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Abstract

Semantic textual similarity (STS) is a funda-001
mental NLP task that measures the semantic002
similarity between a pair of sentences. In order003
to reduce the inherent ambiguity posed from004
the sentences, a recent work called Conditional005
STS (C-STS) has been proposed to measure006
the sentences’ similarity conditioned on a cer-007
tain aspect. Despite the popularity of C-STS,008
we find that the current C-STS dataset suffers009
from various issues that could impede proper010
evaluation on this task. In this paper, we rean-011
notate the C-STS validation set and observe an012
annotator discrepancy on 55% of the instances013
resulting from the annotation errors in the origi-014
nal label, ill-defined conditions, and the lack of015
clarity in the task definition. After a thorough016
dataset analysis, we improve the C-STS task017
by leveraging the models’ capability to under-018
stand the conditions under a QA task setting.019
With the generated answers, we present an au-020
tomatic error identification pipeline that is able021
to identify annotation errors from the C-STS022
data with over 80% F1 score. We also propose023
a new method that largely improves the per-024
formance over baselines on the C-STS data by025
training the models with the answers. Finally026
we show the conditionality annotation can ben-027
efit from the typed-feature structure (TFS) of028
entity types. Our pilot annotation study shows029
that the TFS is able to provide a linguistic foun-030
dation for constructing C-STS data with new031
conditions.032

1 Introduction033

Semantic textual similarity (STS) is an essential034

NLP task that measures the semantic similarity be-035

tween two sentences (Agirre et al., 2012). It is also036

a popular benchmark for developing tasks such as037

text embedding learning (Conneau and Kiela, 2018;038

Reimers and Gurevych, 2019; Thakur et al., 2021)039

and language understanding (Wang et al., 2018).040

While the STS datasets have been developed and041

improved over the past years (Agirre et al., 2013,042

Figure 1: A problematic example from the C-STS
dataset. The binarity of the condition cannot be mapped
to a 5-point similarity scale. The label can be subjective
depending on how much inference is made from the
context. No guideline on the scenario when the infor-
mation regarding the condition is missing.

2014, 2015, 2016; Cer et al., 2017), the task itself 043

still suffers from sentence ambiguity and subjectiv- 044

ity to judgment (Deshpande et al., 2023). 045

A new task called Conditional STS (C-STS) has 046

been proposed to resolve those issues (Deshpande 047

et al., 2023). It is designed to disambiguate the 048

similarity between two sentences by measuring the 049

similarity on a given condition. An accompanying 050

dataset was also proposed to test models on the C- 051

STS task. Despite the popularity of C-STS, we ob- 052

serve certain limitations in the C-STS dataset that 053

could hinder the understanding and proper evalua- 054

tion of models on this task. As illustrated in Figure 055

1, these limitations primarily revolve around anno- 056

tation errors, ill-defined conditions, and a general 057

lack of clarity in task definition. 058

Taking into account the significance of these 059

issues, we intend to improve the C-STS dataset by 060

addressing the existing problems that we observed. 061

We start by reannotating the C-STS validation set. 062

By identifying an apparent annotation error rate 063

of 55%1 in their validation set, we analyze the 064

provenance of the errors and discrepancies between 065

the original and relabeled datasets. 066

To further explore the utility of the condition and 067

1Calculated from the comparison between the original and
reannotated labels.
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how it is understood by language models, we treat068

it as a Question Answering (QA) task and leverage069

large language models (LLMs) to generate the an-070

swer to the question that is constructed from the071

condition. We find that the LLM-generated an-072

swers can better capture the similarity between two073

sentences and fit closely to our reannotated labels074

by having a higher Spearman’s Correlation. Based075

on this finding, we propose an approach to identify076

potential annotation errors from the C-STS dataset077

utilizing the LLM-generated answers, achieving078

over 80% F1 score on the validation set. We also079

propose a new method to improve the C-STS task080

by training the models with the answers. We show081

that both supervised and generative models can082

efficiently and effectively learn the condition in-083

formation encoded in the answers, improving the084

performance over baselines by a large margin.085

Finally, we propose a new annotation specifica-086

tion of the conditionality that aims to improve the087

formulation of the conditions with a more concrete088

semantic base. We use the entity type identified089

from the sentence pair as the surface condition text090

that is described by its underlying typed-feature091

structure (TFS) (Carpenter, 1992; Copestake, 2000;092

Penn, 2000). We conduct a pilot annotation study093

with the new conditionality to show that TFS-based094

conditions can be successfully adopted to sentence095

pairs from the current C-STS dataset. We will make096

the source code and dataset publicly available.097

2 Related Work and Background098

Semantic similarity tasks The semantic similar-099

ity between texts has long been a key issue in under-100

standing natural language. Agirre et al. (2012) pro-101

posed the first STS task that measures the similarity102

between a sentence pair. Following this, Agirre103

et al. (2013) proposed the second STS task that104

covered more text genres in the dataset. There are105

also STS tasks (Agirre et al., 2014, 2015, 2016; Cer106

et al., 2017) with focuses on measuring sentence107

similarity under a multilingual and cross-lingual108

setting. Abdalla et al. (2023) proposed a new text109

similarity task that measures the semantic related-110

ness between two sentences.111

Conditional STS More related to our work, the112

C-STS task (Deshpande et al., 2023) introduced113

conditions on top of the traditional STS tasks,114

and it measured the sentence similarity regarding115

the given condition. The C-STS dataset includes116

18,908 instances. Each instance contains a sentence117

pair, a condition, and a scalar for the similarity 118

score on the 5-point Likert scale (Likert, 1932). In 119

this paper, we conduct the annotation and exper- 120

iments on the C-STS validation set that consists 121

of 2,834 instances. Deshpande et al. (2023) evalu- 122

ated the C-STS dataset on different baselines such 123

as SimCSE (Gao et al., 2021) and GPT models 124

(Brown et al., 2020; OpenAI, 2023) by training 125

or prompting with the sentence pairs and the con- 126

ditions directly. However, our QA-based method 127

uses the generated answers as the model input. 128

QA-facilitated tasks Question answering tasks 129

are useful for extracting and inferring information 130

from the texts that is relevant to the question. Re- 131

cent work utilized QA to improve other NLP tasks. 132

Eyal et al. (2019) and Deutsch et al. (2021) applied 133

QA as an automatic evaluation metric for the sum- 134

marization. Gunasekara et al. (2021) used QA to 135

improve the summarization directly. Other works 136

involved the application of QA for data augmenta- 137

tion (Mekala et al., 2022) and question generation 138

(Tu et al., 2022). In this paper, we apply QA to 139

generate condition-based answers for error identifi- 140

cation and to improve models on the C-STS task. 141

3 Reannotating C-STS 142

We analyze the dataset and describe the annotation 143

process for relabeling the C-STS validation set.2 144

Condition analysis We analyze the composition 145

of the condition texts in the dataset. We observe 146

that the majority of the conditions are short phrases 147

in the format of [feature] of [entity] (e.g., the color 148

of animals) or simply a singleton [entity] (e.g., the 149

hobby). By plotting the distributions of frequent 150

features and entities from the condition texts in 151

the full C-STS dataset (Appendix A.1), we notice 152

that the dataset is skewed by having a long tail 153

distribution of the conditions. The top 10 frequent 154

features and entities appear in 88% and 45% of the 155

total conditions respectively. 156

Annotation Analysis To understand how condi- 157

tions affect the human judgment of sentence simi- 158

larity, we conduct a pilot annotation study on 150 159

instances sampled based on the frequency of condi- 160

tion features (e.g., type, number, etc.) in the C-STS 161

training set. Annotators are asked to reannotate 162

2The original labels of the C-STS test set is not publicly
available, so we use the validation split for further annotation
and experiments in this paper.
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Sentence Pair Condition Label Issue
Female tennis player, standing on one foot after returned the ball.
A tennis player is getting ready to hit the ball at a tennis match.

number of people 3 / 5 Incommensurable Mapping

An oak table and chairs in a dining room, with a doorway to the kitchen.
Three couches positioned around a coffee table in a living room.

the table 1 / 3 Ambiguous Condition

A toilet in a stall with a sink attached and a console attached to the lid.
A bathroom with tiled walls, a toilet, sink and a garbage can in it.

room type 2 / 4 Inference Degree

A cat hissing as it attempts to fit itself into a bowl that it is to big to fit in.
A black cat with a red tag sitting down with a bookshelf in the background.

color of animal 2 / -1 Invalid Condition

Table 1: Examples with common issues that cause the judgment divergence between the original and reannotated
labels. Text that is relevant to the conditions is highlighted.

those instances following the public C-STS annota-163

tion guideline. We measure the agreement between164

the original labels and reannotated labels and find a165

low agreement of 40% accuracy (exact label match)166

and 50.4 Spearman’s Correlation.167

We characterize the common issues that cause168

the annotation divergence in Table 1. The simi-169

larity of the sentences under number conditions170

cannot be mapped to a 5-point scale due to the bi-171

narity of the value comparison (e.g., 1 = 1, 1 ̸= 5).172

This issue also happens to other condition features173

such as gender and age. The condition can also174

be ambiguous, especially when it is a singleton.175

In the second example, the similarity between the176

two mentions of the table can be subjective, based177

either on the type of table or multiple features asso-178

ciated with the table such as shape, size, etc. The179

original C-STS task does not specify how much180

inference from the context is allowed to judge the181

similarity. This increases the label inconsistency182

between the annotators. In the third example, al-183

though the room type is not explicitly mentioned184

in the first sentence, we can still confidently infer185

it is bathroom because of the mention of toilet and186

sink in the context. In the last example, the condi-187

tion can be invalid if the information regarding the188

condition cannot be extracted or inferred from the189

sentence.190

Condition-aware Annotation on C-STS We re-191

annotate the C-STS validation set to fix common192

annotation errors and resolve the aforementioned193

issues that cause the low agreement score. In addi-194

tion to the original C-STS guideline, we propose195

additional annotation rules to instruct annotators196

to deal with cases when the condition is binary or197

ambiguous, and etc. In the end, after removing 214198

instances with invalid conditions, we create a rela-199

beled C-STS validation set that consists of 2,620200

instances. Compared to the original set, the new201

annotation contains more extreme labels such as 1202

and 5, while labels in between such as 3, 4, 5 are203

less frequent. This is due to the high frequency of 204

the instances with binary condition features in the 205

original dataset. We show the annotation process 206

and rules in Appendix A.2. 207

4 QA for C-STS 208

With the consideration on scaling the relabeling 209

task to the full C-STS dataset, we explore effective 210

approaches to identifying potential mislabeled in- 211

stances automatically. We apply QA as a pre-task 212

for identifying information from the sentences that 213

is relevant to the condition, and leverage LLMs 214

to generate answers from condition-transformed 215

questions. We show that the generated answers 216

correlate better to the reannotated labels, and can 217

be used as a reliable intermediate resource for iden- 218

tifying potential annotation errors from the original 219

C-STS dataset. 220

4.1 Answer Generation 221

GPT prompting For each instance, we start by 222

transforming its condition into a question with the 223

format What is [condition]?.3 In order to gen- 224

erate high-quality answers, we conduct the QA 225

task with LLMs under a prompting fashion. Each 226

prompt consists of a brief instruction, the original 227

sentence and the condition-transformed question 228

(Appendix A.3). In the instruction, we ask the 229

model to summarize each answer into a word or 230

phrase to reduce potential noise and hallucinated 231

content (Bouyamourn, 2023). We experiment with 232

GPT-3.5 (Brown et al., 2020) and GPT-4 (Ope- 233

nAI, 2023) to generate answers. We use the Ope- 234

nAI API with versions gpt-3.5-turbo-1106 and 235

gpt-4-0125-preview. 236

Answer quality analysis We evaluate the qual- 237

ity of the answers that are generated from the two 238

models on 200 instances sampled from the C-STS 239

validation set. We ask two annotators to measure 240

3We convert the condition text to lowercase and remove
the period at the end of the text.
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Figure 2: Answer generation and error identification pipeline on the C-STS validation set.

the quality of the answer on a 5-point Likert scale241

from unrelated to very accurate. Answers from242

GPT-3.5 have a Spearman’s Correlation of 4.54243

and accuracy of 75% (labels with 5), While the244

Spearman and accuracy of GPT-4 answers are 4.07245

and 69.5% respectively. We observe from the data246

that although GPT-4 is a more recent and proficient247

model, it tends to have a “laziness” (webtailken,248

2024) in making predictions with no clear instruc-249

tions or contexts.250

(1) A baby is swaddled and someone is putting his hands251
on it. [the age of child]252
GPT-3.5: Infant, GPT-4: Not specified253

In example 1, the answer from GPT-3.5 is infant,254

which implies a rough range of the age, while GPT-255

4 refuses to generate an answer because the actual256

child age is not explicitly mentioned in the text.257

Since our task involves measuring the text similar-258

ity of answers, we choose to use GPT-3.5 because259

it tends to generate more content-enriched answers260

than GPT-4.261

Answer correlation analysis Given the high262

quality of the GPT-generated answers, We eval-263

uate the correlation between the answers and the264

reannotated labels. We first run GPT-3.5 to gener-265

ate the answers for all the instances from the C-STS266

validation set. Then we encode each answer into an267

embedding using the GPT embedding encoder with268

version text-embedding-ada-002, and compute269

the cosine similarity between the embeddings of270

the answers from the same instance. We calculate271

the Spearman’s Correlation between the answer272

similarities and reannotated labels (55.44), and be-273

tween the original labels and reannotated labels274

(49.22). The result shows that the cosine similarity275

of GPT-generated answers correlates more closely276

with the reannotated labels, and thus can better277

reflect the similarity of the sentence pairs on the278

given condition.279

4.2 Error Identification 280

With the analysis that answers generated from GPT- 281

3.5 are of high quality and correlate better with 282

the reannotated labels, we propose a method to 283

automatically identify potential annotation errors 284

from the C-STS dataset. As illustrated in Figure 285

2, the generated answers are the input to our error 286

identification pipeline that consists of three steps: 287

(1) clustering answers into groups with different 288

topics; (2) encoding and ranking answer pairs in 289

each cluster and mapping the similarity ranks to the 290

label from 1 to 5; (3) identifying error candidates 291

based on the difference between original and new 292

rank labels. 293

Answer clustering Most of the generated an- 294

swers can be grouped into different topics (e.g, 295

answers related to numbers, colors, etc.), we apply 296

K-means (Arthur and Vassilvitskii, 2007) to cluster 297

the answer pairs. Each answer pair is concatenated 298

and then encoded into a single embedding for the 299

clustering. The purpose of this step is to rank the 300

similarity of the answers more accurately by clus- 301

tering similar answer pairs together. 302

Answer similarity mapping We encode each 303

answer from a pair into an embedding and compute 304

the cosine similarity between the two embeddings. 305

Within each answer cluster, We rank all the answer 306

pairs based on their embedding similarity and map 307

the ranking of each answer pair to a new label 308

(called rank label) on a scale from 1 to 5 based on 309

a predefined ranking distribution. 310

Error candidate selection we identify the po- 311

tential error candidates by comparing the original 312

labels to the rank labels. For each answer pair, if its 313

rank label is different from the original label, we 314

choose this instance as a candidate. 315

4.3 Evaluation 316

We evaluate our error identification pipeline on the 317

C-STS validation set. We use half of the dataset to 318

generate answer clusters and ranking distributions, 319
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Distribution
No Cluster Clustered

F1 Spear. F1 Spear. Best K

Even 74.3 52.9 74.5 60.8 3
Original 75.4 55.4 76.6 59.6 10
Reannotated 79.4 49.1 82.4 65.7 10

Table 2: Error identification results with or without k-
means clustering under different distribution approaches
on the test split of the relabeled C-STS validation set.
The results under clustered are from the cluster number
(Best K) selected in the range of 1-20 that yields the
highest F1 score.

and the other half to evaluate three ranking distri-320

butions with different number of clusters. For the321

even distribution, we map the sorted answer pair322

rankings evenly to rank labels from 1 to 5 (e.g, 20%323

of lowest ranked instances has rank label 1). For324

the original or Reannotated label distribution, we325

map the rankings based on the distribution of orig-326

inal/reannotated labels. We use precision, recall,327

and F1 as the evaluation metrics.328

4.3.1 Results329

We show the evaluation results in Table 2. Our330

pipeline is effective in identifying potential anno-331

tation errors with the baseline F1 of 74.3, signifi-332

cantly higher than the 55% error rate in the C-STS333

validation set. The distribution from the reanno-334

tated label performs the best among all three dis-335

tributions, suggesting the label consistency in the336

relabeled data. Comparing to no cluster, ranking337

within the answer clusters improves the most on338

the reannotated label distribution, boosting F1 from339

79.4 to 82.4. As a positive byproduct, clustering340

can also improve the Spearman’s Correlation be-341

tween the rank labels and reannotated labels, indi-342

cating that answers clustered into optimal number343

of groups can help produce more accurate and cor-344

related rank mapping of the similarity. Overall, we345

show the effectiveness of our error identification346

pipeline. It can also be easily extended and applied347

to identify errors from the rest of the C-STS dataset348

with the help from the generated answers.349

4.3.2 Analysis350

We briefly characterize the cases where annotation351

errors are not identified by the pipeline. The com-352

plete examples are shown in Appendix A.5.353

Incorrect answer The incorrectness of the gen-354

erated answers can be caused by: (1) hallucination355

from the GPT model; (2) vague or invalid condi-356

tion. For example, in the sentence A couple of cake 357

... a white plate., the GPT wrongly answers two 358

pieces of cake to the condition the amount of plates. 359

In another example, the condition the kite is not 360

specific enough for both annotators and the GPT 361

model, so the generated answer is highly depended 362

on subjectivity. These mistakes lead to an inaccu- 363

rate answer similarity and thus cause a misaligned 364

rank label. 365

Semantic mismatch Error identification relies 366

on the ranking of the answer pair similarity. How- 367

ever, answers even with the opposite meaning can 368

have a high similarity in the embedding space. In 369

an example, the answers are No meat and Meat in- 370

cluded, which are opposite to each other. However, 371

the embeddings of the two answers have a high 372

similarity due to the overlapped token meat. 373

5 Experiments 374

We propose a new method that can improve the 375

C-STS task by utilizing the LLM-generated an- 376

swers. Instead of using the sentence pairs and the 377

conditions directly as the model input, our method 378

decomposes C-STS into two subtasks: generating 379

answers that encode the essential semantic infor- 380

mation about the condition, and learning the sim- 381

ilarity score between the answer pair. We evalu- 382

ate our method and compare with baseline models 383

(Deshpande et al., 2023) under both fine-tuning 384

and prompting settings. We randomly select 70% 385

instances from the reannotated C-STS validation 386

set for training and the remaining 30% for testing. 387

5.1 Model Setup 388

Fine-tuning models We evaluate our method on 389

three encoding configurations, cross-encoder, bi- 390

encoder (Reimers and Gurevych, 2019) and tri- 391

encoder (Deshpande et al., 2023). Unlike the base- 392

lines that encode sentences directly, our method 393

chooses to encode the answers on all three en- 394

coding configurations. Cross-encoder encodes the 395

concatenation of the answer pair and condition all 396

together, while bi-encoder concatenates the condi- 397

tion to each answer and encodes them separately. 398

Tri-encoder has three encoders that encode sen- 399

tences and the condition all separately. We use 400

supervised SimCSE (Gao et al., 2021), one of the 401

best-performing embedding models as the base sen- 402

tence encoder for all three encoding configurations. 403

We fine-tune each model on the training set and 404

evaluate on the testing set. We use Spearman’s 405
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Model Method Spearman Pearson

Bi-
encoder

SimCSEBASE 49.6 48.5
SimCSELARGE 71.7 70.8
QA-SimCSEBASE 73.9 73.4
QA-SimCSELARGE 75.9 75.4

Tri-
encoder

SimCSEBASE 0.8 1.7
SimCSELARGE 12.8 13.2
QA-SimCSEBASE 73.9 73.4
QA-SimCSELARGE 73.4 73.1

Cross-
encoder

SimCSEBASE 37.2 38.7
SimCSELARGE 43.0 43.3
QA-SimCSEBASE 71.4 71.1
QA-SimCSELARGE 72.9 72.3

GPT-3.5
Base Prompt 9.1 13.5
QA Prompt 66.1 64.8

GPT-4
Base Prompt 64.2 63.3
QA Prompt 64.4 60.2

Table 3: Evaluation results on the test split of the C-STS
relabeled set. We compare our methods (QA-based)
with baselines under different model settings.

Correlation as the primary evaluation metric.406

Prompting models We compare our method407

with LLM baselines under a zero-shot prompt learn-408

ing setting. We evaluate the results on GPT-3.5 and409

GPT-4. Similar to the experiments on fine-tuned410

models, instead of asking about the sentences di-411

rectly, we formulate the prompt by instructing the412

model to score the similarity between the answers413

regarding the condition (Appendix A.3).414

5.2 Results415

We show the model results in Table 3. For all416

models, our method (QA-based) improves the base-417

lines by a large margin (73.1 improvement on tri-418

encoder), indicating the usefulness of model learn-419

ing with answers. Fine-tuned models generally per-420

form better than LLMs models, suggesting that the421

C-STS task is sensitive to the in-domain training.422

Compared with the large version of the mod-423

els, our method makes more improvement to the424

base models. For example in the bi-encoder set-425

ting, the improvement for large and base model426

baselines is 4.2 and 24.3 respectively. This indi-427

cates the effectiveness of the method, especially428

on models with smaller sizes and fewer parame-429

ters. This may be due to the answers being already430

encoded with relevant semantic information, thus431

reducing the reasoning complexity for the small432

models. This similar pattern also applies to LLM433

baselines, where GPT-4 performs much better than434

GPT-3.5 on the base prompt. However on the QA435

prompt, GPT-3.5 achieves slightly better result than436

GPT-4. QA transforms C-STS into an easier sen- 437

tence similarity task that enables the use of more 438

cost or resource efficient models without harming 439

the performance much. 440

Figure 3: Model (SimCSE with bi-encoder and GPT)
evaluation results on original and relabeled C-STS vali-
dation set.

5.3 Analysis 441

Problems with the mislabeled data We evalu- 442

ate the effect of different label sets on the model 443

performance. In Figure 3, we show the model re- 444

sults on the C-STS validation set with original or 445

reannotated labels. We notice that for all models, 446

performance on the reannotated labels is increased 447

by at least 40% over the original label (except GPT- 448

3.5). This suggests that the original C-STS dataset 449

may not be able to truly reflect the capability of the 450

existing models. The noise and vagueness from the 451

original labels pose “challenges” to models to learn 452

linguistic patterns. Among the LLM baselines, we 453

notice that C-STS is particularly difficult to GPT- 454

3.5 (9.1 Spearman). However, it can be improved 455

significantly with our QA prompt. 456

Semantic information encoded with QA We 457

evaluate how much semantic information can be en- 458

coded in the generated answers. As shown in Table 459

4, the condition is critical to the finetuned baselines 460

(-0.4 to 49.6 on the SimCSEBASE). However, train- 461

ing with no condition has minimal effect on the 462

performance with the QA methods (2.4 difference 463

on SimCSELARGE). Under the inference setting, the 464

baselines perform poorly due to the additional rea- 465

soning complexity from the conditions. However, 466

our method still shows strong performance even 467

without any fine-tuning. This echoes our previous 468

finding that the QA subtask in C-STS is able to 469

improve the efficiency of model training . 470

Non-GPT answer generation performance We 471

evaluate different answer generation models in- 472

cluding multiple versions of Flan-T5 (Chung 473
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Method Fine-tuning No condition Inference

SimCSEBASE 49.6 -0.4 1.2
SimCSELARGE 71.7 4.4 1.0
QA-SimCSEBASE 73.9 73.3 49.4
QA-SimCSELARGE 75.9 73.5 54.7

Table 4: Evaluation results (Spearman) from bi-encoder
models under different training settings. Fine-tuning:
using models fine-tuned on the training data; No condi-
tion: encoding answers only for fine-tuning; Inference:
inferencing results on the untuned models.

Generation Model Size (Param.) Spearman

Flan-T5SMALL 77M ↓43.7

Baseline‡ N/A 49.6

Flan-T5BASE 248M ↑53.9
Flan-T5LARGE 783M ↑55.8
Flan-T5XL 2.75B ↑62.3
GPT-3.5 175B ↑66.1

Table 5: Evaluation results from QA-SimCSEBASE bi-
encoder with difference answer generation models. ‡:
Fine-tuning on sentences only.

et al., 2022) and GPT-3.5. We fine-tune the QA-474

SimCSEBASE on bi-encoder setting with answers475

generated from different models, and compare476

the results in Table 5. Except Flan-T5SMALL, all477

the other models perform better than the baseline478

which is fine-tuned on sentences only. The results479

suggest that our method is robust and does not nec-480

essarily rely on proprietary models such as GPT-481

3.5. Flan-T5XL is able to achieve comparable re-482

sults to GPT-3.5 with only 1.5% of the parameter483

size. Even the base version of Flan-T5 with 248M484

parameters performs better than the baseline.485

6 Improving Conditionality486

Although the idea of C-STS is highly appreciated,487

we notice that the current C-STS dataset has certain488

issues ranging from the errors in the annotation to489

the lack of rigor in the condition definition. In this490

section, we propose a new annotation specification491

of conditionality based on a word’s lexical attribute492

value features, or Typed Feature Structure (TFS)493

(Carpenter, 1992; Copestake, 2000), and exemplify494

the annotation of the new conditionality on a subset495

of sentence pairs from the C-STS dataset.496

6.1 TFS as the Condition497

A TFS is a data structure that can be used to repre-498

sent systematic linguistic information about both499

words and phrases in language. For lexical items,500

the feature structure is defined as a set of attributes501

and their values for a word type. Each feature 502

can have a distinct value for an object of that type 503

(Pustejovsky and Batiukova, 2019). For example, 504

in the term small table, the value of the feature SIZE 505

for the object table is small. In order to adopt the 506

TFS to construct conditions in the C-STS, we use 507

the word/entity type as the condition, and use the 508

values of feature structure to annotate the similarity 509

score regarding the condition. Consider Figure 4 510

as an example. We set the entity type Animal as the 511

condition, and create a feature structure for each 512

of the sentences. The final similarity score is cal- 513

culated from the weighted sum of the individual 514

similarity label annotated for each non-empty fea- 515

ture. The feature type is the primary feature that 516

contributes the most to the final similarity score. 517

It is worth noting that TFS-based conditionality 518

is highly extendable and customizable depending 519

on the annotation needs. The condition can be se- 520

lected from any node in a linguistic type hierarchy 521

(e.g., animal to mammal to dog in WordNet (Miller, 522

1994)). Correspondingly, the feature set can also be 523

modified and the scope for comparing the feature 524

values will be changed. For example, the scope for 525

type of animal can be dog, cat or capybara; while 526

the scope for type of dog is poodle, bulldog and etc. 527

Lastly, one can also decide how much weight from 528

each feature needs to be assigned for calculating 529

the final similarity score. 530

Figure 4: Illustration of the feature structures for the
condition Animal. Similarity score is calculated from
the weighted sum of the similarity label for each feature.

6.2 Pilot Annotation Study on TFS Conditions 531

We show an annotation study of C-STS sentence 532

pairs with TFS conditions. For the purpose of gen- 533

eralizability, we identify 5 generic entity types from 534

frequent entities in the original conditions: PER- 535

SON, ANIMAL, ACTIVITY, LOCATION and FOOD. 536

Feature structure identification We use exist- 537

ing lexical resources such as Schema.org4 and Con- 538

4https://schema.org/docs/about.html
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ceptNet (Speer et al., 2016), to identify the feature539

set for each entity type. Schema.org maintains a540

rich schema that describes various properties of an541

entity type. We pick the properties that are com-542

monly instantiated in the C-STS data as the fea-543

tures (e.g., we pick gender as a feature of PERSON,544

but exclude birthPlace). ConceptNet is a semantic545

network that represents the meaning of words as546

knowledge graphs. We identify common features547

of a word type based on the ConceptNet knowledge548

triples. For example, we characterize the feature549

container from the FoodLocatedIn triples. We de-550

fine gender as the primary feature for person, and551

type for the other four entity types. The full table552

of feature set for each entity type is in Appendix553

A.7.554

TFS Annotation We sample 20 sentence pairs555

with each entity type in the C-STS validation set.556

We use the entity type as the condition surface557

text for each sentence pair (e.g., the food from the558

type FOOD), and its associated feature set as the559

underlying data structure to evaluate the sentence560

similarity. We ask annotators to identify all TFSs561

with distinct primary features regarding the condi-562

tion. For example, there will be two TFSs for the563

cat and dog respectively in the sentence Two dogs564

and a cat play together. The value of a feature is565

N/A if it cannot be extracted or inferred from the566

sentence. With the annotated TFSs, we ask anno-567

tators to rate the similarity between feature values568

from different sentences on a 5-point Likert scale,569

similar to the relabeling process of C-STS in §3.570

Weighted similarity score The final similarity571

score is calculated from the weighted sum of the572

labels for all the features. If the feature values573

from both sentences are N/A, this feature will not574

be accounted for in the final similarity score. If575

only one of the feature values is N/A, we default576

the label as 1 to indicate the dissimilarity due to577

information missing. In practice, we assign 0.6578

weight ratio to the primary feature, and the rest579

0.4 is assigned evenly to other non-N/A features.580

This ensures that the similarity score prioritizes the581

semantic meaning of the entity itself.582

Qualitative analysis TFS conditionality enables583

a finer-grained mapping from entity semantic simi-584

larity to the final label, and mitigates the binarity585

from the evaluation on a single condition feature.586

(2) S1: On the plate there is croissant sandwich ...587
S2: ... next to a hamburger on a green plate.588
Condition: the food, Score: 2.9589

Consider example 2. Although the type of the food 590

is different (croissant sandwich v.s. hamburger), 591

other features have high similarity: both food items 592

are in the sandwich category (i.e., category is the 593

supertype of the type of the food) and held in a 594

plate; the amount of food are both one dish. While 595

most of the entity features have very similar or 596

identical values, the primary feature balances it 597

out and maps the final score to a relatively low 598

similarity. 599

TFS also improves the clarity and objectivity 600

of the conditions. Even when the entity type is 601

the same, other feature values inferred from the 602

sentence are able to differentiate the entities. 603

(3) S1: A little girl is posing with a baseball bat ... 604
S2: A kid is holding a baseball in a glove ... 605
Condition: the activity, Score: 3.8 606

In example 3, both sentences indicate the type of 607

the activity is baseball, but participant and instru- 608

ment are different: the first sentence mentions a 609

girl with a bat; while the second one omits the 610

gender of the kid and the instrument is glove. 611

Our TFS-based condition sets provide structured 612

lexical information to annotate and interpret sen- 613

tence semantic similarity. It is also extendable to 614

other data with new types and features with the 615

linguistics base. The annotation of TFSs also pro- 616

vides useful data for other semantic understanding 617

tasks that involve separate or integrated encoding 618

of the contextualized information associated with 619

different entity features. 620

7 Conclusion 621

In this paper, we made a comprehensive analysis 622

and improvement to the C-STS task. With the rean- 623

notation effort on the original C-STS data, we iden- 624

tified and resolved annotation errors and discrep- 625

ancies that could hinder the evaluation of the task. 626

We showed that C-STS can be naturally treated 627

as a two-step reasoning task. We applied QA to 628

accomplish the first reasoning step by producing 629

high-quality and correlated answers, and showed 630

that the generated answers can be used effectively 631

to automatically identify annotation errors and im- 632

prove the C-STS task under both supervised and 633

prompting model settings. Finally, we proposed 634

to use the typed-feature structure in C-STS to con- 635

struct more semantically informed conditions. We 636

believe that our work has led to a better execution 637

of the C-STS task. We hope that our analysis and 638

improvement on the C-STS can facilitate further 639

developments by future researchers. 640
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8 Limitation641

We reannotate the C-STS validation set and show642

that our method can improve the model perfor-643

mance on the test split of the validation set. We644

primarily use our reannotated labels as the gold for645

the analysis and modeling. Although we have four646

annotators who are well trained for this work, there647

might still exist unintentional errors or subjective648

judgment.649

Due to the limitations of the resources, we could650

not scale the manual annotation to the full dataset651

by the time the paper is written. Finally we decide652

to use the validation set because the original labels653

for the test set are not public. However, our dataset654

analysis (§3) on the 150 instances from the train655

set does show that the errors and issues do exist in656

the whole C-STS dataset. We believe that our error657

identification method can facilitate a more efficient658

reannotation work, and our modeling results and659

TFS-based conditionality can be generalized to the660

rest of C-STS data.661
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A Appendix854

A.1 Features and Entities Distribution in855

C-STS dataset856

Figure 5: Distribution of top 10 frequent features and
entities from the conditions in the C-STS dataset. For
the singleton with no explicit mention of the feature,
we default the condition features from this group to type.

A.2 Annotation Process857

We reannotate the C-STS validation set to fix com-858

mon annotation errors and resolve the aforemen-859

tioned issues that cause the low agreement score.860

The annotation was done by 4 researchers and grad-861

uate students from the linguistics and computer sci-862

ence departments of a US-based university. Each863

annotator is familiar with the C-STS annotation864

guideline and is well-trained through the trial an-865

notation on the pilot set with 150 instances. To866

resolve the issues that are identified from the pi-867

lot study, we ask annotators to follow additional868

annotation rules that are detailed as follows.869

Incommensurable mapping For binary condi-870

tions, only labels 1, 5, or 3 are permitted, represent-871

ing equal, unequal and possible equal (e.g., com-872

paring 3 and several in the number conditions).873

Ambiguous condition Given the intuition that874

type is always the primary feature in comparing the875

similarity between two entities, if conditions are876

singletons or have no features, we default it to the877

type of [entity].878

Inference degree Annotators are only allowed to879

make direct inference to the implicitly mentioned880

information with high confidence. For example,881

snow hill indicates the weather, tennis indicates the882

instruments being used, etc.883

Invalid condition We annotate invalid instances 884

with -1 and exclude those instances from the 885

dataset. 886

After removing 214 instances with invalid con- 887

ditions, we create a relabeled C-STS validation set 888

that consists of 2,620 samples. Figure 6 shows 889

the label distribution of the original and relabeled 890

C-STS validation set. 891

Figure 6: The similarity score distribution of the original
and relabeled C-STS validation set.

A.3 Prompts 892

We include various prompts that we used for the 893

experiments in this section. Figure 7 shows the 894

prompt for the answer generation on GPT and Flan- 895

T5 models. Figure 8 and Figure 9 show the prompts 896

for LLM baselines and our method. We instruct 897

the LLMs to score based on answers instead of 898

questions. 899

Figure 7: GPT prompt for the answer generation.

Figure 8: GPT prompt for the LLM baselines that is
adopted from (Deshpande et al., 2023).

A.4 Answer Clustering 900

We plot the change of the error identification re- 901

sults with different number of clusters in Figure 10. 902

The reannotated distribution consistently performs 903

better than the other two. The optimal cluster num- 904

ber is 10, 10, 3 for reannotation, original, and even 905

distributions respectively. 906
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Figure 9: GPT prompt for our QA method on LLM.

Figure 10: Error identification performance (F1 score)
with different number of clusters on three distribution
methods.

We show the answer topics identified from the907

clusters in Table 6. We use the cluster setting that908

produces the best result when the number of clus-909

ters is 10 and summarize the topics from each clus-910

ter. Most clusters capture the topics or patterns911

uniformly from the answers, such as color and912

food. A few clusters have a mix of topics.913

A.5 Unidentified Annotation Errors914

We show the full examples of the cases where the915

errors cannot be identified by our pipeline in Table916

8.917

A.6 Model Details918

We use OpenAI API to run GPT models. The pric-919

ing for the models used in the paper is shown in Ta-920

ble 7. We fine-tune SimCSEBASE and SimCSELARGE921

with different encoding configurations on a single922

Titan Xp GPU. We use the same hyperparameter923

setting with the baseline models in (Deshpande924

1 2 3 4 5
food various topics number color object

6 7 8 9 10
gender, animal location activity room related activity

Table 6: Topic from answer Clusters.

Model Input Output

gpt-3.5-turbo-0125 $0.0005 / 1K tokens $0.0015 / 1K tokens
gpt-4-0125-preview $0.01 / 1K tokens $0.03 / 1K tokens
text-embedding-ada-002 $0.00010 / 1K tokens N/A

Table 7: Pricing of GPT models used in the paper.

et al., 2023). The training time is less than 10 925

minutes. We use Flan-T5 with different sizes for 926

inference only. We run Flan-T5SMALL and Flan- 927

T5BASE on CPU machines, and run Flan-T5LARGE 928

and Flan-T5XL on a Titan Xp GPU. 929

A.7 Feature Set of Entity types 930

We show the identified feature set for each entity 931

type in Table 9. 932
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Sentence Pair Condition Response Issue
A couple of small pieces of cake sitting on top of a white plate.
A paper plate with a sandwich and a slice of pizza, both partly eaten.

the amount of plates
Two small pieces of cake
One plate

GPT hallucination

A group of people on a hill looking a city and two people are flying a kite.
Man playing with kite far up in the sky, showing only the deep blue sky.

the kite
Recreational activity
High-flying entertainment

Vague condition

A plate full of cut salad with a fork and a glass full of cold drink with ice.
A dish which contains cauliflower and meat is on top of a wooden tray.

presence of meat
No meat
Meat included

Semantic mismatch

Table 8: Examples with common issues that cause the unidentified annotation errors.

Entity Type Features
PERSON gender, count, activity, age, location, position
ANIMAL type, color, size, count, action, location, position
ACTIVITY type, instrument, location, participant
LOCATION type, category, size, purpose
FOOD type, category, amount, container

Table 9: Feature set of the entity types. The primary
feature of each entity type is highlighted.
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