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Abstract

Neural network pruning has demonstrated its success in significantly im-
proving the computational e�ciency of deep models while only introducing
a small reduction on final accuracy. In this paper, we explore an extra
bonus of neural network pruning in terms of enhancing privacy. Specifi-
cally, we show a novel connection between magnitude-based pruning and
adding di↵erentially private noise to intermediate layers under the over-
parameterized regime. To the best of our knowledge, this is the first work
that bridges pruning with the theory of di↵erential privacy. The paper also
presents experimental results by running the model inversion attack on two
benchmark datasets, which supports the theoretical finding.

1 Introduction

Data privacy has become one of the top concerns in the application of deep neural networks,
since there has been an increasing demand to train deep models on private data sets. For
example, hospitals are now training their automated diagnosis systems on private patients’
data Litjens et al. (2016); Lakhani & Sundaram (2017); De Fauw et al. (2018); and adver-
tisement providers are collecting users’ online trajectories to optimize their learning-based
recommendation algorithm Covington et al. (2016); Ying et al. (2018). These private data,
however, are usually subject to the regulations such as California Consumer Privacy Act
(CCPA) Legislature (2018), Health Insurance Portability and Accountability Act (HIPAA)
Act (1996), and General Data Protection Regulation (GDPR) of European Union.

Di↵erential privacy (DP) Dwork et al. (2006b); Dwork (2009); Dwork & Roth (2014) has
emerged, during the past few years, as a strong standard to provide theoretical privacy
guarantees for algorithms on aggregate databases. The core idea of achieving di↵erential
privacy is to add controlled noise to the output of a deterministic function, such that the
output cannot be used to infer much about any single individual in the database. Recent
years have seen an increasing number of applications that adapt di↵erential privacy mecha-
nisms to address privacy concerns in deep learning Shokri & Shmatikov (2015); Abadi et al.
(2016); Phan et al. (2016); McMahan et al. (2018).

Neural network pruning (or pruning in short), a seemingly orthogonal field to privacy, has
also been the subject of a great amount of work in recent years. Pruning aims to reduce the
number of model parameters, such that the compressed model can be applied even under
the memory constraints of the edge-devices. Various pruning techniques have succeeded in
significantly compressing models with little or no loss of accuracy Han et al. (2015; 2016a);
Li et al. (2016); Ding et al. (2018); Evci et al. (2019); Tanaka et al. (2020). However, the
majority of existing literature only demonstrate the benefits of pruning in terms of energy
saving and inference speedup, while in this work, we investigate another interesting bonus
of pruning – preserving data privacy.

Our investigation is mainly inspired by the observation that neural network pruning makes
the inversion from hidden-layers harder, as the percentage of remained weight decreases (see
Figure 1). Motivated by this empirical observation, we build under the over-paramterized
regime of deep learning theory, and show an interesting connection between neural network
pruning and adding di↵erentially private noise to intermediate layers. We believe this con-
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Figure 1: Visualization of inverted CIFAR-10 Krizhevsky (2009) inputs from the third
bottleneck of ResNet-18 He et al. (2016) using the inversion algorithm in Section 5.2. We
prune the network with di↵erent k’s, the fraction of remained weights. Inverted images from
networks with fewer weights are visually more di↵erent from the original image.

nection may have important practical implications since the pruned model only incurs small
accuracy loss, and we leave that as future work.

We list our contributions as follow:

• We explore the benefits of pruned neural networks in terms of preserving data
privacy. To the best of our knowledge, this is the first step towards drawing a
theoretical connection between neural network pruning and di↵erential privacy.

• To build the connection between pruning and adding di↵erentially private noise to
intermediate layers, we generalize the famous anti-concentration inequality due to
Carbery and Wright Carbery & Wright (2001). This generalization might find more
applications in the theoretical analysis of neural network pruning in the future.

• We provide empirical results in support of our theoretical finding. Specifically, we
demonstrate on two benchmark datasets that pruned neural networks are more
secure in the sense that running the model inversion attack becomes harder.

Roadmap. The rest of this paper is organized as follow. Section 2 covers existing literature
in di↵erent privacy, neural network pruning, and over-parameterized deep learning theory.
Section 3 provides theoretical preliminaries and Section 4 presents our main theoretical
result. Section 5 shows empirical results on MNIST and CIFAR-10 benchmarks that are in
support of our theoretical findings. We conclude this work in Section 6.

2 Related work

Neural network pruning Traditional deep neural network models are computationally
expensive and memory intensive, which hinders their deployment in applications with limited
memory resources or strict latency requirements. Many progress has been made to perform
model compression in deep networks, including low-rank factorization Sainath et al. (2013);
Lebedev et al. (2015), network pruning LeCun et al. (1990); Srinivas & Babu (2015); Han
et al. (2016b); Li et al. (2017), and knowledge distillation Hinton et al. (2015); Chen et al.
(2017). Among them, neural network pruning has been widely adopted because it is able
to reduce model sizes by up to one order of magnitude without significant accuracy loss.
The idea of network pruning dates back to the Optimal Brain Damage in 1990s LeCun
et al. (1990). Recently, it has been shown that removing the weights with low magnitude
can also achieve a highly compressed model Han et al. (2016b), which is referred to as
‘magnitude-based pruning’.

Di↵erential privacy The concept of ✏-di↵erential privacy was originally introduced by
Dwork, McSherry, Nissim and Smith Dwork et al. (2006b). Later, it was generalized to a
relaxation of (✏, �)-di↵erential privacy Dwork et al. (2006a); Dwork (2009); Dwork & Roth
(2014). Di↵erential privacy has been successfully applied to many problems. For more
detailed surveys of the applications of di↵erential privacy, we refer the readers to Dwork
(2008; 2011). Applying di↵erential privacy techniques in deep learning is an interesting but
non-trivial task. Previous research have customized di↵erential privacy for di↵erent learning
tasks and settings Shokri & Shmatikov (2015); Abadi et al. (2016); Phan et al. (2016).

Although there are existing studies about applying di↵erential privacy in neural network,
but there is little exploration on presenting di↵erential privacy using prune network yet.
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To the best of our knowledge, this paper is the first work that shows a connection between
di↵erential privacy and pruned neural network.

Over-parameterized deep learning theory Recently, there is super long line of
work focusing showing the convergence of deep neural network training under over-
parameterization regime Li & Liang (2018); Du et al. (2019); Allen-Zhu et al. (2019b;c;a);
Arora et al. (2019a;b); Song & Yang (2019); Oymak & Soltanolkotabi (2020); Brand et al.
(2020). The theory suggested as long as the neural network is su�ciently wide, i.e.,
m � poly(n, d, 1/�, L) then running (stochastic) gradient descent algorithm is able to find
the global minimum, where n is the number of input data points, d is the dimension of data,
� is the minimum `2 distances between all pairs and L is the number of layers in neural
network.

However, unlike the above classical deep learning convergence theory, this work explored
the over-parameterized theory in a very di↵erent perspective, e.g. privacy. Our result is
not an optimization result which indicating neural network can learn a set of input data
points in certain sense, however our result is suggesting neural network can be private in
the di↵erential privacy sense.

3 Backgrounds

Notations. For a positive integer n, we use [n] to denote set {1, 2, · · · , n}. For vector
x 2 Rn, we use kxk1 to denote

Pn
i=1 |xi|, kxk2 to denote (

Pn
i=1 x

2
i )

1/2, kxk1 to denote
maxi2[n] |xi|. We use N (µ,�2) to denote random Gaussian distribution. For a matrix A,
we use kAk to denote its spectral norm.

This section presents some backgrounds before theoretically establishing the equivalence be-
tween magnitude-based pruning and adding di↵erentially private noise in Section 4. Section
3.1 revisits the notion of (✏dp, �dp)-di↵erential privacy. Section 3.2 describes the magnitude
pruning algorithm.

3.1 Differential privacy

The classical definition of di↵erential privacy is shown as follow:

Definition 3.1 ((✏dp, �dp)-di↵erential privacy Dwork et al. (2006a)). For a randomized

function h(x), we say h(x) is (✏dp, �dp)-di↵erential privacy if for all S ✓ Range(h) and for

all x, y with kx� yk1  1 we have

Pr
h
[h(x) 2 S]  exp(✏dp) · Pr

h
[h(y) 2 S] + �dp.

Definition 3.1 says that, if there are two otherwise identical records x and y, one with
privacy-sensitive information in it, and one without it, and we normalize them such that
kx � yk1  1. Di↵erential Privacy ensures that the probability that a statistical query
will produce a given result is nearly the same whether it’s conducted on the first or second
record. Parameters (✏dp, �dp) are called the privacy budget, and smaller ✏dp and �dp provide
a better di↵erential privacy protection. One can think of a setting where both parameters
are 0, then the chance of telling whether a query result is from x or from y is no better than
a random guessing.

A standard strategy to achieve di↵erential privacy is by adding noise to the the original
data x or the function output h(x). In order to analyze it, we need the following definition:

Definition 3.2 (Global Sensitivity Dwork et al. (2006b)). Let f : Rn ! Rd
, define GSp(f),

the `p global sensitivity of f , for all x, y with kx� yk1  1 as

GSp(f) = sup
x,y2Rn

kf(x)� f(y)kp.

The global sensitivity of a function measures how ‘sensitive’ the function is to slight changes
in input. The noise needed for di↵erential privacy guarantee is then calibrated using some
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well-known mechanisms, e.g., Laplace or Gaussian Dwork & Roth (2014), and the amount of
noise (the standard deviation of the noise distribution) is proportional to the sensitivity, but
inversely proportional to the privacy budget ✏dp. That is to say, for a given function with
fixed global sensitivity, a larger amount of noise is required to guarantee a better di↵erential
privacy (one with a smaller budget ✏dp).

3.2 Magnitude-based pruning

Magnitude-based pruning Han et al. (2016a) compresses a neural network by removing
connections with smallest-magnitude weights (usually determined by using a threshold, say
↵). The pruning procedure starts with a trained (dense) network f(W1, · · · ,WL), where L

is its depth, and Wl, l 2 [L] is the weight of its i-th layer. For each layer Wl, it sets the
weights with magnitudes smaller than a to zero:

(Wl)i,j  (Wl)i,j · 1|(Wl)i,j |>a, 8i, j

We then run model update after the pruning step.

4 Main result

We start by formulating the connection between pruning and adding di↵erentially private
noise. We define the following notions to describe the closeness between a randomized
function and a given function, which can be either randomized or deterministic.

Definition 4.1 ((✏ap, �ap)-close). For a pair of functions g : Rd ! Rm
and h : Rd ! Rm

,

and a fixed input x, we say g(x) is (✏, �)-close to h(x) if and only if,

Pr
g,h


1p
m
kg(x)� h(x)k2  ✏

�
� 1� �.

(✏ap, �ap)-closeness basically requires that, `2 distance between two functions’ output with
a given input is small enough (kf � gk2 := (

R
x |f(x) � g(x)|2dx)1/2). When applying the

definition to deep neural network, we view m as the width of deep neural network (e.g. the
number of neurons).

Let �(t) denote the activation function. In this work, we focus on ReLU case where �(t) =
max{t, 0}. Without loss of generality, our techniques can be generalized to other activation
functions. We present our main theoretical result in Theorem 4.2. The main message of our
theorem is that, as long as the neural network is su�ciently wide, pruning neural network
has a similar e↵ect to adding di↵erentially private noise.

Theorem 4.2 (Main result, informal of Theorem E.1). Let �A = O(✏dp�dp/(m2)). For

a fully connected neural network (each layer can be viewed as f(x) = �(Ax + b)), where

kxk2 = 1 and x 2 Rd
�0. Applying magnitude-based pruning on the weight A 2 Rm⇥d

(where

each Ai,j ⇠ N (0,�2
A)) gives us eA 2 Rm⇥d

.

If m = ⌦(poly(1/✏ap, log(1/�ap), log(1/�dp))), then there exists a function h(x) satisfying

two properties :

1. h(x) is (✏dp, �dp)-di↵erential privacy on input x;

2. h(x) is (✏ap, �ap)-close to g(x) = �( eAx+ b).

In the above theorem, we denote d as the input data dimension. � is the activation function,
e.g., �(z) = max{z, 0}. In this work, we focus on one hidden layer neural network.1

1We would like to emphasize that one hidden layer is not just a toy example, but a natural
and standard situation to study theory, see Zhong et al. (2017b;a); Li & Yuan (2017); Li & Liang
(2018); Du et al. (2019); Song & Yang (2019); Brand et al. (2020); Bubeck et al. (2020) for example.
Usually, if a proof holds for one-hidden layer, generalizing it to multiple layers is straightforward
Allen-Zhu et al. (2019b;c)
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Regarding the two properties of h(x), property 1 requires h(x) to provide (✏dp, �dp)-
di↵erential privacy, and property 2 requires that h(x) is similar to magnitude-based pruning
with the predefined (✏ap, �ap)-close notation.

Proof Sketch Let eA 2 Rm⇥d denote the weight matrix after magnitude-based pruning,
and A = eA�A 2 Rm⇥d. We define a noise vector e 2 Rm as the follow:

e = Lap(1,�)m � (Ax).

The main proof can be split into two parts in correspondence to property 1 and 2 respec-
tively: Claim 4.3 and Claim 4.4.

Claim 4.3. Let h(x) = f(x) + e 2 Rm
, we can show that h(x) is

(✏dp, �dp)� di↵erential privacy.

Claim 4.4. For su�ciently large m, we have

Pr
h 1p

m
ke�Axk2 � ✏ap

i
 �ap.

Proof sketch of Claim 4.3 To prove Claim 4.3, we anchor from the definition of di↵er-
ential privacy. Recall Def. 3.1, (✏dp, �dp)-di↵erential privacy requires that for any inputs x
and y with kx� yk  1,

Pr
h
[h(x) 2 S]  exp(✏dp) · Pr[h(y) 2 S] + �dp.

To be more specific, we use the fact that the noise e is sampled from the Laplace distribution,
and try to bound the ratio

ph(h(x) = t 2 S)

ph(h(y) = t 2 S)

where p(·) denotes the probability density function. To bound the above ratio: first we need
to derive and upper-bound the global sensitivity (see Appendix D) of a single-layer neural
network.

Recall the well-known anti-concentration result by Carbery & Wright (2001).

Lemma 4.5 (Carbery and Wright Carbery & Wright (2001)). Let p : Rd ! R denote a

degree-k polynomial with d variables. There is a universal constant C > 0 such that

Pr
x⇠N (0,Id)

h
|p(x)|  �

p
Var[p(x)]

i
 C · �1/k.

Another contribution in this work is that we extend the anti-concentration result Carbery
& Wright (2001) to a more general setting, which has not been explored in literature. We
state our generalization as follows2

Lemma 4.6 (An variation of Carbery & Wright (2001), Anti-concentration of sum of trun-
cated Gaussians). Let x1, · · · , xn be n i.i.d. zero-mean Gaussian random variables N (0, 1).
Let p : Rn ! R denote a degree-1 polynomial defined as

p(x1, · · · , xn) =
nX

i=1

↵ixi.

Let f denote a truncation function where f(x) = x if |x|  a, and f(x) = 0 if |x| > a. Then

we have

Pr
x⇠N (0,Id)

h
|p(f(x))|  min{a, 0.1} · � · k↵k2

i
� C · �.

Once the densities are bounded, integrating p(·) yields the requirement of di↵erential privacy,
thus complete the proof of part 1.

2for more details of the proof, we refer the readers to Appendix C
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Proof sketch of Claim 4.4 To prove Claim 4.4, we firstly define zi = ei � (Ax)i. Then
we apply the concentration theorem (see Appendix B) to show that for any kxk2 = 1 and
x 2 Rd

+,

Pr
h 1

m
|

mX

i=1

(zi � E[zi])| � ✏
2
ap

i
 �ap,

which completes the proof of Claim 4.4.

In certain, the proof is mainly a sophisticated combination of the following concentration
inequalities

• Lemm B.1 shows the concentration of the `2 norm of a random truncated Gaussian
vector

• Lemma B.2 shows the concentration of matrix vector multiplication.

• Lemm B.3 bounds the inner product between a random Guassian vector and a fixed
vector

• Lemma B.4 bounds inner product between two random Guassian vectors

• Lemma B.5 shows the concentration of folded Gaussian random vectors.

5 Experiments

This section presents experimental results in support of our theoretical finding in Section
4 by answering this question: does the pruned model preserve better privacy than

the dense one? We describe experimental setups in Section 5.1 and the evaluation for
privacy in Section 5.2. We summarize results in Section 5.3.

5.1 Experimental setup

Datasets and model architectures. We have conducted image classification experi-
ments on MNIST LeCun et al. (2010) and CIFAR-10 Krizhevsky (2009) benchmarks.

For network architectures, we have used LeNet-5 LeCun et al. (1998) for MNIST, and
ResNet-18 He et al. (2016) for CIFAR-10, with PyTorch Paszke et al. (2019) as the experi-
ment platform. We have used SGD Qian (1999) with learning rate 0.05 and momentum 0.9
for both models, and train LeNet-5 for 20 epochs and ResNet-18 for 150 epochs. All models
are trained on 8 NVIDIA GeForce RTX 2080 Ti GPUs with batch size 256.

Pruning algorithm. We have employed the iterative pruning technique, which repeatedly
prunes and retrains the network over n rounds: in each round, we prune p fraction of the
weights that survive the previous round and retrain for t epochs. We use k to denote the
fraction of weights remained in the final sparse model, thus we have k = (1 � p)n. In our
experiments, we set p = 20% and t = 5, and vary n 2 [15] to get pruned networks with
di↵erent k’s.

5.2 Test of privacy leakage as a model inversion attack

We have used the attack-based evaluation to investigate whether pruning could preserve
more privacy (i.e., su↵er less “privacy leakage” under the attack). We have adopted the
model inversion attack Mahendran & Vedaldi (2015) to show the privacy leakage of a given
l-layer neural network f(W1, · · · ,Wl), where Wi, i 2 [l] is the weight of its i-th layer.

Let us conceptualize the mapping from the f ’s input to the output of its i-th intermediate as
a representation function � : Rd ! Rm. The model inversion attack captures the potential
privacy leakage of � when applied on some input x:

Given the representation �(x), and the weights in the public mapping �, the attacker’s goal
is to find the preimage of �(x), namely

x
⇤ = arg min

z2Rd
L(�(x),�(z)) + �R(z)
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k(%) 100.0 80.0 64.0 51.2 41.0 32.8 26.2 21.0

MNIST 99.0 98.9 99.0 99.0 99.0 99.0 99.0 98.9
CIFAR-10 94.1 93.8 93.6 93.4 93.0 92.5 91.9 90.7

k(%) 16.8 13.4 10.7 8.6 6.9 5.5 4.5 3.5

MNIST 98.8 98.8 98.7 98.4 98.1 98.0 97.5 97.5
CIFAR-10 89.8 88.2 86.3 83.3 75.9 72.4 61.9 10.0

Table 1: Test accuracy (%) achieved on MNIST and CIFAR-10 when pruning a dense
network. k is the fraction of weights remained.

(a) MNIST

(b) CIFAR-10

Figure 2: Recovered MNIST digits (a) and CIFAR-10 samples (b) by running the model
inversion attack in Section 5.2 on LeNet-5 and ResNet-18 models trained with pruning. We
test di↵erent layers (di↵erent rows) and fractions of remained weights (k, di↵erent columns).
The naming of layers is explained in Section 5.3.

where the loss function L is defined as L(a, a0) = ka � a
0k22. � > 0 is the regularization

parameter, and the regularization function R in our case is the total variation of a 2D signal:
R(a) =

P
i,j((ai+1,j � ai,j)2 + (ai,j+1 � ai,j)2)1/2.

5.3 Results

We have evaluated the model inversion attack on di↵erent representation function �’s by
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1. Pruning the neural network with di↵erent k’s, the fraction of remained weights,
where k = (1� 20%)n, n 2 [15]

2. Selecting di↵erent intermediate layers to invert. Specifically, for LeNet-5, we run the
attack on all 5 layers, namely {‘Conv1’, ‘Conv2’, ‘FC1’, ‘FC2’, ‘FC3’}. For ResNet-
18, we pick 5 layers {‘Conv2-1’, ‘Conv2-2’, ‘Conv3-1’, ‘Conv3-2’, ‘Conv4-1’}, where
‘Convi-j’ stands for the j-th convolutional group of the i-th convolutional block.

Now we report that our experimental results strongly suggest that magnitude-based pruning
preserves better privacy (su↵er less leakage) than its dense counterpart.

Accuracy of network pruning. Table 1 shows the accuracy results of MNIST and
CIFAR-10 tasks for the network pruning approach whose networks have di↵erent k percent-
ages of remaining weights. The task on MNIST achieves the same level of accuracy as the
network model without pruning when k, the fraction of remained weights � 10%. Its accu-
racy gradually decreases as more weights get removed. The test with CIFAR-10 maintains
the same accuracy as or better than the model without pruning when k � 40%, and then
gradually decreases as k decreses.

Note that the model accuracy achieved with the pruning algorithm in our experiments may
be lower than that of the SOTA model with the same sparsity. However, for answering the
question if network pruning preserves privacy, our experiments can be viewed as conservative
results.

Sparser networks su↵er less privacy leakage. Figure 2 visualized the inverted samples
under di↵erent choices of layers and fractions of remained weights. Each column of Figure 2
suggests the increasing di�culty of inverting deeper layers.

A more important observation is that, for all layers, we consistently observe that the privacy
leakage gradually decreases as k increases: for deep layers (e.g. ‘FC2’ for LeNet-5 and
‘Conv4-1’ for ResNet-18), though the inverted image from the dense model (i.e. k = 100%)
may look quite identical to the original image without pruning, it is no longer true when
k  90%). This agrees with Theorem 4.2, which suggests that under the over-parameterized
regime, pruning yields a similar e↵ect to adding di↵erentially private noise and thus preserves
better privacy.

6 Conclusions

This paper has presented a theoretical result to show that, if a fully-connected layer of
a neural network is wide enough, there is a connection between magnitude-based neural
network pruning and adding di↵erentially private noise to the model’s intermediate outputs.
Empirical results on two benchmark datasets support our theoretical findings.

These results have strong practical implications for two reasons. First, since neural network
pruning has the property that the fraction of removed weights can be quite high (e.g. > 90%)
without reducing inference accuracy, it strongly suggests that network pruning can be an
e↵ective method to achieve di↵erential privacy without any or much reduction of accuracy.
Second, although the result is for a single layer of a neural network, it is quite natural in
a distributed or federated learning system to use a particular layer to communicate among
multiple sites.

Several questions remain open. First, Theorem 4.2 is only for a single-layer fully connected
network, and it would be interesting if one can extend it to multi-layer settings and also
convolutional neural networks. Second, our theoretical finding is based on the worst case
analysis, which means in most cases, m can be much smaller. How to e�ciently determine
m for di↵erent settings requires more investigation. Finally, in order to use network pruning
as a mechanism to preserve privacy in a practical distributed or federated learning system,
one needs to consider many design details including which layers to prune, whether or not
to prune layers with the same sparsity, where the work of pruning should be performed, and
how to coordinate among multiple sites.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Ha↵ner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. In ATT

Labs, volume 2. http://yann.lecun.com/exdb/mnist, 2010.

California State Legislature. California consumer privacy act (ccpa). https://oag.ca.gov/
privacy/ccpa, 2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for e�cient convnets. arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters
for e�cient convnets. In ICLR. https://arxiv.org/pdf/1608.08710.pdf, 2017.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochas-
tic gradient descent on structured data. In Advances in Neural Information Processing

Systems, pp. 8157–8166, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with ReLU
activation. In Advances in neural information processing systems (NIPS), pp. 597–607.
https://arxiv.org/pdf/1705.09886.pdf, 2017.

Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal, Iringo
Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken, and Jeroen
Van Der Laak. Deep learning as a tool for increased accuracy and e�ciency of histopatho-
logical diagnosis. Scientific reports, 6:26286, 2016.

John Edensor Littlewood and Albert Cyril O↵ord. On the number of real roots of a random
algebraic equation (iii). Rec. Math. [Mat. Sbornik] N.S., 12(3):277–286, 1943.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations by
inverting them. In CVPR. https://arxiv.org/pdf/1412.0035.pdf, 2015.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning di↵erentially
private recurrent language models. In International Conference on Learning Representa-

tions, 2018.

Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for polynomials of independent
random variables. In Theory Of Computing. https://arxiv.org/pdf/1507.00829, 2017.

Assaf Naor, Shravas Rao, and Oded Regev. Concentration of markov chains with bounded
moments. In arXiv preprint. https://arxiv.org/pdf/1906.07260.pdf, 2019.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global
convergence guarantees for training shallow neural networks. In IEEE Journal on Selected

Areas in Information Theory. https://arxiv.org/pdf/1902.04674.pdf, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imper-
ative style, high-performance deep learning library. In NeurIPS, pp. 8024–8035, 2019.

11

https://arxiv.org/pdf/1412.6553.pdf
http://yann.lecun.com/exdb/mnist
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://arxiv.org/pdf/1608.08710.pdf
https://arxiv.org/pdf/1705.09886.pdf
https://arxiv.org/pdf/1412.0035.pdf
https://arxiv.org/pdf/1507.00829
https://arxiv.org/pdf/1906.07260.pdf
https://arxiv.org/pdf/1902.04674.pdf


Under review as a conference paper at ICLR 2021

NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou. Di↵erential privacy preservation
for deep auto-encoders: an application of human behavior prediction. In AAAI, 2016.

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural net-

works, 12(1):145–151, 1999.

Alexander Razborov and Emanuele Viola. Real advantage. ACM Trans. Comput. Theory,
5(4), November 2013.

Tara N Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhad-
ran. Low-rank matrix factorization for deep neural network training with high-dimensional
output targets. In IEEE international conference on acoustics, speech and signal process-

ing, pp. 6655–6659, 2013.

Reza Shokri and Vitaly Shmatikov. Privacy-preserving deep learning. In Proceedings of the

22nd ACM SIGSAC conference on computer and communications security, pp. 1310–1321.
ACM, 2015.

Zhao Song and Xin Yang. Quadratic su�ces for over-parametrization via matrix cherno↵
bound. In arXiv preprint. https://arxiv.org/pdf/1906.03593.pdf, 2019.

Zhao Song, Xi Yang, and Ruizhe Zhang. Joint anti-concentration for random gaussian
polynomials. In Manuscript, 2020.

Suraj Srinivas and R Venkatesh Babu. Data-free parameter pruning for deep neural net-
works. In BMVC. https://arxiv/pdf/1507.06149.pdf, 2015.

Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neu-
ral networks without any data by iteratively conserving synaptic flow. arXiv preprint

arXiv:2006.05467, 2020.

Joel A Tropp. An introduction to matrix concentration inequalities. Foundations and

Trends R� in Machine Learning, 8(1-2):1–230, 2015.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
KDD, 2018.

Kai Zhong, Zhao Song, and Inderjit S Dhillon. Learning non-overlapping convolutional
neural networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017a.

Kai Zhong, Zhao Song, Prateek Jain, Peter L. Bartlett, and Inderjit S. Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In ICML. https://arxiv.org/pdf/
1706.03175.pdf, 2017b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the e�cacy of pruning
for model compression. In ICLR (Workshop), 2017.

12

https://arxiv.org/pdf/1906.03593.pdf
https://arxiv/pdf/1507.06149.pdf
https://arxiv.org/pdf/1706.03175.pdf
https://arxiv.org/pdf/1706.03175.pdf

	Introduction
	Related work
	Backgrounds
	Differential privacy
	Magnitude-based pruning

	Main result
	Experiments
	Experimental setup
	Test of privacy leakage as a model inversion attack
	Results

	Conclusions
	Probability tools
	Application of concentration inequality
	Application of concentration inequality, truncated Gaussian
	Application of concentration inequalities, classical random Gaussian

	Anti-concentration
	Sensitivity
	Concentration of folded Gaussian
	1-sensitivity functions of single layer neural network
	2-sensitivity functions of single layer neural network

	Equivalence between pruning and differential privacy
	Main results
	Differential privacy
	Function approximation
	Proof of Theorem E.2

	Experiment details
	Pruning algorithm


