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Abstract
Dementia is associated with language disorders001
which impede communication. Here, we auto-002
matically learn linguistic disorder patterns by003
making use of a moderately-sized pre-trained004
language model and forcing it to focus on re-005
formulated natural language processing (NLP)006
tasks and associated linguistic patterns. Our007
experiments show that NLP tasks that encap-008
sulate contextual information and enhance the009
gradient signal with linguistic patterns benefit010
performance. We then use the probability esti-011
mates from the best model to construct digital012
linguistic markers measuring the overall quality013
in communication and the intensity of a variety014
of language disorders. We investigate how the015
digital markers characterize dementia speech016
from a longitudinal perspective. We find that017
our proposed communication marker is able to018
robustly and reliably characterize the language019
of people with dementia, outperforming exist-020
ing linguistic approaches; and shows external021
validity via significant correlation with clinical022
markers of behaviour. Finally, our proposed lin-023
guistic disorder markers provide useful insights024
into gradual language impairment associated025
with disease progression.026

1 Introduction027

Dementia is a neuro-degenerative disease affecting028

millions worldwide and is associated with cognitive029

decline, including language impairment (Forbes-030

McKay and Venneri, 2005). Language dysfunction031

may be difficult to detect in the early stages of de-032

mentia (Nestor et al., 2004); however, as the disease033

progresses, a gradual decline of semantic knowl-034

edge ensues, and eventually, all linguistic functions035

can be lost (Tang-Wai and Graham, 2008; Klimova036

et al., 2015). Recognizing language disorders as037

prodromal symptoms in people with dementia may038

help with earlier diagnosis and improve disease039

management.040

Dementia can cause a variety of language041

deficits, such as: word-finding problems, a.k.a.042

anomia (Kempler and Goral, 2008); eloquent ar- 043

ticulation lacking the expression of meaningful 044

information, a.k.a. empty speech (Nicholas et al., 045

1985); dropping speech, when the last few words in 046

an utterance become barely audible a.k.a. trailing 047

off speech; or circumlocution of words/concepts 048

within an utterance (Silagi et al., 2015); interrup- 049

tions in the smooth flow of speech, a.k.a. disflu- 050

ency (Ferreira and Bailey, 2004), characterized 051

by repeated words, self-interruptions, and correc- 052

tions of one’s own speech, a.k.a. self-repair (Lev- 053

elt, 1983); agrammatism, a syntactic disturbance, 054

characterised by telegraphic speech, misuse of pro- 055

nouns, or poor grammar (Garre-Olmo, 2018). 056

Table 1 provides the most common language 057

disorders and associated manifestation (linguistic 058

patterns) observed in the speech of subjects de- 059

scribing the Cookie Theft Picture (CTP, Appx. A) 060

in the DementiaBank (Becker et al., 1994) and 061

ADReSS (Luz et al., 2020) datasets. Here we 062

use state-of-the-art Natural Language Processing 063

(NLP) to learn linguistic patterns indicative of lan- 064

guage disorders in transcribed speech from people 065

with dementia and healthy controls. We subse- 066

quently use the resulting language models to char- 067

acterise the language of individuals with dementia. 068

Early work in NLP for dementia relied on man- 069

ual engineered features based on specific lexical, 070

acoustic and syntactic features stemming from de- 071

scription tasks (such as CTP), to detect linguistic 072

signs of cognitive decline (Fraser et al., 2016; Bel- 073

trami et al., 2018; Yeung et al., 2021). Recent 074

work uses naive neural approaches to classify and 075

analyse linguistic and acoustic characteristics so 076

as to either predict cognitive scores or achieve bi- 077

nary classification of participants (Alzheimer’s Dis- 078

ease (AD) vs non-AD) (Karlekar et al., 2018; Bal- 079

agopalan et al., 2020; Nasreen et al., 2021b; Roha- 080

nian et al., 2021). However, such approaches tend 081

to learn language discrimination across cohorts ig- 082

noring explicit information entailed in linguistic 083
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Disorder Example Utterances Symptoms/Manifestation in Language
Anomia a) He’s trying to get this and he’s gonna fall off of

there b) If that little girl don’t xxx. c) The boy hasn’t
gotten down to his fall yet.

a) Empty speech, b) trailing off speech, c)
circumlocution in speech

Disflueny a) The wife is wiping a dish plate. b) His his sister’s
asking for one. c) Here’s a sp water spigot here .

a) Word/phrase revision, b) word/phrase
repetition, c) phonological fragment

Agrammatism a) Water running down from the sink. b) Her doing
the dishes. c) Three pieces of to eat on.

a) Telegraphic speech, b) Misuse of pro-
nouns c) poor grammar

Table 1: Language disorders associated with dementia and corresponding manifestation observed in the speech of
subjects in the DementiaBank and ADReSS datasets. Words in blue denote linguistic disorder patterns.

patterns within the language itself. This is because084

the optimization objective is to learn a unified label085

space and thus important linguistic patterns never086

have any gradient signal (Tam et al., 2021). More-087

over previous work ignores the longitudinal aspect088

of language disorders. Here, we address these limi-089

tations and make the following contributions:090

• We learn a variety of linguistic patterns charac-091

teristic of language disorders from transcribed092

utterances by people with dementia and healthy093

controls. To achieve this we force a moderately-094

size pre-trained LM, namely RoBERTa (Liu095

et al., 2019), to focus on reformulated NLP tasks096

(Sec. 3.3). To the best of our knowledge, ours097

is the first attempt to apply the recent successful098

NLP paradigm shift of reformulating classifica-099

tion as text-to-text generation (Tam et al., 2021;100

Wang et al., 2021; Liu et al., 2023) in the context101

of dementia and mental health more broadly. We102

show that tasks encapsulating context and forc-103

ing the model to extract signal from the language104

itself benefit performance (Sec. 4.1).105

• We introduce human interpretable digital linguis-106

tic markers to measure the quality of communica-107

tion as well as the extent of a variety of language108

disorders in people with dementia. To construct109

the digital markers we leverage the model’s prob-110

ability estimates (Sec. 3.1).111

• We conduct a comprehensive longitudinal anal-112

ysis to investigate how the linguistic communi-113

cation marker characterizes individuals’ speech.114

This shows significant discrimination across115

healthy controls, people with mild cognitive im-116

pairment (MCI), and people with AD (Sec. 4.2).117

• We compare our proposed communication118

marker against existing approaches based on se-119

mantic similarity and word-level disfluency; ours120

shows better diagnostic performance (Sec. 4.2).121

• We evaluate the reliability of the communication122

marker against two clinical markers of behaviour123

widely used for assessing dementia and show 124

significant correlation (Sec. 4.3). 125

• We show that the proposed linguistic disorder 126

markers provide useful insights into the gradual 127

language impairment associated with disease pro- 128

gression (Sec. 4.4). 129

2 Related Work 130

2.1 NLP for Dementia 131

Early NLP work for dementia detection analysed 132

manually aspects of language such as lexical, gram- 133

matical, and semantic features (Ahmed et al., 2013; 134

Orimaye et al., 2017; Kavé and Dassa, 2018), para- 135

linguistic features (Gayraud et al., 2011; López-de 136

Ipiña et al., 2013; Pistono et al., 2019), and interac- 137

tional patterns in conversations (Elsey et al., 2015). 138

Recent work has made use of manually engi- 139

neered features (Luz et al., 2020, 2021; Nasreen 140

et al., 2021a), disfluency features (Nasreen et al., 141

2021b; Rohanian et al., 2021), or acoustic embed- 142

dings (Yuan et al., 2020; Shor et al., 2020; Pan 143

et al., 2021; Zhu et al., 2021). All such previous 144

work has focused on differentiating across cohorts, 145

without considering language changes over time 146

or the importance of emergent linguistic patterns. 147

Some very recent work does now examine longi- 148

tudinal changes, but relies on speech from public 149

figures (Petti et al., 2023). 150

2.2 Language Models 151

Language models, the prevalent technology within 152

NLP, are usually trained with the Cloze objective 153

where part of the context in a text is removed, 154

and the model is tasked with predicting the miss- 155

ing text (Taylor, 1953). Masked language model- 156

ing (MLM) is a Cloze-based denoising objective 157

that has been widely used in pre-training language 158

model (Yang et al., 2022). Several works have 159

reformulated learning tasks as cloze questions to 160

re-purpose pre-trained language models (Schick 161
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and Schütze, 2020a; Liu et al., 2023). Other work162

has exploited task descriptions (prompts) and an-163

notated examples with demonstrations to enable164

few-shot learning for downstream tasks (Gao et al.,165

2020; Wang et al., 2021). Such approaches have be-166

come an important research field as they overcome167

the challenge of expensive data annotation (Li168

et al., 2022). However, finding ways to reformulate169

tasks as cloze questions that make the best use of170

knowledge stored in language models can be diffi-171

cult (Schick and Schütze, 2020b). Here we follow172

the task reformulation paradigm to force a model173

to learn linguistic patterns of language disorders.174

3 Problem Setup175

3.1 Task Definition176

Our task is that of learning linguistic patterns177

of language disorders framed as a multi-class178

classification problem. This involves fine-tuning179

a pre-trained language model L on a collection180

of N transcribed speech utterances {ui}Ni=1181

from people with dementia and healthy controls182

elicited by the CTP description task. Each183

utterance is mapped to a single label yi ∈ Y =184

{anomia, disfluency, agrammatism, fluent} 1185

and the goal is to predict the corresponding label.186

During fine-tuning emphasis is placed on strategies187

for reformulating the classification task into188

different NLP tasks.189

For evaluation purposes we construct digital190

markers using the probability estimates of the191

model, to capture the overall quality in commu-192

nication and the intensity of each of the language193

disorders. For the communication marker, we first194

extract the model’s output probability estimate of195

an utterance to be fluent, i.e., p(yLi | yi = fluent),196

and then obtain averaged probabilities over the en-197

tire session (description of the CTP). To investi-198

gate the discriminating ability of the communica-199

tion marker across cohorts, we calculate average200

and longitudinal changes in the marker. To as-201

sess its reliability, we investigate the association202

between changes in this marker compared to two203

widely used clinical behavioural markers over time204

(Sec. 3.4) . We similarly construct anomia, dis-205

fluency, and agrammatism markers (see Appx. D),206

and compare their changes across cohorts as above.207

1The label fluent indicates an utterance does not exhibit any
of the linguistic disorder patterns. Only 165/4037 samples in
the DementiaBank and ADReSS corpora have two labels, so
we frame it as a single-label multi-class task.

3.2 Data 208

We conduct experiments and train models on 209

transcribed speech from two datasets, namely 210

ADReSS (Luz et al., 2020) and Dementia- 211

Bank (Becker et al., 1994). They both contain 212

transcribed speech of people with dementia and 213

healthy controls describing the Cookie Theft Pic- 214

ture (Appx. A). ADReSS includes a single speech 215

sample per participant while DementiaBank con- 216

tains longitudinal speech, up to five times per per- 217

son (see Appx. B for a detailed description of the 218

datasets). For training models, we use data from 219

ADReSS and also transcripts from subjects who 220

contributed up to two descriptions in Dementia- 221

Bank. Table 2 provides an overview of the datasets. 222

Utterance annotations are based on the paralinguis- 223

tic information available in transcribed scripts us- 224

ing the CHAT protocol (MacWhinney, 2017). For 225

details about the coding scheme please refer to 226

Appx. C. During pre-prossessing, we remove the 227

paralinguistic information and discard the carers’ 228

utterances as well as patients’ non-descriptive ut- 229

terances. We split the data into training (80%), 230

validation (10%) and testing (10%) keeping same 231

class proportions across the splits. 232

Cohort # Sub. # Ses. # Flt. # Ano. # Dis. # Agr.
Healthy 107 136 908 9 246 195
Dementia 224 277 1337 203 734 405

Table 2: Statistical overview of ADReSS and
DementiaBank used for training. Abbrevia-
tions: Sub.=Subjects, Ses.=Sessions, Flt.=Fluent,
Ano.=Anomia, Dis.=Disflunecy, Agr.=Agrammatism.

To conduct a longitudinal evaluation we use a 233

subset from DementiaBank of healthy controls and 234

people with dementia who have 3, 4 and 5 ses- 235

sions. The corresponding numbers for controls are 236

28/10/8 and for people with dementia 12/8/3. 237

3.3 Fine-Tuning Strategies and NLP tasks 238

We take a moderately sized pre-trained language 239

model (PLM) L = RoBERTa (Liu et al., 2019) and 240

fine-tune it according to different strategies. 241

Standard Fine-tuning (Lstandard−finetune): 242

Given the PLM L, we first convert an ut- 243

terance u into a sequence of tokens u = 244

[CLS] t1 t2 . . . tn[SEP ] where t1 . . . tn are the 245

tokens in utterance u 2. The model takes u and 246

maps the original utterance to a sequence of logits 247

2u is defined in the same way for all the tasks.
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L(u) ∈ R|Y|. At prediction time, softmax is248

applied for multiclass classification. We fine-tune249

the model with cross-entropy loss as follows:250

Loss = CE(p(yL|u), y) (1)251

where p(yL|u) is softmax over y calculated as:252

p(yL|u) = exp(JL(u)K)y∑
y′∈Y exp(JL(u)K)′y

(2)253

Multitask Fine-tuning with MLM: We fine-254

tune the PLM L with two objectives. The first one255

is the masked language model (MLM) objective to256

understand particular linguistic patterns in the do-257

main. We first convert an utterance u to a sequence258

of tokens u as above and then dynamically 3 mask259

15% of tokens within the utterance (Devlin et al.,260

2018). For a given utterance u (e.g., A mother is261

wiping a dish), the model receives a MLM input as262

[CLS] A mother [MASK] wiping a dish [SEP ]263

and maps [MASK] to a sequence of logits L(u) ∈264

R|V|, where V is the vocabulary of L. The training265

process thus becomes a high-dimensional multi-266

class classification problem of predicting the orig-267

inal token corresponding to [MASK] with cross-268

entropy loss (Eq. 1). The second objective is269

to predict the class label yi ∈ Y corresponding270

to an utterance u. (See 3.3). We experiment271

with two variants: a) separate multitask learn-272

ing, where each task is learned independently273

(Lmultitask−MLM−separately). We first fine-tuning274

the model on the MLM objective and then resum-275

ing fine-tuning for the second objective; b) jointly276

learning both objectives (Lmultitask−MLM−joint).277

The combined loss is a linear weighted sum of loss278

functions of the two objectives. The assignment279

of weights is an open research question. Here, we280

set the weights empirically, based on the minimum281

loss function values when fine-tuning the model on282

the two objectives separately (See Appx. D).283

Entailment-based Fine-tuning (Lentailment):284

The goal here is to map the relationship between285

an utterance u and the corresponding language286

disorder label to a relationship space by reformu-287

lating multi-class classification as an entailment-288

task (Wang et al., 2021), a.k.a. natural language in-289

ference (NLI). Here, a language disorder definition290

is assumed to entail utterance u if the definition can291

3Different tokens are randomly masked in each epoch.

be logically derived from utterance u, (e.g., for the 292

utterance “His his sister’s asking for one” entails 293

“Word repetition or revision”). 294

Given an instance (u, y), we construct a set of 295

tuples {(u, pj)}|Y|
j=1 for each class y ∈ Y where 296

{pj} is a set of label definitions, including 4 297

{Talking around words/empty speech/incomplete 298

speech, Word repetition or revision, Agrammatism 299

or paragrammatism in speech, Fluent speech}. For 300

each utterance, the model L receives a set of |Y| 301

tuples 5 in the form: 302

[CLS] u [SEP ] pj [SEP ], 303

and outputs a sequence of logits L(u, pj) ∈ 304

R|Y|×|E|, where E = {entails, does not entail}. 305

At inference time, we extract the probability of 306

p(entails|(u, pj)) for each class in Y and apply 307

argmax across the extracted probabilities. We 308

fine-tune the model with cross-entropy loss. 309

Prompt-based Learning: Here the PLM L is 310

tasked with "auto-completing" natural language 311

prompts (Liu et al., 2023). In particular, for each 312

utterance u let T (u) be a MLM input with one 313

[MASK] token. Let M : Y → V |Y| be a one-to- 314

one mapping from the task label space Y to individ- 315

ual words in the vocabulary V of L. The model L 316

receives a template T (u) and maps the [MASK] 317

token to a sequence of logits L(T (u)) ∈ R|V|. We 318

cast the problem of predicting the probability of 319

y ∈ Y as a MLM task: 320

p(y | u) = p([MASK] = M(y) | T (u)). (3) 321

For a set of instances {u, y}, L is fine-tuned to 322

minimize the cross-entropy loss. 323

We experiment with the following variants: 324

• Standard Prompt-based (Lstandart−prompt): 325

Here the MLM consists of an utterance u and 326

a task-specific prompt as follows: 327

T (u) = [CLS] u . It is [MASK] . [SEP ] (4) 328

, where the underlined text is the task specific 329

template and [MASK] ∈ M(y). 330

• Prompt-based with Demonstration Examples 331

(Lprompt−demonstrations): We adopt the idea of 332

incorporating demonstrations as additional con- 333

text (Gao et al., 2020). For each utterance u, 334

4The label definitions were created on the basesis of the
CHAT protocol guidelines and manual analysis of the data

5This approach requires |Y| forward passes during infer-
ence time.

4



we randomly sample one example (u,M(yi))
|Y|
i=1335

from each class y ∈ Y and combine the origi-336

nal utterance and examples to create templates337

according to Eq. 4. For the random samples, we338

replace the [MASK] token with M(yi). The339

model L receives as input a combination of the340

templates:341

T (u)⊕T (u,M(y1))⊕ ...⊕T (u,M(yi)) (5)342

where ⊕ denotes concatenation. Given a con-343

textual utterance in the form of Eq 5, the task344

involves predicting the [MASK] token in the345

original utterance. At test time we sample demon-346

stration examples from the training subset.347

• Prompt-based with Inverse Learning Objec-348

tive (Lprompt−inverse): The standard prompt-349

based objective encapsulates the question “Given350

the input what is the right label”. Here, we in-351

verse the question, “Given the answer label, what352

is the correct content”. The model L is trained353

on the objective of predicting the input given the354

label. Formally, an utterance u is reformulated355

through T according to Eq. 4. Then, we replace356

the [MASK] token in Eq. 4 with the original357

class token M(y) and apply a 50% random mask-358

ing across the utterance’s tokens. Thus, we force359

the model to predict the tokens in the context360

of the original label M(y). The model outputs361

for each of the [MASK] tokens a sequence of362

logits L(u) ∈ R|V|, where V is the vocabulary363

of L. Similarly to the MLM objective, we apply364

cross-entropy loss to predict the masked tokens.365

At test time, we give the model the correct and366

incorrect labels M(y) and reform the utterance u367

through T . Out of |Y| combinations, we choose368

the one with minimum loss.369

Random Rate: Finally we include weighted370

guessing as a baseline classifier where accuracy371

is guessed at the weighted percentages of classes.372

373

For the experimental settings when train-374

ing RoBERTa across different NLP tasks, we375

refer readers to D.376

3.4 Evaluation Metrics377

To evaluate the success of different NLP task re-378

formulation strategies in capturing the different379

language disorders, we report per class accuracy380

and F1. We also calculate the macro-averaged ac-381

curacy and F1 score. We chose macro-averaged382

scores since we are interested in minority classes,383

such as anomia, important in charecterizing the 384

communication ability of people with dementia. 385

We evaluate the digital linguistic markers de- 386

fined in Sec. 3.1 against two widely used clini- 387

cal behavioural markers, namely, the Mini-Mental 388

State Examination (MMSE), and the Clinical De- 389

mentia Rating (CDR) scale (Morris, 1997). The 390

higher the MMSE score, the higher the cognitive 391

function. In contrast, the higher the CDR, the lower 392

the cognitive function. For a detailed description 393

of the behavioural markers see Appx. E. 394

4 Experimental Results 395

4.1 Quantitative Results 396

Table 3 summarizes the experimental results for 397

NLP task reformulation for identifying language 398

disorder patterns in transcribed speech from the De- 399

mentiaBank and ADReSS datasets. All fine-tuning 400

and learning strategies yielded significantly better 401

performance than random weighted guessing. How- 402

ever, class imbalance has caused bias towards the 403

majority class (i.e., fluent speech), leading to under- 404

performance for the minority class (i.e., anomia). 405

We also noticed a trade-off in performance between 406

the majority and minority classes. We suppose this 407

is because speech with anomia is still fluent and 408

prosodically correct but overall meaningless. 409

Both multitask with MLM and inverse prompt- 410

based learning tasks were trained with the objec- 411

tive of forcing the model to obtain signal from 412

linguistic patterns associated with a unified label 413

space. Joint multitask learning with MLM is robust 414

with respect to the minority class. In particular, it 415

achieves the best accuracy and f1 scores for the 416

anomia class compared to all other settings. On 417

the other hand, prompt-based with inverse learning 418

objective underperforms all other approaches. We 419

assume this is because the latter does not have a 420

gradient signal from the labels during optimization. 421

This setting may be more appropriate when mask- 422

ing is targeted rather than random. However, this 423

would require word-level annotations which are not 424

currently available in these datasets. 425

Tasks incorporating context in the form of ad- 426

ditional information exhibit superior performance 427

over tasks learning a unified space without con- 428

text. In particular, entailment-based fine-tuning 429

which includes label descriptions achieves an in- 430

creased macro accuracy of 68.3% compared to 431

65.1% for standard fine-tuning. Similarly, prompt- 432

based learning with demonstrations incorporat- 433
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Fluent Anomia Disfluency Agrammatism Macro

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Random Rate 30.8 - 0.2 - 5.7 - 2.1 - 1.2 (↓ 63.9) -
Lstandard−finetune 96.8 94.2 20.8 31.2 86.5 78.0 56.5 67.2 65.1 67.5
Lmultitask−MLM−separately 94.8 91.7 29.2 37.8 85.6 78.8 50.7 61.9 65.1 (↔0.0) 67.6 (↑ 0.1)
Lmultitask−MLM−joint 93.7 92.0 45.8 48.9 74.8 71.6 55.1 62.3 67.3 (↑ 2.2) 68.7 (↑ 1.2)
Lentailment 94.7 94.7 30.2 41.0 88.9 76.3 59.0 66.0 68.3 (↑ 3.2) 70.3 (↑ 2.8)
Lstandard−prompt 96.4 93.1 29.2 41.2 86.5 79.3 55.1 66.7 66.8 (↑ 1.7) 70.1 (↑ 2.6)
Lprompt−demonstrations 96.6 95.2 27.0 37.4 87.5 81.0 66.2 71.9 69.9 (↑ 4.8) 72.2 (↑ 4.7)
Lprompt−inverse 48.0 54.6 33.3 13.6 18.9 24.4 46.4 35.8 36.7 (↓ 28.4) 25.7 (↓ 41.8)

Table 3: Performance of models resulting from reformulated NLP tasks using RoBERTa for identifying language
disorder patterns in transcribed speech from the DementiaBank and ADReSS datasets. Numbers in bold indicate
best performance. Numbers in parentheses denote deviation from the performance of standard fine-tuning.

ing examples from each class yields an increased434

macro accuracy of 69.9% compared to 66.8% for435

standard prompt-based learning.436

Overall, the experiments show that tasks which437

include context in the form of additional informa-438

tion and force the model to obtain signal from439

linguistic patterns yield better performance. In440

particular, prompt-based learning with demonstra-441

tions, which meets both of the above characteristics,442

achieves an increased macro accuracy of 69.9%,443

compared to 65.1% for standard fine-tuning trained444

with an objective that ignores patterns from the445

language itself during the optimization process.446

4.2 Longitudinal Discrimination Ability447

Using the probability estimates of RoBERTa448

trained on prompt-based learning with demonstra-449

tion examples to recognise linguistic disorders450

(which yielded the highest macro-F1), we have cre-451

ated a digital communication marker and language452

disorder markers (See Sec 3.1 for more details).453

We analyze changes in the digital communication454

marker over time and across cohorts of people with455

AD, MCI and healthy controls. We calculate the456

average of the communication marker across the457

three cohorts (Table 4). The higher the score of458

the marker (1st column), the lower the impact of459

language disorders on communication. We observe460

that the marker decreases alongside disease sever-461

ity. In particular, there is a significant difference in462

the marker’s scores across the healthy, MCI, and463

AD cohorts.6464

We subsequently calculate changes in the com-465

munication marker from the end to the start of the466

study and across cohorts (i.e., ∆(end−onset) in Ta-467

6We use the nonparametric Mann-Whitney test to measure
if the distribution of a variable is different in two groups.

ble 4). There is a significant decrease for the AD 468

group compared to the healthy and MCI cohorts 469

(p < 0.05) 6. There was no significant change in 470

linguistic ability for the MCI and healthy cohorts: 471

for controls, there is presumably no cognitive de- 472

cline; for the MCI group, changes in linguistic 473

function are likely trivial (Nestor et al., 2004). 474

We also calculate changes in the communication 475

marker between adjacent sessions over time and 476

then aggregated them per individual. In Table 4, 477

we report the average change across cohorts, i.e., 478

∆(long). We obtain similar results as the ones from 479

the end to the start of the study. 480

We compare the discrimination ability of our 481

communication marker against two baseline mark- 482

ers based on semantic similarity and word-level 483

disfluency. For a baseline developed on seman- 484

tic similarity, we use the Incoherence Model (Iter 485

et al., 2018), which scores adjacent pairs of utter- 486

ances based on the cosine similarities of their sen- 487

tence embeddings (Reimers and Gurevych, 2019). 488

The higher the score, the better the thematic con- 489

sistency within a session (CTP description). We 490

note that the thematic consistency is higher for 491

the MCI cohort compared to the healthy controls. 492

However, there is no substantial difference across 493

cohorts (see Table 4, Semantic similarity marker). 494

We observe similar results when analysing the se- 495

mantic marker’s longitudinal discrimination ability. 496

For word-level disfluency, we use a pre-trained 497

transformer model for word-by-word disfluency 498

detection in the form of reparandum-interregnum- 499

repair (Rohanian and Hough, 2021). To construct 500

the baseline marker, we use the normalized proba- 501

bility estimates of words within an utterance to 502

be fluent and then average the scores obtained 503

over a session (CTP description). The higher the 504
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Our communication marker Semantic similarity marker Word-level disfluency marker

Cohort Marker ∆(end−start) ∆(long) Marker ∆(end−start) ∆(long) Marker ∆(end−start) ∆(long)

Healthy 0.759 (0.164) +0.011 (0.162) +0.000 (0.106) 0.296 (0.077) +0.013 (0.107) +0.009 (0.054) 0.913 (0.064) -0.005 (0.072) -0.003 (0.030)
MCI 0.630 (0.224) +0.010 (0.164) +0.010 (0.068) 0.299 (0.080) -0.051 (0.077) -0.017 (0.031) 0.879 (0.081) +0.019 (0.100) +0.005 (0.030)
AD 0.536 (0.201) -0.229 (0.117) -0.120 (0.094) 0.270 (0.067) +0.011 (0.890) +0.001 (0.038) 0.892 (0.075) -0.026 (0.081) -0.008 (0.038)

Table 4: Comparison of our proposed digital linguistic communication marker versus baselines from semantic
similarity and word-level Marker: Average of marker within a population. ∆(end−start): Average change of the
marker from the end to the beginning of the study. ∆(long): Average change of the digital marker between adjacent
individuals’ sessions. Positive number implies improvement over time. Numbers in () refer to corresponding
standard deviations. Numbers in bold denote significant difference across cohorts.

score, the less the occurrence of disfluent patterns505

in speech. We obtain results similar to the ones506

from the semantic similarity marker. In particular,507

the score is higher for people with AD compared508

to those with MCI. However, there is no significant509

difference across cohorts.510

Overall, our proposed communication marker511

is robust and reliable in discriminating between512

people with dementia, MCI and healthy controls,513

identifying changes in linguistic ability over time514

and does so better than existing approaches.515

4.3 Communication marker Reliability516

We investigate the reliability of the digital com-517

munication marker by associating longitudinal518

changes in the marker with two widely used be-519

havioural measures collected over the study. We520

consider individuals across different cohorts with521

at least three sessions each (for the description of522

the evaluation dataset, see Sec. 3.2).523

We first investigate the association between lon-524

gitudinal changes in the digital communication525

marker and the Mini-Mental State Examination526

(MMSE). We calculate the average of MMSE527

scores per individual 7 and the average difference528

in the communication marker between the same529

individual’s adjacent sessions. Positive values of530

change indicate improvement in communication531

over time while negative values denote the oppo-532

site. Similarly, high MMSE scores are indicative533

of better cognitive function (refer to Appx. E for534

details on MMSE). Figure 1 illustrates the corre-535

lation between averaged longitudinal changes in536

the communication marker and average MMSE537

scores. We notice that people with a high MMSE538

score either improve or exhibit minor changes in539

communication over time. On the other hand, the540

communication marker decreases for those people541

with low MMSE scores. Overall, we found a Pear-542

7We don’t calculate longitudinal changes in the be-
havioural measures due to missing values in the datasets.

son correlation of 0.61 (p = 4.48e−8) between 543

changes in MMSE and the average difference in 544

the communication marker over time. 545

Averaged MMSE

Δ
Co

m
m

un
ic

at
io

n 
M

ar
ke

r

Figure 1: Association between average longitudinal
change in communication marker and average Mini-
Mental State Examination (MMSE) scores, across co-
horts.

Similarly, we investigate the association between 546

average longitudinal changes in the communication 547

marker with the Clinical Dementia Rating (CDR). 548

Here, the higher the CDR, the lower the cognitive 549

function (see Appx. E for details on CDR). Figure 2 550

illustrates the association between average longi- 551

tudinal changes in the communication marker and 552

CDR. We note that people with low average values 553

of CDR (i.e., CDR ∈ [0, 1)) improved their commu- 554

nication over time. This is presumably because sub- 555

jects are able to remember and do better at the CTP 556

description task when seeing it again (Goldberg 557

et al., 2015). However, people with moderate to 558

high levels of CDR (i.e., CDR ∈ [1, 3]) exhibit im- 559

pairment in communication over time. Overall, we 560

found a Pearson correlation of 0.56 (p = 6.67e−7) 561

between average CDR values and average values 562

in changes for the communication over time. 563

We observe that people with AD with severe 564

cognitive impairment, i.e. MMSE ranging from 565

14-18 and CDR from 2-2.5, did not exhibit a severe 566
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Averaged CDR

Figure 2: Association between average longitudinal
changes in communication marker and average values
of the Clinical Dementia Rating (CDR), across cohorts.

decrease in the communication marker over time.567

We attribute this to a ceiling effect. Indeed, a meta-568

analysis shows that the communication marker for569

people with the lowest behaviour scores was al-570

ready much lower at the onset compared to those571

AD participants with higher behaviour scores.572

4.4 Linguistic Disorder Markers573

We investigate how different linguistic disorder574

markers capture the impact on individuals’ speech.575

We compute the markers as the percentage of occur-576

rence of each of the language disorders in Table 1577

using the normalized probability estimates of the578

model (for details on how the markers are obtained,579

see Sec. 3.1). Table 5 provides the average percent-580

age value of each linguistic disorder marker per581

cohort as well as corresponding percent changes582

from the end to the start of the study. The higher583

the percentage of a marker the more prevalent the584

language disorder.585

Anomia Disfluency Agrammatism

Cohort Marker ∆ Marker ∆ Marker ∆

Healthy 1.11 +1.12 15.43 +1.91 11.41 -3.85
MCI 1.94 +1.35 21.66 -4.75 13.31 -0.44
AD 5.58 +2.18 25.11 +8.82 15.86 +8.95

Table 5: Percentage of language disorders as cap-
tured by the corresponding linguistic markers across
cohorts. Marker: Average of marker within a cohort.
∆(end−start): Average change of the marker from the
end to the beginning of the study. Negative numbers
imply improvement over time. Numbers in bold denote
significant difference across cohorts.

We note that people across all cohorts exhibit586

disfluency. However, the disfluency marker was587

significantly higher for people with AD compared588

to healthy controls (p < 0.05).6 The MCI cohort 589

exhibits improvement in disfluency over the study 590

(∆=-4.75% in Table 5). Anomia is characteristic of 591

people with AD (Botha and Josephs, 2019) and de- 592

spite being less prevalent overall is significantly 6 593

higher for the AD cohort. Although agrammatism 594

is more prominent in people with AD, there is no 595

significant difference across cohorts. We attribute 596

this to the same relative ratio of aggramatism in 597

healthy controls and people with dementia in the 598

training data (see Table 2 where Sub:Aggr≈.55 in 599

both cases) rather than the sensitivity of the marker 600

itself. Indeed the aggramatism marker captures 601

that people with AD exhibit a significant change 602

in syntactic disturbance over time (+8.95% in the 603

value of the marker) whereas the rest of the cohorts 604

improved over time. 605

Overall, the linguistic disorder markers were ef- 606

fective in screening and monitoring AD where grad- 607

ual language impairment ensues. 608

5 Conclusion 609

We are the first to introduce reformulated NLP 610

tasks for learning language disorder patterns from 611

transcribed speech in dementia datasets by forcing 612

a pre-trained language model to obtain signal from 613

the language itself. Our experiments show that 614

NLP tasks encapsulating contextual information 615

and enhancing the gradient signal with linguistic 616

patterns benefit performance. We use the probabil- 617

ity estimates of the model with highest macro-F1 618

to construct digital markers measuring communica- 619

tion ability and the occurrence of various language 620

disorders in the speech of people with dementia and 621

healthy controls. Longitudinal analysis shows that 622

the digital communication marker is able to assess 623

the quality of communication and distinguish be- 624

tween people with MCI, Alzheimer’s Disease (AD) 625

and healthy controls. A comparison against exist- 626

ing linguistic approaches for capturing language 627

impairment shows the superiority of our proposed 628

communication marker. Moreover, the latter cor- 629

relates significantly with two widely used clinical 630

behaviour markers. Finally, our proposed linguistic 631

disorder markers prove effective for screening and 632

monitoring AD and provide useful insights into 633

longitudinal change in linguistic ability. In the fu- 634

ture we will explore large pre-trained generative 635

transformers and automatic generation of templates 636

to improve performance on capturing linguistic dis- 637

order patterns. 638
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Limitations639

Monitoring dementia using computational linguis-640

tics approaches is an important topic. Previous641

work has primarily focused on learning language642

discrimination across healthy controls and people643

with AD, ignoring longitudinal language disorders.644

In this work, we use DementiaBank to capture lon-645

gitudinal linguistic disorder patterns that charac-646

terize people living with dementia. Currently, De-647

mentiaBank is the largest available longitudinal648

dementia dataset. A limitation of DementiaBank649

is that the longitudinal aspect is limited, spanning650

up to 5 sessions/descriptions maximum per individ-651

ual, with most participants contributing up to two652

narratives. Moreover, the number of participants is653

relatively small, especially for the mild-cognitive654

impairment (MCI) cohort. Finally, descriptions are655

elicited through the Cookie Theft Picture (CTP),656

ignoring interactive aspects of everyday conver-657

sational interaction. The Carolinas Conversation658

Collection dataset (Pope and Davis, 2011) contains659

more natural conversations between patients and660

clinical practitioners. However, it only contains661

speech data from people with AD and no equiv-662

alent data for healthy controls. In the future, we663

aim to address these limitations by investigating the664

generalisability of our proposed digital language665

disorder markers on a novel fine-grained longitudi-666

nal multi-modal dataset from people with dementia667

over several months in a natural setting (currently668

under review).669

In this study, we used manually transcribed data670

from DementiaBank and its paralinguistic informa-671

tion to annotate transcribed turns. In a real-world672

scenario, participants mostly provide speech via a673

speech elicitation task. This implies that the intro-674

duced method requires an automatic speech recog-675

nition (ASR) system robust to various sources of676

noise to be operationalized. ASR for mental health677

is currently underexplored, with most transcription678

work being done by humans.679

It may be that the proposed digital linguistic680

markers become a less accurate means for mon-681

itoring dementia when people experience other682

comorbidities, neurodegenerative and mental ill-683

nesses, that significantly affect speech and lan-684

guage. Indeed, cognitive-linguistic function is a685

strong biomarker for neuropsychological health686

(Voleti et al., 2019).687

Finally, there is a great deal of variability to be688

expected in speech and language data affecting the689

sensitivity of the proposed digital linguistic mark- 690

ers. Both speech and language are impacted by 691

speaker identity, context, background noise, spoken 692

language etc. Moreover, people may vary in their 693

use of language due to various social contexts and 694

conditions, a.k.a., style-shifting (Coupland, 2007). 695

Both inter and intra-speaker variability in language 696

could affect the sensitivity of the proposed digital 697

markers. While it is possible to tackle intra-speaker 698

language variability, e.g., by integrating speaker- 699

dependent information to the language, the inter- 700

speaker variability remains an open-challenging 701

research question. 702

Ethics Statement 703

Our work does not involve ethical considerations 704

around the analysis of the DementiaBank and 705

ADReSS corpora as they are widely used. For 706

DementiaBank, ethics was obtained by the original 707

research team by James Backer and participating 708

individuals consented to share their data following 709

a larger protocol administered by the Alzheimer 710

and Related Dementias Study at the University 711

of Pittsburgh School of Medicine (Becker et al., 712

1994). Access to the data is password protected 713

and restricted to those signing an agreement. For 714

ADReSS, ethics was obtained by the original re- 715

search team by Brian MacWhinney that collected 716

the data for ADReSS challenge. Access to the data 717

requires membership of DementiaBank and a non- 718

disclosure agreement between the stakeholders and 719

the research team. 720

This work uses transcribed dementia data to iden- 721

tify changes in cognitive status considering indi- 722

viduals’ language disorders. Research Potential 723

risks from the application of our work in being 724

able to identify cognitive decline in individuals are 725

akin to those who misuse personal information for 726

their own profit without considering the impact and 727

the social consequences in the broader community. 728

Potential mitigation strategies include running the 729

software on authorised servers, with encrypted data 730

during transfer, and anonymization of data prior to 731

analysis. Another possibility would be to perform 732

on-device processing (e.g. on individuals’ com- 733

puters or other devices) for identifying changes in 734

cognition and the results of the analysis would only 735

be shared with authorised individuals. Individu- 736

als would be consented before any of our software 737

would be run on their data. 738
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A The Cookie Theft Picture982

Figure 3: The Cookie Theft Picture from the Boston Di-
agnostic Aphasia Examination (Goodglass et al., 2001).

For the PD task, the examiner asks subjects to983

describe the picture (see Fig. 3) by saying, "Tell984

me everything you see going on in this picture".985

Then subjects might say, "there is a mother who986

is drying dishes next to the sink in the kitchen.987

She is not paying attention and has left the tap988

on. As a result, water overflows from the sink. 989

Meanwhile, two children attempt to make cookies 990

from a jar when their mother is not looking. One of 991

the children, a boy, has climbed onto a stool to get 992

up to the cupboard where the cookie jar is stored. 993

The stool is rocking precariously. The other child, 994

a girl, is standing next to the stool and has her hand 995

outstretched ready to be given cookies. 996

B Dementia datasets 997

B.1 DentiaBank 998

The dataset was gathered longitudinally between 999

1983 and 1988 as part of the Alzheimer Research 1000

Program at the University of Pittsburgh. The study 1001

initially enrolled 319 participants according to the 1002

following eligibility criteria: all the participants 1003

were required to be above 44 years old, have at 1004

least seven years of education, have no history of 1005

major nervous system disorders, and have an ini- 1006

tial Mini-Mental State Examination score above 10. 1007

Finally, the cohort consisted of 282 subjects. In 1008

particular, the cohort included 101 healthy control 1009

subjects (HC) and 181 Alzheimer’s disease subjects 1010

(AD). An extensive neuropsychological assessment 1011

was conducted on the participants, including ver- 1012

bal tasks and the Mini-Mental State Examination 1013

(MMSE). 1014

B.2 ADReSS 1015

ADReSS is a benchmark dataset of spontaneous 1016

speech, which is acoustically pre-processed and 1017

balanced in terms of age and gender. The dataset 1018

entails transcribed speech of 78 non-AD subjects 1019

and 78 AD subjects of 35 males and 43 females 1020

for each of the cohorts. The dataset was made 1021

available for the ADReSS challenge consisted of 1022

two tasks: a) an AD classification task, where the 1023

task required one to produce a model to predict the 1024

label (AD or non-AD) for a speech session and b) 1025

an MMSE score regression task, where the task 1026

required one to create a model to infer the subject’s 1027

Mini-Mental Status Examination (MMSE) score 1028

based on speech and/or language data. 1029

C Coding Scheme for the Annotation of 1030

Transcribed Utterances. 1031

Table 6 lists the codes we used to annotate tran- 1032

scribed speech utterances in accordance with the 1033

CHAT protocol (MacWhinney, 2017). More- 1034

over, we used the code [+exc] to filter out non- 1035

descriptive utterances from the Cookie Thief Pic- 1036
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ture (CTP) description task (e.g., "Yeah that’s it.").1037

As shown in Table 6, the manifestation granularity1038

varies across different language disorders. For ex-1039

ample, anomia is exhibited through various symp-1040

toms in language.1041

Disorder Code Manifestation in Language
Agrammatism [+gram] Agrammatic and paragrammatic

speech.
Disfluency [/] Word or phrase repetition.

[//] Word or phrase revision.
&+ Phonological fragment.

Anomia +es Empty speech.
+... Termination of an incomplete ut-

terance.
[+cir] Talking around words/concepts.
[+jar] Fluent and prosodically correct

but largely meaningless speech.
Disruptive [+exc] Non-descriptive speech.

Table 6: Coding scheme used for the annotation of
transcribed speech utterances following the CHAT pro-
tocol (MacWhinney, 2017).

D Experimental Settings1042

We used a grid search optimization technique to op-1043

timize the parameters. For consistency, we used the1044

same experimental settings for all models. We first1045

fine-tuned all models by performing a twenty-times1046

grid search over their parameter pool. We empiri-1047

cally experimented with learning rate (lr): lr ∈1048

{0.00001, 0.00002, 0.00005, 0.0001, 0.0002},1049

batch size (bs): bs ∈ {16, 32, 64, 128} and1050

optimization (O): O ∈ {AdamW,Adam}. After1051

the fine-tuning process, we trained again all1052

the models for 50 epochs with 4 epochs early1053

stopping, three times. We reported the average1054

performance on the test set for all experiments.1055

Model checkpoints were selected based on the1056

minimum validation loss. Experiments were1057

conducted on two GPUs, Nvidia V-100.1058

For fine-tuning RoBERTa with MLM jointly, we1059

suggest the weights (1/0.5139) for the classification1060

objective and (1/2.4149) for the MLM objective.1061

To investigate how various language disor-1062

ders involve with the progression of dementia,1063

we construct anomia, disfluency, and agramma-1064

tism markers, by first extracting the correspond-1065

ing model’s probability estimates for each ut-1066

terance, i.e., p(yLi | yi = y∗i ), where y∗i1067

∈ {anomia, disfluency, agrammatism}. We1068

then obtain averaged probabilities over the entire1069

session (description of the CTP).1070

E Clinical Behavioural Markers 1071

E.1 Mini-Mental State Examination (MMSE) 1072

The Mini-Mental State Examination (MMSE) has 1073

been the most common method for diagnosing AD 1074

and other neurodegenerative diseases affecting the 1075

brain. It was devised in 1975 by Folstein et al. as 1076

a simple standardized test for evaluating the cog- 1077

nitive performance of subjects, and where appro- 1078

priate to qualify and quantify their deficit. It is 1079

now the standard bearer for the neuropsychological 1080

evaluation of dementia, mild cognitive impairment, 1081

and AD. 1082

The MMSE was designed to give a practical 1083

clinical assessment of change in cognitive status in 1084

geriatric patients. It covers the person’s orientation 1085

to time and place, recall ability, short-term memory, 1086

and arithmetic ability. It may be used as a screening 1087

test for cognitive loss or as a brief bedside cognitive 1088

assessment. By definition, it cannot be used to 1089

diagnose dementia, yet this has turned into its main 1090

purpose. 1091

The MMSE includes 11 items, divided into 2 1092

sections. The first requires verbal responses to ori- 1093

entation, memory, and attention questions. The 1094

second section requires reading and writing and 1095

covers ability to name, follow verbal and written 1096

commands, write a sentence, and copy a polygon. 1097

All questions are asked in a specific order and can 1098

be scored immediately by summing the points as- 1099

signed to each successfully completed task; the 1100

maximum score is 30. A score of 25 or higher is 1101

classed as normal. If the score is below 24, the 1102

result is usually considered to be abnormal, indi- 1103

cating possible cognitive impairment. The MMSE 1104

has been found to be sensitive to the severity of de- 1105

mentia in patients with Alzheimer’s disease (AD). 1106

The total score is useful in documenting cognitive 1107

change over time. 1108

E.2 Clinical Dementia Rating (CDR) 1109

The Clinical Dementia Rating (CDR) is a global 1110

rating device that was first introduced in a prospec- 1111

tive study of patients with mild “senile dementia 1112

of AD type” (SDAT) in 1982 (Hughes et al., 1982). 1113

New and revised CDR scoring rules were later in- 1114

troduced (Berg, 1988; Morris, 1993; Morris et al., 1115

1997). CDR is estimated on the basis of a semistruc- 1116

tured interview of the subject and the caregiver 1117

(informant) and on the clinical judgment of the 1118

clinician. CDR is calculated on the basis of test- 1119

ing six different cognitive and behavioral domains 1120
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such as memory, orientation, judgment and prob-1121

lem solving, community affairs, home and hobbies1122

performance, and personal care. The CDR is based1123

on a scale of 0–3: no dementia (CDR = 0), ques-1124

tionable dementia (CDR = 0.5), MCI (CDR = 1),1125

moderate cognitive impairment (CDR = 2), and1126

severe cognitive impairment (CDR = 3). Two sets1127

of questions are asked, one for the informant and1128

another for the subject. The set for the informant in-1129

cludes questions about the subject’s memory prob-1130

lem, judgment and problem solving ability of the1131

subject, community affairs of the subject, home life1132

and hobbies of the subject, and personal questions1133

related to the subject. The set for subject includes1134

memory-related questions, orientation-related ques-1135

tions, and questions about judgment and problem-1136

solving ability.1137
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