseen scenes.

Index Terms: Ambient occlusion—Neural networks—Global
illumination—Shading;

1 INTRODUCTION

Ambient occlusion(AO) plays a crucial role in realistic rendering
applications and is a widely-adopted approximation to global illumi-
nation. It can greatly enhance viewers’ 3D perception by darkening
locations via adjusting obscurance coefficients [1]. As illustrated in
Fig. 1, the AO value of position p with normal n can be calculated
by integrating the visibility function over the hemisphere Ω. One
key observation is that the AO values are view independent and only
relate to scene geometry.

Figure 1: Mathematical definition of AO. The AO value of p with normal
n equals the integration of visibility function v(p,m) over the upper
hemisphere. The visibility of dashed arrows equals to 0, otherwise 1.

High-quality AO can be obtained via hardware-assisted ray-traced
techniques [2], which are usually time-consuming and difficult to
use in real-time applications due to the limited power budget. In
order to achieve high performance, screen-based solutions that solely
rely on depth or/and normal buffer as input are widely adopted.
To name a few, Screen Space Directional Occlusion(SSDO) [3],
Ground Truth-based Ambient Occlusion(GTAO) [4] and Horizon-
based Ambient Occlusion (HBAO) [5] are all approaches of this kind.
These approximations, however, often lead to low visual quality due

*e-mail: jiayi-wa21@mails.tsinghua.edu.cn
†e-mail: zhouf21@mails.tsinghua.edu.cn
‡e-mail: zhoux21@mails.tsinghua.edu.cn
§e-mail: liyl21@mails.tsinghua.edu.cn
¶e-mail: wang.xq@sz.tsinghua.edu.cn

to the absence of global information and are prone to exhibiting
artifacts such as blurring and banding.

In recent years, important advances incorporating neural networks
into computer graphics have been made, especially in tasks such as
Monte Carlo imagery denoising [6, 7], super sampling [8], and light
field [9]. Learning-based approaches [10, 11] have shown potential
to produce AO. However, both quality and efficiency need to be
improved to meet the demands of real-time rendering. In addition,
the generalization and robustness of deep learning-based approaches
have not been carefully studied.

In our work, we propose a novel method for AO which aims at
obtaining ray-traced quality and maintaining real-time performance.
Our framework generates AO by a deep learning network from
screen space buffers, which can be easily obtained in a deferred
rendering pipeline. First, we investigate the sensitivity of screen
space buffers with respect to the quality of AO and exclude redundant
features that have little influence to keep the memory bandwidth as
small as possible. Second, the artifacts, for instance, blurring and
banding can be addressed via a kernel-prediction neural network.
In the training phase, we use ray-traced AO as targets. In addition,
we build up a prototype by integrating our trained model into a
rasterization real-time rendering pipeline. We validate our approach
on various seen and unseen scenes.

To summarize, our work has made the following contributions:

• A lightweight and compact network built upon kernel
prediction-based architecture, which eliminates blurring and
banding artifacts, and achieves ray-traced visual quality at
real-time frame rates.

• A careful input screen space features selection for AO tasks,
which reduces redundancy and improves the network effi-
ciency.

• An end-to-end AO solution that produces high-quality AO
results by combining a deferred rendering pipeline.

2 RELATED WORKS

Ray-traced Ambient Occlusion Early methods used ray-
tracing to generate AO [12–14] for static scenes, which more ac-
curately accounted for ambient light. These methods are used as
preprocessing steps in real-time interactive applications, but are lim-
ited to static scenes and are slow to compute. In order to support
dynamic scenes, Kontkanen [15] et al. proposed a precomputed
AO field for rapid calculation of AO, which is further applied in
approximating the AO of dynamic objects. Bunnell [16] proposed a
GPU-based deformed surface method to deal with dynamic cases.
Christensen [17] extended this approach and used it to calculate
diffuse global illumination. All these methods are based on vari-
ous surface discretization or ray-tracing. For AO method based on
ray-tracing, it is of utmost importance to increase calculation speed.

Screen Space Ambient Occlusion Screen Space Ambient
Occlusion (SSAO) method was first introduced by Mittring [18] to
avoid the huge amount of calculation and additional storage over-
head of ray-traced AO methods. By sampling from the depth buffer
in the view sphere space, SSAO calculates the number of occlusion
points within the depth surface, and estimates the occlusion factor.
It’s widely used in modern 3D applications, but due to the large

difference in depth of neighboring pixels in screen space, it some-
times causes artifacts. Bavoi et al. [5] introduced Horizon Based
Ambient Occlusion (HBAO). The rays travel along the depth buffer,
and HBAO is calculated based on the depth difference. However,
this method only considers the visible points in the current tracking
perspective, which will result in incorrect or missing shadows. An
important strategy was adopted by Vardis et al. [19] to identify key
areas of sampling through multi-view joint optimization. Jimenez et
al. [4] propose GTAO, to speed up calculations and improve accu-
racy through a new form of integration. A common problem with the
screen space AO methods described above is that the thresholds or
experience sampling parameters must be carefully chosen to avoid
artifacts.

Deep Learning for Ambient Occlusion In recent years, with
the successful application of neural network, it is used to solve
rendering problems. To solve the AO problem, Holden et al. [20] first
introduced a neural network called NNAO that uses a neural network
to predict an approximation of Ambient occlusion. NNAO network
is merely a 4-layer MLP, so the learning ability of NNAO is poor,
and high-quality AO results cannot be produced. Nalbach et al. [10]
introduced Deepshading, a convolutional neural network, which
learns the mapping from the view-space position and normal to ray-
traced AO image. However, this method has low efficiency and poor
generalization performance. Zhang et al. [11] proposed DeepAO,
which reduces the number of network layers and parameters based
on U-Net networks, further improving rendering efficiency. But it
sacrifices rendering quality to a large extent so the rendering quality
still needs to be improved.

Kernel Prediction Kernel Prediction has demonstrated signifi-
cant effectiveness in the field of denoising in Monte Carlo rendering
to remove noise such as indirect lighting, soft shadows, etc. Bako
et al. [21] used convolutional neural networks to predict the filter
kernel and yielded more significant results in denoising effects. Vo-
gels et al. [7] use multiple deep residual networks to predict multiple
filter kernels at different scales. We first apply kernel prediction
module to the field of AO generation, where the features extracted
by U-Net network are used to generate kernel weights for AO. We
also compare our method with original U-Net, which confirms that
kernel prediction in AO generation tasks is essential for removing
noise from sparsely sampled images, leading to further improvement
in rendering effects.

3 OUR METHODS

Our approach is illustrated in Fig.4: given G-buffers from a deferred
rendering pipeline at a certain view, we seek to generate its AO pass.
Consequently, we first describe the screen space feature selection
in Sec.3.1 via a sensitivity study, and then discuss the network
architecture in Sec.3.2 and Sec.3.3. Finally, we discuss the results
on various scenes in Sec.4.2 before concluding in Sec.5.

3.1 Feature Selection
We use supervised learning to train our neural network. The training
pairs consist of features generated by rasterization and reference AO
generated by ray-tracing. Previous learning-based AO generation
methods [10, 11] used view-space normal and depth in G-buffer as
input to the network, which is usually time-consuming for network
inference and thus difficult for real-time applications. As mentioned
in Sec.1, the AO values only relate to the neighboring geometry in-
formation(normal and depth). On the one hand, it is also interesting
to note that normal and depth are indeed correlated: normal is the
cross product of gradients of the depth buffer in smooth regions. On
the other hand, the visible view-space normal always points to the
camera. So we believe that the used features can be further reduced.

Our feature selection method is inspired by Neural Shadow Map-
ping [22], which uses sensitivity analysis to simplify the neural

Figure 2: Sensitivity Analysis. The relative sensitivity of the input fea-
tures, including depth and normal which consists of three dimensional
x, y and z. We can observe that normal plays a more important role
in prediction.

network input by quantifying the importance of each input channel.
Sensitivity analysis is used to evaluate changes in network output
caused by small perturbations in the input channel. Intuitively, if
the channel contributes more to interpreting changes in output, the
sensitivity is higher. The absolute sensitivity Si of the input channel
xi is expressed by

Si = E
[

φ(xi +ξi)−φ(xi)

0.1σi

]
,ξi ∼ N(0,0.1σi), (1)

where φ is our network, and ξi is randomly generated Gaussian noise
with the mean value of 0 and the standard deviation of σi, which adds
random perturbations to the ith channel. σi is the standard deviation
corresponding to the ith channel, which is estimated empirically
by aggregating all pixels in the dataset of each channel. Finally,
we calculate the relative sensitivity si = Si/ΣiSi to compare the
sensitivity of the different input channels.

We systematically evaluate and select all channels including depth
and three dimensions of normal by calculating the sensitivity of each
channel, as shown in Fig. 2. In order to ensure the consistency of
the perturbation, we select normalized depth for the experiment, so
that the scale of depth is the same as the scale of normal. It shows
that the perturbation of normal has a great influence on the output
results, indicating channels of normal play a vital role in the network.
In contrast, the depth channel has little effect on network results,
less than 10%. Subsequent ablation experiments demonstrated the
effectiveness of our feature selection, as shown in Table 3. Moreover,
depth varies greatly in different scenes, making it difficult for the
network to converge. Therefore, we choose normal as the input to

Figure 3: Layer-wise performance optimization before and after for a
720×1280px input.

Figure 4: Overview. Given a normal map, we first partition it into multiple patches and input them into U-net to generate kernel weights. We then
use the predicted kernel weight to locally weigh the input normal, and obtain the output AO.

our network while the output is compared against ray-traced AO as
the target during training.

3.2 Patch-based U-Net
Vanilla U-Net yields a network with low performance (>20ms),
which can not be adapted to the real-time graphics pipeline. There-
fore, the primary goal of our approach is to optimize the network
structure to improve efficiency with minimal impact on quality.

We first analyze the performance of each layer of the network.
Fig. 3 shows the time spent at each layer of the network, which
takes a total of 20.56ms. We see that the first layer (including
encoder-decoder) takes 11.61ms, which takes the longest time and
accounts for more than 50% of the time for the entire network. In
addition, we observe that as we move from the inner layer of U-Net
to the outer layer, the number of channels is reduced by half and
the resolution is doubled. In practice, as the resolution increases,
the run-time of the layer increases significantly. Therefore, we
believe that the key solution to reducing network run-time is to
optimize the first layer, which is the most time-consuming. In
addition, reducing the resolution of each layer of the network is
critical to improving network performance. A common approach is
to replace the first layer with a simple downsampler and upsampler
in the U-Net. However, it can cause some crucial information be
lost in the input and can produce less clear output or even artifacts.

Therefore, a patch-based network is proposed to optimize net-
work performance. We optimize the first layer (including encoder-
decoder) which is the most time-consuming. On the encoder side,
we use a patch partition to flatten each input 4x4 square of pixels as

Figure 5: Figure demonstrating the effect of our proposed optimiza-
tions. Our patch-based network achieves a significant increase in
network speed with minimal impact on quality.

a patch to 16 separate channels and send the (h/4 × w/4) patches
directly to the second layer. Therefore, the input buffer size is con-
verted from (h × w × c) to (h/4 × w/4 × 16c). We do the opposite
on the decoder side: rearranging the 16 output channels to 4x4 pixels
through patch merging. Patch-based networks replace the most time-
consuming first layer, which greatly improves network speed. After
our optimization, the run-time of the first layer network is reduced
from 11.64 ms to 0.32 ms. The patch-based method optimizes the
network performance to 3.60 ms, which is only 18% of the initial
time.

Fig. 5 shows the speed and quality comparison before and after
network optimization. It shows that our network has a significant
increase in network speed with minimal impact on quality. We
optimized the network structure so that the network has high perfor-
mance (<4ms, resolution: 720 ×1280) and requires little memory
(<1.5MBs), allowing the network to be easily integrated into the
rendering pipeline. However, the large compression of time also
leads to a slight loss of quality, reducing the network’s ability to
preserve details, so we incorporate a kernel prediction module to
improve the quality and detail of the generated AO.

3.3 Kernel Prediction Module
Furtherly, we incorporate the kernel prediction module, which has
demonstrated significant effectiveness in the field of denoising [7,
21], to alleviate the above-mentioned problems and enable our AO-
Net generating fine-level details.

Kernel prediction uses neural networks to estimate the locally
weighted kernel of each pixel from neighboring pixels. By concate-
nating U-Net in series with kernel prediction module, the features
extracted by our patch-based U-Net are directly used to generate
weighted kernels. We use the predicted kernel weight to locally
weigh the input normal, and obtain the output AO.

The output of kernel prediction has K2N channels, K is the size
of linear filters at each pixel and N is the number of input channels
per pixel. The value Y pat each pixel p can be expressed as

Ŷ p =
1
N

N

∑
i=1

〈
f p
i ,V

p (Xi)
〉
, (2)

where V p(Xi)is the K ×K neighborhood of pixel p in image X of
the i-channel, and f is its corresponding kernel. <,>means a dot
product then calculate average.

Our approach combines the advantages of U-Net and kernel pre-
diction. It preserves more local details meanwhile achieving a large
receptive field, resulting in a output with sharper contour. In addi-
tion, it ensures that the final output estimate always lies within a

Figure 6: Ablation study on kernel prediction. It can be observed that kernel prediction preserves more detail and contrast and produces sharper
results.

convex hull of the respective neighborhoods of the input image. This
greatly reduces the search space of the output value, thus avoiding
the artifacts generated by U-Net direct prediction. (e.g., color shifts).
Similar to Bako et al. [21], each filter uses the decoder block of
U-Net to predict a 4 × 4 kernel that is applied to the input image.

We compare our kernel prediction based method with U-Net
direct prediction which is shown in Fig. 6. The results show that
the AO directly predicted by U-Net retains the blurring and artifacts.
After the introduction of kernel prediction, the network preserves
more local details, which further improves the rendering quality.

3.4 Loss Function
In this section, we detail loss functions that are employed in the
training process as below.

Content loss In previous AO generation methods, SSIM [23]
loss function is commonly used to minimize the error between the
predicted AO and the ground truth. Although large SSIM weights
can speed up the rate of convergence, they also cause excessive
smoothness of rendering results. To avoid this, we set 0.5 as its
weight:

lDSSIM = 0.5(1− lSSIM). (3)

Perceptual loss Content loss compares differences in spatial
similarity, but it is less sensitive to detail. We use perceptual loss in
Equation 4 to produce sharper edges and improve the image detail
of the rendering result. VGG-19 [24] perceptual loss function can
minimize the distance between the actual output and generated value
in the feature space, so we use the first several layers feature map of
VGG-19 network to obtain better visual quality. The perceptual loss
is defined as

lper = ||ΦV GG(y)−ΦV GG(G(x))||2, (4)

where Φ denotes activation of the i-th layer in the VGG-19 network.
In summary, the overall loss of AO-Net is defined as

LG = λ1lper +λ2lDSSIM . (5)

4 EXPERIMENT

4.1 Experimental Settings
Datasets a) Our dataset: consists of 3996 pairs of deferred

shading G-buffer data and corresponding reference images in a
resolution of 720 × 1280 px. To create the dataset, 37 scenes are
utilized to generate the pair annotated data, the scenes include food,
animal, furniture, building, etc. In these 3996 pairs, we use 3200
pairs to train the network, 398 for validation, and the remaining 398
for testing. The training and validation images share the same set
of 29 scenes, while the test images come from 8 different scenes

not used for training or validation. b) DeepAO dataset: provided
by Zhang et al. [11], which includes 17 scenes and 42,000 pairs of
deferred shading G-buffer data, with corresponding reference AO
results. 32,000 pairs of images are used to train the network while
5,000 pairs are used for validation, and the remaining are used for
testing. The training and validation images share the same set of
14 scenes, while the test images come from the remaining 3 scenes.
The training and test scenes are disjoint.

Baselines Using ray-traced AO as a reference, we compare
the rendering effect and runtimes with the current state-of-the-art
methods, which proves the effectiveness of AO-Net. We compare
against a) state-of-the-art neural network AO methods: Deepshading
[10] and DeepAO [11]. b) classic screen space AO methods: GTAO
[4] generated with eevee in Blender.

Implementation details We use Pytorch framework in imple-
mentation and employ one NVIDIA Tesla v100 GPU for both train-
ing and inference. We train our model using Adam optimizer with
an initial learning rate of 1e-3. During U-Net upsampling, we use
bi-linear interpolation instead of expensive transpose convolutions
to further speed up inference. In addition, we use Average-pool
instead of Max-pool to improve temporal stability. The loss weights
in Equation 5 are set to λ1 = 0.06, λ2 = 0.94 . The mini-batch size
for all scenes is set at 16 in training.

4.2 Result
Quantitative Comparisons The statistical results of our exper-

iment are shown in Table 1. We use SSIM and PSNR to evaluate
the rendering quality and mark the best results in bold in the table.
”-” means that the running time of GTAO has not been measured,
because it is difficult to measure the running time of this process in
Blender. It can be seen that our method outperforms other compari-
son methods on quality, and is superior to all state-of-the-art neural
network AO methods on speed.

Qualitative Comparisons We randomly selected several
scenes to compare the visualization results of various algorithms, as
shown in Fig. 7. We can observe that our method is superior to other
advanced algorithms in overall visual effect and predicts AO results

Table 1: A quantitative comparison of our model with three SSAO-
based methods on the datasets: DeepAO [11] and our new dataset.

METHODS
DEEPAO DATASET OUR DATASET

Run-time(ms)
SSIM↑ PSNR↑ SSIM↑ PSNR↑

DeepAO 0.8794 21.75 0.9470 24.40 3.98
Deepshading 0.8892 23.55 0.9597 25.71 6.09

GTAO 0.9058 23.79 0.9767 26.10 -
OURS 0.9223 25.10 0.9802 32.59 3.92

Figure 7: Comparison with other SSAO-based methods. The experimental results show that our method outperforms other advanced methods in
overall visual effect and predicts AO results closest to the ray-traced level.

closest to the ray-traced level. In addition, our method performs best
in occlusion details along object edges and at corners, as shown in
Fig. 8. We demonstrate that our approach can lead to more accurate
generation and better image detail.

4.2.1 Run times at different resolutions
In addition, we tested the average run time at different resolutions.
We mark the best performance in Table 2 in bold. It can be seen
that our method is superior to other methods on speed, especially at
high-resolution input.

Table 2: Timing in ms for three learning-based AO methods on differ-
ent resolution.

Method 540 × 540px 720 × 1280px 1024 × 2048px

DeepAO 2.26 3.96 7.09
Deepashading 3.56 6.09 11.35
OURS 2.67 3.92 6.95

4.2.2 Ablation Study
We first analyze the validity of our feature selection. Next, we ablate
the impact of patch-based optimization and kernel predict module
on reference time and quality.

Ablation study on input features To validate the effectiveness
of our feature selection, we compare three different kinds of input
features and report metrics averaged over our dataset in Table 3.

We observed that with normal input alone we can get high-quality
AO while the addition of depth has little impact on the quality of
the rendered image. As mentioned in Sec.3.1, normal is the cross
product of the gradient of the depth buffer in the smooth region,
so normal can be seen as knowledge distilled from depth, and is
sufficient to express the geometric information required for AO gen-
eration. More importantly, because the depth of different scenes
varies greatly, the quality can degrade greatly if depth is not normal-
ized or is not normalized correctly, thus we consider the instability
of depth information to play a negative role in AO generation tasks.
In addition, only normal input improves the network efficiency and
accelerates the network convergence speed in the experiment.

Table 3: Ablation study on input features. Only normal input achieves
the highest accuracy and shortest run time. In addition, unnormalized
depth may have a negative impact on the accuracy of the network.

Input Features SSIM↑ PSNR↑ Run-time(ms)

Only Normal 0.9802 32.59 3.92
Normal+Depth 0.9743 30.51 4.22
Normal+Depth(Normalize) 0.9786 32.45 4.22

Ablation study on Network Architecture We designed experi-
ments to verify the validity of our proposed patch-based optimization
scheme and kernel prediction module. As shown in Table 4, Base
works as a baseline which use original U-Net to predict rendering
results. We train the model Base+Patch that includes the patch-

Figure 8: Visual comparison of different learning-based methods.

based optimization above the model Base. Compared with Base,
Base+Patch reduce the time consumption to 18%, only 3.60ms. In
addition, kernel prediction module can further optimize the ren-
dering quality without incurring a greater loss of efficiency. More
importantly, it avoids blurring and artifacts from direct predictions,
as shown in Fig. 6. Base+Kernel+patch combines kernel prediction
with patch-based optimization to generate high-quality renderings
results at a fast speed and achieve optimal results.

Table 4: Ablation study on patch-based optimization and kernel predic-
tion. We can observe that: 1) Patch-based optimization method can
achieve the highest efficiency. 2) Kernel prediction module achieves
the highest accuracy 3) The combination of both achieves a balance
between speed and quality.

Models SSIM↑ PSNR↑ Run-time(ms)

Base(U-Net) 0.9880 33.40 20.55
Base+Patch 0.9732 30.94 3.60
Base+Kernel 0.9887 35.50 22.78

Base+Patch+Kernel 0.9802 32.59 3.92

5 CONCLUSION

We present a learning-based method for AO generation. The com-
pact input of our solution is designed via an investigation of different
screen space information’s influences on the AO quality. Further-
more, the use of kernel prediction-based architecture further im-
proves the visual quality to ray-traced level. We demonstrate that
our method can reach real-time frame rates by integrating with a
deferred rendering pipeline. Various examples indicate that our
methods are robust to unseen scenes.

However, our work has the same limitations as all screen space
solutions. G-buffer does not contain complete information about the
scene, which may lead to defects on screen boundaries or special
perspectives. In the future, we would like to explore using global
information to further improve the quality and other scenarios such
as stereo rendering.

REFERENCES

[1] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient light
illumination model. In Rendering Techniques ’98, pages 45–55, Vienna,
1998. Springer Vienna.

[2] Pascal Gautron. Real-time ray-traced ambient occlusion of complex
scenes using spatial hashing. In ACM SIGGRAPH 2020 Talks, SIG-
GRAPH ’20, New York, NY, USA, 2020. Association for Computing
Machinery.

[3] Tobias Ritschel, Thorsten Grosch, and Hans-Peter Seidel. Approxi-
mating dynamic global illumination in image space. In Proceedings of
the 2009 Symposium on Interactive 3D Graphics and Games, I3D ’09,
page 75–82, New York, NY, USA, 2009. Association for Computing
Machinery.

[4] Jorge Jiménez, Xianchun Wu, Angelo Pesce, and Adrian Jarabo. Prac-
tical real-time strategies for accurate indirect occlusion. SIGGRAPH
2016 Courses: Physically Based Shading in Theory and Practice, 2016.

[5] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov. Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008 Talks,
SIGGRAPH ’08, New York, NY, USA, 2008. Association for Comput-
ing Machinery.

[6] Delio Vicini, David Adler, Jan Novák, Fabrice Rousselle, and Brent
Burley. Denoising deep monte carlo renderings. Computer Graphics
Forum, 38(4), 2018.

[7] Thijs Vogels, Fabrice Rousselle, Brian McWilliams, Gerhard Röthlin,
Alex Harvill, David Adler, Mark Meyer, and Jan Novák. Denoising
with kernel prediction and asymmetric loss functions. ACM Transac-
tions on Graphics (Proceedings of SIGGRAPH 2018), 37(4):124:1–
124:15, 2018.

[8] Lei Xiao, Salah Nouri, Matt Chapman, Alexander Fix, Douglas Lan-
man, and Anton Kaplanyan. Neural supersampling for real-time ren-
dering. ACM Trans. Graph., 39(4), aug 2020.

[9] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T.
Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. In ECCV, 2020.

[10] Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, H-P Seidel,
and Tobias Ritschel. Deep shading: Convolutional neural networks for
screen space shading. Comput. Graph. Forum, 36(4):65–78, jul 2017.

[11] Dongjiu Zhang, Chuhua Xian, Guoliang Luo, Yunhui Xiong, and Chu
Han. Deepao: Efficient screen space ambient occlusion generation via
deep network. IEEE Access, 8:64434–64441, 2020.

[12] Sergey Zhukov, Andrei Iones, and Grigorij Kronin. An ambient light
illumination model. In Eurographics Workshop on Rendering Tech-
niques, pages 45–55. Springer, 1998.

[13] Hayden Landis. Production-ready global illumination. Siggraph course
notes, 16(2002):11, 2002.

[14] Andrey Iones, Anton Krupkin, Mateu Sbert, and Sergey Zhukov. Fast,
realistic lighting for video games. IEEE computer graphics and appli-
cations, 23(3):54–64, 2003.

[15] Janne Kontkanen and Samuli Laine. Ambient occlusion fields. In
Proceedings of the 2005 symposium on Interactive 3D graphics and
games, pages 41–48, 2005.

[16] Michael Bunnell. Dynamic ambient occlusion and indirect lighting.
GPU Gems, 2(2):223–233, 2005.

[17] Per Christensen. Point-based approximate color bleeding. Pixar Tech-
nical Notes, 2(5):6, 2008.

[18] Martin Mittring. Finding next gen: Cryengine 2. In ACM SIGGRAPH
2007 courses, pages 97–121. 2007.

[19] Kostas Vardis, Georgios Papaioannou, and Athanasios Gaitatzes. Multi-
view ambient occlusion with importance sampling. In Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, 2013.

[20] Daniel Holden, Jun Saito, and Taku Komura. Neural network ambient
occlusion. In SIGGRAPH ASIA 2016 Technical Briefs, 2016.

[21] Steve Bako, Thijs Vogels, Brian McWilliams, Mark Meyer, Jan Novák,
Alex Harvill, Pradeep Sen, Tony Derose, and Fabrice Rousselle. Kernel-
predicting convolutional networks for denoising monte carlo renderings.
ACM Trans. Graph., 36(4):97–1, 2017.

[22] Sayantan Datta, Derek Nowrouzezahrai, Christoph Schied, and Zhao
Dong. Neural shadow mapping. In ACM SIGGRAPH 2022 Conference
Proceedings, SIGGRAPH ’22, New York, NY, USA, 2022. Association
for Computing Machinery.

[23] Mehul P Sampat, Zhou Wang, Shalini Gupta, Alan Conrad Bovik,
and Mia K Markey. Complex wavelet structural similarity: A new
image similarity index. IEEE Transactions on Image Processing A
Publication of the IEEE Signal Processing Society, 18(11):2385–401,
2009.

[24] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. Computer Science, 2014.

	Introduction
	Related Works
	Our Methods
	Feature Selection
	Patch-based U-Net
	Kernel Prediction Module
	Loss Function

	Experiment
	Experimental Settings
	Result
	Run times at different resolutions
	Ablation Study

	Conclusion

