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Abstract

Complementary-label learning (CLL) is a weakly-supervised learning paradigm that aims
to train a multi-class classifier using only complementary labels, which indicate classes to
which an instance does not belong. Despite numerous algorithmic proposals for CLL, their
practical applicability remains unverified for two reasons. Firstly, these algorithms often rely
on assumptions about the generation of complementary labels, and it is not clear how far
the assumptions are from reality. Secondly, their evaluation has been limited to synthetic
datasets. To gain insights into the real-world performance of CLL algorithms, we developed
a protocol to collect complementary labels from human annotators. Our efforts resulted
in the creation of four datasets: CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and
CLMicroImageNet20, derived from well-known classification datasets CIFAR10, CIFAR100,
and TinyImageNet200. These datasets represent the very first real-world CLL datasets.
Through extensive benchmark experiments, we discovered a notable decrease in performance
when transitioning from synthetic datasets to real-world datasets. We investigated the
key factors contributing to the decrease with a thorough dataset-level ablation study. Our
analyses highlight annotation noise as the most influential factor in the real-world datasets.
In addition, we discover that the biased-nature of human-annotated complementary labels
and the difficulty to validate with only complementary labels are two outstanding barriers
to practical CLL. These findings suggest that the community focus more research efforts
on developing CLL algorithms and validation schemes that are robust to noisy and biased
complementary-label distributions.

1 Introduction

Ordinary multi-class classification methods rely heavily on high-quality labels to train effective classifiers.
However, such labels can be expensive and time-consuming to collect in many real-world applications. To
address this challenge, researchers have turned their attention towards weakly-supervised learning, which
aims to learn from incomplete, inexact, or inaccurate data sources (Zhou, 2018; Sugiyama et al., 2022). This
learning paradigm includes but is not limited to noisy-label learning (Frénay & Verleysen, 2013), partial-label
learning (Cour et al., 2011), positive-unlabeled learning (Denis, 1998), and complementary-label learning
(Ishida et al., 2017).

In this work, we focus on complementary-label learning (CLL). This learning problem involves training a
multi-class classifier using only complementary labels, which indicate the classes that a data instance does
not belong to. Although several algorithms have been proposed to learn from complementary labels, they
were only benchmarked on synthetic datasets with some idealistic assumptions on complementary-label
generation (Ishida et al., 2017; 2019; Chou et al., 2020; Wang et al., 2021; Liu et al., 2023). Thus, it remains
unclear how well these algorithms perform in practical scenarios.

In particular, current CLL algorithms heavily rely on the uniform assumption for generating complementary
labels (Ishida et al., 2017), which specifies that complementary labels are generated by uniformly sampling
from the set of all possible complementary labels. To alleviate the restrictiveness of the uniform assumption,
(Yu et al., 2018) considered a more general class-conditional assumption, where the distribution of the
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complementary labels only depends on its ordinary labels. These assumptions have been used in many
subsequent works to generate the synthetic complementary datasets for examining CLL algorithms (Ishida
et al., 2019; Chou et al., 2020; Wang et al., 2021; Wei et al., 2022; Liu et al., 2023). Although these assumptions
simplify the design and analysis of CLL algorithms, it remains unknown whether these assumptions hold
true in practice and whether violation of these assumptions will significantly affect the performance of CLL
algorithms. In addition to the uniform or class-conditional assumptions, most existing studies implicitly
assumes that the complementary labels are noise-free. That is, they do not mistakenly represent the ordinary
labels. While some studies claim to be more robust to noisy complementary labels (Lin & Lin, 2023), they
were only tested on synthetic scenarios. It remains unclear how noisy the real-world datasets are, and how
such noise affects the performance of current CLL algorithms.

To understand how much the real-world scenario differs from the assumptions, we collect human-annotated
complementary-label datasets and conduct benchmarking experiments. We begin by constructing the
CLCIFAR10 and CLCIFAR20 datasets, derived from the widely used CIFAR datasets for multi-class
classification (Krizhevsky, 2012). Building upon this foundation, we further extend our collection to include
two additional human-annotated datasets, CLMicroImageNet10 and CLMicroImageNet20, derived from
TinyImageNet200 (Le & Yang, 2015). For all four datasets, we analyze the collected complementary
labels, including their noise rates and non-uniform nature. Then, we perform benchmark experiments with
diverse state-of-the-art CLL algorithms and conduct dataset-level ablation study on the assumptions of
complementary-label generation using the collected datasets.

Our studies reveal annotation noise as the most influential factor affecting the performance of CLL algorithms
in real-world datasets. The claim is evidenced by our ablation study results on both synthetic and real-world
complementary datasets. Notably, classification accuracy drops from 64.18% on CIFAR10 to 34.85% on
CLCIFAR10, highlighting the detrimental impact of noisy complementary labels. To further investigate the
role of label noise in the performance gap across different CLL algorithms, we conducted an ablation study
that examined various noise levels. The results consistently reinforce our conclusion that the performance
disparity between human-annotated complementary labels and synthetically generated complementary labels is
primarily driven by label noise. Moreover, through thorough analysis we confirmed that the non-uniform nature
of human-annotated complementary labels makes certain CLL algorithms more susceptible to overfitting,
although its impact is less pronounced compared to label noise.

These findings immediately suggest that the community focus more research efforts on developing CLL
algorithms that are robust to noisy and non-uniform complementary-label distributions. In addition, we used
the collected datasets to demonstrate that existing complementary-label-only validation schemes are not
mature yet, suggesting the community a novel research direction for making CLL practical. Our contributions
are summarized as follows:

• We designed a collection protocol of complementary labels (CLs) for images, and verified that the
protocol collects reasonable human-annotated CLs across different datasets.

• We collected the set of four real-world CL datasets and plan to release CLImage to support the
continuous research of the community.

• We analyzed the collected datasets with extensive benchmarking experiments, which provides novel
and valuable insights for the community.

2 Preliminaries on CLL

2.1 Complementary-label learning

In ordinary multi-class classification, a dataset D = {(xi, yi)}n
i=1 that is i.i.d. sampled from an unknown

distribution is given to the learning algorithm. For each i, xi ∈ RM represents the M -dimension feature of
the i-th instance and yi ∈ [K] = {1, 2, . . . , K} represents the class xi belongs to. The goal of the learning
algorithm is to learn a classifier from D that can predict the labels of unseen instances correctly. The
classifier is typically parameterized by a scoring function g : RM → RK , and the prediction is made by
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arg maxk∈[K] g(x)k given an instance x, where g(x)k denotes the k-th output of g(x). In contrast to ordinary
multi-class classification, CLL shares the same goal of learning a classifier but trains with different labels. In
CLL, the ordinary label yi is not accessible to the learning algorithm. Instead, a complementary label ȳi is
provided, which is a class that the instance xi does not belong to. The goal of CLL is to learn a classifier that
is able to predict the correct labels of unseen instances from a complementary-label dataset D̄ = {(xi, ȳi)}n

i=1.

2.2 Common assumptions on CLL

Researchers have made some additional assumptions on the generation process of complementary labels
to facilitate the analysis and design of CLL algorithms. One common assumption is the class-conditional
assumption (Yu et al., 2018). It assumes that the distribution of a complementary label only depends on its
ordinary label and is independent of the underlying example’s feature, i.e., P (ȳi | xi, yi) = P (ȳi | yi) for each
i. One special case of the class-conditional assumption is the uniform assumption, which further specifies
that the complementary labels are generated uniformly. That is, P (ȳi = k|yi = j) = 1

K−1 for all k ∈ [K]\{j}
(Ishida et al., 2017; 2019; Lin & Lin, 2023).

For convenience, a K ×K matrix T , called transition matrix, is often used to represent how the complementary
labels are generated under the class-conditional assumption. Tj,k is defined to be the probability of obtaining
a complementary label k if the underlying ordinary label is j, i.e., Tj,k = P (ȳ = k | y = j) for each j, k ∈ [K].
The diagonals of T hold the conditional probabilities that a complementary label mistakenly represents the
ordinary label. That is, they indicate the noise level of the complementary labels. When T contains all zeros
on its diagonals, the CLL scenario is called noiseless. For instance, the uniform and noiseless assumption can
be represented by Tj,j = 0 for each j ∈ [K] and Tj,k = 1

K−1 for each k ̸= j. Class-conditional CLL scenarios
based on any other non-uniform T are often called biased.

2.3 A brief overview of CLL algorithms

The pioneering work by Ishida et al. (2017) studied how to learn from complementary labels under the
uniform assumption by converting the risk estimator in ordinary multi-class classification to an unbiased
risk estimator (URE) in CLL (Ishida et al., 2017). URE is then found to be prone to overfitting because
of negative empirical risks, and is upgraded with two tricks, non-negative risk estimator (URE-NN) and
gradient accent (URE-GA) (Ishida et al., 2019). The surrogate complementary loss (SCL) algorithm
mitigates the overfitting issue of URE by a different loss design that decreases the variance of the empirical
estimation. However, these algorithms either rely on the uniform assumption in design or are only tested on
the synthetic datasets that obeys the uniform assumption.

To make CLL one step closer to practice, researchers have explored algorithms to go beyond the uniform (and
thus noiseless) assumption. (Yu et al., 2018) utilized the forward-correction loss (FWD) to accommodate
biased complementary label generation by adapting techniques from noisy label learning (Patrini et al., 2017)
to change the loss. Additionally, (Gao & Zhang, 2021) proposed the L-W algorithm based on discriminatively
modeling the distribution of complementary labels through a weighting function, further improving the
performance in bias scenario. Furthermore, (Ishiguro et al., 2022) designed robust loss functions for learning
from noisy CLs, including MAE and WMAE, by applying the gradient ascent technique (Ishida et al.,
2019) to handle noisy scenarios.

Besides CLL algorithms, a crucial component for making CLL practical is model validation. In ordinary-label
learning, this can be done by naively calculating the classification accuracy on a validation dataset. In CLL,
this scheme can be intractable if there are not enough ordinary labels. One generic way of model validation is
based on the result of (Ishida et al., 2019) by calculating the unbiased risk estimator of the zero-one loss, i.e.,

R̂01(g) = 1
N

N∑
i=1

e⊤
yi

(T −1)ℓ01(g(xi)) (1)

where eyi
denotes the one-hot vector of yi, ℓ01(g(xi)) denotes the K-dimensional vector

(ℓ01(g(xi), 1), . . . , ℓ01(g(xi)), K))T , and ℓ01(g(xi), k) = 0 if arg maxk∈[K] g(xi) = k and 1 otherwise, rep-
resenting the zero-one loss of g(xi) if the ordinary label is k. This estimator will be used in the experiments
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in Section 6. Another validation objective, surrogate complementary esimation loss (SCEL), was proposed by
(Lin & Lin, 2023). SCEL measures the log loss of the complementary probability estimates induced by the
probability estimates on the ordinary label space. The formula to calculate SCEL is as follows,

R̂SCEL(g) = 1
N

N∑
i=1

− log
(
e⊤

yi
T ⊤ softmax(g(xi))

)
. (2)

3 Construction of the CLImage collection

In this section, we introduce the four complementary-labeled datasets that we collected, CLCIFAR10,
CLCIFAR20, CLMicroImageNet10 and CLMicroImageNet20. All datasets are labeled by human annotators
on Amazon Mechanical Turk (MTurk)1.

3.1 Datasets and goals

The complementary-labeled datasets are derived from ordinary multi-class classification datasets. CIFAR10,
CIFAR100 and TinyImageNet200 (Krizhevsky, 2012; Le & Yang, 2015; Russakovsky et al., 2015). This
selection is motivated by the real-world noisy label dataset by (Wei et al., 2022). Building upon the CIFAR
and TinyImageNet200 datasets allow us to estimate the noise rate and the empirical transition matrix easily,
as they already contain nearly noise-free ordinary labels. In addition, many of the state-of-the-art CLL
algorithms have been benchmarked on synthetic complementary labels with the CIFAR datasets (Dosovitskiy
et al., 2020; Kolesnikov et al., 2020; Oquab et al., 2023). Our CLCIFAR counterparts immediately allow a
fair comparison to those results with the same network architecture.

In addition to our CLCIFAR extensions, we are the first to introduce (Tiny)ImageNet-derived datasets to the
CLL literature. Such datasets serve two purposes. First, it allows us to confirm the validity of our collection
protocol and findings beyond CIFAR-derived datasets. Second, ImageNet knowingly contains images of
higher complexity than CIFAR and can thus be used to challenge the ability of existing CLL algorithms more
realistically.

There is a historical note that is worth sharing with the community: We initially attempted to collect
complementary labels based on the 100 classes in CIFAR100. But some preliminary testing soon revealed
that state-of-the-art CLL algorithms cannot produce meaningful classifiers for 100 classes even on synthetic
complementary labels that are uniformly and noiselessly generated. We thus set our collection goals to be
10-class classification, which is the focus of most current CLL studies, and 20-class classification, which
extends the horizon of CLL and matches the 20 super-class structure in CIFAR.

3.2 Complementary label collection protocol

To collect only complementary labels from the CIFAR, TinyImageNet datasets, for each image in the training
split, we first randomly sample four distinct labels and ask the human annotators to select any of the incorrect
one from them. To leave room for analyzing the annotators’ behavior, each image is labeled by three different
annotators. The four labels are re-sampled for each annotator on each image. That is, each annotator possibly
receives a different set of four labels to choose from. An algorithmic description of the protocol is as follows.
For each image x,

1. Uniformly sample four labels without replacement from the label set [K].

2. Ask the annotator to select any one of the complementary label ȳ from the four sampled labels.

3. Add the pair (x, ȳ) to the complementary dataset.

Note that if the annotators always select one of the correct complementary labels uniformly, the empirical
transition matrix will also be uniform in expectation. We will inspect the empirical transition matrix in

1https://www.mturk.com/
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Section 4. The labeling tasks are deployed on MTurk by dividing them into smaller we first divide the total
images into smaller human intelligence tasks (HITs). For instance, for constructing the CLCIFAR datasets,
we first divide the 50,000 images into five batches of 10,000 images. Then, each batch is further divided into
1,000 HITs with each HIT containing 10 images. Each HIT is deployed to three annotators, who receive 0.03
dollar as the reward by annotating 10 images. To make the labeling task easier and increase clarity, the size
of the images are enlarged to 200 × 200 pixels.

4 Dataset Characteristic

Next, we closely examine the collected complementary labels. We first analyze the error rates of the collected
labels, and then verify whether the transition matrix is uniform or not. Finally, we end with an analysis on
the behavior of the human annotators observed in the label collection protocol.

(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 1: The label distribution of CLCIFAR10 and CLMicroImageNet10 datasets.

Observation 1: noise rate compared to ordinary label collection We first look at the noise rate of
the collected complementary labels. A complementary label is considered to be incorrect if it is actually the
ordinary label. The mean error rate made by the human annotators is 3.93% for CLCIFAR10, 2.80% for
CLCIFAR20, 5.19% for CLMicroImageNet10 and 3.21% for CLMicroImageNet20. In theory, we can estimate
a random annotator achieves a noise rate of 1

K for complementary label annotation and a noise rate of K−1
K for

ordinary label annotation. If we compare the human annotators to a random annotator, then for CLCIFAR10,
human annotators have 60.7% less noisy labels than the random annotator whereas for CIFAR10-N, human
anotators have 78.17% less noisy labels. This demonstrates that human annotators are more competent
compared to a random annotator in the ordinary-label annotation. Similarly, human annotators have 44%
less noise than a random annotator for CLCIFAR20 and 73.05% less noise for CIFAR100N-coarse (Wei et al.,
2022). This observation reveals that while the absolute noise rate is lower in annotating complementary
labels, it may be more difficult to be competent against random labels than the ordinary label annotation.

Observation 2: imbalanced complementary label annotation Next, we analyze the distribution
of the collected complementary labels. The frequency of the complementary labels for the CLCIFAR10
and CLMicroImageNet10 (CLMIN10) datasets are reported in Figure 1. As we can see in the figure, the
annotators exhibit specific biases towards certain labels. For instance, in CLCIFAR10, annotators prefer
“airplane” and “automobile”, while in CLMIN10, they prefer “pizza” and “torch”. In CLCIFAR10, the bias is
towards labels in different categories, as vehicles (“airplane”, “automobile”) versus animals (“cat”, “bird”).
In contrast, in CLMIN10, the bias is towards items that are easily recognizable (“pizza” and “torch”) and
against those that are less familiar (“cardigan” or “alp”).

Observation 3: biased transition matrix Finally, we visualize the empirical transition matrix using
the collected CLs in Figure 2. Based on the first two observations, we could imagine that the transition
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(a) CLCIFAR10 (b) CLMicroImageNet10

Figure 2: The empirical transition matrices of CLCIFAR10 and CLMicroImageNet10.

matrix is biased. By inspecting Figure 2, we further discover that the bias in the complementary labels are
dependent on the true labels. For instance, in CLCIFAR10, despite we see more annotations on airplane and
automobile in aggregate, conditioning on the transportation-related labels (“airplane”, “automobile”, etc), the
distribution of the complementary labels becomes more biased towards other animal-related labels (“bird”,
“cat”, etc.) Furthermore, this observation holds true on CLMIN10 as well. Next, we study the impact of the
bias and noise on existing CLL algorithms.

We discovered similar patterns in all four human-annotated datasets, validating that our design methodology
is practical for collecting real-world CLL image datasets. Due to space limitations, we have included the
detailed analysis of CLCIFAR20 and CLMicroImageNet20 in Appendix A.4.

5 Experiments

In this section, we benchmarked several state-of-the-art CLL algorithms on CLImage. A significant performance
gap between the models trained on the humanly annotated CLCIFAR, CLMicroImageNet dataset and those
trained on the synthetically generated complementary labels (CL) was observed in Section 5.1, which motivates
us to analyze the possible reasons for the gap with the following experiments. To do so, we discuss the effect
of three factors in the label generating process, feature dependency, noise, and biasedness, in Section 5.2,
Section 5.3, and Section 5.4, respectively. From our experiment results, we conclude that noise is the dominant
factor affecting the performance of the CLL algorithms on CLCIFAR2.

5.1 Standard benchmark on CLImage

Baseline methods Several state-of-the-art CLL algorithms were selected for this benchmark. Some of
them take the transition matrix T as inputs, which we call T -informed methods, including two version of
forward correction (Yu et al., 2018): FWD-U and FWD-R, two version of unbiased risk estimator with
gradient ascent (Ishida et al., 2019): URE-GA-U and URE-GA-R, and robust loss (Ishiguro et al., 2022)
for learning from noisy CL: CCE, MAE, WMAE, GCE, and SL3. We also included some algorithms that
assume the transition matrix T to be uniform, called T -agnostic methods, including surrogate complementary

2Due to space and time constraints, we only provide the results and discussion on the CLCIFAR datasets.
3Due to space limitations, we only provided the results of MAE. The remaining results and discussions related to the robust

loss methods can be found in Appendix A.3

6



Under review as submission to TMLR

Table 1: Standard benchmark results on CLCIFAR/ CLMicroImageNet(CLMIN) and uniform-CIFAR/
MicroImageNet(MIN) datasets. Mean accuracy (± standard deviation) on the testing dataset from four trials
with different random seeds. Highest accuracy in each column is highlighted in bold.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20 uniform-MIN10 CLMIN10 uniform-MIN20 CLMIN20

FWD-U 64.19±0.57 34.83±0.50 21.54±0.37 8.03±0.74 36.30±1.12 23.85±2.76 12.57±2.94 6.33±1.04
FWD-R 61.32±0.90 38.13±0.88 21.50±0.38 20.27±0.53 35.70±1.19 30.15±1.83 14.85±1.75 10.60±0.82
URE-GA-U 50.24±1.11 34.72±0.40 16.67±1.35 10.49±0.52 35.70±1.97 22.90±2.97 11.65±1.90 5.75±0.43
URE-GA-R 50.73±1.83 30.23±0.70 17.57±0.61 6.17±0.82 33.65±1.40 13.25±5.11 9.78±3.88 6.50±0.35
SCL-NL 63.76±0.09 34.77±0.60 21.37±1.18 8.02±0.36 37.05±1.40 21.80±1.85 13.00±2.80 6.17±0.49
SCL-EXP 63.29±1.02 35.18±0.67 21.57±1.13 7.70±0.41 36.55±1.28 24.80±1.14 12.95±3.38 5.58±0.13
L-W 54.32±0.41 32.99±1.01 19.59±0.99 7.71±0.35 33.80±2.66 23.80±2.64 12.70±2.35 6.40±0.29
L-UW 57.52±0.59 34.69±0.32 20.71±0.92 8.15±0.30 35.10±2.74 22.40±1.67 12.12±3.13 6.35±0.86
PC-sigmoid 37.78±0.80 32.15±0.80 14.48±0.47 12.11±0.46 29.10±0.98 23.15±0.46 10.72±1.38 6.90±1.04
ROB-MAE 59.38±0.63 20.23±1.02 18.17±1.31 5.40±0.59 31.50±1.81 14.15±0.68 6.35±0.86 5.38±0.33

CIFAR10 CIFAR20 MIN10 MIN20

standard supervision 82.80±0.28 63.80±0.49 68.70±1.53 63.90±1.00

loss SCL-NL and SCL-EXP (Chou et al., 2020), discriminative modeling L-W and its weighted variant
(L-UW) (Gao & Zhang, 2021), and pairwise-comparison (PC) with the sigmoid loss (Ishida et al., 2017).
The details of the algorithms mentioned above are discussed in Appendix B.

Implementation details We collected and released three CLs per image to prepare for future studies.
However, for this standard benchmark, we chose the first CL from the collected labels for each data instances
to form a single CLL dataset, ensuring reproducibility. Then, we trained a ResNet18 (He et al., 2016) model
using the baseline methods mentioned above on the single CLL dataset using the Adam optimizer for 300
epochs without learning rate scheduling. Detailed results from the ablation study on various neural network
architectures, which further justify our choice of ResNet18 as the backbone, are available in Appendix A.6.
The training settings included a fixed weight decay of 10−4 and a batch size of 512. The experiments were
run with Tesla V100-SXM2. For better generalization, we applied standard data augmentation technique,
RandomHorizontalFlip, RandomCrop, and normalization to each image. The learning rate was selected from
{10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5} using a 10% hold-out validation set. We selected the learning rate
with the best classification accuracy on the validation dataset. Note that here we assumed the ordinary
labels in the validation dataset are known. We will discuss other validation objectives that rely only on
complementary labels in Section 6. As CLL algorithms are prone to overfitting (Ishida et al., 2019; Chou
et al., 2020), some previous works did not use the model after training for evaluation. Instead, previous works
were performed by evaluating the model on the validation dataset and selecting the epoch with the highest
validation accuracy. In this work, we also follow the same aforementioned technique to validate testing set.
For reference, we also performed the experiments on synthetically-generated CLL dataset, where the CLs
were generated uniformly and noiselessly, denoted uniform-CIFAR.

Results and discussion As we can observe in Table 1, there is a significant performance gap between the
humanly annotated dataset, CLCIFAR, and the synthetically generated dataset, uniform-CIFAR. The differ-
ence between the two datasets can be divided into three parts: (a) whether the generation of complementary
labels depends on the feature, (b) whether there is noise, and (c) whether the complementary labels are
generated with bias. A negative answer to those questions simplify the problem of CLL. We can gradually
simplify CLCIFAR to uniform-CIFAR by chaining those assumptions as follows 4:

CLCIFAR Section 5.2==================⇒
Remove feature dependency

Section 5.3=========⇒
Remove noise

Section 5.4============⇒
Remove biasedness

uniform-CIFAR

3Note that FWD-R and URE-GA-R assume the empirical transition matrix Te to be provided. The empirical transition
matrix is computed from the labels in the training set, so it is slightly different from a uniform transition matrix Tu in the
uniform-CIFAR datasets. As a result, the performances of FWD-R and URE-GA-R do not exactly match those of FWD-U and
URE-GA-U, respectively, in the uniform-CIFAR datasets.

4The “interpolation” between CLCIFAR and uniform-CIFAR does not necessarily have to be this way. For instance, one
can remove the biasedness before removing the noise. We chose this order to reflect the advance of CLL algorithms. First,
researchers address the uniform case (Ishida et al., 2017), then generalize to the biased case (Yu et al., 2018), then consider noisy
labels (Ishiguro et al., 2022). There is no work considering feature-dependent complementary labels yet.
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In the following subsections, we will analyze how these three factors affect the performance of the CLL
algorithms.

5.2 Feature dependency

In this experiment, we verified whether the performance gap resulted from the feature-dependent generation of
practical CLs. Conceivably, even if two images belong to the same class, the distribution on the complementary
labels could be different. On the other hand, the distributional difference could also be too small to affect
model performance, e.g., if P (ȳ | y, x) ≈ P (ȳ | y) for most x. Consequently, we decided to further look into
whether this assumption can explain the performance gap. To observe the effects of approximating P (ȳ | y, x)
with P (ȳ | y), we generated two synthetic complementary datasets, CLCIFAR10-iid and CLCIFAR20-iid
by i.i.d. sampling CLs from the empirical transition matrix in CLCIFAR10 and CLCIFAR20, respectively.
We proceeded to benchmark the CLL algorithms on CLCIFAR-iid and presented the accuracy difference
compared to CLCIFAR in Table 2.

Results and discussion From Table 2, we observed that the accuracy barely changes on the resampled
CLCIFAR-iid, suggesting that even if the complementary labels in CLCIFAR could be feature-dependent,
this dependency does not affect the model performance significantly. Hence, there might be other factors
contributing to the performance gap.

Table 2: Mean accuracy difference (± standard deviation) of different CLL algorithms. A plus indicates the
performance on is calculated as CLCIFAR-i.i.d. accuracy minus CLCIFAR accuracy.

FWD-U FWD-R URE-GA-U URE-GA-R SCL-NL SCL-EXP L-W L-UW PC-sigmoid

CLCIFAR10-iid -1.1±2.17 -0.36±1.15 -3.03±1.25 0.74±0.35 -0.67±1.81 -1.97±1.16 -2.5±0.56 -3.53±1.36 -2.03±2.05
CLCIFAR20-iid -0.64±0.39 -3.53±1.13 -0.37±0.51 1.79±2.34 -0.28±0.61 -0.39±0.69 -0.5±1.37 -0.82±0.04 -2.24±0.52

5.3 Labeling noise

In this experiment, we further investigated the impact of the label noise on the performance gap. Specifically,
we measured the accuracy on the noise-removed versions of CLCIFAR datasets, where varying percentages
(0%, 25%, 50%, 75%, or 100%) of noisy labels are eliminated.

Figure 3: Accuracy of FWD-U and FWD-R on the noise-removed CLCIFAR10 dataset (Left) and the
uniform-CIFAR10 dataset with uniform noise (Right) at varying noise rates.

Results and discussion We present the performance of FWD trained on the noise-removed CLCIFAR10
dataset in the left figure in Figure 3. From the figure, we observe a strong positive correlation between
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the performance and the proportion of removed noisy labels. When more noisy labels are removed, the
performance gap diminishes and the accuracy approaches that of the ideal uniform-CIFAR dataset. Therefore,
we conclude that the performance gap between the humanly annotated CLs and the synthetically generated
CLs are primarily attributed to the label noise. The results for FWD-(U/R) and SCL-(NL/EXP) of the
noise-removed CLCIFAR10 and CLCIFAR20 datasets are presented in the Figure 4. The other results for
other algorithms can be found in Appendix C.

(a) FWD-(U/R) on CLCIFAR10 (b) FWD-(U/R) on CLCIFAR20

(c) SCL-(NL/EXP) on CLCIFAR10 (d) SCL-(NL/EXP) on CLCIFAR20

Figure 4: Accuracy of FWD-(U/R) and SCL-(NL/EXP) on the noise-removed CLCIFAR10 dataset (Left)
and the CLCIFAR20 dataset with uniform noise (Right) at varying noise rates.

5.4 Biasedness of complementary labels

To further study the biasedness of CL as a potential factor contributing to the performance gap, we removed
the biasedness from the noise-removed CLCIFAR dataset and examined the resulting accuracy. Specifically,
we introduced the same level of uniform noise in uniform-CIFAR dataset and reevaluated the performance of
FWD algorithms.

Results and discussion The striking similarity between the two curves in the right figure in Figure 3 shows
that the accuracy is significantly influenced by label noise, while the biasedness of CL has a negligible impact
on the results. Furthermore, we observe that the accuracy difference between the results of the last epoch
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and the best accuracy of validation set (or early-stopping: ES) results becomes smaller when the model is
trained on the uniformly generated CLs. That is, the T -informed methods are more prone to overfitting when
there is a bias in the CL generation.

With the experiment results in Section 5.2, 5.3, and 5.4, we can conclude that the performance gap between
humanly annotated CL and synthetically generated CL is primarily attributed to label noise. Additionally,
the biasedness of CLs may potentially contribute to overfitting, while the feature-dependent CLs do not
detrimentally affect performance empirically. It is worth noting that in the last row of Table 1, the MAE
methods that can learn from noisy CL fails to generalize well in the practical dataset. These results suggest
that more research on learning with noisy complementary labels can potentially make CLL more realistic.

Following above conclusion, the label noise and biasedness of CL emerge as the two primary factors contributing
to overfitting. To gain a better understanding, we conducted deeper investigation into this phenomenon. We
demonstrated the necessity of employing data augmentation techniques to prevent overfitting and attempted
to address the issue of overfitting by employing an interpolated transition matrix for regularization.

Ablation on data augmentation To further investigate the significance of data augmentation, we conducted
identical experiments without employing data augmentation during the training phase. As we can observe in

Figure 5: The Overfitting accuracy curve of FWD, URE, SCL-NL, L-W. The dotted line represents the
accuracy obtained without data augmentation, while the solid line represents the accuracy with data
augmentation included for reference. The accuracy of FWD, SCL-NL, SCL-EXP, L-W, L-UW methods
reaches its highest at approximately the 50 epoches and converges to some lower point. The detail numbers
are in Table 3

the training curves in Figure 5, data augmentation could improve the testing accuracy of all the algorithms
we considered.

Ablation on interpolation between Tu and Te In Table 1, we discovered that the T -informed methods
did not always deliver better testing accuracy when Te is given. Looking at the difference between the
accuracy of using early-stopping and not using early-stopping, we observe that when the Tu is given to the
T -informed methods, the difference becomes smaller. This suggests that T -informed methods using the
empirical transition matrix has greater tendency to overfitting. On the other hand, T -informed methods
using the uniform transition matrix could be a more robust choice.

10
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Table 3: The overfitting results when there is no data augmentation.

uniform-CIFAR10 CLCIFAR10 uniform-CIFAR20 CLCIFAR20

methods valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES) valid_acc valid_acc (ES)

FWD-U 48.44 49.33 21.29 25.59 17.4 17.97 6.91 7.32
FWD-R - - 14.97 28.3 - - 6.82 14.67
URE-GA-U 39.55 39.67 21.0 23.53 13.52 14.08 5.55 8.38
URE-GA-R - - 19.81 20.8 - - 5.0 6.43
SCL-NL 48.2 48.27 21.96 26.51 16.55 17.54 7.1 7.92
SCL-EXP 46.79 47.52 21.89 27.66 16.18 17.89 6.9 7.3
L-W 27.02 44.78 20.06 27.6 10.39 16.3 5.64 8.02
L-UW 31.3 46.38 20.28 26.26 12.33 16.32 6.03 8.14
PC-sigmoid 18.97 33.26 - - 7.67 10.41 - -

We observe that the uniform transition matrix Tu acts like a regularization choice when the algorithms overfit
on CLCIFAR. This results motivate us to study whether we can interpolate between Tu and Te to let the
algorithms utilize the information of transition matrix while preventing overfitting. To do so, we provide
an interpolated transition matrix Tint = αTu + (1 − α)Te to the algorithm, where α controls the scale of
the interpolation. As FWD is the T -informed method with the most sever overfitting when using Tu, we
performed this experiment using FWD adn reported the results in Figure 6. As shown in Figure 6, FWD can
learn better from an interpolated Tint, confirming the conjecture that Tu can serve as a regularization role.

Figure 6: The last epoch accuracy of CLCIFAR10 and CLCIFAR20 for FWD algorithm with an α-interpolated
transition matrix Tint. The five solid points on each cruve represent different noise cleaning rate: 0%, 25%,
50%, 75%, 100% from left to right.

6 Validation Objectives

Validation is a crucial component in applying CLL algorithms in practice. With the collection of the real-world
datasets, we are now able to estimate the difference between using ordinary labels for validation (the common
practice in existing CLL studies, as what we do in Section 5) and using complementary labels for validation.

Validation objectives As discussed in Section 2, validating the model performance solely with complementary
labels poses a non-trivial challenge. To the best of our knowledge, only two existing CLL studies offer some
possibility to evaluate a classifier with only complementary labels. They are URE (Ishida et al., 2019) and
SCEL (Lin & Lin, 2023). We take these two validation objectives to select the optimal learning rate from
{10−3, 5 × 10−4, 10−4, 5 × 10−5, 10−5} and provides the accuracy on testing set in Table 5. We compare
the result to another validation objective that computes the accuracy on an equal number of ordinary labels.
Our goal was to determine the gap between using complementary labels and ordinary labels for validation.

11
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We selected the best learning rate based on the validation objectives for URE, SCEL, and ordinary-label
accuracy, and then report the test performance, as shown in Table 4 for synthetic datasets and Table 5 for
real-world datasets.

Table 4: The testing accuracy of models evaluated with URE and SCEL.

uniform-CIFAR10 uniform-CIFAR20 uniform-MIN10 uniform-MIN20
URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 53.41±5.51 50.36±3.25 64.19±0.57 10.78 16.73±2.29 16.52±2.61 21.54±0.37 4.81 33.65±2.84 33.20±3.16 36.30±1.12 2.65 10.10±2.66 9.15±1.68 12.57±2.94 2.47
FWD-R 52.55±4.06 49.17±3.11 61.32±0.90 8.77 18.29±0.39 16.61±2.65 21.50±0.38 3.21 32.15±3.40 33.10±2.03 35.70±1.19 2.60 12.72±3.28 11.57±2.91 14.85±1.75 2.12
URE-GA-U 48.68±1.11 49.29±1.67 50.24±1.11 0.95 15.23±2.35 16.09±1.23 16.67±1.35 0.58 28.10±5.24 34.35±2.39 35.70±1.97 1.35 8.53±1.55 8.52±1.38 11.65±1.90 3.12
URE-GA-R 50.49±1.21 50.25±1.57 50.73±1.83 0.25 15.68±1.35 16.12±0.95 17.57±0.61 1.45 29.85±4.73 34.10±1.90 33.65±1.40 -0.45 7.15±2.13 7.12±2.42 9.78±3.88 2.63
SCL-NL 54.32±6.71 51.03±3.12 63.76±0.09 9.44 15.65±3.06 16.32±3.11 21.37±1.18 5.05 32.95±3.13 33.20±3.69 37.05±1.40 3.85 11.50±3.76 9.28±2.55 13.00±2.80 1.50
SCL-EXP 50.98±6.83 41.61±3.52 63.29±1.02 12.30 16.71±2.72 16.15±2.55 21.57±1.13 4.86 32.95±2.91 29.70±2.83 36.55±1.28 3.60 10.53±2.02 8.83±3.19 12.95±3.38 2.43
L-W 46.88±9.44 50.36±0.47 54.32±0.41 3.95 16.26±1.93 14.67±1.59 19.59±0.99 3.33 17.70±9.90 28.60±5.15 33.80±2.66 5.20 8.58±1.25 7.70±0.35 12.70±2.35 4.12
L-UW 52.47±3.63 51.15±1.61 57.52±0.59 5.05 16.10±1.51 15.58±1.97 20.71±0.92 4.62 22.10±7.68 25.60±7.14 35.10±2.74 9.50 10.60±2.36 8.28±2.02 12.12±3.13 1.52
PC-sigmoid 35.29±1.67 34.82±1.24 37.78±0.80 2.49 13.41±0.95 13.40±0.72 14.48±0.47 1.07 25.55±5.99 27.05±5.66 29.10±0.98 2.05 7.75±1.73 8.72±0.26 10.72±1.38 2.00
ROB-MAE 57.99±1.72 57.79±2.03 59.38±0.63 1.39 17.07±2.02 15.62±1.79 18.17±1.31 1.11 30.15±4.22 29.15±2.90 31.50±1.81 1.35 5.42±0.27 5.03±0.54 6.35±0.86 0.92

Table 5: The testing accuracy of models evaluated with URE and SCEL.

CLCIFAR10 CLCIFAR20 CLMIN10 CLMIN20
URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓) URE SCEL valid acc gap (↓)

FWD-U 33.13±1.30 31.86±1.52 34.83±0.50 1.70 6.70±0.46 7.10±0.48 8.03±0.74 0.93 20.75±2.12 20.20±0.72 23.85±2.76 3.10 4.97±0.72 4.55±0.81 6.33±1.04 1.35
FWD-R 33.70±3.38 35.64±1.37 38.13±0.88 2.49 17.35±2.32 18.40±1.56 20.27±0.53 1.86 22.15±4.15 29.15±1.93 30.15±1.83 1.00 8.60±1.32 9.90±1.19 10.60±0.82 0.70
URE-GA-U 30.45±3.58 33.21±1.12 34.72±0.40 1.51 7.03±0.61 8.71±0.74 10.49±0.52 1.79 17.05±3.35 21.30±3.01 22.90±2.97 1.60 4.27±0.80 5.03±0.48 5.75±0.43 0.72
URE-GA-R 27.39±1.89 28.32±1.38 30.23±0.70 1.91 3.58±0.47 5.42±0.96 6.17±0.82 0.75 8.90±1.03 10.30±1.53 13.25±5.11 2.95 5.15±0.62 5.57±1.54 6.50±0.35 0.93
SCL-NL 33.55±0.79 33.70±1.33 34.77±0.60 1.07 6.73±0.51 7.47±0.56 8.02±0.36 0.55 19.55±1.37 22.15±1.76 21.80±1.85 -0.35 4.83±1.12 5.20±0.51 6.17±0.49 0.98
SCL-EXP 31.30±2.62 33.47±1.16 35.18±0.67 1.71 6.83±0.23 7.03±0.62 7.70±0.41 0.66 18.35±1.60 20.65±1.39 24.80±1.14 4.15 5.05±0.56 4.45±0.74 5.58±0.13 0.52
L-W 27.49±4.30 30.32±2.40 32.99±1.01 2.67 5.90±0.29 7.18±0.31 7.71±0.35 0.53 19.30±4.66 18.95±2.30 23.80±2.64 4.50 5.97±0.33 5.55±0.17 6.40±0.29 0.43
L-UW 28.90±2.01 29.78±2.69 34.69±0.32 4.91 6.40±0.42 8.16±0.30 8.15±0.30 -0.01 18.25±4.31 19.80±1.61 22.40±1.67 2.60 5.82±0.77 6.48±1.03 6.35±0.86 -0.13
PC-sigmoid 24.83±5.94 31.48±1.93 32.15±0.80 0.67 7.98±2.47 10.59±0.87 12.11±0.46 1.51 12.55±1.31 17.85±4.61 23.15±0.46 5.30 6.40±1.19 5.33±1.28 6.90±1.04 0.50
ROB-MAE 18.80±1.64 18.75±0.99 20.23±1.02 1.43 4.70±0.43 4.87±0.32 5.40±0.59 0.53 11.80±2.92 14.35±1.59 14.15±0.68 -0.20 5.08±0.44 4.62±0.66 5.38±0.33 0.30

Results and discussion Firstly, there appears no clear winner between URE and SCEL, both using only
CLs for validation. Validating with the ordinary-label accuracy generally provides stronger performance
than URE/SCEL, and the test performance gap between validating with ordinary labels and validating with
complementary labels can be as big as nearly 5%. These findings suggest that using purely complementary
labels for validation, whether through URE or SCEL, still suffers from a non-negligible performance drop
compared to using ordinary validation. That is, the numbers reported in existing studies, which validates
with ordinal labels, can be optimistic for practice. Whether this gap can be further reduced remains an open
research problem and the community can pay more attention on that to make CLL more practical.

7 Alternative to Current Data Collection Protocol

In this work, we used a specific protocol to collect complementary labels, but we acknowledge there are
several alternative protocols that could also be considered. Here we highlight possibilities while explaining
the rationale behind our current design choices.

The first alternative would be to provide annotators with more than four classes. However, realistically,
increasing the number beyond four would significantly increase the effort required from annotators. We
chose four because it is a common standard for multiple-choice scenarios and was effectively employed in
prior research (Wei et al., 2022) that used human annotations to collect noisy labels in real-world settings.
Nevertheless, we admit exploring different numbers of labels beyond four presents an interesting area for
future research in complementary dataset.

A second alternative, we considered was using a simple “yes/no” format. However, this approach posed
two main issues. First, it would generate a dataset containing both true and complementary labels, which
conflicts with our goal of creating a purely complementary dataset. Second, the resulting dataset would likely
contain increased noise, complicating clear analysis and validation of the label transition assumptions.

Another possible protocol involves explicitly hiding the true label during annotation to minimize noise.
However, this approach is less realistic since, in real-world scenarios, true labels are typically unknown
(otherwise complementary annotation will not be necessary). Note that part of our current dataset, which
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(a) Transition matrix (b) Label distribution

Figure 7: The transition matrix (a) and label distribution (b) of CLMicroImageNet10 when hidden the true
label.

does not have choices that include the true label, can be taken to analyze the effect of such a protocol. We
show in Figure 7) that such a protocol does not lead to much change of the transition matrix (except for the
diagonal noise removal) and label distribution, when compared with our original choice of protocol.

We view our work as an initial exploration into collecting complementary labels, and we hope that this work
will inspire the future work on other possible collection protocols of complementary label.

8 Conclusion

In this paper, we devised a protocol to collect complementary labels from human annotators. Utilizing
this protocol, we curated four real-world datasets, CLCIFAR10, CLCIFAR20, CLMicroImageNet10, and
CLMicroImageNet20 and made them publicly available to the research community. Through our meticulous
analysis of these datasets, we confirmed the presence of noise and bias in the human-annotated complementary
labels, challenging some of the underlying assumptions of existing CLL algorithms. Extensive benchmarking
experiments revealed that noise is a critical factor that undermines the effectiveness of most existing CLL
algorithms. Furthermore, the biased complementary labels can trigger overfitting, even for algorithms
explicitly designed to leverage this bias information. In addition, our study on the validation objective for
CLL suggests that validating with only complementary labels causes significant performance degrading. These
findings emphasize the need for the community to dedicate more effort on those issues. The curated datasets
pave the way for the community to create more practical and applicable CLL solutions.

9 Limitations

To ensure the compatibility with previous CLL algorithms, our work focuses on image datasets based on
CIFAR10/100, and TinyImageNet. It is worth investigating the real-world CLL datasets on larger datasets,
such as ImageNet, and other domains. On the other hand, the proposed protocol focuses on collecting
real-world complementary labels for analyzing the common assumptions on CLL. That said, it is also crucial
to understand efficient ways to collect complementary labels in practice, e.g., by asking annotators binary
questions to collect ordinary and complementary labels simultaneously. We leave these directions as future
works and hope that our work can open the way for the community to understand these questions.
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Broader Impact Statement

It is known that weakly-supervised learning can be used for some privacy-preserving applications. While our
CLImage datasets do not belong to those. We suggest practitioners exercise caution when studying such
applications.
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