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ABSTRACT

A central goal of interpretability is to recover representations of causally relevant
concepts from the activations of neural networks. The quality of these concept
representations is typically evaluated in isolation, and under implicit independence
assumptions that may not hold in practice. Thus, it is unclear whether common
featurization methods—including sparse autoencoders (SAEs) and sparse probes—
recover disentangled representations of these concepts. This study proposes a
multi-concept evaluation setting where we control the correlations between textual
concepts, such as sentiment, domain, and tense, and analyze performance under
increasing correlations between them. We first evaluate the extent to which fea-
turizers can learn disentangled representations of each concept under increasing
correlational strengths. We then investigate whether concepts are sufficiently cap-
tured by single features or require multiple dimensions; using k-sparse probes, we
find that k often needs to be much greater than 1 for optimal scores. Finally, we
perform a causal investigation where we steer multiple features simultaneously
and observe whether each concept is independently manipulable. Even under ideal
uniform distributions of concepts, we find that unsupervised methods like SAEs
struggle to learn disentangled concept representations. We then find that the feature
representations we identify correspond to disjoint subspaces in activation space,
but also that steering with the top feature for one concept still often affects other
concepts; this suggests a fundamental entanglement of concepts in the model’s
representation space. These findings underscore the importance of compositional
and out-of-distribution evaluations in interpretability research.

1 INTRODUCTION

Interpretability centers on understanding how and why neural networks behave how they do. This
requires understanding the underlying causal variables and mechanisms that produce observed input–
output behaviors; this study centers on causal variable discovery methods. To uncover causal variable
representations, it is now common to deploy featurization methods, such as sparse autoencoders
(SAEs; Olshausen & Field, 1997; Bricken et al., 2023; Huben et al., 2024) and sparse probes (Gurnee
et al., 2023). These methods aim to disentangle activation vectors (wherein a dimension can have
many meanings) into sparser spaces where there is a more one-to-one relationship between dimensions
and concepts.

Most feature extraction studies and benchmarks focus on isolating single concepts or behaviors, such
as refusal (Arditi et al., 2024) and truthfulness (Marks & Tegmark, 2024). This tells us whether
the concept exists in the model, but it does not tell us to what degree the concept representation is
independent and disentangled from others. How often do our feature extraction methods really
recover concept representations with high precision? Answers to this question act as a ceiling for
how much we can trust our steering methods to induce similar behaviors in novel contexts—i.e., to
what degree we have predictive power and control over the model’s future behaviors.

This is not a new idea: the fields of causal representation learning (CRL; Schölkopf et al., 2021)
and disentangled representation learning (Higgins et al., 2018; Locatello et al., 2019; 2020b) have
robust literatures addressing under what circumstances and under what assumptions it is possible to
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identify the true latent causal variables for a task. These fields focus on learning a task from scratch,
whereas the goal of interpretability is to derive a simplified causal model of a large and complex
neural network that has already been trained (Geiger et al., 2024). Both lines of work are unified in
asking: in what circumstances is it possible to recover causally efficacious representations?

Figure 1: Causal graph of our experimental
setup. The values of 4 known ground-truth con-
cepts {zi}4i=1 are used to generate an example x.
We train a featurizer F to generate vectors f given
activation vectors hℓ from the output of layer ℓ of
language modelM. When training F on exam-
ples with increasing correlations between pairs of
concepts ρ(zi, zj), we observe whether F learns
the true latents or the correlational confound (as
measured by the correlation between latents in f
and the presence of the true variable zi).

Our work generalizes and extends the metrics
and evaluation paradigms of CRL to mechanistic
interpretability using language models. Specif-
ically, using a probabilistic context-free gram-
mar (PCFG), we generate sentences labeled for
multiple concepts. We use this dataset to eval-
uate empirically successful and popular meth-
ods in interpretability, including k-sparse probes
(Gurnee et al., 2023) and sparse autoencoders
(Olshausen & Field, 1997; Huben et al., 2024).
First, building on CRL, we use correlational ev-
idence to understand to what degree neurons,
sparse features, and probes recover disentan-
gled representations of ground-truth concepts.
Then, going beyond CRL, we develop new met-
rics that evaluate causal criteria we seek from
disentangled representations: 1) independent
manipulability: disentangled features should
allow us to steer one and only one concept
downstream; 2) sparse prediction: features
should allow us to accurately predict the pres-
ence of a concept, ideally with a single fea-
ture (Lachapelle et al., 2023a); 3) disjointness
(Zuheng et al., 2024): steering two concepts
jointly should be the sum of steering each concept independently.

Our contributions include the following:

• Formal evaluation metrics inspired by causal representation learning. These criteria can help
measure success in recovering precise and disentangled concept representations in interpretability
studies.

• Experiments comparing the efficacy of common featurization methods on the proposed metrics.
Top-K SAEs perform well at disentangling concepts, but do not approach the performance of
supervised featurizers.

• A demonstration that even methods with strong sparsity priors still require multiple dimensions to
recover known concepts.

• Causal evidence that existing methods often optimize disjointness, but not independence. That is,
they succeed in recovering non-overlapping representations, but do often affect multiple unrelated
concepts downstream.

2 EXPERIMENTAL SETUP

Our goal is to stress-test featurization methods by creating a dataset labeled with known concepts,
but where concepts can be correlated to varying degrees. Figure 1 depicts the causal model for our
experiments. We vary the correlations between concept-value pairs in the training dataset D used to
train a featurizer F while holding the language modelM fixed. F is trained to generate a vector f of
features given activations hℓ from layer ℓ of language modelM. The feature vector f should ideally
encode one concept per dimension.

We fix a target correlation between two concept values—for example, positive sentiment and the
science domain—and introduce an unobserved common cause (the blue node in Figure 1) to create
the desired correlation. This creates a confounding variable that acts as the parent of both correlated
concepts in the data generation process (DGP). Under varying correlational conditions, we observe to
what extent F can identify the true concepts Z .
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Models and featurizers. We focus primarily on unsupervised methods such as sparse autoencoders
(SAEs), due to their popularity in recent unsupervised interpretability research (Costa et al., 2025;
Huben et al., 2024; Mueller et al., 2025a; Marks et al., 2025). We formally define each SAE
architecture we test in Appendix A. To assess how much information about the target concepts is lost
relative to a supervised method, we compare to k-sparse probes, which are allowed to have non-zero
weights to ≤ k dimensions of their inputs. Following Gurnee et al. (2023), we first train linear probes
with L1 regularization and take the top k weights to find the top k most influential neurons; then, we
train logistic regression probes trained with L2 regularization on those top k neurons.

We focus on two models: Pythia-70M (Biderman et al., 2023) and Gemma-2-2B (Team et al., 2024).
We choose these because there exist publicly available SAEs trained on large natural language corpora,
including the ReLU SAEs of Marks et al. (2025) and the GemmaScope SAEs (Lieberum et al., 2024).

Recent work has demonstrated the importance of the featurizer’s inductive bias, especially when
deploying unsupervised featurizers (Hindupur et al., 2025; Costa et al., 2025). We therefore compare
SAEs that make varying geometric assumptions: ReLU SAEs (Bricken et al., 2023) assume linear
separability, Top-K SAEs (Gao et al., 2025) assume angular separability, and SpADE SAEs (Costa
et al., 2025) make weaker assumptions that allow for more heterogeneous concept geometries; we
refer readers to Appendix A for details.

Data. Using a probabilistic context-free grammar (PCFG), we generate a training dataset D con-
taining 382,884 sentences and test dataset T consisting of 1,007 sentences, where each sentence is
labeled for 4 concepts zi ∈ Z: voice, tense, sentiment, and domain. In our datasets, voice (active,
passive) and tense (present, past) are binary. Sentiment (positive, neutral, negative) is multinomial
and ordinal, while domain (news, science, fantasy, other) is multinomial with no inherent ordering.
Categorical variables will be treated as one-hot vectors of binary values—e.g., zi = [vi,0, vi,1, vi,2]
for sentiment, where vi,0 = 1 when sentiment is negative and vi,0 = 0 otherwise.

3 EVALUATING DISENTANGLEMENT

3.1 CONCEPT IDENTIFICATION

A key desideratum of featurizers is the ability to identify the ground-truth concepts despite potential
spurious correlations between them.1 To assess to what degree this property holds for popular
featurizers, we design an identifiability evaluation.

To evaluate the ability of a featurizer to recover these concepts, we employ the mean correlation
coefficient (MCC) metric (Hyvarinen & Morioka, 2016) common in the causal representation learning
literature (Hyvarinen et al., 2019; Khemakhem et al., 2020b;a; Wendong et al., 2023; von Kügelgen
et al., 2021; 2023; von Kügelgen, 2024; Reizinger et al., 2024a; 2023b;a; Gresele et al., 2021).

A featurizer consists of an encoder F : R|h| → R|f | and optionally a decoder2 F−1 : R|f | → R|h|.
The encoder F maps hidden representation vector hℓ at layer ℓ to features f (where typically,
|f | > |h|). Given a set of ground-truth concepts {z1, . . . , zn} that generate an input example x where
each concept zj ∈ Z, then ∀i ∈ [1, . . . , n], we compute f̂j = argmaxi |ρD(fi, zj)|, where fi is the
activation of feature fi. Intuitively, f̂j is the feature whose activation correlates most with the value
of zj on some training dataset D. Given test set T where concepts are uniformly distributed w.r.t.
each other (i.e., no built-in correlations), we use ρT (f̂j , zj) as a measure of how well the featurizer
linearly identifies concept zj . After locating the best features {f̂j}nj=1 for each concept, we compute
the MCC as the mean of their correlations with their respective concepts on T . In other words:

MCC =
1

n

n∑
j=1

ρT (f̂j , zj). (1)

1We cannot expect a model, supervised or unsupervised, to be able to disentangle two concepts if they are
completely correlated in the data (Wiedemer et al., 2023) without making any assumptions. However, given
at least a couple examples where two concepts do not covary, it is possible in theory to recover independent
representations of these concepts.

2Note that this is not a literal inversion. The decoder is typically learned such that the reconstruction error is
minimized, but information is lost when reconstructing h using the featurizer.
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Figure 2: Maximum correlation coefficient for domain=science (left), sentiment=positive (mid-
dle), and MCC (right) under varying correlational conditions. Shaded regions represent 1 std. dev.
across 3 training seeds. Ideal performance looks like a flat line at a high MCC. Probes (supervised
featurizers, in black) perform best. Top-K SAEs perform best among unsupervised featurizers.
SAEs trained on large-scale natural data (Natural) perform similarly to our best SAEs trained on
CFG-generated data.

The MCC is measured using one-dimensional features, but multinomial concepts may not be one-
dimensional in f or hℓ (Engels et al., 2025). Thus, to create a fairer evaluation, we compute the MCC
over binarized concepts. That is, given a variable zi ∈ Z with Vi possible values, we create a new
binary variable vi,x ∈ B for each value x corresponding to whether zi = vi,x. When computing the
MCC, we first average the correlation coefficients for all vi,x ∈ Vi before taking the macroaverage
across concepts.

A high MCC is achievable in theory only if we make the following assumption:

Assumption 1: Linear sufficiency. For each ground-truth concept zk, there exists a linear invertible
transformation T such that zk = Thℓ where hℓ are the representations of the modelM.

To validate this assumption, we train linear probes for each binary concept and observe whether
each probe obtains high accuracy on the concept it was trained to detect, but also obtains random-
chance accuracy on all other concepts. Our probes satisfy these criteria and thus empirically support
Assumption 1; see Figure 6 (Appendix B).

Baselines and skylines. We compare against a randomly initialized SAE (Random), the neurons
from the residual stream whose correlations correlate most with each concept (Neuron, equivalent to
the identity featurizer f = hℓ), and publicly available SAEs trained on natural language data (Marks
(Marks et al., 2025) and GemmaScope (Lieberum et al., 2024) for Pythia-70M and Gemma-2-2B,
respectively).

To establish a supervised skyline (Probe), we train logistic regression probes using the binarized
concept labels. We treat the probe’s logit as the feature activation fj when computing the correlation,
and take the average correlation across concept-specific binary probes to compute the MCC.

Hypothesis. The ideal result is a high MCC that remains constant as the correlation between
ground-truth concepts increases in the training data. We expect unsupervised featurizers, such as
SAEs, to perform worse than supervised featurizers. We also expect SAEs trained on our dataset to
be better able to isolate the ground-truth concepts compared to the Natural baselines; this is because
the number of varying concepts is lower, which should make these concepts easier to isolate.
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Figure 3: Correlation coefficients between probe logits and concept labels for domain=science
(left), sentiment=positive (middle), and MCC (right). Results for Gemma-2-2B shown here;
results for Pythia-70M are in Appendix D. We vary the number of dimensions k that the probe is
allowed to have non-zero weights from. k-sparse probes trained on SAEs begin to converge around
10 dimensions for Top-K, SpADE, and Natural, and recover most of the performance of a non-sparse
probe that is allowed to use the entire residual vector (Full). k-sparse probes trained on the residual
stream (Neuron) require more dimensions to converge, as expected.

Results. Figure 2 shows the MCC for Pythia-70M and Gemma-2-2B for the domain and sentiment
concepts as they become more correlated in the training dataset. We find that probes significantly
outperform SAEs, as expected. The margin between probes and SAEs is significant; thus, if one
knows a priori what concepts one wishes to find, then one should use supervised methods. This
agrees with recommendations from Wu et al. (2025) and Mueller et al. (2025b).

The gap between SAE architectures is significant and consistent across models. Top-K in particular
performs well. Our SAEs trained on synthetically generated data achieve comparable performance
to SAEs trained on a much larger natural language corpus (the Natural SAEs in Figure 2); the
best-performing methods outperform them, as hypothesized, but most methods achieve comparable
or lower performance. Thus, in practice, one may not need to worry about curating concept-specific
data as long as one’s dataset is sufficiently large.

When do correlations between concepts start to impede concept identification? The answer depends
on the method: probes and SpADE (Costa et al., 2025) maintain relatively consistent MCCs up to
correlations of 0.5 between concept pairs in the training data. Beyond this, performance begins to
degrade. For Top-K, MCC remains more consistent until we reach correlations of 1.0. In theory, it is
always possible to disentangle concepts given at least 2 examples where those concepts do not covary.
In practice, however, correlations over 0.5 cause most methods to degrade—including supervised
methods. We recommend that future interpretablity studies devote effort to investigating potential
correlates of the concept of focus to ensure that other concepts are not being included in learned or
derived concept representations.

3.2 IS ONE DIMENSION SUFFICIENT?

In SAE-based interpretability studies, it is common to steer with a single feature, regardless of
how many features receive high attributions for a given task. This corresponds to the following
assumption:

Assumption 2: One feature dimension is sufficient for concept detection and control. Given
binary concept zi and feature vector f , one dimension fi of f is sufficient to represent and control zi
inM.

To evaluate the extent to which this assumption holds in practice, we train k-sparse probes (as
operationalized in Gurnee et al. (2023)) on featurized representations f . k-sparse probes are linear
probes that may have non-zero weights from up to k dimensions of the representations they are
trained on. Lachapelle et al. (2023a) establish a connection between disentanglement and sparse
prediction: they prove that disentanglement leads to optimal loss using sparse predictors. Further, as

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

features become more entangled, we need to reduce sparsity regularization to maintain accuracy; this
theoretical finding further motivates the following experiment.

Hypothesis. More dimensions yield monotonically increasing expressive power. Thus, performance
should be non-decreasing as k increases. We care primarily about when increasing k begins to yield
diminishing improvements in the MCC. Representations obtained with strong sparsity constraints,
like SAEs, should reach this saturation point at smaller k than representations with no such constraints,
such as residual vectors.

Results. We display the (M)CC of k-sparse probes trained on feature vectors f in Figure 3. Top-K
SAEs achieve the best trade-off between MCC and sparsity at all k; they also approach the MCC
of training a normal probe on the full activation vector at the residual stream. ReLU SAEs do not
begin saturating even at 10–50 features, whereas all other SAEs do. Top-K achieves better concept
recovery at the same k as the residual neuron baseline, whereas ReLU SAEs do not.

These results suggest that SAEs do confer sparsity benefits compared to the original activation
space ofM, but also that one-dimensionality assumptions may often be insufficient—even when the
concepts are relatively simple.

4 EVALUATING COUNTERFACTUAL INDEPENDENCE AND DISJOINTNESS

4.1 STEERING AS A CAUSAL INDEPENDENCE TEST

The identifiability evaluation above (§3.1) acts as a correlational measure of whether features identify
known concepts. However, it does not necessarily provide causal evidence that we can independently
manipulate concepts using the learned features; an SAE that achieves high MCC may not necessarily
yield features that induce changes in the target concept under targeted manipulation. Thus, to measure
causal efficacy, we employ steering as an independence test of the mechanisms between the features.
This can be seen as testing the Independent Causal Mechanism principle prevalent in the causality
literature (Pearl, 2009; Peters et al., 2018), which holds that different causal mechanisms neither
influence nor inform each other.

To locate the steering feature, we could select the feature whose correlation is highest with the label,
as in §3.1. However, Arad et al. (2025) has found that the features that detect the input concept (the
top correlated features in our case) and the features that control the output concept are distinct. Thus,
for steering experiments, we use gradient attributions (Simonyan et al., 2014) to locate the feature
that should be steered. We would like features that increase the probability of some concept value
vi,x; as a proxy, we can fold the featurizer into the forward pass of the model (following Marks et al.,
2025), take the logit Π(hL) of a binary probe Π trained on the final layer L ofM to detect a concept
value vi,x, backpropagate from this logit to obtain its gradient with respect to a feature ∂Π(hL)

∂fi
, and

multiply each feature’s gradient by its activation to obtain the gradient attribution ∂Π(hL)
∂fi

· fi.3 We
take the feature with the maximum average attribution across examples.

Steering of the activations of layer ℓ with the best feature f̂j is performed using steering function
h̃ℓ(fi)← Φ(hℓ,F , i, α), where Φ is defined as follows:

Φ(hℓ,F , i, α) = F−1
(
F(hℓ)|do(fi = α ·max(fi))

)
+ ϵ (2)

where α controls the strength of the steering operation, F(h) corresponds to the featurized activations,
and the do-operation denotes a feature intervention where feature i is set to α times its maximum on
training dataset D.4 ϵ = h−F−1(F(h)) is the reconstruction error without interventions. We set α
to 5, but try different values in §4.2.

3Intuitively, this is a first-order Taylor approximation of the effect of changing feature activation fi to 0 on
Π(hL).

4This is equivalent to adding the difference between the steered reconstruction and original reconstruction to
the activation.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

do
main

-fa
nta

sy

do
main

-sc
ien

ce

do
main

-ne
ws

do
main

-ot
he

r

sen
tim

en
t-p

osi
tiv

e

sen
tim

en
t-n

eu
tra

l

sen
tim

en
t-n

eg
ati

ve

vo
ice

-ac
tiv

e

vo
ice

-pa
ssi

ve

ten
se-

pre
sen

t

ten
se-

pa
st

Eval concept

domain-fantasy

domain-science

domain-news

domain-other

sentiment-positive

sentiment-neutral

sentiment-negative

voice-active

voice-passive

tense-present

tense-past

St
ee

re
d 

co
nc

ep
t

Groundtruth relu, corr=0.1

150

100

50

0

50

100

150
topk, corr=0.1

200

100

0

100

200
sparsemax_dist, corr=0.1

5

0

5

relu, corr=0.9

150

100

50

0

50

100

150
topk, corr=0.9

200

100

0

100

200
sparsemax_dist, corr=0.9

10

5

0

5

10

Figure 4: The effect of steering a given concept (row) on the log-odds of another (column), as
measured by a probe. Results for Pythia-70M shown here; see Appendix E for Gemma-2-2B. If
concept representations are causally independent, we expect a heatmap that resembles the ground-
truth: ∆LOGODDS should be high on the diagonal, negative for within-concept pairs, and close
to 0.0 for across-concept pairs. All SAEs demonstrate the expected diagonals, but also significant
across-concept effects, indicating non-independence. Increasing correlations in the training data,
even up to 0.9, do not significantly change the trends.

For all concept pairs {(zi, zj) : i, j ∈ [n]}, we steer with zi and plot ∆LOGODDS of zj .5 We steer
with an SAE trained on the middle layer ofM and then quantify ∆LOGODDS(zj) as the change in
the logit of a multinomial concept probe.6 To validate that the concepts can be disentangled in the
model, and to validate that probe logits are good proxies for concept presence, we show heatmaps
of probe accuracies in Figure 7 (Appendix B). We observe that each concept probe obtains high
performance on its concept’s test set, and achieves random-chance performance on all other concepts.
The supports the validity of the following results.

Hypothesis. If two concepts are independent, then we expect no cross-concept effects—i.e., if two
features f̂i and f̂j ̸=i correspond to independent concepts zi and zj , then steering zi should not change
p(zj). Note that within-concept effects are expected: for f̂i and f̂j such that i and j are really two
values of the same concept zi (e.g., positive sentiment and negative sentiment), then positive steering
with one feature should necessarily decrease the probability of the other.

Results. We observe (Figure 4) that for each SAE architecture, the expected diagonal trend is
present, indicating that steering is increasing the log-odds of the target concept as expected. However,
in even the best architectures, steering leads to measurable impacts on many unrelated concepts,
indicating widespread non-independence. This underscores the importance of both multi-concept
evaluations and counterfactual interventions in evaluating concept representations.

4.2 DISJOINTNESS

Steering with one concept can provide causal evidence as to how disentangled two concepts are. Now,
inspired by Zuheng et al. (2024), we ask whether these concept representations are disjoint—that
is, whether they affect non-overlapping subspaces. This is non-equivalent to independence: even if
two features correspond to non-overlapping subspaces (i.e,, are disjoint), they could still produce
non-zero effects on unrelated concepts (i.e., be entangled with other concepts). Disjointness implies
that we can predict the effect of pairs of steering operations on zi from individual steering operations,

5∆LOGODDS is equivalent to the logit difference.
6These are architecturally similar to the probes used in §3.1, but trained on the final layer of M instead of

the middle layer. We use the final layer because it acts as a better proxy for the model’s likely output behavior,
as opposed to the model’s inner representation of the input concepts. We use multinomial probes because they
make the change in probabilities for within-concept pairs sum to 1.
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Figure 5: ∆LOGODDS(zi) under various steering coefficients α for steering feature f̂i, and f̂j
for a different concept zj . Results for Pythia-70M shown here; results for Gemma-2-2B are in
Appendix E. Steering only f̂i should increase LOGODDS(zi). If f̂i and f̂j are independent, steering f̂j
should not affect LOGODDS(zi). If f̂i and f̂j are disjoint, we expect LOGODDS(zi) when steering
both to be equal to the sum of steering both in isolation. Here, we observe that representations of zi
and zj are often not independent, which would be indicated as a flat red line. However zi and zj are
always disjoint, as indicated by the dotted purple line and solid purple line completely overlapping
such that the dotted line is not visible.

even if individual steering operations affect multiple concepts. Studying disjointness is important
because its presence gives us predictive power over model behavior, even in unseen or potentially
out-of-distribution scenarios. See Figure 12 for illustrations and a direct contrast of independence
and disjointness. Formally,

p(zi|h̃ℓ(f̂i, f̂j))− p(zi|hℓ) =
(
p(zi|h̃ℓ(f̂i))− p(zi|hℓ)

)
+

(
p(zi|h̃ℓ(f̂j))− p(zi|hℓ)

)
. (3)

That is, the effect on p(zi) of steering both f̂i and f̂j should be equivalent to the sum of steering
only f̂i and f̂j in isolation. In practice, we show LOGODDS rather than probabilities; this unbounded
metric is more likely to be additive at especially high and low probabilities.

Hypothesis. Under low correlations, we expect that concepts will be disjoint, such that the effect
of steering the top features for zi and zj on ∆LOGODDS(zi) will be additive, regardless of their
(non-)independence. Under higher correlations, we expect less disjoint representations and more
non-linearly predictable interaction terms between pairs of steering operations.

Results. In Figure 5, we observe that the effect of steering with two concepts simultaneously is
almost exactly equivalent to summing the impact of steering with both concepts separately. This
suggests no interaction terms.

This in combination with the non-independence results of §4.1 suggests that each SAE feature is
operating on a separate subspace, but also that steering with a concept representation can still affect
representations of other concepts.

5 RELATED WORK

Featurization in interpretability. In interpretability, featurization refers to techniques that allow
one to map from less interpretable and denser model representations—typically neurons—to more
interpretable (and often sparser) representations—what are often called features. This has produced
supervised techniques such as sparse probing (Gurnee et al., 2023), unsupervised techniques such as
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sparse autoencoders (SAEs; Olshausen & Field, 1997; Bricken et al., 2023; Huben et al., 2024), and
non-parametric methods such as deriving steering vectors (Subramani et al., 2022) via difference-in-
means (Marks & Tegmark, 2024).

How can one evaluate the quality of a feature? Recent work has proposed standardized evaluations
based on known concepts (Mueller et al., 2025b; Huang et al., 2024). These allow one to assess
whether a concept discovery method discovers a concept with high recall. However, it leaves
precision unexplored: how well do these concept representations disentangle the concept from others?
Evaluating this requires multi-concept evaluations.

Causal representation learning. Causal representation learning (CRL; Schölkopf et al., 2021)
assumes that high-dimensional observations, such as text, are generated from low-dimensional latent
factors, whose relationships to other latent factors are encoded in a causal graph. Then, CRL proposes
latent variable models of such observations that are identifiable, meaning that the recovered features
(and possibly a graph over them) are related to the true factors up to permutation and element-wise
transformations. Since such unsupervised learning is not identifiable without further assumptions
(Hyvärinen & Pajunen, 1999; Darmois, 1951; Locatello et al., 2019), CRL methods rely on non-iid
data or constraints on the decoding function (Moran et al., 2022; Gresele et al., 2021; Lachapelle et al.,
2023b; Brady et al., 2025; Reizinger et al., 2023b). For example, CRL has developed identifiable
models using data from sparse interventions Ahuja et al. (2022b); Zhang et al. (2023); Buchholz et al.
(2023); von Kügelgen et al. (2023), contrastive pairs of samples (Ahuja et al., 2022a; Locatello et al.,
2020a; Gresele et al., 2019; Brehmer et al., 2022), data from multiple environments (Ahuja et al.,
2023; Layne et al., 2025; Khemakhem et al., 2020a), and temporal data with sparse or intervened
mechanisms (Lachapelle et al., 2021; Lippe et al., 2023; 2022). We go further, however, and test the
causal implications of disentangled features: target concept steering, accuracy with sparse probes and
disjoint steering effects.

Compositional generalization. Closely related to disentanglement and the notion of disjoint effects
is the ability of models to compose concepts in novel ways, called compositional generalization.
Compositional generalization has a long history in the NLP literature (Ahuja & Mansouri, 2024;
Han & Padó, 2024; Ramesh et al., 2024; Lake & Baroni, 2023; Nogueira et al., 2021; Dziri et al.,
2023; Saparov et al., 2023; Mészáros et al., 2024; Reizinger et al., 2024b; Ujváry et al., 2025), but
tends to focus on the reuse of syntactic chunks or lexemes. Some recent CRL studies investigate
compositional latents; they tend to study simplified formal languages, such as regular languages or
Dyck (bracketing) languages (Deletang et al., 2022; Mészáros et al., 2024; Reizinger et al., 2024b;
Ujváry et al., 2025).

6 DISCUSSION AND CONCLUSIONS

Each of our experiments has revealed insufficiencies in single-concept evaluations. One may achieve
far above random-chance performance under correlational evaluation methods (§3.1) and improve-
ments in sparsity over the native residual representation space a model (§3.2). Even so, causal
evidence reveals that entanglement can still be likely and widespread (§4.1,4.2) even when the
aforementioned correlational metrics suggest otherwise.

Despite strong entanglement, concept pairs demonstrated very little in the way of interaction effects
(§4.2). Intuitively, this implies that when features achieve the form of separation—that is, that the
cosine similarity of the subspace on which they act is very low—it does not necessarily imply that
their functional roles are non-interacting. This suggests that mechanistic interpretability studies
aiming to establish the independence of two mechanisms cannot settle for establishing that subspaces
or circuits do not overlap; one must directly establish that the functional roles on the final output are
independent.

One dimension is not sufficient, even with methods with strong sparsity regularizers. This may imply
that the intrinsic dimensionalities of the concepts themselves are greater than one. Given the variance
of scientific domains or positive sentiment, this would not necessarily be surprising. It would be
interesting for future work to investigate the relationship between causal independence metrics and
the intrinsic dimensionality of feature representations—for example, using techniques like those of
Engels et al. (2025). Broadly speaking, more work is needed on methods for detecting, characterizing,
and steering with multi-dimensional concepts.
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REPRODUCIBILITY

To ensure the robustness of our results, we average results across three random seeds and report
standard deviations. For all optimization-based procedures, we fix and save these random seeds; these
settings will be released alongside our code. We will release all code and data upon deanonymization.
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boim, David M. Blei, and Bernhard Schölkopf. Nonparametric Identifiability of Causal Represen-
tations from Unknown Interventions, October 2023. URL http://arxiv.org/abs/2306.
00542. arXiv:2306.00542 [cs, stat].
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Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Composi-
tional Generalization from First Principles, July 2023. URL http://arxiv.org/abs/2307.
05596. arXiv:2307.05596 [cs, stat].

Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky, Christo-
pher D Manning, and Christopher Potts. Axbench: Steering LLMs? even simple baselines
outperform sparse autoencoders. In Forty-second International Conference on Machine Learning,
2025. URL https://openreview.net/forum?id=K2CckZjNy0.

Jiaqi Zhang, Chandler Squires, Kristjan Greenewald, Akash Srivastava, Karthikeyan Shanmugam,
and Caroline Uhler. Identifiability Guarantees for Causal Disentanglement from Soft Interventions,
July 2023. URL http://arxiv.org/abs/2307.06250. arXiv:2307.06250 [cs, math,
stat].

Zuheng, Xu, Moksh Jain, Ali Denton, Shawn Whitfield, Aniket Didolkar, Berton Earnshaw, and
Jason Hartford. Automated discovery of pairwise interactions from unstructured data, 2024. URL
https://arxiv.org/abs/2409.07594.

A FURTHER DETAILS ON METHODS

Here, we define sparse autoencoders and describe the differences between the architectures we study.

Sparse autoencoders. The conceptually simplest architecture we deploy is the ReLU sparse
autoencoder (Huben et al., 2024; Bricken et al., 2023), which learns a mapping from x = hℓ to a
learned sparse feature vector f , and then reconstructs the activations x̂ given f . More formally:

f = ReLU(Wencx+ benc) (4)

x̂ = Wdec(f − benc) + bdec (5)
ReLU SAEs minimize L = MSE(x, x̂) + λ∥f∥1.

Top-K SAEs (Gao et al., 2025) are similar to ReLU SAEs, but they strictly retain the top k activations
per sample and zero out all others:

f = top-k(Wencx+ benc) (6)

Sparsemax distance encoders (SpADE) can capture nonlinearly separable and heterogeneous features;
we refer readers to Hindupur et al. (2025) for details. In formal terms:

f = Sparsemax(−λd(x,W )) (7)
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Figure 6: Accuracy of binary probes (rows) on all concept value classification tasks (columns). We
expect high values on the diagonals, below random chance for within-concept value pairs, and random
chance for across-concept value pairs.
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Figure 7: Accuracy of multinomial probes on all concept value classification tasks (columns). We
expect high values on the diagonals, below random chance for within-concept value pairs, and random
chance for across-concept value pairs.

where d(x,W )i = ∥x−Wi∥22. Hindupur et al. (2025) show that this architecture can capture more
irregular concept geometries, whereas ReLU SAEs assume linear separability, and Top-K SAEs
assume angular separability.

B PROBE ACCURACIES

Here, we present the accuracies of each probe we use in our disentanglement experiments and
evaluations. We present these as heatmaps to verify whether each probe learn an independent
representation of its target concept; if it does, we expect high scores along the diagonal, lower-than-
random scores for within-concept pairs,7 and random-chance scores for across-concept pairs.

Binary linear probes trained on the middle layers of Pythia-70M and Gemma-2-2B (Figure 6) achieve
near-perfect accuracies on their respective concepts, and achieve the expected random accuracies

7We expect lower-than-random scores for within-concept pairs because a classifier trained on an alternative
value of a concept should be strictly worse than a random probe, as the target label will be negatively correlated
with the target concept.
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Figure 8: MCC for the two most performant sparse probing methods from Gurnee et al. (2023) at
various k. The LR method achieves higher MCC at lower k, but MD overtakes LR at higher k.

on all other concepts. This empirically supports Assumption 1, and supports the idea that the MCC
ceiling should be high (§3.1).

In §4.1 and §4.2, we instead use multinomial linear probes trained on the final layers of Pythia-70M
and Gemma-2-2B. We find (Figure 7) that these probes also achieve the expected high accuracies on
the target concepts, below-random-chance accuracies on within-concept pairs, and random-chance
accuracies on across-concept pairs. This validates that the non-independence we observe in our
steering experiments are not due to the probes, but rather are more likely due to the featurization
methods that we use to steer.

C SPARSE PROBING

Here, we replicate the setup of Gurnee et al. (2023) in our cross-concept correlation setting. We aim
to assess which k-sparse probing methods are more robust to cross-concept correlations at multiple
k. We focus on the two most performant methods from Gurnee et al. (2023): max mean difference
(MD), and logistic regression (LR). MD works by computing the average difference in activations
between positive and negative samples, and taking the k neurons whose mean activation difference
is greatest. LR works by first training a logistic regression probe with L1 regularization on the full
activation vector, and then taking the top k according to the weights of the probe.

We observe (Figure 8) that the logistic regression (LR) method of selecting neurons is more effective
at lower k. Between k = 5 and k = 10, MD generally overtakes LR in performance. As we are more
concerned with low-dimensional concept recovery, we focus on LR in the feature dimensionality
experiment (§3.2).

D FURTHER DISENTANGLEMENT RESULTS

Here, we present correlation coefficients and MCCs for k-sparse probes trained with varying k on
SAEs for Pythia-70M. As with Gemma-2-2B, correlation coefficients tend to converge at around 10
dimensions; this suggests that the one-dimensionality assumption may not often hold in practice,
even for much smaller models. Note also that the neuron baseline is far more performant for Pythia
than Gemma; perhaps this is because k = 10 represents a far greater proportion of the dimensions of
hℓ for Pythia than Gemma. Other trends are largely consistent with Figure 3.

E FURTHER STEERING RESULTS

Here, we present steering heatmaps for Gemma-2-2B (Figure 10). Features appear less independent
than for Pythia-70M, as indicated by more significant across-concept ∆LogOdds for many concept
pairs. That said, the expected diagonal trend is still present. This is further evidence that SAE features
do not often correspond to causally independent concept representations.
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Figure 9: Correlation coefficients between probe logits and concept labels for domain=science
(left), sentiment=positive (middle), and MCC (right). Results for Pythia-70M. We vary the number
of dimensions k that the probe is allowed to have non-zero weights from. As with Gemma-2-2B,
correlation coefficients tend to converge at around 10 dimensions. However, the neuron baseline
is far more performant; perhaps this is because k = 10 represents a far greater proportion of the
dimensions of hℓ for Pythia than Gemma. Other trends are largely consistent with Figure 3.
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Figure 10: The effect of steering a given concept (row) on the logit of another (column), as
measured by a probe. Results for Gemma-2-2B. If concept representations are causally independent,
we expect a heatmap that resembles the ground-truth: ∆LOGODDS should be high on the diagonal,
negative for within-concept pairs, and close to 0.0 for across-concept pairs. All SAEs demonstrate
the expected diagonals, but also significant across-concept effects, indicating non-independence.
Increasing correlations in the training data, even up to 0.9, do not significantly change the trends.

We also present multi-feature steering results (Figure 11). As for the results for Pythia-70M, we
observe that features are often entirely disjoint while not being independent. Here, we observe
some distinction between the predicted and actual ∆LOGODDS for ReLU SAEs, indicating that their
effects do overlap slightly. That said, overall trends still largely agree with those for Pythia-70M.
This underscores that even when SAEs learn disjoint representations, one cannot use this as a proxy
for causal independence.

F FURTHER DETAILS ON METRICS

To disambiguate the conceptual distinction between independence and disjointness, we present
diagrams in Figure 12. Intuitively, disjointness implies that two feature representations exist in
non-overlapping subspaces of the model representations, and thus that the effect of steering of both
can be predicted from the result of steering either in isolation. Independence implies that steering
with one concept would not affect how the model uses other concepts. Refer to §4.2 for details.
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Figure 11: ∆LOGODDS(zi) under various steering coefficients α for steering feature f̂i, and f̂j
for a different concept zj . Results for Gemma-2-2B. Representations of zi and zj are more often
independent here than for Pythia-70M, as indicated by the flat red line. zi and zj are typically mostly
disjoint, as indicated by the dotted purple line and solid purple lines almost (but not completely)
overlapping.

p(zi|hℓ) p(zi|h̃ℓ(f̂i))
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no change

Figure 12: The difference between feature disjointness and independence: (Left) Two concepts
zi and zj with feature representations f̂i and f̂j , respectively, are disjoint if the left diagram commutes.
(Right) If they are independent then there is no commutative relationship, as steering with f̂i should
not affect p(zj). Intuitively, disjointness implies that two feature representations exist in non-
overlapping subspaces of the model representations, and thus that the effect of steering of both can
be predicted from the result of steering either in isolation. Independence implies that steering with
one concept would not affect how the model uses other concepts. Refer to §4.2 for formulae and
empirical details.
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G LLM USAGE

The authors used large language models primarily as a polishing tool during writing. LLMs were not
used in a significant capacity for writing experimental code nor for research ideation, although we
acknowledge that libraries on which our code was based may have used LLMs.
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