
Published as a conference paper at ICLR 2022

BOOTSTRAPPED META-LEARNING

Sebastian Flennerhag
DeepMind
flennerhag@google.com

Yannick Schroecker
DeepMind

Tom Zahavy
DeepMind

Hado van Hasselt
DeepMind

David Silver
DeepMind

Satinder Singh
DeepMind

ABSTRACT

Meta-learning empowers artificial intelligence to increase its efficiency by learning
how to learn. Unlocking this potential involves overcoming a challenging meta-
optimisation problem. We propose an algorithm that tackles this problem by letting
the meta-learner teach itself. The algorithm first bootstraps a target from the meta-
learner, then optimises the meta-learner by minimising the distance to that target
under a chosen (pseudo-)metric. Focusing on meta-learning with gradients, we
establish conditions that guarantee performance improvements and show that the
metric can control meta-optimisation. Meanwhile, the bootstrapping mechanism
can extend the effective meta-learning horizon without requiring backpropagation
through all updates. We achieve a new state-of-the art for model-free agents on
the Atari ALE benchmark and demonstrate that it yields both performance and
efficiency gains in multi-task meta-learning. Finally, we explore how bootstrapping
opens up new possibilities and find that it can meta-learn efficient exploration in an
ε-greedy Q-learning agent—without backpropagating through the update rule.

1 INTRODUCTION

In a standard machine learning problem, a learner or agent learns a task by iteratively adjusting its
parameters under a given update rule, such as Stochastic Gradient Descent (SGD). Typically, the
learner’s update rule must be tuned manually. In contrast, humans learn seamlessly by relying on
previous experiences to inform their learning processes (Spelke & Kinzler, 2007).

For a (machine) learner to have the same capability, it must be able to learn its update rule (or such
inductive biases). Meta-learning is one approach that learns (parts of) an update rule by applying it
for some number of steps and then evaluating the resulting performance (Schmidhuber, 1987; Hinton
& Plaut, 1987; Bengio et al., 1991). For instance, a well-studied and often successful approach is to
tune parameters of a gradient-based update, either online during training on a single task (Bengio,
2000; Maclaurin et al., 2015; Xu et al., 2018; Zahavy et al., 2020), or meta-learned over a distribution
of tasks (Finn et al., 2017; Rusu et al., 2019; Flennerhag et al., 2020; Jerfel et al., 2019; Denevi et al.,
2019). More generally, the update rule can be an arbitrary parameterised function (Hochreiter et al.,
2001; Andrychowicz et al., 2016; Kirsch et al., 2019; Oh et al., 2020), or the function itself can be
meta-learned jointly with its parameters (Alet et al., 2020; Real et al., 2020).

Meta-learning is challenging because to evaluate an update rule, it must first be applied. This
often leads to high computational costs. As a result most works optimise performance after K
applications of the update rule and assume that this yields improved performance for the remainder
of the learner’s lifetime (Bengio et al., 1991; Maclaurin et al., 2015; Metz et al., 2019). When this
assumption fails, meta-learning suffers from a short-horizon bias (Wu et al., 2018; Metz et al., 2019).
Similarly, optimizing the learner’s performance after K updates can fail to account for the process of
learning, causing another form of myopia (Flennerhag et al., 2019; Stadie et al., 2018; Chen et al.,
2016; Cao et al., 2019). Challenges in meta-optimisation have been observed to cause degraded
lifetime performance (Lv et al., 2017; Wichrowska et al., 2017), collapsed exploration (Stadie et al.,
2018; Chen et al., 2016), biased learner updates (Stadie et al., 2018; Zheng et al., 2018), and poor
generalisation performance (Wu et al., 2018; Yin et al., 2020; Triantafillou et al., 2020).

1

Published as a conference paper at ICLR 2022

We argue that defining the meta-learner’s objective directly in terms of the learner’s objective—i.e. the
performance after K update steps—creates two bottlenecks in meta-optimisation. The first bottleneck
is curvature: the meta-objective is constrained to the same type of geometry as the learner; the second
is myopia: the meta-objective is fundamentally limited to evaluating performance within the K-step
horizon, but ignores future learning dynamics. Our goal is to design an algorithm that removes these.

The algorithm relies on two main ideas. First, to mitigate myopia, we introduce the notion of
bootstrapping a target from the meta-learner itself, a meta-bootstrap, that infuses information about
learning dynamics in the objective. Second, to control curvature, we formulate the meta-objective
in terms of minimising distance (or divergence) to the bootstrapped target, thereby controlling
the meta-loss landscape. In this way, the meta-learner learns from its future self. This leads to
a bootstrapping effect where improvements beget further improvements. We present a detailed
formulation in Section 3; on a high level, as in previous works, we first unroll the meta-learned
update rule for K steps to obtain the learner’s new parameters. Whereas standard meta-objectives
optimise the update rule with respect to (w.r.t.) the learner’s performance under the new parameters,
our proposed algorithm constructs the meta-objective in two steps:

1. It bootstraps a target from the learner’s new parameters. In this paper, we generate targets
by continuing to update the learner’s parameters—either under the meta-learned update rule
or another update rule—for some number of steps.

2. The learner’s new parameters—which are a function of the meta-learner’s parameters—and
the target are projected onto a matching space. A simple example is Euclidean parameter
space. To control curvature, we may choose a different (pseudo-)metric space. For instance,
a common choice under probabilistic models is the Kullback-Leibler (KL) divergence.

The meta-learner is optimised by minimising distance to the bootstrapped target. We focus on
gradient-based optimisation, but other optimisation routines are equally applicable. By optimising
meta-parameters in a well-behaved space, we can drastically reduce ill-conditioning and other
phenomena that disrupt meta-optimisation. In particular, this form of Bootstrapped Meta-Gradient
(BMG) enables us to infuse information about future learning dynamics without increasing the
number of update steps to backpropagate through. In effect, the meta-learner becomes its own teacher.
We show that BMG can guarantee performance improvements (Theorem 1) and that this guarantee
can be stronger than under standard meta-gradients (Corollary 1). Empirically, we find that BMG
provides substantial performance improvements over standard meta-gradients in various settings. We
obtain a new state-of-the-art result for model-free agents on Atari (Section 5.2) and improve upon
MAML (Finn et al., 2017) in the few-shot setting (Section 6). Finally, we demonstrate how BMG
enables new forms of meta-learning, exemplified by meta-learning ε-greedy exploration (Section 5.1).

2 RELATED WORK

Bootstrapping as used here stems from temporal difference (TD) algorithms in reinforcement learning
(RL) (Sutton, 1988). In these algorithms, an agent learns a value function by using its own future
predictions as targets. Bootstrapping has recently been introduced in the self-supervised setting (Guo
et al., 2020; Grill et al., 2020). In this paper, we introduce the idea of bootstrapping in the context of
meta-learning, where a meta-learner learns about an update rule by generating future targets from it.

Our approach to target matching is related to methods in multi-task meta-learning (Flennerhag et al.,
2019; Nichol et al., 2018) that meta-learn an initialisation for SGD by minimising the Euclidean
distance to task-optimal parameters. BMG generalise this concept by allowing for arbitrary meta-
parameters, matching functions, and target bootstraps. It is further related the more general concept
of self-referential meta-learning (Schmidhuber, 1987; 1993), where the meta-learned update rule is
used to optimise its own meta-objective.

Target matching under KL divergences results in a form of distillation (Hinton et al., 2015), where
an online network (student) is encouraged to match a target network (teacher). In a typical setup,
the target is either a fixed (set of) expert(s) (Hinton et al., 2015; Rusu et al., 2015) or a moving
aggregation of current experts (Teh et al., 2017; Grill et al., 2020), whereas BMG bootstraps a target
by following an update rule. Finally, BMG is loosely inspired by trust-region methods that introduce
a distance function to regularize gradient updates (Pascanu & Bengio, 2014; Schulman et al., 2015;
Tomar et al., 2020; Hessel et al., 2021).

2

Published as a conference paper at ICLR 2022

3 BOOTSTRAPPED META-GRADIENTS

x

x(K)

w

w̃

x̃

πx(K)

πx̃

(x, f(x))

(s, πx(s))

∇wµ(x̃,x(K)(w)) π

Figure 1: Bootstrapped Meta-Gradients.

We begin in the single-task setting and turn
to multi-task meta-learning in Section 6. The
learner’s problem is to minimize a stochastic
objective f(x) := E[`(x; ζ)] over a data distri-
bution p(ζ), where ζ denotes a source of data
and x ∈ X ⊂ Rnx denotes the learner’s pa-
rameters. In RL, f is typically the (negative)
expected value of a policy πx; in supervised
learning, f may be the expected negative log-
likelihood under a probabilistic model πx. We
provide precise formulations in Sections 5 and 6.

The meta-learner’s problem is to learn an up-
date rule ϕ : X ×H×W → X that updates the
learner’s parameters by x(1) = x+ϕ(x,h,w)
given x ∈ X , a learning state h ∈ H, and
meta-parameters w ∈ W ⊂ Rnw of the update
rule. We make no assumptions on the update
rule other than differentiability in w. As such,
ϕ can be a recurrent neural network (Hochre-
iter et al., 2001; Wang et al., 2016; Andrychow-
icz et al., 2016) or gradient descent (Bengio,
2000; Maclaurin et al., 2015; Finn et al., 2017).
The learning state h contains any other data re-
quired to compute the update; in a black-box
setting h contains an observation and the re-
current state of the network; for gradient-based
updates, h contains the (estimated) gradient of
f at x along with any auxiliary information; for
instance, SGD is given by x(1) = x−α∇xf(x)
with h = ∇xf(x), w = α ∈ R+.

The standard meta-gradient (MG) optimises meta-parameters w by taking K steps under ϕ and
evaluating the resulting learner parameter vector under f . With a slight abuse of notation, let x(K)(w)
denote the learner’s parameters after K applications of ϕ starting from some (x,h,w), where (x,h)
evolve according to ϕ and the underlying data distribution. The MG update is defined by

w′ = w−β∇wf
(
x(K)(w)

)
, β ∈ R+ . (1)

Extensions involve averaging the performance over all iterates x(1), . . . ,x(K) (Andrychowicz et al.,
2016; Chen et al., 2016; Antoniou et al., 2019) or using validation data in the meta-objective (Bengio
et al., 1991; Maclaurin et al., 2015; Finn et al., 2017; Xu et al., 2018). We observe two bottlenecks in
the meta-objective in Eq. 1. First, the meta-objective is subject to the same curvature as the learner.
Thus if f is ill-conditioned, so will the meta-objective be. Second, the meta-objective is only able to
evaluate the meta-learner on dynamics up to the Kth step, but ignores effects of future updates.

To tackle myopia, we introduce a Target Bootstrap (TB) ξ : X 7→ X that maps the meta-learner’s out-
put x(K) into a bootstrapped target x̃ = ξ(x(K)). We focus on TBs that unroll ϕ a further L− 1 steps
before taking final gradient step on f , with targets of the form x̃ = x(K+L−1)−α∇f(x(K+L−1)).
This TB encourages the meta-learner to reach future states on its trajectory faster while nudging
the trajectory in a descent direction. Crucially, regardless of the bootstrapping strategy, we do not
backpropagate through the target. Akin to temporal difference learning in RL (Sutton, 1988), the
target is a fixed goal that the meta-learner should try to produce within the K-step budget.

Finally, to improve the meta-optimisation landscape, we introduce a matching function µ : X ×X →
R+ that measures the (dis)similarity between the meta-learner’s output, x(K)(w), and the target, x̃,
in a matching space defined by µ (see Figure 1). Taken together, the BMG update is defined by

w̃ = w−β∇w µ
(
x̃, x(K)(w)

)
, β ∈ R+, (2)

3

Published as a conference paper at ICLR 2022

where the gradient is with respect to the second argument of µ. Thus, BMG describes a family of
algorithms based on the choice of matching function µ and TB ξ. In particular, MG is a special case of
BMG under matching function µ(x̃,x(K)) = ‖x̃−x(K) ‖22 and TB ξ(x(K)) = x(K)− 1

2∇xf(x(K)),
since the bootstrapped meta-gradient reduces to the standard meta-gradient:

∇w
∥∥∥x̃− x(K)(w)

∥∥∥2

2
= −2D

(
x̃− x(K)

)
= D∇xf

(
x(K)

)
= ∇wf

(
x(K)(w)

)
, (3)

where D denotes the (transposed) Jacobian of x(K)(w). For other matching functions and target
strategies, BMG produces different meta-updates compared to MG. We discuss these choices below.

Matching Function Of primary concern to us are models that output a probabilistic distribution,
πx. A common pseudo-metric over a space of probability distributions is the Kullback-Leibler (KL)
divergence. For instance, Natural Gradients (Amari, 1998) point in the direction of steepest descent
under the KL-divergence, often approximated through a KL-regularization term (Pascanu & Bengio,
2014). KL-divergences also arise naturally in RL algorithms (Kakade, 2001; Schulman et al., 2015;
2017; Abdolmaleki et al., 2018). Hence, a natural starting point is to consider KL-divergences
between the target and the iterate, e.g. µ(x̃,x(K)) = KL (πx̃ ‖ πx(K)). In actor-critic algorithms
(Sutton et al., 1999), the policy defines only part of the agent—the value function defines the other.
Thus, we also consider a composite matching function over both policy and value function.

Target Bootstrap We analyze conditions under which BMG guarantees performance improvements
in Section 4 and find that the target should co-align with the gradient direction. Thus, in this paper we
focus on gradient-based TBs and find that they perform well empirically. As with matching functions,
this is a small subset of all possible choices; we leave the exploration of other choices for future work.

4 PERFORMANCE GUARANTEES

In this analysis, we restrict attention to the noise-less setting (true expectations). In this setting, we ask
three questions: (1) what local performance guarantees are provided by MG? (2) What performance
guarantees can BMG provide? (3) How do these guarantees relate to each other? To answer these
questions, we analyse how the performance around f(x(K)(w)) changes by updating w either under
standard meta-gradients (Eq. 1) or bootstrapped meta-gradients (Eq. 2).

First, consider improvements under the MG update. In online optimisation, the MG update can
achieve strong convergence guarantees if the problem is well-behaved (van Erven & Koolen, 2016),
with similar guarantees in the multi-task setting (Balcan et al., 2019; Khodak et al., 2019; Denevi et al.,
2019). A central component of these results is that the MG update guarantees a local improvement
in the objective. Lemma 1 below presents this result in our setting, with the following notation:
let ‖u ‖A :=

√
〈u, Au〉 for any square real matrix A. Let GT = DTD ∈ Rnx×nx , with D :=[

∂
∂w x(K)(w)

]T ∈ Rnw×nx . Note that∇wf(x(K)(w)) = D∇xf(x(K)).

Lemma 1 (MG Descent). Let w′ be given by Eq. 1. For β sufficiently small, f
(
x(K)(w′)

)
−

f
(
x(K)(w)

)
= −β‖∇xf(x(K))‖2GT +O(β2) < 0.

We defer all proofs to Appendix A. Lemma 1 relates the gains obtained under standard meta-gradients
to the local gradient norm of the objective. Because the meta-objective is given by f , the MG
update is not scale-free (c.f. Schraudolph, 1999), nor invariant to re-parameterisation. If f is highly
non-linear, the meta-gradient can vary widely, preventing efficient performance improvement. Next,
we turn to BMG, where we assume µ is differentiable and convex, with 0 being its minimum.
Theorem 1 (BMG Descent). Let w̃ be given by Eq. 2 for some TB ξ. The BMG update satisfies

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
=
β

α

(
µ(x̃,x(K)−αGT g)− µ(x̃,x(K))

)
+ o(β(α+ β)).

For (α, β) sufficiently small, there exists infinitely many ξ for which f
(
x(K)(w̃)

)
−f
(
x(K)(w)

)
< 0.

In particular, ξ(x(K)) = x(K)−αGT g yields improvements

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
= −β

α
µ(x̃,x(K)) + o(β(α+ β)) < 0.

This is not an optimal rate; there exists infinitely many TBs that yield greater improvements.

4

Published as a conference paper at ICLR 2022

Theorem 1 portrays the inherent trade-off in BMG; targets should align with the local direction of
steepest descent, but provide as much learning signal as possible. Importantly, this theorem also
establishes that µ directly controls for curvature as improvements are expressed in terms of µ. While
the TB ξαG(x(K)) := x(K)−αGT g yields performance improvements that are proportional to the
meta-loss itself, larger improvements are possible by choosing a TB that carries greater learning
signal (by increasing µ(x̃,x(K))). To demonstrate that BMG can guarantee larger improvements
to the update rule than MG, we consider the TB ξαG with µ the (squared) Euclidean norm. Let
r := ‖∇f

(
x(K)

)
‖2/‖GT∇f

(
x(K)

)
‖2 denote the gradient norm ratio.

Corollary 1. Let µ = ‖·‖22 and x̃ = ξrG(x(K)). Let w′ be given by Eq. 1 and w̃ be given by Eq. 2. For
β sufficiently small, f

(
x(K)(w̃)

)
≤ f

(
x(K)(w′)

)
, strictly if GGT 6= GT and GT∇xf(x(K)) = 0.

Discussion Our analysis focuses on an arbitrary (albeit noiseless) objective f and establishes that
BMG can guarantee improved performance under a variety of TBs. We further show that BMG can
yield larger local improvements than MG. To identify optimal TBs, further assumptions are required
on f and µ, but given these Theorem 1 can serve as a starting point for more specialised analysis.
Empirically, we find that taking L steps on the meta-learned update with an final gradient step on the
objective performs well. Theorem 1 exposes a trade-off for targets that are “far” away. Empirically,
we observe clear benefits from bootstraps that unroll the meta-learner for several steps before taking
a gradient step on f ; exploring other forms of bootstraps is an exciting area for future research.

5 REINFORCEMENT LEARNING

We consider a typical reinforcement learning problem, modelled as an MDPM = (S,A,P,R, γ).
Given an initial state s0 ∈ S , at each time step t ∈ N, the agent takes an action at ∼ πx(a | st) from
a policy π : S ×A → [0, 1] parameterised by x. The agent obtains a reward rt+1 ∼ R(st,at, st+1)
based on the transition st+1 ∼ P(st+1 | st,at). The action-value of the agent’s policy given a
state s0 and action a0 is given by Qx(s0,a0) := E[

∑∞
t=0 γ

trt+1 | s0,a0, πx] under discount rate
γ ∈ [0, 1). The corresponding value of policy πx is given by Vx(s0) := Ea0∼πx(a | s0)[Qx(s0,a0)].

The agent’s problem is to learn a policy that maximises the value given an expectation over s0, defined
either by an initial state distribution in the episodic setting (e.g. Atari, Section 5.2) or the stationary
state-visitation distribution under the policy in the non-episodic setting (Section 5.1). Central to RL
is the notion of policy-improvement, which takes a current policy πx and constructs a new policy πx′

such that E[Vx′] ≥ E[Vx]. A common policy-improvement step is arg maxx′ Ea∼πx′ (a|s)[Qx(s, a)].

Most works in meta-RL rely on actor-critic algorithms (Sutton et al., 1999). These treat the above
policy-improvement step as an optimisation problem and estimate a policy-gradient (Williams
& Peng, 1991; Sutton et al., 1999) to optimise x. To estimate Vx, these introduce a critic vz
that is jointly trained with the policy. The policy is optimised under the current estimate of its
value function, while the critic is tracking the value function by minimizing a Temporal-Difference
(TD) error. Given a rollout τ = (s0,a0, r1, s1, . . . , rT , sT), the objective is given by f(x, z) =
εPG `PG(x) + εEN `EN(x) + εTD `TD(z), εPG, εEN, εTD ∈ R+, where

`EN(x) =
∑
t∈τ

∑
a∈A

πx(a | st) log πx(a | st), `TD(z) =
1

2

∑
t∈τ

(
G

(n)
t − vz(st)

)2

,

`PG(x) = −
∑
t∈τ

ρt log πx(at | st)
(
G

(n)
t − vz(st)

)
,

(4)

where ρt denotes an importance weight and G(n)
t denotes an n-step bootstrap target. Its form depends

on the algorithm; in Section 5.1, we generate rollouts from πx (on-policy), in which case ρt = 1 and
G

(n)
t =

∑(n−1)
i=0 γirt+i+1 + γnvz̄(st+n)∀t, where z̄ denotes fixed (non-differentiable) parameters.

In the off-policy setting (Section 5.2), ρ corrects for sampling bias and G(n)
t is similarly adjusted.

5

Published as a conference paper at ICLR 2022

2 4 8 16 32 64 outer = 0 outer = 0.1K+L

1 1 1 3 1 3 7 1 3 7 15 1 3 7 15 31 1 3 7 15 31 1 3 7 15 31K

0.0

0.5

1.0

1.5
R

et
ur

n
af

te
r

10
M

 s
te

ps
 (M

ill
io

ns
) Bootstrapped Meta-gradients Meta-gradients No MG

0.05

0.15

0.25

R
ew

./S
te

p

0 100000 200000 300000
Env Steps into Cycle

0.0

0.2

0.4

0.6

E
nt

ro
py

 R
at

e

No MG BMG MG

Figure 2: Non-stationary grid-world (Section 5.1). Left: Comparison of total returns under an
actor-critic agent over 50 seeds. Right: Learned entropy-regularization schedules. The figure depicts
the average regularization weight (ε) over 4 task-cycles at 6M steps in the environment.

5.1 A NON-STATIONARY AND NON-EPISODIC GRID WORLD

0.05

0.15

0.25

R
ew

./S
te

p

0 100000 200000 300000
Env Steps into Cycle

0.1

0.2

0.3

0.4

No MG L=16 L=32 L=128

Figure 3: BMG ε-greedy explo-
ration under a Q(λ)-agent.

We begin with a tabular grid-world with two items to collect.
Once an item is collected, it is randomly re-spawned. One item
yields a reward of +1 and the other a reward of−1. The reward
is flipped every 100,000 steps. To succeed, a memory-less
agent must efficiently re-explore the environment. We study an
on-policy actor-critic agent with εPG = εTD = 1. As baseline,
we tune a fixed entropy-rate weight ε = εEN. We compare
against agents that meta-learn ε online. For MG, we use the
actor-critic loss as meta-objective (ε fixed), as per Eq. 1. The
setup is described in full in Appendix B.1

BMG Our primary focus is on the effect of bootstrapping. Be-
cause this setup is fully online, we can generate targets using
the most recent L−1 parameter updates and a final agent param-
eter update using ε = 0. Hence, the computational complexity
of BMG is constant in L under this implementation (see Appendix B.2). We define the matching
function as the KL-divergence between x(K) and the target, µ(x̃,x(K)(w)) = KL (πx̃ ‖ πx(K)).

Figure 2 presents our main findings. Both MG and BMG learn adaptive entropy-rate schedules that
outperform the baseline. However, MG fails if ε = 0 in the meta-objective, as it becomes overly
greedy (Figure 9). MG shows no clear benefit of longer meta-learning horizons, indicating that
myopia stems from the objective itself. In contrast, BMG exhibits greater adaptive capacity and is
able to utilise greater meta-learning horizons. Too short horizons induce myopia, whereas too long
prevent efficient adaptation. For a given horizon, increasing K is uniformly beneficial. Finally, we
find that BMG outperforms MG for a given horizon without backpropagating through all updates.
For instance, for K = 8, BMG outperforms MG with K = 1 and L = 7. Our ablation studies
(Appendix B.2) show that increasing the target bootstrap length counters myopia; however, using the
meta-learned update rule for all L steps can derail meta-optimization.

Next, we consider a new form of meta-learning: learning ε-greedy exploration in a Q(λ)-agent
(precise formulation in Appendix B.3). While the ε parameter has a similar effect to entropy-
regularization, ε is a parameter applied in the behaviour-policy while acting. As it does not feature in
the loss function, it is not readily optimized by existing meta-gradient approaches. In contrast, BMG
can be implemented by matching the policy derived from a target action-value function, precisely as
in the actor-critic case. An implication is that BMG can meta-learn without backpropagating through
the update rule. Significantly, this opens up to meta-learning (parts of) the behaviour policy, which is
hard to achieve in the MG setup as the behaviour policy is not used in the update rule. Figure 3 shows
that meta-learning ε-greedy exploration in this environment significantly outperforms the best fixed ε
found by hyper-parameter tuning. As in the actor-critic case, we find that BMG responds positively
to longer meta-learning horizons (larger L); see Appendix B.3, Figure 12 for detailed results.

6

Published as a conference paper at ICLR 2022

Games with absolute difference > 0.5

0

10

20

30

40

R
el

at
iv

e
pe

rf
or

m
an

ce

0 50M 100M 150M 200M
Learning frames

0

1

2

3

4

5

6

M
ed

ia
n

hu
m

an
 n

or
m

al
iz

ed
 s

co
re

IMPALA
192%, [8]

Metagradient
287%, [44]

STACX
364%, [45]

LASER
431%, [32]

BMG
611% (ours)BMG w. KL & V, L=4

BMG w. KL & V
BMG w. KL
STACX*

Figure 4: Human-normalized score across the 57 games in Atari ALE. Left: per-game difference in
score between BMG and our implementation of STACX∗ at 200M frames. Right: Median scores
over learning compared to published baselines. Shading depict standard deviation across 3 seeds.

5.2 ATARI

High-performing RL agents tend to rely on distributed learning systems to improve data efficiency
(Kapturowski et al., 2018; Espeholt et al., 2018). This presents serious challenges for meta-learning
as the policy gradient becomes noisy and volatile due to off-policy estimation (Xu et al., 2018;
Zahavy et al., 2020). Theorem 1 suggests that BMG can be particularly effective in this setting under
the appropriate distance function. To test these predictions, we adapt the Self-Tuning Actor-Critic
(STACX; Zahavy et al., 2020) to meta-learn under BMG on the 57 environments in the Atari Arcade
Learning Environment (ALE; Bellemare et al., 2013).

Protocol We follow the original IMPALA setup (Espeholt et al., 2018), but we do not downsample
or gray-scale inputs. Following the literature, we train for 200 million frames and evaluate agent
performance by median Human Normalized Score (HNS) across 3 seeds (Espeholt et al., 2018; Xu
et al., 2018; Zahavy et al., 2020).

STACX The IMPALA actor-critic agent runs multiple actors asynchronously to generate experience
for a centralized learner. The learner uses truncated importance sampling to correct for off-policy
data in the actor-critic update, which adjusts ρ and V̂ in Eq. 4. The STACX agent (Zahavy et al.,
2020) is a state-of-the-art meta-RL agent. It builds on IMPALA in two ways: (1) it introduces
auxiliary tasks in the form of additional objectives that differ only in their hyper-parameters; (2) it
meta-learns the hyper-parameters of each loss function (main and auxiliary). Meta-parameters are
given by w = (γi, εiPG, ε

i
EN, ε

i
TD, λ

i, αi)1+n
i=1 , where λ and α are hyper-parameters of the importance

weighting mechanism and n = 2 denotes the number of auxiliary tasks. STACX uses the IMPALA
objective as the meta-objective with K = 1. See Appendix C for a complete description.

BMG We conduct ceteris-paribus comparisons that only alter the meta-objective: agent parameter
updates are identical to those in STACX. When L = 1, the target takes a gradient step on the original
IMPALA loss, and hence the only difference is the form of the meta-objective; they both use the
same data and gradient information. For L > 1, the first L− 1 steps bootstrap from the meta-learned
update rule itself. To avoid overfitting, each of the L− 1 steps use separate replay data; this extra
data is not used anywhere else. To understand matching functions, we test policy matching and
value matching. Policy matching is defined by µ(x̃,x(K)(w)) = KL (πx̃ ‖ πx(1)); we also test a
symmetric KL-divergence (KL-S). Value matching is defined by µ(z̃, z(1)(w)) := E

[
(vz̃ − vz(1))2

]
.

Figure 4 presents our main comparison. BMG with L = 1 and policy-matching (KL) obtains a
median HNS of ~500%, compared to ~350% for STACX. Recall that for L = 1, BMG uses the
same data to compute agent parameter update, target update, and matching loss; hence this is an
apples-to-apples comparison. Using both policy matching and value matching (with 0.25 weight
on the latter) further improves the score to ~520% and outperforms STACX across almost all 57
games, with a few minor exceptions (left panel, Figure 4). These results are obtained without tuning
hyper-parameters for BMG. Finally, extending the meta-learning horizon by setting L = 4 and
adjusting gradient clipping from .3 to .2 obtains a score of ~610%.

7

Published as a conference paper at ICLR 2022

SGD
L2

L=1

RMS
L2

L=1

RMS
KL

L=1

RMS
KL & V

L=1

RMS
KL & V

L=4

3.5

4.0

4.5

5.0

5.5

6.0

H
um

an
 n

or
m

al
iz

ed
 s

co
re

KL KL & V

20

25

30

35

40

E
pi

so
de

 R
et

ur
n

(1
00

0x
)

L
1
2
4
8

2 0 2 4
Normalized mean episode return

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

D
en

si
ty

KL & V
KL-S
KL
V

Figure 5: Ablations on Atari. Left: human normalized score decomposition of TB w.r.t. optimizer
(SGD, RMS), matching function (L2, KL, KL & V), and bootstrap steps (L). BMG with (SGD,
L2, L= 1) is equivalent to STACX. Center: episode return on Ms Pacman for different L. Right:
distribution of episode returns over all 57 games, normalized per-game by mean and standard
deviation. All results are reported between 190-200M frames over 3 independent seeds.

In Figure 5, we turn to ablations. In the left-panel, we deconstruct BMG into STACX (i.e., MG)
and compare performances. We find that roughly 45% of the performance gains comes from
curvature correction (given by using RMSProp in the target bootstrap). The matching function can
further control curvature to obtain performance improvements, accounting for roughly 25%. Finally,
increasing L, thereby reducing myopia, accounts for about 30% of the performance improvement.
Comparing the cosine similarity between consequtive meta-gradients, we find that BMG improves
upon STACX by two orders of magnitude. Detailed ablations in Appendix C.1.

The center panel of Figure 5 provides a deep-dive in the effect of increasing the meta-learning horizon
(L > 1) in Ms Pacman. Performance is uniformly increasing in L, providing further support that
BMG can increase the effective meta-horizon without increasing the number of update steps to
backpropagate through. A more in-depth analysis Appendix C.3 reveals that K is more sensitive to
curvature and the quality of data. However, bootstrapping only from the meta-learner for all L steps
can lead to degeneracy (Appendix C.2, Figure 14). In terms of replay (Appendix C.2), while standard
MG degrades with more replay, BMG benefits from more replay in the target bootstrap.

The right panel of Figure 5 studies the effect of the matching function. Overall, joint policy and value
matching exhibits best performance. In contrast to recent work (Tomar et al., 2020; Hessel et al.,
2021), we do not find that reversing the KL-direction is beneficial. Using only value-matching results
in worse performance, as it does not optimise for efficient policy improvements. Finally, we conduct
detailed analysis of scalability in Appendix C.4. While BMG is 20% slower for K = 1, L = 1 due to
the target bootstrap, it is 200% faster when MG uses K = 4 and BMG uses K = 1, L = 3.

6 MULTI-TASK FEW-SHOT LEARNING

Multi-task meta-learning introduces an expectation over task objectives. BMG is applied by comput-
ing task-specific bootstrap targets, with the meta-gradient being the expectation over task-specific
matching losses. For a general multi-task formulation, see Appendix D; here we focus on the few-shot
classification paradigm. Let fD : X → R denote the negative log-likelihood loss on some data D. A
task is defined as a pair of datasets (Dτ ,D′τ), where Dτ is a training set and D′τ is a validation set.
In the M -shot-N -way setting, each task has N classes and Dτ contains M observations per class.

The goal of this experiment is to study how the BMG objective behaves in the multi-task setting.
For this purpose, we focus on the canonical MAML setup (Finn et al., 2017), which meta-learns an
initialisation x

(0)
τ = w for SGD that is shared across a task distribution p(τ). Adaptation is defined

by x
(k)
τ = x

(k−1)
τ +α∇fDτ (x

(k−1)
τ), with α ∈ R+ fixed. The meta-objective is the validation loss in

expectation over the task distribution: E[fD′
τ
(x

(K)
τ (w))]. Several works have extended this setup by

altering the update rule (ϕ) (Lee & Choi, 2018; Zintgraf et al., 2019; Park & Oliva, 2019; Flennerhag
et al., 2020). As our focus is on the meta-objective, we focus on comparisons with MAML.

8

Published as a conference paper at ICLR 2022

0 100 200 300
Meta-train batches (thousands)

62

63

64

65

M
et

a-
te

st
 a

cc
ur

ac
y

(%
) BMG

MG

62 63 64 65
Meta-test accuracy (%)

0

5

10

15

20

25

M
et

a-
tr

ai
ni

ng
 ti

m
e

(h
) BMG

MG

1 5 10
K

63.5

64.0

64.5

65.0

65.5

M
et

a-
te

st
 a

cc
ur

ac
y

(%
)

BMG
MG

Figure 6: MiniImagenet 5-way-5-shot meta-test performance. Left: performance as a function of
meta-training batches. Center: performance as a function of wall-clock time. Right: best reported
performance under each K. Error bars depict standard deviation across 3 seeds.

BMG For each task, a target x̃τ is bootstrapped by taking L SGD steps from x
(K)
τ using validation

data. The BMG objective is the expected distance, E[µ(x̃τ ,x
(K)
τ)]. The KL-divergence as matching

function has an interesting connection to MG. The target x̃τ can be seen as an “expert” on task τ
so that BMG is a form of distillation (Hinton et al., 2015). The log-likelihood loss used by MG is
also a KL divergence, but w.r.t. a “cold” expert that places all mass on the true label. Raising the
temperature in the target can allow BMG to transfer more information (Hinton & Plaut, 1987).

Setup We use the MiniImagenet benchmark (Vinyals et al., 2016) and study two forms of efficiency:
for data efficiency, we compare meta-test performance as function of the number of meta-training
batches; for computational efficiency, we compare meta-test performance as a function of training
time. To reflect what each method would achieve for a given computational budget, we report
meta-test performance for the hyper-parameter configuration with best meta-validation performance.
For MG, we tune the meta-learning rate β ∈ {10−3, 10−4}, K ∈ {1, 5, 10}, and options to use
first-order approximations ((FOMAML; Finn et al., 2017) or (ANIL; Raghu et al., 2020)). For BMG,
we tune β ∈ {10−3, 10−4}, K ∈ {1, 5}, as well as L ∈ {1, 5, 10}, and the direction of the KL.

The left panel of Figure 6 presents results on data efficiency. For few meta-updates, MG and BMG are
on par. For 50 000 meta-updates and beyond, BMG achieves strictly superior performance, with the
performance delta increasing over meta-updates. The central panel presents results on computational
efficiency; we plot the time required to reach a given meta-test performance. This describes the
relationship between performance and computational complexity. We find BMG exhibits better
scaling properties, reaching the best performance of MG in approximately half the time. Finally, in
the right panel, we study the effect of varying K. BMG achieves higher performance for both K = 1
and K = 5. We allow MG to also use K = 10, but this did not yield any significant gains. We
conduct an analysis of the impact BMG has on curvature and meta-gradient variance in Appendix D.3.
To summarise, we find that BMG significantly improves upon the MG meta-objective, both in terms
of data efficiency, computational efficiency, and final performance.

7 CONCLUSION

In this paper, we have put forth the notion that efficient meta-learning does not require the meta-
objective to be expressed directly in terms of the learner’s objective. Instead, we present an alternative
approach that relies on having the meta-learner match a desired target. Here, we bootstrap from the
meta-learned update rule itself to produce future targets. While using the meta-learned update rule as
the bootstrap allows for an open-ended meta-learning process, some grounding is necessary. As an
instance of this approach, we study bootstrapped meta-gradients, which can guarantee performance
improvements under appropriate choices of targets and matching functions that can be larger than
those of standard meta-gradients. Empirically, we observe substantial improvements on Atari and
achieve a new state-of-the-art, while obtaining significant efficiency gains in a multi-task meta-
learning setting. We explore new possibilities afforded by the target-matching nature of the algorithm
and demonstrate that it can learn to explore in an ε-greedy Q-learning agent.

9

Published as a conference paper at ICLR 2022

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a Posteriori Policy Optimisation. In International Conference on Learning
Representations, 2018.

Ferran Alet, Martin F. Schneider, Tomas Lozano-Perez, and Leslie Pack Kaelbling. Meta-Learning
Curiosity Algorithms. In International Conference on Learning Representations, 2020.

Shun-Ichi Amari. Natural Gradient Works Efficiently in Learning. Neural computation, 10(2):
251–276, 1998.

Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to Learn by Gradient Descent by Gradient Descent. In Advances
in Neural Information Processing Systems, 2016.

Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. How to Train Your MAML. In
International Conference on Learning Representations, 2019.

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable Guarantees for Gradient-
Based Meta-Learning. In International Conference on Machine Learning, 2019.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The Arcade Learning Environment: An
Evaluation Platform for General Agents. Journal of Artificial Intelligence Research, 47:253–279,
2013.

Yoshua Bengio. Gradient-Based Optimization of Hyperparameters. Neural computation, 12(8):
1889–1900, 2000.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a Synaptic Learning Rule. Université
de Montréal, Département d’informatique et de recherche opérationnelle, 1991.

Y Cao, T Chen, Z Wang, and Y Shen. Learning to Optimize in Swarms. Advances in Neural
Information Processing Systems, 2019.

Yutian Chen, Matthew W. Hoffman, Sergio Gomez Colmenarejo, Misha Denil, Timothy P. Lillicrap,
and Nando de Freitas. Learning to learn for Global Optimization of Black Box Functions. In
Advances in Neural Information Processing Systems, 2016.

Giulia Denevi, Dimitris Stamos, Carlo Ciliberto, and Massimiliano Pontil. Online-Within-Online
Meta-Learning. In Advances in Neural Information Processing Systems, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A Large-Scale
Hierarchical Image Database. In Computer Vision and Pattern Recognition, 2009.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable Distributed Deep-RL
with Importance Weighted Actor-Learner Architectures. In International Conference on Machine
Learning, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks. In International Conference on Machine Learning, 2017.

Sebastian Flennerhag, Pablo G. Moreno, Neil D. Lawrence, and Andreas Damianou. Transferring
Knowledge across Learning Processes. In International Conference on Learning Representations,
2019.

Sebastian Flennerhag, Andrei A. Rusu, Razvan Pascanu, Francesco Visin, Hujun Yin, and Raia
Hadsell. Meta-Learning with Warped Gradient Descent. In International Conference on Learning
Representations, 2020.

Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas L. Griffiths. Recasting
Gradient-Based Meta-Learning as Hierarchical Bayes. In International Conference on Learning
Representations, 2018.

10

Published as a conference paper at ICLR 2022

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
Bilal Piot, koray kavukcuoglu, Remi Munos, and Michal Valko. Bootstrap Your Own Latent:
A New Approach to Self-Supervised Learning. In Advances in Neural Information Processing
Systems, 2020.

Zhaohan Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-Bastien Grill, Florent Altché, Rémi
Munos, and Mohammad Gheshlaghi Azar. Bootstrap Latent-Predictive Representations for Multi-
task Reinforcement Learning. In International Conference on Machine Learning, 2020.

Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theo-
phane Weber, David Silver, and Hado van Hasselt. Muesli: Combining Improvements in Policy
Optimization. arXiv preprint arXiv:2104.06159, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the Knowledge in a Neural Network. arXiv
preprint arXiv:1503.02531, 2015.

Geoffrey E. Hinton and David C. Plaut. Using Fast Weights to Deblur Old Memories. In Cognitive
Science Society, 1987.

Sepp Hochreiter, A. Steven Younger, and Peter R. Conwell. Learning To Learn Using Gradient
Descent. In International Conference on Artificial Neural Networks, 2001.

Ghassen Jerfel, Erin Grant, Tom Griffiths, and Katherine A Heller. Reconciling Meta-Learning and
Continual Learning with Online Mixtures of Tasks. In Advances in Neural Information Processing
Systems, 2019.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa,
Sarah Bates, Suresh Bhatia, Nan Boden, and Al Borchers. In-Datacenter Performance Analysis of
a Tensor Processing Unit. In International Symposium on Computer Architecture, 2017.

Sham M Kakade. A Natural Policy Gradient. In Advances in Neural Information Processing Systems,
2001.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
Experience Replay in Distributed Reinforcement Learning. In International Conference on
Learning Representations, 2018.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive Gradient-Based Meta-
Learning Methods. Advances in Neural Information Processing Systems, 2019.

Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving Generalization in Meta
Reinforcement Learning Using Learned Objectives. arXiv preprint arXiv:1910.04098, 2019.

Yoonho Lee and Seungjin Choi. Gradient-Based Meta-Learning with Learned Layerwise Metric and
Subspace. In International Conference on Machine Learning, 2018.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning Gradient Descent: Better Generalization and
Longer Horizons. In International Conference on Machine Learning, 2017.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the Arcade Learning Environment: Evaluation Protocols and Open
Problems for General Agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-Based Hyperparameter Opti-
mization Through Reversible Learning. In International conference on machine learning, pp.
2113–2122. PMLR, 2015.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and Correcting Pathologies in the Training of Learned Optimizers. In International
Conference on Machine Learning, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602, 2013.

11

Published as a conference paper at ICLR 2022

Alex Nichol, Joshua Achiam, and John Schulman. On First-Order Meta-Learning Algorithms. arXiv
preprint ArXiv:1803.02999, 2018.

Junhyuk Oh, Matteo Hessel, Wojciech M Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder
Singh, and David Silver. Discovering Reinforcement Learning Algorithms. In Advances in Neural
Information Processing Systems, volume 33, 2020.

Eunbyung Park and Junier B Oliva. Meta-Curvature. In Advances in Neural Information Processing
Systems, 2019.

Razvan Pascanu and Yoshua Bengio. Revisiting Natural Gradient for Deep Networks. In International
Conference on Learning Representations, 2014.

Jing Peng and Ronald J. Williams. Incremental Multi-Step Q-Learning. In International Conference
on Machine Learning, 1994.

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid Learning or Feature
Reuse? Towards Understanding the Effectiveness of MAML. In International Conference on
Learning Representations, 2020.

Sachin Ravi and Hugo Larochelle. Optimization as a Model for Few-Shot Learning. In International
Conference on Learning Representations, 2017.

Esteban Real, Chen Liang, David R. So, and Quoc V. Le. AutoML-Zero: Evolving Machine Learning
Algorithms From Scratch. In International Conference on Machine Learning, 2020.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre, Guillaume Desjardins, James Kirk-
patrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
Distillation. arXiv preprint arXiv:1511.06295, 2015.

Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-Learning with Latent Embedding Optimization. In International
Conference on Learning Representations, 2019.

Jürgen Schmidhuber. Evolutionary Principles in Self-Referential Learning. PhD thesis, Technische
Universität München, 1987.

Jürgen Schmidhuber. A ’self-referential’ weight matrix. In International Conference on Artificial
Neural Networks, pp. 446–450. Springer, 1993.

Simon Schmitt, Matteo Hessel, and Karen Simonyan. Off-Policy Actor-Critic with Shared Experience
Replay. In International Conference on Machine Learning, 2020.

Nicol N. Schraudolph. Local Gain Adaptation in Stochastic Gradient Descent. In International
Conference on Artificial Neural Networks, 1999.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust Region
Policy Optimization. In International Conference on Machine Learning, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv preprint arXiv:1707.06347, 2017.

Elizabeth S. Spelke and Katherine D Kinzler. Core Knowledge. Developmental science, 10(1):89–96,
2007.

Bradly C. Stadie, Ge Yang, Rein Houthooft, Xi Chen, Yan Duan, Yuhuai Wu, Pieter Abbeel, and Ilya
Sutskever. Some Considerations on Learning to Explore via Meta-Reinforcement Learning. In
Advances in Neural Information Processing Systems, 2018.

Richard S. Sutton. Learning to Predict by the Methods of Temporal Differences. Machine learning,
3(1):9–44, 1988.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy Gradient
Methods for Reinforcement Learning with Function Approximation. In Advances in Neural
Information Processing Systems, volume 99, 1999.

12

Published as a conference paper at ICLR 2022

Yee Whye Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirkpatrick, Raia Hadsell,
Nicolas Heess, and Razvan Pascanu. Distral: Robust Multitask Reinforcement Learning. In
Advances in Neural Information Processing Systems, 2017.

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror Descent Policy
Optimization. arXiv preprint arXiv:2005.09814, 2020.

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, and Pierre-Antoine Manzagol. Meta-Dataset: A Dataset
of Datasets for Learning to Learn from Few Examples. International Conference on Learning
Representations, 2020.

Tim van Erven and Wouter M Koolen. MetaGrad: Multiple Learning Rates in Online Learning. In
Advances in Neural Information Processing Systems, 2016.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Koray Kavukcuoglu, and Daan Wierstra. Match-
ing Networks for One Shot Learning. In Advances in Neural Information Processing Systems,
2016.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew Botvinick. Learning to Reinforcement Learn.
In Annual Meeting of the Cognitive Science Society, 2016.

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha
Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned Optimizers that Scale and Generalize.
In International Conference on Machine Learning, 2017.

Ronald J Williams and Jing Peng. Function Optimization using Connectionist Reinforcement
Learning Algorithms. Connection Science, 3(3):241–268, 1991.

Yuhuai Wu, Mengye Ren, Renjie Liao, and Roger B. Grosse. Understanding Short-Horizon Bias in
Stochastic Meta-Optimization. In International Conference on Learning Representations, 2018.

Zhongwen Xu, Hado P. van Hasselt, and David Silver. Meta-Gradient Reinforcement Learning. In
Advances in Neural Information Processing Systems, 2018.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-Learning
without Memorization. In International Conference on Learning Representations, 2020.

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado P van Hasselt, David
Silver, and Satinder Singh. A Self-Tuning Actor-Critic Algorithm. Advances in Neural Information
Processing Systems, 33, 2020.

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On Learning Intrinsic Rewards for Policy Gradient
Methods. Advances in Neural Information Processing Systems, 2018.

Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and Shimon Whiteson. Fast Context
Adaptation via Meta-Learning. In International Conference on Machine Learning, 2019.

13

Published as a conference paper at ICLR 2022

Bootstrapped Meta-Learning: Appendix

CONTENTS

Appendix A: proofs accompanying Section 4.
Appendix B: non-stationary Grid-World (Section 5.1).
Appendix C: ALE Atari (Section 5.2).
Appendix D: Multi-task meta-learning, Few-Shot Learning on MiniImagenet (Section 6).

A PROOFS

This section provides complete proofs for the results in Section 4. Throughout, we assume that
(x(0),h(0),w) is given and write x := x(0), h := h(0). We assume that h evolves according to some
process that maps a history H(k) := (x(0),h(0), . . . ,x(k−1),h(k−1),x(k)) into a new learner state
h(k), including any sampling of data (c.f. Section 3). Recall that we restrict attention to the noiseless
setting, and hence updates are considered in expectation. We define the map x(K)(w) by

x(1) = x(0) +ϕ
(
x(0),h(0),w

)
x(2) = x(1) +ϕ

(
x(1),h(1),w

)
...

x(K) = x(K−1) +ϕ
(
x(K−1),h(K−1),w

)
.

The derivative ∂
∂w x(K)(w) differentiates through each step of this process (Hochreiter et al., 2001).

As previously stated, we assume f is Lipschitz and that x(K) is Lipschitz w.r.t. w. We are now in a
position to prove results from the main text. We re-state them for convenience.

Lemma 1 (MG Descent). Let w′ be given by Eq. 1. For β sufficiently small, f
(
x(K)(w′)

)
−

f
(
x(K)(w)

)
= −β‖∇xf(x(K))‖2GT + o(β2) < 0.

Proof. Define g := ∇xf(x(K)(w)). The meta-gradient at (x,h,w) is given by ∇wf(x(K)(w)) =
D g. Under Eq. 1, we find w′ = w−βD g. By first-order Taylor Series Expansion of f around
(x,h,w′) with respect to w:

f
(
x(K)(w′)

)
= f

(
x(K)(w)

)
+ 〈D g,w′−w〉+ o(β2‖g ‖2GT)

= f
(
x(K)(w)

)
− β〈D g, D g〉+ o(β2‖g ‖2GT)

= f
(
x(K)(w)

)
− β‖g ‖2GT + o(β2‖g ‖2GT),

with ‖g ‖2GT ≥ 0 by virtue of positive semi-definiteness of G. Hence, for β2 small the residual
vanishes and the conclusion follows. �

Theorem 1 (BMG Descent). Let w̃ be given by Eq. 2 for some TB ξ. The BMG update satisfies

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
=
β

α

(
µ(x̃,x(K)−αGT g)− µ(x̃,x(K))

)
+ o(β(α+ β)).

For (α, β) sufficiently small, there exists infinitely many ξ for which f
(
x(K)(w̃)

)
−f
(
x(K)(w)

)
< 0.

In particular, ξ(x(K)) = x(K)−αGT g yields improvements

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
= −β

α
µ(x̃,x(K)) + o(β(α+ β)) < 0.

This is not an optimal rate; there exists infinitely many TBs that yield greater improvements.

14

Published as a conference paper at ICLR 2022

Proof. The bootstrapped meta-gradient at (x,h,w) is given by

∇wµ
(
x̃, x(K)(w)

)
= D u, where u := ∇zµ

(
x̃, z

)∣∣∣
z=x(K)

.

Under Eq. 2, we find w̃ = w−βD u. Define g := ∇xf(x(K)). By first-order Taylor Series
Expansion of f around (x,h, w̃) with respect to w:

f
(
x(K)(w̃)

)
= f

(
x(K)(w)

)
+ 〈D g, w̃ −w〉+ o(β2‖D u ‖22)

= f
(
x(K)(w)

)
− β〈D g, D u〉+ o(β2‖D u ‖22)

= f
(
x(K)(w)

)
− β〈u, GT g〉+ o(β2‖u ‖2GT). (5)

To bound the inner product, expand µ(x̃, ·) around a point x(K) +d, where d ∈ Rnx , w.r.t. x(K):

µ(x̃,x(K) +d) = µ(x̃,x(K)) + 〈u, d〉+ o(‖d ‖22).

Thus, choose d = −αGT g, for some α ∈ R+ and rearrange to get

−β〈u, GT g〉 =
β

α

(
µ(x̃,x(K)−αGT g)− µ(x̃,x(K))

)
+ o(αβ‖g ‖2GT).

Substitute into Eq. 5 to obtain

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
=
β

α

(
µ(x̃,x(K)−αGT g)− µ(x̃,x(K))

)
(6)

+ o(αβ‖g ‖2GT + β2‖u ‖2GT).

Thus, the BMG update comes out as the difference between to distances. The first distance is a
distortion terms that measures how well the target aligns to the tangent vector −GT g, which is the
direction of steepest descent in the immediate vicinity of x(K) (c.f. Lemma 1). The second term
measures learning; greater distance carry more signal for meta-learning. The two combined captures
the inherent trade-off in BMG; moving the target further away increases distortions from curvature,
but may also increase the learning signal. Finally, the residual captures distortions due to curvature.

Existence. To show that there always exists a target that guarantees a descent direction, choose
x̃ = x(K)−αGT g. This eliminates the first distance in Eq. 6 as the target is perfectly aligned the
direction of steepest descent and we obtain

f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
= −β

α
µ(x̃,x(K)) + o(β(α+ β)).

The residual vanishes exponentially fast as α and β go to 0. Hence, there is some (ᾱ, β̄) ∈ R2
+ such

that for any (α, β) ∈ (0, ᾱ) × (0, β̄), f
(
x(K)(w̃)

)
− f

(
x(K)(w)

)
< 0. For any such choice of

(α, β), by virtue of differentiability in µ there exists some neighborhood N around x(K)−αGT g
for which any x̃ ∈ N satisfy f

(
x(K)(w̃)

)
− f

(
x(K)(w)

)
< 0.

Efficiency. We are to show that, given (α, β), the set of optimal targets does not include x̃ =
x(K)−αGT g. To show this, it is sufficient to demonstrate that show that this is not a local minimum
of the right hand-side in Eq. 6. Indeed,

∇x̃
(
β

α

(
µ(x̃,x(K)−αGT g)− µ(x̃,x(K))

)
+ o(αβ‖g ‖2GT + β2‖u ‖2GT)

)∣∣∣∣
x̃=x(K)−αGT g

= −β
α
∇x̃ µ(x̃,x(K))

∣∣∣
x̃=x(K)−αGT g

+ β2 o 6= 0,

where β2 o is the gradient of the residual (‖u ‖22 depends on x̃) w.r.t. x̃ = x(K)−αGT g. To
complete the proof, let ũ denote the above gradient. Construct an alternative target x̃′ = x̃ − ηũ
for some η ∈ R+. By standard gradient descent argument, there is some η̄ such that any η ∈ (0, η̄)
yields an alternate target x̃′ that improves over x̃. �

15

Published as a conference paper at ICLR 2022

We now prove that, controlling for scale, BMG can yield larger performance gains than MG. Recall
that ξαG(x(K)) = x(K)−αGT∇f x(K). Consider ξrG, with r := ‖∇f(x(K))‖2/‖GT∇f(x(K))‖2.
Corollary 1. Let µ = ‖ · ‖22 and x̃ = ξrG(x(K)). Let w′ be given by Eq. 1 and w̃ be given by Eq. 2.
For β sufficiently small, f

(
x(K)(w̃)

)
≤ f

(
x(K)(w′)

)
, with strict inequality if GGT 6= GT .

Proof. Let g := ∇xf
(
x(K)

)
. By Lemma 1, f

(
x(K)(w′)

)
−f
(
x(K)(w)

)
= −β〈GT g,g〉+O(β2).

From Theorem 1, with µ = ‖ · ‖22, f
(
x(K)(w̃)

)
−f
(
x(K)(w)

)
= −r〈GT g, GT g〉+O(β(α+β)).

For β sufficiently small, the inner products dominate and we have
f
(
x(K)(w̃)

)
− f

(
x(K)(w′)

)
≈ −β

(
r〈GT g, GT g〉 − 〈GT g,g〉

)
.

To determine the sign of the expression in parenthesis, consider the problem
max
v∈Rnx

〈GT g,v〉 s.t. ‖v ‖2 ≤ 1.

Form the Lagrangian L(v, λ) := 〈GT g,v〉 − λ(‖v ‖2 − 1). Solve for first-order conditions:

GT g−λ v∗

‖v∗ ‖2
= 0 =⇒ v∗ =

‖v∗ ‖2
λ

GT g .

If λ = 0, then we must have ‖v∗ ‖20, which clearly is not an optimal solution. Complementary slack-
ness then implies ‖v∗ ‖2 = 1, which gives λ = ‖v∗ ‖2‖GT g ‖2 and hence v∗ = GT g /‖GT g ‖2.
By virtue of being the maximiser, v∗ attains a higher function value than any other v with ‖v ‖2 ≤ 1,
in particular v = g /‖g ‖2. Evaluating the objective at these two points gives

〈GT g, GT g〉
‖GT g ‖2

≥ 〈G
T g,g〉
‖g ‖2

=⇒ r〈GT g, GT g〉 ≥ 〈GT g,g〉,

where we use that r = ‖g ‖2/‖GT g ‖2 by definition. Thus f
(
x(K)(w̃)

)
≤ f

(
x(K)(w′)

)
, with

strict inequality if GGT 6= GT and GT g 6= 0. �

B NON-STATIONARY NON-EPISODIC REINFORCEMENT LEARNING

B.1 SETUP

Figure 7:
Two-colors
Grid-world.
The agent’s
goal is to
collect either
blue or red
squared by
navigating the
green square.

This experiment is designed to provide a controlled setting to delineate the dif-
ferences between standard meta-gradients and bootstrapped meta-gradients. The
environment is a 5×5 grid world with two objects; a blue and a red square (Figure 7).
Thus, we refer to this environment as the two-colors domain. At each step, the
agent (green) can take an action to move either up, down, left, or right and observes
the position of each square and itself. If the agent reaches a coloured square, it
obtains a reward of either +1 or −1 while the colour is randomly moved to an unoc-
cupied location. Every 100 000 steps, the reward for each object flips. For all other
transitions, the agent obtains a reward of −0.04. Observations are constructed by
concatenating one-hot encodings of the each x- and y-coordinate of the two colours
and the agent’s position, with a total dimension of 2× 3× 5 = 30 (two coordinates
for each of three objects, with each one-hot vector being 5-dimensional).

The two-colors domain is designed such that the central component determining
how well a memory-less agent adapts is its exploration. Our agents can only regulate
exploration through policy entropy. Thus, to converge on optimal task behaviour,
the agent must reduce policy entropy. Once the task switches, the agent encounters
what is effectively a novel task (due to it being memory-less). To rapidly adapt
the agent must first increase entropy in the policy to cover the state-space. Once the agent observe
rewarding behaviour, it must then reduce entropy to converge on task-optimal behaviour.

All experiments run on the CPU of a single machine. The agent interacts with the environment and
update its parameters synchronously in a single stream of experience. A step is thus comprised of
the following operations, in order: (1) given observation, agent takes action, (2) if applicable, agent
update its parameters, (3) environment transitions based on action and return new observation. The
parameter update step is implemented differently depending on the agent, described below.

16

Published as a conference paper at ICLR 2022

Algorithm 1 N -step RL actor loop

Require: N . Rollout length.
Require: x ∈ Rnx . Policy parameters.
Require: s . Environment state.
B ← (s) . Initialise rollout.
for t = 1, 2, . . . , N do

a ∼ πx(s) . Sample action.
s, r ← env(s,a) . Take a step in environment.
B ← B∪(a, r, s) . Add to rollout.

end for
return s, B

Algorithm 2 K-step online learning loop

Require: N,K . Rollout length, meta-update length.
Require: x ∈ Rnx , z ∈ Rnz , w ∈ Rnw . Policy, value function, and meta parameters.
Require: s . Environment state.

for k = 1, 2, . . . ,K do
s, B ← ActorLoop(x, s, N) . Algorithm 1.
(x, z)← ϕ((x, z),B,w) . Inner update step.

end for
return s, x, z, B

Algorithm 3 Online RL with BMG

Require: N,K,L . Rollout length, meta-update length, bootstrap length.
Require: x ∈ Rnx , z ∈ Rnz , w ∈ Rnw . Policy, value function, and meta parameters.
Require: s . Environment state.

u← (x, z)
while True do

s,u(K), _← InnerLoop(u,w, s, N,K) . K-step inner loop, Algorithm 2.
s,u(K+L−1),B ← InnerLoop(u(K),w, s, N, L− 1) . L− 1 bootstrap, Algorithm 2.
ũ← u(K+L−1)−α∇u`(u(K+L−1),B) . Gradient step on objective `.
w← w−β∇wµ(ũ,u(K)(w)) . BMG outer step.
u← u(K+L−1) . Continue from most resent parameters.

end while

B.2 ACTOR-CRITIC EXPERIMENTS

Agent The first agent we evaluate is a simple actor-critic which implements a softmax policy (πx)
and a critic (vz) using separate feed-forward MLPs. Agent parameter updates are done according to
the actor-critic loss in Eq. 4 with the on-policy n-step return target. For a given parameterisation of the
agent, we interact with the environment for N = 16 steps, collecting all observations, rewards, and
actions into a rollout (Algorithm 1). When the rollout is full, the agent update its parameters under
the actor-critic loss with SGD as the optimiser (Algorithm 2). To isolate the effect of meta-learning,
all hyper-parameters except the entropy regularization weight (ε = εEN) are fixed (Table 1); for each
agent, we sweep for the learning rate that yields highest cumulative reward within a 10 million step
budget. For the non-adaptive baseline, we additionally sweep for the best regularization weight.

Meta-learning To meta-learn the entropy regularization weight, we introduce a small MLP with
meta-parameters w that ingests a statistic t of the learning process—the average reward over each of
the 10 most recent rollouts—and predicts the entropy rate εw(t) ∈ R+ to use in the agent’s parameter
update of x. To compute meta-updates, for a given horizon T = K or T = K + (L− 1), we fix w
and make T agent parameter updates to obtain a sequence (τ1,x

(1), z(1), . . . , τT ,x
(T), z(T)).

17

Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.5

1.0

1.5

C
um

ul
at

iv
e

R
ew

ar
d

(M
ill

io
ns

)

(a) Fixed entropy-regularization

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.5

1.0

1.5

C
um

ul
at

iv
e

R
ew

ar
d

(M
ill

io
ns

)

K=1
K=3
K=7
K=15
K=31

(b) Meta-gradients

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.5

1.0

1.5

C
um

ul
at

iv
e

R
ew

ar
d

(M
ill

io
ns

)

K=1
K=3
K=7
K=15
K=31

(c) Meta-gradients + regularization

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

0.0

0.5

1.0

1.5

C
um

ul
at

iv
e

R
ew

ar
d 1e6 K+L=2

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

K+L=4

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

K+L=8

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

K+L=16

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e7

K+L=32
K=1
K=3
K=7
K=15
K=31

(d) Bootstrapped meta-gradients

Figure 8: Total rewards on two-colors with actor-critics. Shading: standard deviation over 50 seeds.

MG is optimised by averaging each policy and entropy loss encountered in the sequence, i.e. the
meta-objective is given by 1

T

∑T
t=1 `

t
PG(x(t)(w)) + εmeta`

t
EN(x(t)(w)), where εmeta ∈ {0, 0.1} is a

fixed hyper-parameter and `t implies that the objective is computed under τt.

BMG is optimised by computing the matching loss µτT (x̃,x(K)(w)), where x̃ is given by x̃ =
x(T)−β∇x(`TPG(x(T)) + εmeta`

T
EN(x(T))). That is to say, the TB “unrolls” the meta-learner for L− 1

steps, starting from (x(K), z(K)), and takes a final policy-gradient step (εmeta = 0 unless otherwise
noted). Thus, in this setting, our TB exploits that the first (L − 1) steps have already been taken
by the agent during the course of learning (Algorithm 3). Moreover, the final Lth step only differs
in the entropy regularization weight, and can therefore be implemented without an extra gradient
computation. As such, the meta-update under BMG exhibit no great computational overhead to the
MG update. In practice, we observe no significant difference in wall-clock speed for a given K.

Main experiment: detailed results The purpose of our main experiment Section 5.1 is to (a) test
whether larger meta-learning horizons—particularly by increasing L—can mitigate the short-horizon
bias, and (b) test whether the agent can learn an exploration schedule without explicit domain
knowledge in the meta-objective (in the form of entropy regularization). As reported in Section 5.1,
we find the answer to be affirmative in both cases. To shed further light on these findings, Figure 8

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.25

0.50

0.75

1.00

1.25

E
nt

ro
py

K=1
K=3
K=7
K=15

0.00 0.25 0.50 0.75 1.00
Environment Steps 1e7

0.5

1.0

E
nt

ro
py

K=1, L=1
K=1, L=3
K=1, L=7
K=1, L=15

Figure 9: Range of the entropy of a softmax-policy over time (2-colors). Each shaded area shows the
difference between the entropy 3333 steps after the agent observes a new entropy and the entropy
after training on the reward-function for 100000 steps. Meta-gradients without explicit entropy-
regularization (left) reduce entropy over time while Bootstrapped meta-gradients (right) maintain
entropy with a large enough meta-learning horizon. Averaged across 50 seeds.

18

Published as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.2

0.4

0.6

0.8

1.0

E
nt

ro
py

-lo
ss

 w
ei

gh
t

meta =
meta = 0
meta = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

E
nt

ro
py

-lo
ss

 w
ei

gh
t

meta =
meta = 0
meta = 0.1

meta = 0 meta = 0.1 meta =
Type of target update

0.0

0.5

1.0

1.5

To
ta

l r
et

ur
ns

1e6
K+L=2
K+L=4
K+L=8

Figure 10: Ablations for actor-critic agent with BMG. Each shaded area shows the range of entropy
regularization weights generated by the meta-learner. The range is computed as the difference
between ε at the beginning and end of each reward-cycle. Left: entropy regularization weight range
when K = 1 and L = 7. Center: entropy regularization weight range when K = 1 and L = 1. Right:
For K = 1 effect of increasing L with or without meta-entropy regularization. Result aggregated
over 50 seeds.

reports cumulative reward curves for our main experiment in Section 5.1. We note that MG tends
to collapse for any K unless the meta-objective is explicitly regularized via εmeta. To characterise
why MG fail for εmeta = 0, Figure 9 portrays the policy entropy range under either MG or BMG.
MG is clearly overly myopic by continually shrinking the entropy range, ultimately resulting in a
non-adaptive policy.

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.5

1.0

1.5

To
ta

l R
et

ur
n

(M
ill

io
ns

)
Matching function
K+L

KL-S
8

KL-1
4

KL-2

Figure 11: Total reward on two-colors
with an actor-critic agent and different
matching functions for BMG. Shading:
standard deviation over 50 seeds.

Ablation: meta-regularization To fully control for the
role of meta-regularization, we conduct further exper-
iments by comparing BMG with and without entropy
regularization (i.e. εmeta) in the Lth target update step.
Figure 10 demonstrates that BMG indeed suffers from
myopia when L = 1, resulting in a collapse of the en-
tropy regularization weight range. However, increasing
the meta-learning horizon by setting L = 7 obtains a wide
entropy regularization weight range. While adding meta-
regularization does expand the range somewhat, the dif-
ference in total return is not statistically significant (right
panel, Figure 10).

Ablation: target bootstrap Our main TB takes L − 1
steps under the meta-learned update rule, i.e. the meta-
learned entropy regularization weight schedule, and an
Lth policy-gradient step without entropy regularization.
In this ablation, we very that taking a final step under a
different update rule is indeed critical. Figure 10 shows that, for K = 1 and L ∈ {1, 7}, using the
meta-learned update rule for all target update steps leads to a positive feedback loop that results in
maximal entropy regularization, leading to a catastrophic loss of performance (right panel, Figure 10).

Ablation: matching function Finally, we control for different choices of matching function.
Figure 11 contrasts the mode-covering version, KL-1, with the mode-seeking version, KL-2, as well
as the symmetric KL. We observe that, in this experiment, this choice is not as significant as in other
experiments. However, as in Atari, we find a the mode-covering version to perform slightly better.

B.3 Q-LEARNING EXPERIMENTS

Agent In this experiment, we test Peng’s Q(λ) (Peng & Williams, 1994) agent with ε-greedy
exploration. The agent implements a feed-forward MLP to represent a Q-function qx that is optimised
online. Thus, agent parameter update steps do not use batching but is done online (i.e. on each step).
To avoid instability, we use a momentum term that maintains an Exponentially Moving Average
(EMA) over the agent parameter gradient. In this experiment we fix all hyper-parameters of the
update rule (Table 1) and instead focuses on meta-learned ε-greedy exploration.

19

Published as a conference paper at ICLR 2022

0.05

0.15

0.25

R
ew

./S
te

p

0 100000 200000 300000
Env Steps into Cycle

0.1

0.2

0.3

0.4

No MG L=16 L=32 L=128

0.00 0.25 0.50 0.75 1.00
Environment Steps 1e7

0.0

0.5

1.0

1.5

To
ta

l R
et

ur
ns

 (M
ill

io
ns

)

L=16
L=32
L=128
Fixed = 0.3

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0.0

0.5

1.0

1.5

2.0

To
ta

l R
et

ur
ns

 (M
ill

io
ns

) Policy Matching
"Value" matching
Fixed = 0.3

Figure 12: Results on two-colors under a Q(λ) agent with meta-learned ε-greedy exploration under
BMG. Averaged over 50 seeds.

BMG We implement BMG in a similar fashion to the actor-critic case. The meta-learner is
represented by a smaller MLP εw(·) with meta-parameters w that ingests the last 50 rewards, denoted
by t, and outputs the ε to use on the current time-step. That is to say, given meta-parameters w, the
agent’s policy is defined by

πx(a | st, tt,w) =

1− εw(tt) + εw(tt)
|A| if a = arg max b qx(st,b)

εw(tt)
|A| else.

Policy-matching This policy can be seen as a stochastic policy which takes the Q-maximizing
action with probability 1− ε and otherwise picks an action uniformly at random. The level of entropy
in this policy is regulated by the meta-learner. We define a TB by defining a target policy under qx̃,
where x̃ is given by taking L update steps. Since there are no meta-parameters in the update rule, all
L steps use the same update rule. However, we define the target policy as the greedy policy

πx̃(a | st) =

1 if a = arg max b qx̃(st,b)

0 else.

The resulting BMG update is simple: minimize the KL-divergence µπ(x̃,x) := KL (πx̃ ‖ πx) by
adjusting the entropy in πx through εw. Thus, policy-matching under this target encourages the
meta-learner to match a greedy policy-improvement operation on a target qx̃ that has been trained
for a further L steps. More specifically, if arg max b qx̃(s,b) = arg max b qx(s,b), so that the
greedy policy improvement matches the target, then the matching loss is minimised by setting
ε = 0. If greedy policy improvement does not correspond, so that acting greedily w.r.t. qx does not
match the target, then the matching loss is minimised by increasing entropy, i.e. increasing ε. The
meta-objective is defined in terms of x as it does not require differentiation through the update-rule.

’Value’-matching A disadvantage of policy matching is that it provides a sparse learning signal:
ε is increased when the target-policy differs from the current policy and decreased otherwise. The
magnitude of the change depends solely on the current value of ε. It is therefore desirable to evaluate
alternative matching functions that provide a richer signal. Inspired by value-matching for actor-critic
agents, we construct a form of ’value’ matching by taking the expectation over qx under the induced
stochastic policy, ux(s) :=

∑
a∈A πx(a | s)qx(s,a). The resulting matching objective is given by

µu(x̃,x) = E
[
(ux̃(s)− ux(s; t,w))

2
]
.

While the objective is structurally similar to value-matching, u does not correspond to well-defined
value-function since qx is not an estimate of the action-value of πx.

Detailed results Figure 12 shows the learned ε-schedules for different meta-learning horizons: if L
is large enough, the agent is able to increase exploration when the task switches and quickly recovers
a near-optimal policy for the current cycle. Figure 12 further shows that a richer matching function,
in this case in the form of ’value’ matching, can yield improved performance.

20

Published as a conference paper at ICLR 2022

Table 1: Two-colors hyper-parameters

Actor-critic

Inner Learner

Optimiser SGD
Learning rate 0.1
Batch size 16 (losses are averaged)
γ 0.99
µ KL(πx̃||πx′)
MLP hidden layers (v, π) 2
MLP feature size (v, π) 256
Activation Function ReLU

Meta-learner

Optimiser Adam
ε (Adam) 10−4

β1, β2 0.9, 0.999
Learning rate candidates {3 · 10−6, 10−5, 3 · 10−5, 10−4, 3 · 10−4}
MLP hidden layers (ε) 1
MLP feature size (ε) 32
Activation Function ReLU
Output Activation Sigmoid

Q(λ)

Inner Learner

Optimiser Adam
Learning Rate 3 · 10−5

ε (Adam) 10−4

β1, β2 0.9, 0.999
Gradient EMA 0.9
λ 0.7
γ 0.99
MLP hidden layers (Q) 2
MLP feature size (Q) 256
Activation Function ReLU

Meta-learner

Learning Rate 10−4

ε (Adam) 10−4

β1, β2 0.9, 0.999
Gradient EMA 0.9
MLP hidden layers (ε) 1
MLP feature size (ε) 32
Activation Function ReLU
Output Activation Sigmoid

21

Published as a conference paper at ICLR 2022

C ATARI

Setup Hyper-parameters are reported in Table 2. We follow the original IMPALA (Espeholt et al.,
2018) setup, but do not down-sample or gray-scale frames from the environment. Following previous
works (Xu et al., 2018; Zahavy et al., 2020), we treat each game level as a separate learning problem;
the agent is randomly initialized at the start of each learning run and meta-learning is conducted
online during learning on a single task, see Algorithm 6. We evaluate final performance between
190-200 million frames. All experiments are conducted with 3 independent runs under different
seeds. Each of the 57 levels in the Atari suite is a unique environment with distinct visuals and game
mechanics. Exploiting this independence, statistical tests of aggregate performance relies on a total
sample size per agent of 3× 57 = 171.

Agent We use a standard feed-forward agent that received a stack of the 4 most recent frames
(Mnih et al., 2013) and outputs a softmax action probability along with a value prediction. The agent
is implemented as a deep neural network; we use the IMPALA network architecture without LSTMs,
with larger convolution kernels to compensate for more a complex input space, and with a larger
conv-to-linear projection. We add experience replay (as per (Schmitt et al., 2020)) to allow multiple
steps on the target. All agents use the same number of online samples; unless otherwise stated, they
also use the same number of replay samples. We ablate the role of replay data in Appendix C.2.

STACX The IMPALA agent introduces specific form of importance sampling in the actor critic
update and while STACX largely rely on the same importance sampling mechanism, it differs slightly
to facilitate the meta-gradient flow. The actor-critic update in STACX is defined by Eq. 4 with the
following definitions of ρ and G. Let ρ̄ ≥ c̄ ∈ R+ be given and let ν : S ×A → [0, 1] represent the
behaviour policy that generated the rollout. Given πx and vz̄, define the Leaky V-Trace target by

ηt := πx(at | st) / ν(at | st)
ρt := αρ min{ηt, ρ̄}+ (1− αρ)ηt
ci := λ (αc min{ηi, c̄}+ (1− αc)ηi)
δt := ρt (γvz̄(st+1) + rt+1 − vz̄(st))

G
(n)
t = vz̄(st) +

(n−1)∑
i=0

γi

i−1∏
j=0

ct+j

 δt+i,

with αρ ≥ αc. Note that—assuming c̄ ≥ 1 and λ = 1—in the on-policy setting this reduces to the
n-step return since ηt = 1, so ρt = ct = 1. The original v-trace target sets αρ = αc = 1.

STACX defines the main “task” as a tuple (π0, v0, f(·,w0)), consisting of a policy, critic, and an
actor-critic objective (Eq. 4) under Leaky V-trace correction with meta-parameters w0. Auxiliary
tasks are analogously defined tuples (πi, vi, f(·,wi)), i ≥ 1. All policies and critics share the same
feature extractor but differ in a separate MLP for each πi and vi. The objectives differ in their
hyper-parameters, with all hyper-parameters being meta-learned. Auxiliary policies are not used
for acting; only the main policy π0 interacts with the environment. The objective used to update
the agent’s parameters is the sum of all tasks (each task is weighted through εPG, εEN, εTD). The
objective used for the MG update is the original IMPALA objective under fixed hyper-parameters
p (see Meta-Optimisation in Table 2). Updates to agent parameters and meta-parameters happen
simultaneously on rollouts τ . Concretely, let m denote parameters of the feature extractor, with
(xi, zi) denoting parameters of task i’s policy MLP and critic MLP. Let ui := (m,xi, zi) denote
parameters of (πi, vi), with u := (m,x0, z0, . . .xn, zn). Let w = (w0, . . . ,wn) and denote by h
auxiliary vectors of the optimiser. Given (a batch of) rollout(s) τ , the STACX update is given by

(
u(1),h(1)

u

)
= RMSProp (u,hu,gu) gu = ∇u

n∑
i=1

fτ
(
ui;wi

)
(
w(1),h(1)

w

)
= Adam (w,hw,gw) gw = ∇wfτ

(
u

(1)
0 (w);p

)
.

BMG We use the same setup, architecture, and hyper-parameters for BMG as for STACX unless
otherwise noted; the central difference is the computation of gw. For L = 1, we compute the

22

Published as a conference paper at ICLR 2022

bootstrapped meta-gradient under µτ on data τ by

gw = ∇wµτ
(
ũ0,u

(1)
0 (w)

)
, where

(
ũ0, _

)
= RMSProp

(
u

(1)
0 ,h(1)

u ,∇ufτ
(
u

(1)
0 ;p

))
.

Note that the target uses the same gradient ∇uf(u
(1)
0 ;p) as the outer objective in STACX; hence,

BMG does not use additional gradient information or additional data for L = 1. The only extra
computation is the element-wise update required to compute ũ0 and the computation of the matching
loss. We discuss computational considerations in Appendix C.4. For L > 1, we take L − 1 step
under the meta-learned objective with different replay data in each update. To write this explicitly, let
τ be the rollout data as above. Let τ̃ (l) denote a separate sample of only replay data used in the lth
target update step. For L > 1, the TB is described by the process(

ũ
(1)
0 , h̃

(1)

u

)
= RMSProp

(
u

(1)
0 ,h(1)

u ,g(1)
u

)
, g(1)

u = ∇u
n∑
i=1

fτ̃(1)

(
u

(1)
i ;wi

)
(
ũ

(2)
0 , h̃

(2)

u

)
= RMSProp

(
ũ

(1)
0 , h̃

(1)

u , g̃(1)
u

)
, g̃(1)

u = ∇u
n∑
i=1

fτ̃(2)

(
ũ

(1)
i ;wi

)
...(

ũ0, _
)

= RMSProp
(
ũ

(L−1)
0 , h̃

(L−1)

u , g̃(L−1)
u

)
, g̃(L−1)

u = ∇ufτ
(
ũ

(L−1)
0 ,p

)
.

Targets and corresponding momentum vectors are discarded upon computing the meta-gradient. This
TB corresponds to following the meta-learned update rule for L− 1 steps, with a final step under the
IMPALA objective. We show in Appendix C.3 that this final step is crucial to stabilise meta-learning.
For pseudo-code, see Algorithm 6.

Matching functions are defined in terms of the rollout τ and with targets defined in terms of the main
task u0. Concretely, we define the following objectives:

µπτ

(
ũ0,u

(1)
0 (w)

)
= KL

(
πũ0 ‖ πu(1)

0 (w)

)
,

µvτ

(
ũ0,u

(1)
0 (w)

)
= E

[(
vũ0
− v

u
(1)
0 (w)

)2
]
,

µπ+v
τ

(
ũ0,u

(1)
0 (w)

)
= µπτ

(
ũ0,u

(1)
0 (w)

)
+ λµvτ

(
ũ0,u

(1)
0 (w)

)
, λ = 0.25,

µL2
(
ũ0,u

(1)
0 (w)

)
=
∥∥∥ũ0 − u

(1)
0 (w)

∥∥∥
2
.

23

Published as a conference paper at ICLR 2022

Algorithm 4 Distributed N -step RL actor loop

Require: N . Rollout length.
Require: R . Centralised replay server.
Require: d . Initial state method.
Require: c . Parameter sync method.

while True do
if | B | = N then
R ← R∪B . Send rollout to replay.
x← c() . Sync parameters from learner.
s← d(s) . Optional state reset.
B ← (s) . Initialise rollout.

end if
a ∼ πx(s) . Sample action.
s, r ← env(s,a) . Take a step in environment.
B ← B∪(a, r, s) . Add to rollout.

end while

Algorithm 5 K-step distributed learning loop

Require: B1,B2, . . . ,BK . K N -step rollouts.
Require: x ∈ Rnx , z ∈ Rnz , w ∈ Rnw . Policy, value function, and meta parameters.

for k = 1, 2, . . . ,K do
(x, z)← ϕ((x, z),Bk,w) . Inner update step.

end for
return x, z

Algorithm 6 Distributed RL with BMG

Require: N,K,L,M . Rollout length, meta-update length, bootstrap length, parallel actors.
Require: x ∈ Rnx , z ∈ Rnz , w ∈ Rnw . Policy, value function, and meta parameters.
u← (x, z)
InitialiseR replay buffer . Collects N -step trajectories B from actors.
Initialise M asynchronous actors . Run concurrently, Algorithm 4.
while True do
{B(k)}K+L

k=1 ∼ R . Sample K rollouts from replay.
u(K) ← InnerLoop(u,w, {B(k)}Kk=1) . K-step inner loop, Algorithm 5.
u(K+L−1) ← InnerLoop(u(K),w, {B(l)}L−1

l=K) . L− 1-step bootstrap, Algorithm 5.
ũ← u(K+L−1)−α∇u`(u(K+L−1),B(K+L)) . Gradient step on objective `.
w← w−β∇wµ(ũ,u(K)(w)) . BMG outer step.
u← uK . Optional: continue from K + L− 1 update.
Send parameters x from learner to actors.

end while

24

Published as a conference paper at ICLR 2022

Table 2: Atari hyper-parameters

ALE (Bellemare et al., 2013)

Frame dimensions (H, W, D) 160, 210, 3
Frame pooling None
Frame grayscaling None
Num. stacked frames 4
Num. action repeats 4
Sticky actions (Machado et al., 2018) False
Reward clipping [−1, 1]
γ = 0 loss of life True
Max episode length 108 000 frames
Initial noop actions 30

IMPALA Network (Espeholt et al., 2018)

Convolutional layers 4
Channel depths 64, 128, 128, 64
Kernel size 3
Kernel stride 1
Pool size 3
Pool stride 2
Padding ’SAME’
Residual blocks per layer 2
Conv-to-linear feature size 512

STACX (Zahavy et al., 2020)

Auxiliary tasks 2
MLP hidden layers 2
MLP feature size 256
Max entropy loss value 0.9

Optimisation

Unroll length 20
Batch size 18

of which from replay 12
of which is online data 6

Replay buffer size 10 000
LASER (Schmitt et al., 2020) KL-threshold 2
Optimiser RMSProp
Initial learning rate 10−4

Learning rate decay interval 200 000 frames
Learning rate decay rate Linear to 0
Momentum decay 0.99
Epsilon 10−4

Gradient clipping, max norm 0.3

Meta-Optimisation

γ, λ, ρ̄, c̄, α 0.995, 1, 1, 1, 1
εPG, εEN, εTD 1, 0.01, 0.25
Optimiser Adam
Learning rate 10−3

β1, β2 0.9, 0.999
Epsilon 10−4

Gradient clipping, max norm 0.3

25

Published as a conference paper at ICLR 2022

C.1 BMG DECOMPOSITION

SGD
L2

L=1

RMS
L2

L=1

RMS
KL

L=1

RMS
KL & V

L=1

RMS
KL & V

L=4

3.5

4.0

4.5

5.0

5.5

6.0

H
um

an
 n

or
m

al
iz

ed
 s

co
re

Figure 13: Atari BMG decomposition.
We report human normalized score (me-
dian, quantiles, 1

2 IQR) between 190-
200M frames over all 57 games, with 3
independent runs for each configuration.

In this section, we decompose the BMG agent to under-
stand where observed gains come from. To do so, we begin
by noting that—by virtue of Eq. 3—STACX is a special
case of BMG under µ(ũ,u

(1)
0 (w)) = ‖ũ − u

(1)
0 (w)‖22

with ũ = u
(1)
0 − 1

2∇ufτ (u
(1)
0 ;p). That is to say, if the

target is generated by a pure SGD step and the matching
function is the squared L2 objective. We will refer to
this configurations as SGD, L2. From this baseline—i.e.
STACX—a minimal change is to retain the matching func-
tion but use RMSProp to generate the target. We refer
t o this configuration as RMS, L2. From Corollary 1,
we should suspect that correcting for curvature should
improve performance. While RMSProp is not a represen-
tation of the metric G in the analysis, it is nevertheless
providing some form of curvature correction. The match-
ing function can then be used for further corrections.

Figure 13 shows that changing the target update rule from
SGD to RMSProp, thereby correcting for curvature, yields
a substantial gain. This supports our main claim that
BMG can control for curvature and thereby facilitate meta-
optimisation. Using the squared Euclidean distance in
parameter space (akin to (Nichol et al., 2018; Flennerhag et al., 2019)) is surprisingly effective.
However, it exhibits substantial volatility and is prone to crashing (c.f. Figure 15); changing the
matching function to policy KL-divergence stabilizes meta-optimisation. Pure policy-matching
leaves the role of the critic—i.e. policy evaluation—implicit. Having an accurate value function
approximation is important to obtain high-quality policy gradients. It is therefore unsurprising that
adding value matching provides a statistically significant improvement. Finally, we find that BMG can
also mitigate myopia by extending the meta-learning horizon, in our TB by unrolling the meta-learned
update rule for L− 1 steps. This is roughly as important as correcting for curvature, in terms of the
relative performance gain.

To further support these findings, we estimate the effect BMG has on ill-conditioning and meta-
gradient variance on three games where both STACX and BMG exhibit stable learning (to avoid
confounding factors of non-stationary dynamics): Kangaroo, Star Gunner, and Ms Pacman. While

Table 3: Meta-gradient cosine similarity and variance per-game at 50-150M frames over 3 seeds.

KL KL & V L2 STACX

Kangaroo

Cosine similarity 0.19 (0.02) 0.11 (0.01) 0.001 (1e-4) 0.009 (0.01)
Meta-gradient variance 0.05 (0.01) 0.002 (1e-4) 2.3e-9 (4e-9) 6.4e-4 (7e-4)
Meta-gradient norm variance 49 68 47 44

Ms Pacman

Cosine similarity 0.11 (0.006) 0.03 (0.006) 0.002 (4e-4) -0.005 (0.01)
Meta-gradient variance 90 (12) 0.8 (0.2) 9.6e-7 (2e-8) 0.9 (0.2)
Meta-gradient norm variance 2.1 7.9 4.2 2.1

Star Gunner

Cosine similarity 0.13 (0.008) 0.07 (0.001) 0.003 (5e-4) 0.002 (0.02)
Meta-gradient variance 4.2 (1.1) 1.5 (2.3) 1.9e-7 (3e-7) 0.06 (0.03)
Meta-gradient norm variance 6.1 6.6 11.7 6.5

26

Published as a conference paper at ICLR 2022

the Hessian of the meta-gradient is intractable, an immediate effect of ill-conditioning is gradient
interference, which we can estimate through cosine similarity between consecutive meta-gradients.
We estimate meta-gradient variance on a per-batch basis. Table 3 presents mean statistics between
50M and 150M frames, with standard deviation over 3 seeds. BMG achieves a meta-gradient
cosine similarity that is generally 2 orders of magnitude larger than that of STACX. It also explicitly
demonstrates that using the KL divergence as matching function results in better curvature relative to
using the L2 distance. The variance of the meta-gradient is larger for BMG than for STACX (under
KL). This is due to intrinsically different gradient magnitudes. To make comparisons, we report the
gradient norm to gradient variance ratio, which roughly indicates signal to noise. We note that in this
metric, BMG tends to be on par with or lower than that of STACX.

C.2 EFFECT OF REPLAY

0 50M 100M 150M 200M
Learning frames

0

5

10

15

20

25

30

35

E
pi

so
de

 r
et

ur
n

(x
10

00
)

L=4
L=1
L=4, R
L=4, w

Figure 14: Atari, learning curves on MS
Pacman for KL &V . L = 4, R com-
putes the Lthe step on only replay data.
L = 4, w uses the meta-learned objec-
tive for the Lth step (with Lth step com-
puted on online and replay data, as per
default). Shading depicts standard devia-
tion across 3 seeds.

We find that extending the meta-learning horizon by tak-
ing more steps on the target leads to large performance
improvements. To obtain these improvements, we find that
it is critical to re-sample replay data for each step, as op-
posed to re-using the same data for each rollout. Figure 14
demonstrates this for L = 4 on MsPacman. This can be
explained by noting that reusing data allows the target to
overfit to the current batch. By re-sampling replay data we
obtain a more faithful simulation of what the meta-learned
update rule would produce in L− 1 steps.

The amount of replay data is a confounding factor in the
meta-objective. We stress that the agent parameter update
is always the same in any experiment we run. That is
to say, the additional use of replay data only affects the
computation of the meta-objective. To control for this
additional data in the meta-objective, we consider a subset
of games where we see large improvements from L > 1.
We run STACX and BMG with L = 1, but increase the
amount of replay data used to compute the meta-objective
to match the total amount of replay data used in the meta-
objective when L = 4. This changes the online-to-replay
ratio from 6 : 12 to 6 : 48 in the meta objective.

Figure 15 shows that the additional replay data is not responsible for the performance improvements
we see for L = 4. In fact, we find that increasing the amount of replay data in the meta-objective
exacerbates off-policy issues and leads to reduced performance. It is striking that BMG can make use
of this extra off-policy data. Recall that we use only off-policy replay data to take the first L− 1 steps
on the target, and use the original online-to-replay ratio (6 : 12) in the Lth step. In Figure 14, we test
the effect of using only replay for all L steps and find that having online data in the Lth update step is
critical. These results indicate that BMG can make effective use of replay by simulating the effect of
the meta-learned update rule on off-policy data and correct for potential bias using online data.

C.3 L VS K

Given that increasing L yields substantial gains in performance, it is interesting to compare against
increasing K, the number of agent parameter updates to backpropagate through. For fair comparison,
we use an identical setup as for L > 1, in the sense that we use new replay data for each of the initial
K − 1 steps, while we use the default rollout τ for the Kth step. Hence, the data characteristics for
K > 1 are identical to those of L > 1.

However, an important difference arise because each update step takes K steps on the agent’s
parameters. This means that—withing the 200 million frames budget, K > 1 has a computational
advantage as it is able to do more updates to the agent’s parameters. With that said, these additional
K − 1 updates use replay data only.

27

Published as a conference paper at ICLR 2022

0

25

50

75

100

K
L

&
 V

asteroids
L=4
D
R

defender robotank up_n_down wizard_of_wor yars_revenge

0

25

50

75

100

K
L

0

25

50

75

100

R
M

S,
 L

2

0 50 100 150 2000

25

50

75

100

ST
AC

X
(S

G
D

, L
2)

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 15: Atari experience replay ablation. We report episode returns, normalized to be in the range
[0,max return] for each game for ease of comparison. Shading depicts standard deviation across 3
seeds. D denotes default BMG configuration for L = 1, with L = 4 analgously defined. R denotes
L = 1, but with additional replay in the meta-objective to match the amount of replay used in L = 4.

Figure 16 demonstrates that increasing K is fundamentally different from increasing L. We generally
observe a loss of performance, again due to interference from replay. This suggests that target
bootstrapping allows a fundamentally different way of extending the meta-learning horizon. In
particular, these results suggests that meta-bootstrapping allows us to use relatively poor-quality (as
evidence by K > 1) approximations to long-term consequences of the meta-learned update rule
without impairing the agent’s actual parameter update. Finally, there are substantial computational
gains from increasing the meta-learning horizon via L rather than K (Figure 17).

C.4 COMPUTATIONAL CHARACTERISTICS

IMPALA’s distributed setup is implemented on a single machine with 56 CPU cores and 8 TPU
(Jouppi et al., 2017) cores. 2 TPU cores are used to act in 48 environments asynchronously in
parallel, sending rollouts to a replay buffer that a centralized learner use to update agent parameters
and meta-parameters. Gradient computations are distributed along the batch dimension across the
remaining 6 TPU cores. All Atari experiments use this setup; training for 200 millions frames takes
24 hours.

Figure 17 describes the computational properties of STACX and BMG as a function of the number
of agent parameters and the meta-learning horizon, H . For STACX, the meta-learning horizon is
defined by the number of update steps to backpropagate through, K. For BMG, we test one version
which holds L = 1 fixed and varies K, as in for STACX, and one version which holds K = 1 ficed
and varies L. To control for network size, we vary the number of channels in the convolutions of
the network. We use a base of channels per layer, x = (16, 32, 32, 16), that we multiply by a factor
1, 2, 4. Thus we consider networks with kernel channels 1x = (16, 32, 32, 16), 2x = (32, 64, 64, 32),
and 4x = (64, 128, 128, 64). Our main agent uses a network size (Table 2) equal to 4x. We found
that larger networks would not fit into memory when K > 1.

First, consider the effect of increasing K (with L = 1 for BMG). For the small network (1x), BMG is
roughly on par with STACX for all values of K considered. However, BMG exhibits poorer scaling

28

Published as a conference paper at ICLR 2022

0

25

50

75

100

K
L

&
 V

asteroids
L=4
K=2
D

defender robotank up_n_down wizard_of_wor yars_revenge

0

25

50

75

100

K
L

0

25

50

75

100

R
M

S,
 L

2

0 50 100 150 2000

25

50

75

100

ST
AC

X
(S

G
D

, L
2)

0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200

Figure 16: Atari K vs L ablation. We report episode returns, normalized to be in the range
[0,max return] for each game for ease of comparison. Shading depicts standard deviation across 3
seeds. D denotes default BMG configuration for L = 1, with L = 4 analogously defined. K = 2
denotes L = 1, but K = 2 steps on agent parameters.

in network size, owing to the additional update step required to compute the target bootstrap. For
4x, our main network configuration, we find that BMG is 20% slower in terms of wall-clock time.
Further, we find that neither STACX nor BMG can fit the 4x network size in memory when K = 8.

Second, consider the effect of increasing L with BMG (with K = 1). For 1x, we observe no
difference in speed for any H . However, increasing L exhibits a dramatic improvement in scaling
for H > 2—especially for larger networks. In fact, L = 4 exhibits a factor 2 speed-up compared to
STACX for H = 4, 4x and is two orders of magnitude faster for H = 8, 2x.

C.5 ADDITIONAL RESULTS

Figure 19 presents per-game results learning curve for main configurations considered in this paper.
Table 9 presents mean episode returns per game between 190-200 millions frames for all main

1x 2x 4x

0.2

0.3

0.4

0.5

Se
co

nd
s

pe
r

up
da

te
 s

te
p

H=1

1x 2x 4x
0.25

0.30

0.35

0.40

0.45

0.50

0.55
H=2

1x 2x 4x

0.6

0.8

1.0

1.2
H=4

BMG, H=L
BMG, H=K
STACX, H=K

1x 2x 4x

0

100

200

300

400

H=8

Network size

Figure 17: Atari: Computational characteristics as a function of network size (see Appendix C.4)
and meta-learning horizon H . When H = K, we vary the number of update steps to backpropagate
through (with L = 1 for BMG). When H = L, we vary the number of target update steps (with
K = 1). Measurements are taken over the first 20 million learning frames on the game Pong.

29

Published as a conference paper at ICLR 2022

configurations. Finally, we consider two variations of BMG in the L = 1 regime (Figure 18); one
version (NS) re-computes the agent update after updating meta-parameters in a form of trust-region
method. The other version (DB) exploits that the target has a taken a further update step and uses the
target as new agent parameters. While NS is largely on par, interestingly, DB fails completely.

C.6 DATA AND HYPER-PARAMETER SELECTION

0 50M 100M 150M 200M
Learning frames

0

1

2

3

4

5

6

M
ed

ia
n

hu
m

an
 n

or
m

al
iz

ed
 s

co
re BMG w. KL

BMG w. KL, NS
BMG w. KL, DB

Figure 18: Atari BMG, alternative meta-
update strategies. NS re-computes the
agent-update the meta-update, akin to a
trust-region method. DB uses the boot-
strap target as the next agent parame-
ters. Shading depicts standard deviation
across 3 seeds.

We use the ALE Atari environment, publicly avail-
able at https://github.com/mgbellemare/
Arcade-Learning-Environment, licensed under
GNU GPL 2.0. Environment hyper-parameters were
selected based on prior works (Mnih et al., 2013;
Espeholt et al., 2018; Zahavy et al., 2020; Schmitt et al.,
2020). Network, optimisation and meta-optimisation
hyper-parameters are based on the original STACX
implementation and tuned for optimal performance. Our
median human normalized score matches published
results. For BMG, we did not tune these hyper-parameters,
except for L > 1. In this case, we observed that unique
replay data in the initial L − 1 steps was necessary to
yield any benefits. We observed a tendency to crash, and
thus reduced the gradient clipping ratio from .3 to .2.
For BMG configurations that use both policy and value
matching, we tuned the weight on value matching by a
grid search over {0.25, 0.5, 0.75} on Ms Pacman, Zaxxon,
Wizard of Wor, and Seaquest, with 0.25 performing best.

D MULTI-TASK META-LEARNING

D.1 PROBLEM FORMULATION

Let p(τ) denote a given task distribution, where τ ∈ N indexes a task fτ . Each task is also associated
with distinct learner states hτ and task parameters xτ , but all task learners use the same meta-learned
update rule defined by meta-parameters w. Hence, the meta-learner’s problem is again to learn an
update rule, but now in expectation over all learning problems. The MG update (Eq. 1) thus takes the
form w′ = w−β∇wEτ [fτ (x

(K)
τ (w))], where the expectation is with respect to (fτ ,hτ ,xτ) and

x
(K)
τ (w) is the K-step update on task τ given (fτ ,hτ ,xτ). Since p(τ) is independent of w, this

update becomes w′ = w−βEτ [∇wfτ (x
(K)
τ (w))], i.e. the single-task meta-gradient in Section 3 in

expectation over the task distribution.

With that said, the expectation involves integrating over (hτ ,xτ). This distribution is defined
differently depending on the problem setup. In few-shot learning, xτ and hτ are typically a shared
initialisations (Finn et al., 2017; Nichol et al., 2018; Flennerhag et al., 2019) and fτ differ in terms of
the data (Vinyals et al., 2016). However, it is possible to view the expectation as a prior distribution
over task parameters (Grant et al., 2018; Flennerhag et al., 2020). In online multi-task learning,
this expectation often reduces to an expectation over current task-learning states (Rusu et al., 2015;
Denevi et al., 2019).

The BMG update is analogously defined. Given a TB ξ, define the task-specific target x̃τ given x
(K)
τ

by ξ(x(K)
τ). The BMG meta-loss takes the form w′ = w−β∇wEτ [µτ (x̃τ ,x

(K)
τ (w))], where µτ is

defined on data from task τ . As with the MG update, as the task distribution is independent of w, this
simplifies to w′ = w−βEτ [∇wµτ (x̃τ ,x

(K)
τ (w))], where µτ is the matching loss defined on task

data from τ . Hence, as with MG, the multi-task BMG update is an expectation over the single-task
BMG update in Section 3. See Algorithm 7 for a detailed description.

30

https://github.com/mgbellemare/Arcade-Learning-Environment
https://github.com/mgbellemare/Arcade-Learning-Environment

Published as a conference paper at ICLR 2022

D.2 FEW-SHOT MINIIMAGENET

Setup MiniImagenet (Vinyals et al., 2016; Ravi & Larochelle, 2017) is a sub-sample of the Imagenet
dataset (Deng et al., 2009). Specifically, it is a subset of 100 classes sampled randomly from the 1000
classes in the ILSVRC-12 training set, with 600 images for each class. We follow the standard protocol
(Ravi & Larochelle, 2017) and split classes into a non-overlapping meta-training, meta-validation, and
meta-tests sets with 64, 16, and 20 classes in each, respectively. The datasset is licenced under the MIT
licence and the ILSVRC licence. The dataset can be obtained from https://paperswithcode.
com/dataset/miniimagenet-1. M -shot-N -way classification tasks are sampled following
standard protocol (Vinyals et al., 2016). For each task, M = 5 classes are randomly sampled from
the train, validation, or test set, respectively. For each class, K observations are randomly sampled
without replacement. The task validation set is constructed similarly from a disjoint set of L = 5
images per class. We follow the original MAML protocol for meta-training (Finn et al., 2017), taking
K task adaptation steps during meta-training and 10 adaptation steps during meta testing.

We study how the data-efficiency and computational efficiency of the BMG meta-objective compares
against that of the MG meta-objective. To this end, for data efficiency, we report the meta-test set
performance as we vary the number of meta-batches each algorithm is allow for meta-training. As
more meta-batches mean more meta-tasks, this metric captures how well they leverage additional
data. For computational efficiency, we instead report meta-test set performace as a function of total
meta-training time. This metric captures computational trade-offs that arise in either method.

For any computational budget in either regime (i.e. N meta-batches or T hours of training), we
report meta-test set performance across 3 seeds for the hyper-configuration with best validation
performance (Table 4). This reflects the typical protocol for selecting hyper-parameters, and what
each method would attain under a given budget. For both methods, we sweep over the meta-learning
rate β; for shorter training runs, a higher meta-learning is critical to quickly converge. This however
lead to sub-optimal performance for larger meta-training budgets, where a smaller meta-learning
rate can produce better results. The main determinant for computational cost is the number of steps
to backpropagate through, K. For BMG, we sweep over K ∈ {1, 5}. For MG, we sweep over
K ∈ {1, 5, 10}. We allow K = 10 for MAML to ensure fair comparison, as BMG can extend its
effective meta-learning horizon through the target bootstrap; we sweep over L ∈ {1, 5, 10}. Note
that the combination of K and L effectively lets BMG interpolate between different computational
trade-offs. Standard MG does not have this property, but several first-order approximations have been
proposed: we allow the MG approach to switch from a full meta-gradient to either the FOMAML
approximation (Finn et al., 2017) or the ANIL approximation (Raghu et al., 2020).

Model, compute, and shared hyper-parameters We use the standard convolutional model
(Vinyals et al., 2016), which is a 4-layer convolutional model followed by a final linear layer.
Each convolutional layer is defined by a 3 × 3 kernel with 32 channels, strides of 1, with batch
normalisation, a ReLU activation and 2 × 2 max-pooling. We use the same hyper-parameters of
optimisation and meta-optimisation as in the original MAML implementation except as specified in
Table 4. Each model is trained on a single machine and runs on a V100 NVIDIA GPU.

Table 4: Hyper-parameter sweep per computational budget.

MAML BMG
β {0.0001, 0.001} {0.0001, 0.001}
K {1, 5, 10} {1, 5}
L — {1, 5, 10}
µ — {KL (x̃ ‖ ·) ,KL (· ‖ x̃)}
FOMAML { True, False } —
ANIL { True, False } —

Total 24 24

31

https://paperswithcode.com/dataset/miniimagenet-1
https://paperswithcode.com/dataset/miniimagenet-1

Published as a conference paper at ICLR 2022

Table 6: Effect of BMG on ill-conditioning and meta-gradient variance on 5-way-5-shot MiniImagenet.
Estimated meta-gradient cosine similarity (θ) between consecutive gradients, meta-gradient variance
(V), and meta-gradient norm to variance ratio (ρ). Standard deviation across 5 independent seeds.

MAML BMG
K L θ V ρ θ V ρ

1 1 0.17 (0.01) 0.21 (0.01) 0.02 (0.02) 0.17 (0.01) 0.0002 (5e-6) 0.59 (0.03)
5 0.18 (0.01) 0.001 (1e-5) 0.23 (0.01)
10 0.19 (0.01) 0.0003 (2e-5) 0.36 (0.01)

5 1 0.03 (0.01) 0.07 (0.009) 0.08 (0.03) 0.03 (0.005) 0.01 (9e-5) 0.84 (0.03
5 0.04 (0.005) 0.001 (5e-5) 0.46 (0.02)
10 0.05 (0.004) 0.003 (3e-5) 0.18 (0.02)

D.3 ANALYSIS

Table 5: Meta-training steps per second for MAML
and BMG on 5-way-5-shot MiniImagenet. Standard
deviation across 5 seeds in parenthesis.

K L H = K + L MAML BMG
1 1 2 14.3 (0.4) 12.4 (0.5)

5 6 - 6.9 (0.3)
10 11 - 4.4 (0.1)

5 1 6 4.4 (0.06) 4.2 (0.04)
5 10 - 3.2 (0.03)
10 15 - 2.5 (0.01)

10 1 11 2.3 (0.01) 2.2 (0.01)
5 15 - 1.9 (0.01)
10 20 - 1.7 (0.01)

15 - 15 1.4 (0.01) -
20 - 20 1.1 (0.01) -

In terms of data-efficiency, Table 7 reports
best hyper-parameters for each data bud-
get. For both BMG and MG, we note
that small budgets rely on fewer steps
to backpropagate through and a higher
learning rate. BMG tends to prefer a
higher target bootstrap in this regime. MG
switches to backpropagation through K >
1 sooner than BMG, roughly around 70
000 meta-updates, while BMG switches
around 120 000 meta-updates. This ac-
counts for why BMG can achieve higher
performance faster, as it can achieve simi-
lar performance without backpropagating
through more than one update. It is worth
noting that as BMG is given larger train-
ing budgets, to prevent meta-overfitting,
shorter target bootstraps generalize better.
We find that other hyper-parameters are not
important for overall performance.

In terms of computational efficiency, Ta-
ble 7 reports best hyper-parameters for each time budget. The pattern here follows a similar trend.
MG does btter under a lower learning rate already after 4 hours, whereas BMG switches after about 8
hours. This data highlights the dominant role K plays in determining training time.

We compare wall-clock time per meta-training step for various values of K and L Table 5. In our
main configuration, i.e. K = 5, L = 10, BMG achieves a throughput of 2.5 meta-training steps
per second, compared to 4.4 for MAML, making BMG 50% slower. In this setting, BMG has an
effective meta-learning horizon of 15, whereas MAML has a horizon of 5. For MAML to achieve an
effective horizon of 15, it’s throughput would be reduced to 1.4, instead making MAML 56% slower
than BMG.

Finally, we conduct a similar analysis as on Atari (Appendix C.1) to study the effect BMG has on
ill-conditioning and meta-gradient variance. We estimate ill-conditioning through cosine similarity
between consecutive meta-gradients, and meta-gradient variance on a per meta-batch basis. We report
mean statistics for the 5-way-5-shot setup between 100 000 and 150 000 meta-gradient steps, with
standard deviation over 5 independent seeds, in Table 6.

Unsurprisingly, MAML and BMG are similar in terms of curvature, as both can have a KL-divergence
type of meta-objective. BMG obtains greater cosine similarity as L increases, suggesting that BMG
can transfer more information by having a higher temperature in its target. However, BMG exhibits
substantially lower meta-gradient variance, and the ratio of meta-gradient norm to variance is an
order of magnitude larger.

32

Published as a conference paper at ICLR 2022

Algorithm 7 Supervised multi-task meta-learning with BMG

Require: K,L . meta-update length, bootstrap length
Require: M,N, T . meta-batch size, inner batch size, meta-training steps.
Require: x ∈ Rnx , w ∈ Rnw . model and meta parameters.

for t = 1, 2, . . . , T do
g← 0 . Initialise meta-gradient.
for i = 1, 2, . . . ,M do

τ ∼ p(τ) . Sample task.
xτ ← x . For MAML, set x = w.
for k = 1, 2, . . . ,K do

ζτ ∼ ptrain(ζ | τ) . Sample batch of task training data.
xτ = xτ +ϕ(xτ , ζτ ,w) . Task adaptation.

end for
x(K) ← x . K-step adaptation.
for l = 1, 2, . . . , L− 1 do

ζτ ∼ ptest(ζ | τ) . Sample batch of task test data.
xτ = xτ +ϕ(xτ , ζτ ,w) . L− 1 step bootstrap.

end for
ζτ ∼ ptest(ζ | τ)
if final gradient step then . Assign target.

x̃τ = xτ −α∇x`(xτ , ζτ)
else

x̃τ ← xτ +ϕ(xτ , ζτ ,w)
end if
g← g+∇wµ(x̃τ ,x

(K)(w))
end for
w← w− β

M g . BMG outer step.
end for

33

Published as a conference paper at ICLR 2022

Table 7: Data-efficiency: mean meta-test accuracy over 3 seeds for best hyper-parameters per data
budget. µ = 1 corresponds to KL (x̃ ‖ ·) and µ = 2 to KL (· ‖ x̃).

Step (K) β K L µ Acc. (%) β K FOMAML ANIL Acc. (%)

10 10−3 1 10 1 61.4 10−3 1 False True 61.7
20 10−3 1 10 1 61.8 10−3 1 False False 61.9
30 10−3 1 10 1 62.5 10−3 10 False True 62.3
40 10−3 5 1 1 63.1 10−3 5 False False 62.7
50 10−3 5 1 1 63.5 10−3 10 False True 62.9
60 10−3 5 1 1 63.7 10−3 1 False False 63.0
70 10−3 1 1 2 63.7 10−3 5 False False 63.0
80 10−3 5 1 1 63.7 10−4 5 False False 63.1
90 10−3 5 1 1 63.8 10−3 5 False False 63.3
100 10−3 1 1 2 63.8 10−4 5 False False 63.4
110 10−3 1 1 2 63.9 10−4 5 False False 63.6
120 10−4 5 5 1 63.9 10−4 5 False False 63.6
130 10−4 5 10 1 64.0 10−4 5 False False 63.6
140 10−4 5 5 1 64.1 10−4 5 False False 63.6
150 10−4 5 5 1 64.2 10−4 10 False True 63.6
160 10−4 5 5 1 64.3 10−4 5 False False 63.6
170 10−4 5 5 1 64.4 10−4 5 False False 63.7
180 10−4 5 5 1 64.5 10−4 10 False False 63.8
190 10−4 5 10 1 64.6 10−4 5 False False 63.9
200 10−3 5 10 2 64.7 10−4 10 False False 64.0
210 10−4 5 1 1 64.7 10−4 5 False False 64.1
220 10−4 5 5 1 64.7 10−4 10 False False 64.2
230 10−4 5 5 1 64.8 10−4 5 False False 64.2
240 10−4 5 1 2 64.8 10−4 5 False False 64.1
250 10−4 5 5 1 64.9 10−4 5 False False 64.1
260 10−4 5 1 1 64.9 10−4 5 False False 64.0
270 10−4 5 1 1 64.8 10−4 5 False False 63.9
280 10−4 5 1 1 64.8 10−4 5 False False 63.8
290 10−4 5 1 1 64.7 10−4 5 False False 63.8
300 10−4 5 5 1 64.7 10−4 5 False False 63.8

34

Published as a conference paper at ICLR 2022

Table 8: Computational-efficiency: mean meta-test accuracy over 3 seeds for best hyper-parameters
per time budget. µ = 1 corresponds to KL (x̃ ‖ ·) and µ = 2 to KL (· ‖ x̃).

Time (h) β K L µ Acc. (%) β K FOMAML ANIL Acc. (%)

1 10−3 1 1 2 63.5 10−3 1 False False 63.0
2 10−3 1 1 2 63.6 10−3 10 False True 63.0
3 10−3 5 1 1 63.7 10−3 5 False False 63.0
4 10−3 5 1 1 63.8 10−4 5 False True 63.1
4 10−3 5 1 1 63.8 10−4 1 False True 63.4
5 10−3 5 1 1 63.8 10−4 5 False False 63.5
6 10−3 5 10 1 63.8 10−4 5 False False 63.6
7 10−4 5 1 1 63.8 10−4 5 False False 63.6
8 10−3 5 1 1 63.8 10−4 5 False False 63.6
9 10−4 5 1 1 63.9 10−4 5 False False 63.6
10 10−4 5 1 1 64.2 10−4 5 False False 63.7
11 10−4 5 5 1 64.3 10−4 5 False False 63.8
12 10−4 5 5 1 64.5 10−4 5 False False 63.9
13 10−4 5 5 1 64.6 10−4 5 False False 63.9
14 10−4 5 1 2 64.7 10−4 5 False False 63.8
15 10−4 5 1 1 64.8 10−4 5 False False 63.4
16 10−4 5 1 1 64.8 10−3 10 False False 63.2
17 10−4 5 1 1 64.8 10−4 10 False False 63.3
18 10−4 5 10 1 64.8 10−4 10 False False 63.5
19 10−4 5 5 1 64.8 10−4 10 False False 63.6
20 10−4 5 5 1 64.7 10−4 10 False False 63.8
21 10−4 5 10 1 64.7 10−4 10 False False 63.9
21 10−4 5 10 1 64.7 10−4 10 False False 63.8
22 10−4 5 5 1 64.7 10−4 10 False False 63.9
23 10−4 5 10 1 64.7 10−4 10 False False 63.8
24 10−4 5 10 1 64.7 — — — — —

35

Published as a conference paper at ICLR 2022

alien amidar assault asterix asteroids

atlantis bank_heist battle_zone beam_rider berzerk

bowling boxing breakout centipede chopper_command

crazy_climber defender demon_attack double_dunk enduro

fishing_derby freeway frostbite gopher gravitar

hero ice_hockey jamesbond kangaroo krull

kung_fu_mastermontezuma_revengems_pacman name_this_game phoenix

pong private_eye qbert riverraid road_runner

robotank seaquest skiing solaris space_invaders

star_gunner surround tennis time_pilot tutankham

up_n_down video_pinball wizard_of_wor yars_revenge zaxxon

KL & V, L=4
KL & V
KL
KL-S
V
L2
STACX

Figure 19: Atari, per-game performance across 3 seeds. Shading depicts standard deviation.

36

Published as a conference paper at ICLR 2022

Table 9: Mean per-game performance between 190-200M frames.

KL KL & V KL & V, L=4 KL-S L2 STACX V

Alien 45677 44880 58067 35750 50692 31809 7964
Amidar 4800 7099 7528 4974 7691 3719 1896
Assault 20334 29473 33019 21747 28301 19648 4101
Asterix 511550 439475 533385 487367 6798 245617 86053
Asteroids 145337 238320 289689 8585 220366 156096 56577
Atlantis 831920 813772 814780 806698 854441 848007 648988
Bank Heist 571 1325 0 13 1165 1329 1339
Battle Zone 73323 88407 88350 78941 50453 78359 72787
Beam Rider 37170 51649 57409 41454 67726 62892 74397
Berzerk 21146 2946 1588 2183 240 1523 1069
Bowling 46 50 42 46 50 28 52
Boxing 100 100 86 100 100 100 100
Breakout 742 832 847 774 827 717 16
Centipede 537032 542730 558849 291569 550394 478347 8895
Chopper Command 830772 934863 838090 736012 11274 846788 341350
Crazy Climber 233445 212229 265729 199150 229496 182617 126353
Defender 393457 374012 421894 364053 69193 344453 55152
Demon Attack 132508 133109 133571 132529 133469 130741 129863
Double Dunk 22 23 23 21 23 24 23
Enduro 2349 2349 2350 2360 2365 259 2187
Fishing Derby 41 63 68 41 52 62 59
Freeway 10 30 25 31 30 18 33
Frostbite 8820 3895 3995 5547 13477 2522 1669
Gopher 116010 116037 122459 92185 122790 87094 11920
Gravitar 271 709 748 259 3594 2746 944
Hero 60896 48551 52432 56044 51631 35559 20235
Ice Hockey 5 15 20 4 15 19 20
Jamesbond 22129 25951 30157 25766 18200 26123 23263
Kangaroo 12200 12557 13174 1940 13235 3182 8722
Krull 10750 9768 10510 11156 10502 10480 8899
Kung Fu Master 51038 58732 54354 54559 63632 67823 54584
Montezuma Revenge 0 0 0 0 0 0 0
Ms Pacman 25926 22876 28279 26267 27564 12647 2759
Name This Game 31203 31863 36838 30912 32344 24616 12583
Phoenix 529404 542998 658082 407520 440821 370270 247854
Pitfall 0 -1 0 0 0 0 0
Pong 21 21 21 21 21 21 21
Private Eye 165 144 98 130 67 100 68
Qbert 87214 37135 72320 30047 75197 27264 3901
Riverraid 129515 132751 32300 91267 177127 47671 26418
Road Runner 240377 61710 521596 17002 424588 62191 34773
Robotank 64 66 71 65 64 61 65
Seaquest 684870 2189 82925 616738 1477 1744 3653
Skiing -10023 -8988 -9797 -8988 -9893 -10504 -13312
Solaris 2120 2182 2188 1858 2194 2326 2202
Space Invaders 35762 54046 40790 11314 49333 34875 15424
Star Gunner 588377 663477 790833 587411 39510 298448 43561
Surround 9 9 10 9 9 3 9
Tennis 23 24 23 21 24 19 24
Time Pilot 94746 60918 68626 95854 93466 49932 40127
Tutankham 282 268 291 280 288 101 205
Up N Down 342121 303741 381780 109392 202715 315588 17252
Venture 0 0 0 0 0 0 0
Video Pinball 230252 479861 399094 505212 485852 441220 77100
Wizard Of Wor 21597 45731 49806 22936 10817 47854 24250
Yars Revenge 77001 286734 408061 32031 398656 113651 77169
Zaxxon 44280 49448 59011 36261 49734 56952 35494

37

