

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM ISOLATION TO ENTANGLEMENT: WHEN DO INTERPRETABILITY METHODS IDENTIFY AND DISENTANGLE KNOWN CONCEPTS?

Anonymous authors

Paper under double-blind review

ABSTRACT

A central goal of interpretability is to recover representations of causally relevant concepts from the activations of neural networks. The quality of these concept representations is typically evaluated in isolation, and under implicit independence assumptions that may not hold in practice. Thus, it is unclear whether common featurization methods—including sparse autoencoders (SAEs) and sparse probes—recover *disentangled* representations of these concepts. This study proposes a multi-concept evaluation setting where we control the correlations between textual concepts, such as sentiment, domain, and tense, and analyze performance under increasing correlations between them. We first evaluate the extent to which featurizers can learn disentangled representations of each concept under increasing correlational strengths. We observe a one-to-many relationship from concepts to features: features correspond to no more than one concept, but concepts are distributed across many features. Then, we perform steering experiments, measuring whether each concept is independently manipulable. Even when trained on uniform distributions of concepts, SAE features generally affect many concepts when steered, indicating that they are *not* selective nor independent; nonetheless, features affect disjoint subspaces. These results suggest that correlational metrics for measuring disentanglement are generally not sufficient for establishing independence when steering. This underscores the importance of compositional and out-of-distribution evaluations in interpretability research.

1 INTRODUCTION

Interpretability centers on understanding how and why neural networks behave how they do. This requires understanding the underlying causal variables and mechanisms that produce observed input-output behaviors; this study centers on causal variable discovery methods. To uncover causal variable representations, it is now common to deploy *featurization methods*, such as sparse autoencoders (SAEs; Olshausen & Field, 1997; Bricken et al., 2023; Huben et al., 2024) and sparse probes (Gurnee et al., 2023). These methods aim to disentangle activation vectors (wherein a dimension can have many meanings) into sparser spaces where there is a more one-to-one relationship between dimensions and concepts.

Most feature extraction studies and benchmarks focus on isolating single concepts or behaviors, such as refusal (Arditi et al., 2024) and truthfulness (Marks & Tegmark, 2024). This tells us whether the concept exists in the model, but it does not tell us to what degree the concept representation is **independent** and **disentangled** from others. How often do feature extractors recover concept representations with high precision? Answers to this question act as a ceiling for our trust in steering methods to induce similar behaviors in novel contexts—i.e., to what degree we have predictive power and control over the model’s future behaviors.

This is not a new idea: the fields of causal representation learning (CRL; Schölkopf et al., 2021) and disentangled representation learning (Higgins et al., 2018; Locatello et al., 2019; 2020b) have rich literatures characterizing the assumptions under which it is possible to identify the true latent causal variables for a task. These fields focus on learning a representation from scratch, whereas the goal of interpretability is to derive a simplified causal model of a large and complex neural network

054 that has already been trained (Geiger et al., 2024). Both lines of work are unified in asking: *in what*
 055 *circumstances is it possible to recover causally efficacious representations?*

056 Our work builds upon and extends the metrics
 057 and evaluation paradigms of CRL to achieve
 058 mechanistic interpretability using language mod-
 059 els. We use a probabilistic context-free grammar
 060 (PCFG) to generate sentences with labeled for
 061 multiple concepts. We use this dataset to eval-
 062 uate empirically successful and popular inter-
 063 pretability methods, including k -sparse probes
 064 (Gurnee et al., 2023) and sparse autoencoders
 065 (Olshausen & Field, 1997; Huben et al., 2024).
 066 First, building on CRL, we use correlational ev-
 067 idence to understand to what degree neurons,
 068 sparse features, and probes recover **disen-
 069 tangled** representations of ground-truth concepts.
 070 To assess their causal behavior, we conduct
 071 steering experiments and find that disentangled
 072 features do not imply independent manipulability.
 073 To characterize this shortcoming, we pro-
 074 pose new metrics that evaluate causal criteria
 075 we seek from disentangled representations: 1)
 076 **independent manipulability**: disentangled fea-
 077 tures should allow us to steer one and only one
 078 concept downstream; 2) **sparse prediction**: fea-
 079 tures should allow us to accurately predict the
 080 presence of a concept, ideally with a single feature (Lachapelle et al., 2023a); 3) **disjointness** (Zuheng
 081 et al., 2024): steering two concepts jointly should be the sum of steering each concept independently.
 082 Our contributions are:

- 083 • We design a controlled natural language dataset to evaluate concept disentanglement under con-
 084 founding. Using this dataset, we demonstrate that commonly-used disentanglement metrics such
 085 as MCC (§ 3.1) or DCI-ES (§ 3.2) can characterize the extent to which popular interpretability
 086 methods identify the ground-truth concepts, and shed light on when steering is bound to fail.
- 087 • We show that disentangled features are *insufficient* to steer individual features without affecting
 088 others and propose new metrics to quantify this shortcoming (§ 4.1)
- 089 • We provide causal evidence that existing methods often optimize disjointness, but not independence.
 090 That is, they succeed in recovering non-overlapping representations, but often affect multiple
 091 unrelated concepts downstream (§ 4.2).

092 2 EXPERIMENTAL SETUP

093 **Data.** Our goal is to stress-test featurization methods by creating a dataset labeled with known
 094 concepts, but where concepts can be correlated to varying degrees. Figure 1 depicts the causal model
 095 for our experiments. We vary the correlations between concept-value pairs in the training dataset \mathcal{D}
 096 used to train a featurizer \mathcal{F} while holding the language model \mathcal{M} fixed. \mathcal{F} is trained to generate a
 097 vector \mathbf{f} of features given activations \mathbf{h}^ℓ from layer ℓ of language model \mathcal{M} . The feature vector \mathbf{f}
 098 should ideally encode one concept per dimension.

099 Using a probabilistic context-free grammar (PCFG), we generate a training dataset \mathcal{D} containing
 100 382,884 sentences and test dataset \mathcal{T} consisting of 1,007 sentences, where each sentence is labeled
 101 for 4 concepts $z_i \in \mathcal{Z}$: voice, tense, sentiment, and domain. In our datasets, voice (active, passive)
 102 and tense (present, past) are binary. Sentiment (positive, neutral, negative) is multinomial and ordinal,
 103 while domain (news, science, fantasy, other) is multinomial with no inherent ordering. Categorical
 104 variables will be treated as one-hot vectors of binary values—e.g., $z_i = [v_{i,0}, v_{i,1}, v_{i,2}]$ for sentiment,
 105 where $v_{i,0} = 1$ when sentiment is negative and $v_{i,0} = 0$ otherwise.

106 We fix a target correlation between two concept values—for example, positive sentiment and the
 107 science domain—and introduce an unobserved common cause (the blue node in Figure 1) to create

Figure 1: **Causal graph of our experimental setup.** The values of 4 known ground-truth concepts $\{z_i\}_{i=1}^4$ are used to generate an example x . We train a featurizer \mathcal{F} to generate vectors \mathbf{f} given activation vectors \mathbf{h}^ℓ from the output of layer ℓ of language model \mathcal{M} . When training \mathcal{F} on examples with increasing correlations between pairs of concepts $\rho(z_i, z_j)$, we observe whether \mathcal{F} learns the true latents or the correlational confound (as measured by the correlation between latents in \mathbf{f} and the presence of the true variable z_i).

(Lachapelle et al., 2023a); 3) **disjointness** (Zuheng et al., 2024): steering two concepts jointly should be the sum of steering each concept independently.

Our contributions are:

- We design a controlled natural language dataset to evaluate concept disentanglement under con-
 founding. Using this dataset, we demonstrate that commonly-used disentanglement metrics such
 as MCC (§ 3.1) or DCI-ES (§ 3.2) can characterize the extent to which popular interpretability
 methods identify the ground-truth concepts, and shed light on when steering is bound to fail.
- We show that disentangled features are *insufficient* to steer individual features without affecting
 others and propose new metrics to quantify this shortcoming (§ 4.1)
- We provide causal evidence that existing methods often optimize disjointness, but not independence.
 That is, they succeed in recovering non-overlapping representations, but often affect multiple
 unrelated concepts downstream (§ 4.2).

108 the desired correlation. This creates a confounding variable that acts as the parent of both correlated
 109 concepts in the data generating process (DGP). Under varying correlational conditions, we observe to
 110 what extent \mathcal{F} can identify the true concepts \mathcal{Z} . See App. A for further details on data generation and
 111 example sentences.
 112

113 **Models and featurizers.** A featurizer consists of an encoder $\mathcal{F} : \mathbb{R}^{|\mathbf{h}|} \rightarrow \mathbb{R}^{|\mathbf{f}|}$ and optionally a
 114 decoder¹ $\mathcal{F}^{-1} : \mathbb{R}^{|\mathbf{f}|} \rightarrow \mathbb{R}^{|\mathbf{h}|}$. The encoder \mathcal{F} maps hidden representation vector \mathbf{h}^ℓ at layer ℓ to
 115 features \mathbf{f} (where typically, $|\mathbf{f}| > |\mathbf{h}|$). We focus primarily on unsupervised methods such as sparse
 116 autoencoders (SAEs), due to their popularity in recent unsupervised interpretability research (Costa
 117 et al., 2025; Huben et al., 2024; Mueller et al., 2025a; Marks et al., 2025). We formally define each
 118 SAE architecture we test in App. B. To assess how much information about the target concepts is lost
 119 relative to a supervised method, we compare to k -sparse probes, which are allowed to have non-zero
 120 weights to $\leq k$ dimensions of their inputs. Following Gurnee et al. (2023), we first train linear probes
 121 with L_1 regularization and use the top k weights to find the top k most influential neurons; then, we
 122 train logistic regression probes with L_2 regularization on those top k neurons.
 123

124 We focus on two models: Pythia-70M (Biderman et al., 2023) and Gemma-2-2B (Team et al., 2024).
 125 We choose these because there exist publicly available SAEs trained on large natural language corpora,
 126 including the ReLU SAEs of Marks et al. (2025) and the GemmaScope SAEs (Lieberum et al., 2024).
 127

128 Recent work has demonstrated the importance of the featurizer’s inductive bias, especially when
 129 deploying unsupervised featurizers (Hindupur et al., 2025; Costa et al., 2025). We therefore compare
 130 SAEs that make varying geometric assumptions: ReLU SAEs (Bricken et al., 2023) assume linear
 131 separability, Top-K SAEs (Gao et al., 2025) assume angular separability, and SpADE SAEs (Costa
 132 et al., 2025) make weaker assumptions that allow for more heterogeneous concept geometries; we
 133 refer readers to App. B for details.
 134

135 3 EVALUATING DISENTANGLEMENT

136 3.1 CONCEPT IDENTIFICATION

137 A key desideratum of featurizers is the ability to identify the ground-truth concepts despite potential
 138 spurious correlations between them.² To assess to what degree this property holds for popular
 139 featurizers, we design an identifiability evaluation. Intuitively, identifiability measure whether and
 140 to what extent the learned model can recover the latent factors that generated the data (e.g., z_i in
 141 Figure 1). For formal definitions, see App. C.
 142

143 **Metrics.** To evaluate the ability of a featurizer to represent these concepts, we employ the **mean**
 144 **correlation coefficient** (MCC) metric (Hyvärinen & Morioka, 2016) common in the causal represen-
 145 tation learning literature (Hyvärinen et al., 2019; Khemakhem et al., 2020b;a; Wendong et al., 2023;
 146 von Kügelgen et al., 2021; 2023; von Kügelgen, 2024; Reizinger et al., 2024a; 2023b;a; Gresele et al.,
 147 2021). MCC measures how well the learned representation recovers the underlying ground-truth fac-
 148 tors. That is, it measures identifiability up to scalings and permutations (for details, refer to App. D).
 149 One important nuance is that MCC is measured using one-dimensional features, but multinomial
 150 concepts may not be one-dimensional in \mathbf{f} or \mathbf{h}^ℓ (Engels et al., 2025). Thus, we compute the MCC
 151 over binarized concepts: for given a variable with V_i possible values, we create a new binary variable
 152 for each value of a multinomial concept. For example, for the sentiment concept, we have three
 153 binary variables for each of negative, neutral, and positive sentiment. When computing the MCC, we
 154 first average the correlation coefficients for all values (e.g., the negative, neutral, and positive binary
 155 variables for sentiment) before taking the macroaverage across concepts (e.g., sentiment and tense).
 156 A high MCC is achievable in theory only if we make the following assumption:
 157 **Assumption: Linear sufficiency.** *For each ground-truth concept z_k , there exists a linear invertible*
 158 *transformation T such that $z_k = Th^\ell$ where \mathbf{h}^ℓ are the representations of the model \mathcal{M} .*

159 ¹Note that this is not a literal inversion. The decoder is typically learned such that the reconstruction error is
 160 minimized, but information is lost when reconstructing \mathbf{h} using the featurizer.

161 ²We cannot expect a model, supervised or unsupervised, to be able to disentangle two concepts if they are
 162 completely correlated in the data (Wiedemer et al., 2023) without making any assumptions. However, given
 163 at least a couple examples where two concepts do not covary, it is possible in theory to recover independent
 164 representations of these concepts.

Figure 2: **Maximum correlation coefficient for domain=science (left), sentiment=positive (middle), and MCC (right) under varying correlational conditions.** Shaded regions represent 1 std. dev. across 3 training seeds. Ideal performance looks like a flat line at a high MCC. Probes (supervised featurizers, in black) perform best. SSAEs perform best among unsupervised featurizers. SAEs trained on large-scale natural data (Natural) perform similarly to our best SAEs trained on CFG-generated data, but SSAEs outperform both.

To validate this assumption, we train linear probes for each binary concept and observe whether each probe obtains high accuracy on the concept it was trained to detect, *but also* obtains random-chance accuracy on all other concepts. Our probes satisfy these criteria and thus empirically support Assumption 1; see Figure 9 (App. F).

Baselines and skylines. We compare against a randomly initialized SAE (*Random*), the neurons from the residual stream whose correlations correlate most with each concept (*Neuron*, equivalent to the identity featurizer $f = h^\ell$), and publicly available SAEs trained on natural language data (*Marks* (Marks et al., 2025) and *GemmaScope* (Lieberum et al., 2024) for Pythia-70M and Gemma-2-2B, respectively).

To establish a supervised skyline (*Probe*), we train logistic regression probes using the binarized concept labels. We treat the probe’s logit as the feature activation f_j when computing the correlation, and take the average correlation across concept-specific binary probes to compute the MCC.

Hypothesis. The ideal result is a high MCC that remains constant as the correlation between ground-truth concepts increases in the training data. We expect unsupervised featurizers, such as SAEs, to perform worse than supervised featurizers. We also expect SAEs trained on our dataset to be better able to isolate the ground-truth concepts compared to the *Natural* baselines; this is because the number of varying concepts is lower, which should make these concepts easier to isolate.

Results. Figure 2 shows the MCC for Pythia-70M and Gemma-2-2B for the domain and sentiment concepts as they become more correlated in the training dataset. We find that probes significantly outperform SAEs, as expected. The margin between probes and SAEs is substantial; thus, if one knows *a priori* what concepts one wishes to find, then one should use supervised methods. This agrees with recommendations from Wu et al. (2025) and Mueller et al. (2025b).

SSAEs perform best among unsupervised methods, as hypothesized. Top-K SAEs also perform well among non-contrastive SAE methods with respect to MCC (though they underperform for sentiment=positive). Our SAEs trained on synthetically generated data achieve comparable performance to SAEs trained on a much larger natural language corpus (the *Natural* SAEs in Figure 2); SSAEs outperform them for Pythia-70M, but not for Gemma-2-2B. Most unsupervised methods achieve

Figure 3: **DCI-ES scores under varying correlational conditions.** Shaded regions represent 1 std. dev. across 3 training seeds. Ideal performance looks like a flat line at high values for all metrics. All methods achieve high disentanglement, informativeness, and explicitness, but relatively low completeness. This suggests that most features capture only one concept, but also that concepts are generally distributed across multiple features (i.e., there is widespread feature splitting).

comparable or lower performance. Thus, for interpreting language models in practice, *one may not need to worry about curating concept-specific data if one’s dataset is sufficiently large.*

When do correlations between concepts start to impede concept identification? The answer depends on the method: probes and SpADE (Costa et al., 2025) maintain relatively consistent MCCs up to correlations of 0.5 between concept pairs in the training data. Beyond this, performance begins to degrade. For SSAEs, MCC remains consistent until we reach correlations of 1.0, as its theory predicts (Joshi et al., 2025). In theory, it is always possible to disentangle concepts given at least 2 examples where those concepts do not covary. In practice, however, correlations over 0.5 cause most methods to degrade—including supervised methods. We recommend that future interpretability studies devote effort to investigating potential correlates of the concept of focus to ensure that other concepts are not being included in learned or derived concept representations.

3.2 DIAGNOSING FAILURES IN IDENTIFIABILITY

As we saw in § 3.1, MCC scores are far from ideal in many scenarios. To diagnose the cause of less-than-perfect MCC, we conduct a more fine-grained evaluation.

Metrics. We use the DCI-ES framework of Eastwood et al. (2023). **Disentanglement** D measures how many ground-truth concepts z_j are encoded in a single feature f_i ; **completeness** C how many feature f_i are useful to predict a single concept z_j ; **informativeness** I is inversely proportional to the prediction error of a probe trained on the feature vector; and **explicitness** E captures the trade-off between the probe’s capacity and the probe loss. See App. D for detailed definitions.

Most importantly, DCI-ES can indicate whether and to what extent (or equivalence class) identifiability is achieved. Identifiability up to *invertible linear transformations* is achieved if $I = E = 1$; up to permutation and element-wise reparametrization if $D = C = I = 1$; and *up to sign and permutation* if $D = C = I = E = 1$. Importantly, steering is not guaranteed to work when $I = E = 1$, as for steering, we select the single most correlated dimension, which can be a linear mixture of multiple concepts. $D = C = I = E = 1$ implies that all concepts are encoded in a single feature, which means we could predict the impact of steering on concept probabilities via linear extrapolation—even under multiple steering operations.

270 **Hypothesis.** We hypothesize that all concepts will be recoverable from SAE feature vectors—i.e.,
 271 that I will be 1 (for more details, see App. D). We also hypothesize that features sensitive to one
 272 concept will generally be sensitive to only that concept; this implies that D will be 1. Feature splitting
 273 is a known challenge when using SAEs, and we believe it will occur here; thus, we expect C to be
 274 significantly less than 1. Because SAEs are trained to be sparse, we expect E to be close to 1.
 275

276 **Results.** We observe (Figure 3) that D , I , and E are high for all SAE architectures. This suggests
 277 that each SAE identifies the ground-truth concepts up to invertible linear transformation. However, C
 278 is low, which suggests that the SAEs do not identify concepts up to sign and permutation. Intuitively,
 279 these results imply that all concepts are perfectly recoverable ($I = 1$) with limited expressive power
 280 (high E). Most features are sensitive to one concept (high D), but concepts are often distributed
 281 across many features (low C).

282 To what degree does feature splitting occur? To quantify this, we use k -sparse probes (Gurnee et al.,
 283 2023) and analyze how many features are necessary before probes stop improving. We observe that
 284 at least 10 features are needed before returns begin to diminish; see App. E.

285 High D , I , and E suggest that steering these features should only affect the probability of the target
 286 concept being steered. Low C suggests that this effect will probably be small, and may not apply
 287 to all examples where the concept is present. In the following section, we test this prediction by
 288 evaluating whether this happens in a setting where we steer the top SAE features for each concept.
 289

290 4 EVALUATING COUNTERFACTUAL INDEPENDENCE AND DISJOINTNESS

291 Following the common practice of identifiability evaluations with the MCC only provides correlational
 292 evidence and cannot diagnose failure cases (§3.1, whereas the DCI-ES framework (§ 3.2) at least
 293 provides more level of detail. However, neither of these correlational measures can provide *causal*
 294 evidence that we can independently manipulate concepts using the learned features. Thus, to measure
 295 causal efficacy, we employ steering as an independence test of the mechanisms between the features.
 296 This can be seen as testing the Independent Causal Mechanism principle prevalent in the causality
 297 literature (Pearl, 2009; Peters et al., 2018), which holds that different causal mechanisms neither
 298 influence nor inform each other.
 299

300 4.1 STEERING AS A CAUSAL INDEPENDENCE TEST

301 To locate the steering feature, we could select the feature whose correlation is highest with the label,
 302 as in §3.1. However, Arad et al. (2025) has found that the features that detect the input concept (the
 303 top correlated features in our case) and the features that control the output concept are distinct. Thus,
 304 for steering experiments, we use gradient attributions (Simonyan et al., 2014) to locate the feature
 305 that should be steered. We would like features that increase the probability of some concept value
 306 $v_{i,x}$; as a proxy, we can fold the featurizer into the forward pass of the model (following Marks et al.,
 307 2025), take the logit $\Pi(\mathbf{h}^L)$ of a binary probe Π trained on the final layer L of \mathcal{M} to detect a concept
 308 value $v_{i,x}$, backpropagate from this logit to obtain its gradient with respect to a feature $\frac{\partial \Pi(\mathbf{h}^L)}{\partial f_i}$, and
 309 multiply each feature’s gradient by its activation to obtain the gradient attribution $\frac{\partial \Pi(\mathbf{h}^L)}{\partial f_i} \cdot f_i$.³ We
 310 take the feature with the maximum average attribution across examples.
 311

312 Steering of the activations of layer ℓ with the best feature \hat{f}_j is performed using steering function
 313 $\tilde{\mathbf{h}}^\ell(\mathbf{f}_i) \leftarrow \Phi(\mathbf{h}^\ell, \mathcal{F}, i, \alpha)$, where Φ is defined as follows:
 314

$$\Phi(\mathbf{h}^\ell, \mathcal{F}, i, \alpha) = \mathcal{F}^{-1}\left(\mathcal{F}(\mathbf{h}^\ell) \mid \text{do}(\mathbf{f}_i = \alpha \cdot \max(f_i))\right) + \epsilon \quad (1)$$

315 where α controls the strength of the steering operation, $\mathcal{F}(\mathbf{h})$ corresponds to the featurized activations,
 316 and the do-operation denotes a feature intervention where feature i is set to α times its maximum on
 317

318 ³Intuitively, this is a first-order Taylor approximation of the effect of changing feature activation f_i to 0 on
 319 $\Pi(\mathbf{h}^L)$.

Figure 4: **The effect of steering a given concept (row) on the log-odds of another (column), as measured by a probe.** Results for Pythia-70M shown here; see App. I for Gemma-2-2B. If concept representations are causally independent, we expect a heatmap that resembles the ground-truth: $\Delta\text{LOGODDS}$ should be high on the diagonal, negative for within-concept pairs, and close to 0.0 for across-concept pairs. All SAEs demonstrate the expected diagonals, but also significant across-concept effects, indicating non-independence. Increasing correlations in the training data, even up to 0.9, do not significantly change the trends.

training dataset \mathcal{D} .⁴ $\epsilon = \mathbf{h} - \mathcal{F}^{-1}(\mathcal{F}(\mathbf{h}))$ is the reconstruction error without interventions. We set α to 5, but try different values in §4.2.

Metrics. For all concept pairs $\{(z_i, z_j) : i, j \in [n]\}$, we steer with z_i and plot $\Delta\text{LOGODDS}$ of the *other* concept z_j .⁵ We steer with an SAE trained on the middle layer of \mathcal{M} and then quantify $\Delta\text{LOGODDS}(z_j)$ as the change in the logit of a multinomial concept probe.⁶ We introduce **steering independence** I_S to quantify to what degree a concept is influenced only by its top-attribution feature and no others, whereas **feature selectivity** S_S reflects to what degree a feature only influences its respective concept:

$$I_S = \frac{|\log p(z_i|\tilde{\mathbf{h}}^\ell(\tilde{\mathbf{f}}_i)) - \log p(z_i)|}{\sum_j (|\log p(z_i|\tilde{\mathbf{h}}(\tilde{\mathbf{f}}_j)) - \log p(z_i)|)}, \quad S_S = \frac{|\log p(z_i|\tilde{\mathbf{h}}^\ell(\tilde{\mathbf{f}}_i)) - \log p(z_i)|}{\sum_j (|\log p((z_j|\tilde{\mathbf{h}}(\tilde{\mathbf{f}}_i)) - \log p(z_j)|)}, \quad (2)$$

I_S and S_S are conceptually similar to normalized pointwise mutual information. In both equations, j excludes within-concept pairs. For example, if i is domain=science, j would skip all other domains.

Mean scores across rows/columns tend to be relatively low, whereas maximal scores are high. High maximal scores indicate that some features can be independently steered with a single feature, but significantly lower means also indicates that many concepts cannot be steered without interference.

Hypothesis. If two concepts are independent, then we expect no cross-concept effects—i.e., if two features $\tilde{\mathbf{f}}_i$ and $\tilde{\mathbf{f}}_{j \neq i}$ correspond to independent concepts z_i and z_j , then steering z_i should not change $p(z_j)$. Note that within-concept effects are expected: for $\tilde{\mathbf{f}}_i$ and $\tilde{\mathbf{f}}_j$ such that i and j are really two values of the same concept z_i (e.g., positive sentiment and negative sentiment), then positive steering with one feature should necessarily decrease the probability of the other. To summarize these heatmaps, we show the **selectivity** and **steering independence** in Table 1.

⁴This is equivalent to adding the difference between the steered reconstruction and original reconstruction to the activation.

⁵ $\Delta\text{LOGODDS}$ is equivalent to the logit difference.

⁶These are architecturally similar to the probes used in §3.1, but trained on the *final* layer of \mathcal{M} instead of the middle layer. We use the final layer because it acts as a better proxy for the model’s likely output behavior, as opposed to the model’s inner representation of the input concepts. We use multinomial probes because they make the change in probabilities for within-concept pairs sum to 1.

378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431

Results. We observe (Figure 4) that for each SAE architecture, the expected diagonal trend is present, indicating that steering is increasing the log-odds of the target concept as expected. However, in even the best architectures, steering leads to measurable impacts on many unrelated concepts, indicating widespread non-independence. Table 1 quantitatively summarizes these results; best-case scores are high, but mean scores are low, indicating that disentanglement in steering is achieved only for a small subset of concepts.

This underscores the importance of both multi-concept evaluations *and* counterfactual interventions in evaluating concept representations: our correlational analyses did not suggest that interference would be likely in a steering setup, and yet we find evidence of widespread interference. This may align with the findings of Arad et al. (2025): if input features and output features are truly distinct, then identification of the input features may not say anything about our ability to independently steer.

To validate that the concepts can be disentangled in the model, and to validate that probe logits are good proxies for concept presence, we show heatmaps of probe accuracies in Figure 10 (App. F). We observe that each concept probe obtains high performance on its concept’s test set, and achieves random-chance performance on all other concepts.

4.2 DISJOINTNESS

Steering with one concept and evaluating across many others can provide causal evidence as to how disentangled two concepts are. Now, inspired by Zuheng et al. (2024), we ask whether these concept representations are **disjoint**—i.e., whether they affect non-overlapping subspaces. This is non-equivalent to independence: even if two features correspond to non-overlapping subspaces (i.e., are disjoint), they could still produce non-zero effects on unrelated concepts.

Metrics. Disjointness implies that we can predict the effect of pairs of steering operations on z_i from individual steering operations, even if individual steering operations affect multiple concepts. Studying disjointness is important because its presence gives us predictive power over model behavior, even in unseen or potentially out-of-distribution scenarios. See Figure 7 for illustrations and a direct contrast of independence and disjointness. Formally, disjointness is achieved when:

$$p(z_i|\tilde{\mathbf{h}}^\ell(\hat{\mathbf{f}}_i, \hat{\mathbf{f}}_j)) - p(z_i|\mathbf{h}^\ell) = (p(z_i|\tilde{\mathbf{h}}^\ell(\hat{\mathbf{f}}_i)) - p(z_i|\mathbf{h}^\ell)) + (p(z_i|\tilde{\mathbf{h}}^\ell(\hat{\mathbf{f}}_j)) - p(z_i|\mathbf{h}^\ell)). \quad (3)$$

That is, the effect on $p(z_i)$ of steering both $\hat{\mathbf{f}}_i$ and $\hat{\mathbf{f}}_j$ should be equivalent to the sum of steering only $\hat{\mathbf{f}}_i$ and $\hat{\mathbf{f}}_j$ in isolation. In practice, we show LOGODDS rather than probabilities; this unbounded metric is more likely to be additive at especially high and low probabilities due to greater numeric precision.

Hypothesis. Under low correlations, we expect that concepts will be disjoint, such that the effect of steering the top features for z_i and z_j on $\Delta\text{LOGODDS}(z_i)$ will be additive, regardless of their (non-)independence. Under higher correlations, we expect less disjoint representations and more non-linearly predictable interaction terms between pairs of steering operations.

Results. We observe (Figure 5) that the effect of steering with two concepts simultaneously is almost exactly equivalent to summing the impact of steering with both concepts separately. To quantitatively verify, we compute the R^2 for each SAE; this measures how This suggests no interaction terms.

Table 1: **Steering independence and feature selectivity scores.** We present mean scores per feature/concept, and maxima across features/concepts in parentheses and bold. High independence means that a concept is only influenced by one feature; high selectivity means that a feature only influences one concept. Mean independence and selectivity are generally low, indicating widespread entanglement; however, maximal scores are high, indicating that at least one concept is selectively recovered by these architectures.

SAE	ρ	Pythia-70M		Gemma-2-2B	
		Independence	Selectivity	Independence	Selectivity
ReLU	0.1	0.31 (0.48)	0.30 (0.89)	0.21 (0.47)	0.25 (1.16)
	0.9	0.30 (0.50)	0.30 (0.89)	0.23 (0.62)	0.25 (1.06)
Top-K	0.1	0.29 (0.76)	0.27 (0.74)	0.21 (0.75)	0.25 (1.21)
	0.9	0.36 (1.00)	0.30 (0.61)	0.33 (0.76)	0.32 (1.01)
SSAE	0.1	0.28 (0.76)	0.33 (0.85)	0.22 (0.29)	0.30 (0.75)
	0.9	0.42 (1.41)	0.62 (2.74)	0.21 (0.51)	0.25 (0.98)

Figure 5: **Predicted $\Delta\text{LOGODDS}(z_i)$ under disjointness assumptions vs. actual $\Delta\text{LOGODDS}(z_i)$ when steering relevant feature \hat{f}_i and unrelated feature \hat{f}_j .** Predictions are obtained by adding the $\Delta\text{LOGODDS}(z_i)$ when steering with either \hat{f}_i or \hat{f}_j separately; actual values are obtained by steering with both simultaneously. \hat{f}_i and \hat{f}_j are typically disjoint, as indicated by the predicted change almost perfectly matching the true change. Disjointness does *not* imply independence; see App. I.

This in combination with the non-independence results of §4.1 suggests that each SAE feature operates on a separate subspace, but also that steering with a feature can still affect representations of other concepts. See Figure 14 (App. I) for a more direct empirical demonstration that disjointness does not imply independence.

5 RELATED WORK

Table 2: R^2 between predicted and actual $\Delta\text{LOGODDS}(z_i)$ for each SAE. Values are all near 1.00, indicating near-perfect disjointness for each SAE, even under relatively high correlations between concepts.

SAE	ρ	Domain=sentiment		Sentiment=positive	
		Pythia-70M	Gemma-2-2B	Pythia-70M	Gemma-2-2B
ReLU	0.1	1.00	0.93	1.00	1.00
	0.9	1.00	0.94	1.00	1.00
Top-K	0.1	1.00	0.99	1.00	0.98
	0.9	1.00	1.00	1.00	0.99
SSAE	0.1	1.00	1.00	1.00	1.00
	0.9	1.00	1.00	1.00	1.00

Featurization in interpretability. In interpretability, *featurization* refers to techniques that allow one to map from less interpretable and denser model representations—typically *neurons*—to more interpretable (and often sparser) representations—what are often called *features*. This has produced supervised techniques such as sparse probing (Gurnee et al., 2023), unsupervised techniques such as sparse autoencoders (SAEs; Olshausen & Field, 1997; Bricken et al., 2023; Huben et al., 2024), and non-parametric techniques such as steering vectors (Subramani et al., 2022) derived via difference-in-means (Marks & Tegmark, 2024).

How can one evaluate the quality of a feature? Recent work has proposed standardized evaluations based on known concepts (Mueller et al., 2025b; Huang et al., 2024). These allow one to assess whether a concept discovery method discovers a concept with high recall. However, it leaves precision unexplored: how well do these concept representations disentangle the concept from others? Evaluating this requires multi-concept evaluations, as we propose.

Causal representation learning. Causal representation learning (CRL; Schölkopf et al., 2021) assumes that high-dimensional observations, such as text, are generated from low-dimensional latent factors, whose relationships to other latent factors are encoded in a causal graph. Then, CRL proposes latent variable models of such observations that are **identifiable**, meaning that the recovered features (and possibly a graph over them) are related to the true factors up to permutation and element-wise transformations. Since such unsupervised learning is not identifiable without further assumptions (Hyvärinen & Pajunen, 1999; Darmois, 1951; Locatello et al., 2019), CRL methods rely on non-iid data or constraints on the decoding function (Moran et al., 2022; Greselle et al., 2021; Lachapelle et al., 2023b; Brady et al., 2025; Reizinger et al., 2023b). For example, CRL has developed identifiable

486 models using data from sparse interventions Ahuja et al. (2022b); Zhang et al. (2023); Buchholz et al.
 487 (2023); von Kügelgen et al. (2023), contrastive pairs of samples (Ahuja et al., 2022a; Locatello et al.,
 488 2020a; Gresele et al., 2019; Brehmer et al., 2022), data from multiple environments (Ahuja et al.,
 489 2023; Layne et al., 2025; Khemakhem et al., 2020a), and temporal data with sparse or intervened
 490 mechanisms (Lachapelle et al., 2021; Lippe et al., 2023; 2022). We go further, however, and test the
 491 causal implications of disentangled features in model outputs: target concept steering, accuracy with
 492 sparse probes and disjoint steering effects. Similar to what we propose, Joshi et al. (2025) propose a
 493 method that enables identifiable steering under multi-concept shifts; this method performs best on
 494 disentanglement *and* steering-based metrics.

495 To corroborate the theoretical claims of identifiability, access to the ground-truth factors is required,
 496 which generally limits the tasks that can be considered. Among the evaluation metrics, the MCC
 497 score (Hyvarinen & Morioka, 2016) has been used widely, despite its shortcomings [cite IEEE,
 498 InfoMEC]. Several other metrics have been proposed in both the disentanglement and the identifiable
 499 (causal) representation learning communities, such as the IRS score that measures interventional
 500 effects (Suter et al., 2019), or the DCI (Eastwood & Williams, 2018), DCI-ES (Eastwood et al., 2023),
 501 and InfoMEC (Hsu et al., 2023) scores that directly aim to improve on the MCC.

502 **Compositional generalization.** Closely related to disentanglement and the notion of disjoint effects
 503 is the ability of models to compose concepts in novel ways, called compositional generalization.
 504 Compositional generalization has a long history in the NLP literature (Ahuja & Mansouri, 2024;
 505 Han & Padó, 2024; Ramesh et al., 2024; Lake & Baroni, 2023; Nogueira et al., 2021; Dziri et al.,
 506 2023; Saparov et al., 2023; Mészáros et al., 2024; Reizinger et al., 2024b; Ujváry et al., 2025), but
 507 tends to focus on the reuse of syntactic chunks or lexemes. Some recent CRL studies investigate
 508 compositional latents; they tend to study simplified formal languages, such as regular languages or
 509 Dyck (bracketing) languages (Deletang et al., 2022; Mészáros et al., 2024; Reizinger et al., 2024b;
 510 Ujváry et al., 2025).

511 512 513 6 DISCUSSION AND CONCLUSIONS

514 515 516 517 Each of our experiments has revealed insufficiencies in single-concept evaluations. One may achieve
 518 far above random-chance performance under correlational evaluation methods (§3.1) and improve-
 519 ments in sparsity over the native residual representation space a model (§E). Even so, causal evidence
 520 reveals that entanglement can still be likely and widespread (§4.1,4.2) even when the aforementioned
 521 correlational metrics suggest otherwise.

522 523 524 525 526 Despite strong entanglement, concept pairs demonstrated very little interaction effects (§4.2). This
 527 implies that when features achieve the *form* of separation—that is, that the cosine similarity of the
 528 subspace on which they act is very low—it does not necessarily imply that their *functional roles*
 529 are non-interacting. This suggests that mechanistic interpretability studies aiming to establish the
 530 independence of two mechanisms cannot settle for establishing that subspaces or circuits do not
 531 overlap; one must directly establish that the functional roles on the final output are independent.

532 533 534 535 One dimension is not sufficient, even with methods with strong sparsity regularizers. This may imply
 536 that the intrinsic dimensionalities of the concepts themselves are greater than one. Given the variance
 537 of scientific domains or positive sentiment, this would not necessarily be surprising. It would be
 538 interesting for future work to investigate the relationship between causal independence metrics and
 539 the intrinsic dimensionality of feature representations—for example, using techniques like those of
 Engels et al. (2025). Broadly speaking, more work is needed on methods for detecting, characterizing,
 and steering with multi-dimensional concepts.

540 541 542 543 **Limitations.** We acknowledge that this study could be improved in multiple respects. Our data is
 544 generated by a CFG; while it is natural language, it could still be OOD with respect to the data one
 545 would normally find in a corpus. We also only study categorical concepts; while reasonable to keep
 546 the study tractable, we believe that continuous concepts could yield interesting results.

540 REPRODUCIBILITY
541

542 To ensure the robustness of our results, we average results across three random seeds and report
543 standard deviations. For all optimization-based procedures, we fix and save these random seeds; these
544 settings will be released alongside our code. We will release all code and data upon deanonymization.
545

546 REFERENCES
547

548 Kartik Ahuja and Amin Mansouri. On Provable Length and Compositional Generalization, February
549 2024. URL <http://arxiv.org/abs/2402.04875>. arXiv:2402.04875 [cs, stat].
550

551 Kartik Ahuja, Jason Hartford, and Yoshua Bengio. Weakly Supervised Representation Learning
552 with Sparse Perturbations. October 2022a. URL [https://openreview.net/forum?id=](https://openreview.net/forum?id=6ZI4iF_T7t)
553 [6ZI4iF_T7t](https://openreview.net/forum?id=6ZI4iF_T7t).
554

555 Kartik Ahuja, Yixin Wang, Divyat Mahajan, and Yoshua Bengio. Interventional Causal Rep-
556 resentation Learning, September 2022b. URL <http://arxiv.org/abs/2209.11924>.
557 arXiv:2209.11924 [cs, stat].
558

559 Kartik Ahuja, Amin Mansouri, and Yixin Wang. Multi-Domain Causal Representation Learning
560 via Weak Distributional Invariances, October 2023. URL <http://arxiv.org/abs/2310.02854>.
561 arXiv:2310.02854 [cs, stat].
562

563 Dana Arad, Aaron Mueller, and Yonatan Belinkov. Saes are good for steering – if you select the right
564 features, 2025. URL <https://arxiv.org/abs/2505.20063>.
565

566 Andy Ardit, Oscar Balcells Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and
567 Neel Nanda. Refusal in language models is mediated by a single direction. In *The Thirty-
568 eighth Annual Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=pH3XAQME6c>.
569

570 Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan,
571 Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron,
572 Lintang Sutawika, and Oskar Van Der Wal. Pythia: a suite for analyzing large language models
573 across training and scaling. In *Proceedings of the 40th International Conference on Machine
574 Learning*, ICML'23. JMLR.org, 2023.
575

576 Jack Brady, Julius von Kügelgen, Sébastien Lachapelle, Simon Buchholz, Thomas Kipf, and Wieland
577 Brendel. Interaction asymmetry: A general principle for learning composable abstractions. In *The
578 Thirteenth International Conference on Learning Representations*, 2025.
579

580 Johann Brehmer, Pim de Haan, Phillip Lippe, and Taco Cohen. Weakly supervised causal
581 representation learning, October 2022. URL <http://arxiv.org/abs/2203.16437>.
582 arXiv:2203.16437 [cs, stat].
583

584 Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
585 Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
586 Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
587 Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
588 Christopher Olah. Towards monosematicity: Decomposing language models with dictionary
589 learning. *Transformer Circuits Thread*, 2023. <https://transformer-circuits.pub/2023/monosemantic-features/index.html>.
590

591 Simon Buchholz, Goutham Rajendran, Elan Rosenfeld, Bryon Aragam, Bernhard Schölkopf,
592 and Pradeep Ravikumar. Learning Linear Causal Representations from Interventions under
593 General Nonlinear Mixing, June 2023. URL <http://arxiv.org/abs/2306.02235>.
594 arXiv:2306.02235 [cs, math, stat].
595

596 Valérie Costa, Thomas Fel, Ekdeep Singh Lubana, Bahareh Tolooshams, and Demba Ba. From flat
597 to hierarchical: Extracting sparse representations with matching pursuit, 2025. URL <https://arxiv.org/abs/2506.03093>.
598

594 George Darmois. Analyse des liaisons de probabilité. In *Proc. Int. Stat. Conferences 1947*, pp. 231,
 595 1951.

596

597 Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
 598 Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural Networks and
 599 the Chomsky Hierarchy. September 2022. URL <https://openreview.net/forum?id=WbxHAzkeQcn>.

600

601 Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Peter West,
 602 Chandra Bhagavatula, Ronan Le Bras, Jena D. Hwang, Soumya Sanyal, Sean Welleck, Xiang
 603 Ren, Allyson Ettinger, Zaid Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
 604 compositionality, 2023.

605

606 Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative evaluation of
 607 disentangled representations. In *International Conference on Learning Representations*, 2018.
 608 URL <https://openreview.net/forum?id=By-7dz-AZ>.

609

610 Cian Eastwood, Andrei Liviu Nicolicioiu, Julius Von Kügelgen, Armin Kekić, Frederik Träuble,
 611 Andrea Dittadi, and Bernhard Schölkopf. DCI-ES: An extended disentanglement framework with
 612 connections to identifiability. In *The Eleventh International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=462z-gLgSht>.

613

614 Joshua Engels, Eric J Michaud, Isaac Liao, Wes Gurnee, and Max Tegmark. Not all language model
 615 features are one-dimensionally linear. In *The Thirteenth International Conference on Learning
 616 Representations*, 2025. URL <https://openreview.net/forum?id=d63a4AM4hb>.

617

618 Jose Gallego-Posada and Juan Ramirez. Cooper: a toolkit for Lagrangian-based constrained opti-
 619 mization. <https://github.com/cooper-org/cooper>, 2022.

620

621 Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya Sutskever,
 622 Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In *The Thirteenth
 623 International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=tcsZt9ZNKD>.

624

625 Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
 626 Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
 627 Abstraction: A Theoretical Foundation for Mechanistic Interpretability, August 2024. URL
 628 <http://arxiv.org/abs/2301.04709>. arXiv:2301.04709 [cs].

629

630 Gauthier Gidel, Hugo Berard, Gaëtan Vignoud, Pascal Vincent, and Simon Lacoste-Julien. A
 631 variational inequality perspective on generative adversarial networks, 2020. URL <https://arxiv.org/abs/1802.10551>.

632

633 Luigi Gresele, Paul K. Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Schölkopf.
 634 The Incomplete Rosetta Stone Problem: Identifiability Results for Multi-View Nonlinear ICA.
 635 *arXiv:1905.06642 [cs, stat]*, August 2019. URL <http://arxiv.org/abs/1905.06642>.
 636 arXiv: 1905.06642.

637

638 Luigi Gresele, Julius von Kügelgen, Vincent Stimper, Bernhard Schölkopf, and Michel Besserve.
 639 Independent mechanism analysis, a new concept? *arXiv:2106.05200 [cs, stat]*, June 2021. URL
 640 <http://arxiv.org/abs/2106.05200>. arXiv: 2106.05200.

641

642 Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris Bertsimas.
 643 Finding neurons in a haystack: Case studies with sparse probing. *Transactions on Machine
 644 Learning Research*, 2023. ISSN 2835-8856. URL <https://openreview.net/forum?id=JYs1R9IMJr>.

645

646 Sungjun Han and Sebastian Padó. Towards Understanding the Relationship between In-context
 647 Learning and Compositional Generalization, March 2024. URL <http://arxiv.org/abs/2403.11834>. arXiv:2403.11834 [cs].

648

649 Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey, Danilo Rezende, and
 650 Alexander Lerchner. Towards a Definition of Disentangled Representations. *arXiv:1812.02230 [cs,
 651 stat]*, December 2018. URL <http://arxiv.org/abs/1812.02230>. arXiv: 1812.02230.

648 Sai Sumedh R. Hindupur, Ekdeep Singh Lubana, Thomas Fel, and Demba Ba. Projecting assumptions:
 649 The duality between sparse autoencoders and concept geometry, 2025. URL <https://arxiv.org/abs/2503.01822>.

650

651 Kyle Hsu, Will Dorrell, James C. R. Whittington, Jiajun Wu, and Chelsea Finn. Disentangle-
 652 ment via Latent Quantization, May 2023. URL <http://arxiv.org/abs/2305.18378>.
 653 arXiv:2305.18378 [cs, stat].

654

655 Jing Huang, Zhengxuan Wu, Christopher Potts, Mor Geva, and Atticus Geiger. RAVEL: Evaluating
 656 interpretability methods on disentangling language model representations. In Lun-Wei Ku, Andre
 657 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association
 658 for Computational Linguistics (Volume 1: Long Papers)*, pp. 8669–8687, Bangkok, Thailand,
 659 August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.470.
 660 URL <https://aclanthology.org/2024.acl-long.470/>.

661 Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey. Sparse
 662 autoencoders find highly interpretable features in language models. In *The Twelfth International
 663 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=F76bwRSLeK>.

664

665 Aapo Hyvärinen and Hiroshi Morioka. Unsupervised Feature Extraction by Time-Contrastive
 666 Learning and Nonlinear ICA. *arXiv:1605.06336 [cs, stat]*, May 2016. URL <http://arxiv.org/abs/1605.06336>. arXiv: 1605.06336.

667

668 Aapo Hyvärinen and Hiroshi Morioka. Nonlinear ICA of Temporally Dependent Stationary
 669 Sources. In *Artificial Intelligence and Statistics*, pp. 460–469. PMLR, April 2017. URL
 670 <http://proceedings.mlr.press/v54/hyvarinen17a.html>. ISSN: 2640-3498.

671

672 Aapo Hyvärinen, Hiroaki Sasaki, and Richard E. Turner. Nonlinear ICA Using Auxiliary Variables
 673 and Generalized Contrastive Learning. *arXiv:1805.08651 [cs, stat]*, February 2019. URL <http://arxiv.org/abs/1805.08651>. arXiv: 1805.08651.

674

675 Aapo Hyvärinen and Petteri Pajunen. Nonlinear independent component analysis: Existence
 676 and uniqueness results. *Neural Networks*, 12(3):429–439, April 1999. ISSN 0893-6080. doi:
 677 10.1016/S0893-6080(98)00140-3. URL <https://www.sciencedirect.com/science/article/pii/S0893608098001403>.

678

679 Shruti Joshi, Andrea Dittadi, Sébastien Lachapelle, and Dhanya Sridhar. Identifiable Steering via
 680 Sparse Autoencoding of Multi-Concept Shifts, February 2025. URL <http://arxiv.org/abs/2502.12179>. arXiv:2502.12179 [cs].

681

682 Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvärinen. Variational Autoen-
 683 coders and Nonlinear ICA: A Unifying Framework. In *International Conference on Artificial
 684 Intelligence and Statistics*, pp. 2207–2217. PMLR, June 2020a. URL <http://proceedings.mlr.press/v108/khemakhem20a.html>. ISSN: 2640-3498.

685

686 Ilyes Khemakhem, Ricardo Pio Monti, Diederik P. Kingma, and Aapo Hyvärinen. ICE-BeeM: Identi-
 687 fiable Conditional Energy-Based Deep Models Based on Nonlinear ICA. *arXiv:2002.11537 [cs, stat]*,
 688 October 2020b. URL <http://arxiv.org/abs/2002.11537>. arXiv: 2002.11537.

689

690 Sébastien Lachapelle, Tristan Deleu, Divyat Mahajan, Ioannis Mitliagkas, Yoshua Bengio, Si-
 691 mon Lacoste-Julien, and Quentin Bertrand. Synergies between Disentanglement and Sparsity:
 692 Generalization and Identifiability in Multi-Task Learning. In *Proceedings of the 40th Interna-
 693 tional Conference on Machine Learning*, pp. 18171–18206. PMLR, July 2023a. URL <https://proceedings.mlr.press/v202/lachapelle23a.html>. ISSN: 2640-3498.

694

695 Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre
 696 Lacoste, and Simon Lacoste-Julien. Disentanglement via Mechanism Sparsity Regularization: A
 697 New Principle for Nonlinear ICA. *arXiv:2107.10098 [cs, stat]*, November 2021. URL <http://arxiv.org/abs/2107.10098>. arXiv: 2107.10098.

698

699 Sébastien Lachapelle, Divyat Mahajan, Ioannis Mitliagkas, and Simon Lacoste-Julien. Additive
 700 Decoders for Latent Variables Identification and Cartesian-Product Extrapolation, July 2023b.
 701 URL <http://arxiv.org/abs/2307.02598>. arXiv:2307.02598 [cs, stat].

702 Brenden M. Lake and Marco Baroni. Human-like systematic generalization through a meta-
 703 learning neural network. *Nature*, 623(7985):115–121, November 2023. ISSN 1476-
 704 4687. doi: 10.1038/s41586-023-06668-3. URL <https://www.nature.com/articles/s41586-023-06668-3>. Publisher: Nature Publishing Group.
 705

706 Elliot Layne, Jason Hartford, Sébastien Lachapelle, Mathieu Blanchette, and Dhanya Sridhar. Sparsity
 707 regularization via tree-structured environments for disentangled representations. *Transactions on
 708 Machine Learning Research*, 2025.

709

710 Tom Lieberum, Senthooran Rajamanoharan, Arthur Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant
 711 Varma, Janos Kramar, Anca Dragan, Rohin Shah, and Neel Nanda. Gemma scope: Open sparse
 712 autoencoders everywhere all at once on gemma 2. In Yonatan Belinkov, Najoung Kim, Jaap Jumelet,
 713 Hosein Mohebbi, Aaron Mueller, and Hanjie Chen (eds.), *Proceedings of the 7th BlackboxNLP
 714 Workshop: Analyzing and Interpreting Neural Networks for NLP*, pp. 278–300, Miami, Florida, US,
 715 November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.blackboxnlp-1.
 716 19. URL <https://aclanthology.org/2024.blackboxnlp-1.19/>.

717 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves.
 718 CITRIS: Causal Identifiability from Temporal Intervened Sequences, June 2022. URL <http://arxiv.org/abs/2202.03169>. Number: arXiv:2202.03169 arXiv:2202.03169 [cs, stat].

719

720 Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves.
 721 BISCUIT: Causal Representation Learning from Binary Interactions, June 2023. URL <http://arxiv.org/abs/2306.09643>. arXiv:2306.09643 [cs, stat].

722

723 Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard Schölkopf,
 724 and Olivier Bachem. Challenging Common Assumptions in the Unsupervised Learning of Disen-
 725 tangled Representations. In *International Conference on Machine Learning*, pp. 4114–4124.
 726 PMLR, May 2019. URL <http://proceedings.mlr.press/v97/locatello19a.html>. ISSN: 2640-3498.

727

728 Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
 729 Tschannen. Weakly-Supervised Disentanglement Without Compromises. *arXiv:2002.02886 [cs,
 730 stat]*, October 2020a. URL <http://arxiv.org/abs/2002.02886>. arXiv: 2002.02886.

731

732 Francesco Locatello, Michael Tschannen, Stefan Bauer, Gunnar Rätsch, Bernhard Schölkopf, and
 733 Olivier Bachem. Disentangling Factors of Variation Using Few Labels. *arXiv:1905.01258 [cs,
 734 stat]*, February 2020b. URL <http://arxiv.org/abs/1905.01258>. arXiv: 1905.01258.

735

736 Samuel Marks and Max Tegmark. The geometry of truth: Emergent linear structure in large language
 737 model representations of true/false datasets. In *First Conference on Language Modeling*, 2024.
 738 URL <https://openreview.net/forum?id=aaajyHYjjsk>.

739

740 Samuel Marks, Can Rager, Eric J Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
 741 Sparse feature circuits: Discovering and editing interpretable causal graphs in language models.
 742 In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=I4e82CIDxv>.

743

744 Gemma E. Moran, Dhanya Sridhar, Yixin Wang, and David M. Blei. Identifiable Deep Generative
 745 Models via Sparse Decoding. Technical Report arXiv:2110.10804, arXiv, February 2022. URL
 746 <http://arxiv.org/abs/2110.10804>. arXiv:2110.10804 [cs, stat] type: article.

747

748 Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can
 749 Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, Eric Todd, David Bau, and
 750 Yonatan Belinkov. The quest for the right mediator: Surveying mechanistic interpretability
 751 through the lens of causal mediation analysis, 2025a. URL <https://arxiv.org/abs/2408.01416>.

752

753 Aaron Mueller, Atticus Geiger, Sarah Wiegreffe, Dana Arad, Iván Arcuschin, Adam Belfki, Yik Siu
 754 Chan, Jaden Fried Fiotto-Kaufman, Tal Haklay, Michael Hanna, Jing Huang, Rohan Gupta,
 755 Yaniv Nikankin, Hadas Orgad, Nikhil Prakash, Anja Reusch, Aruna Sankaranarayanan, Shun
 Shao, Alessandro Stolfo, Martin Tutek, Amir Zur, David Bau, and Yonatan Belinkov. MIB: A
 756 mechanistic interpretability benchmark. In *Forty-second International Conference on Machine
 757 Learning*, 2025b. URL <https://openreview.net/forum?id=sSr0wve6vb>.

756 Anna Mészáros, Szilvia Ujváry, Wieland Brendel, Patrik Reizinger, and Ferenc Huszár. Rule
 757 extrapolation in language models: A study of compositional generalization on ood prompts, 2024.
 758 URL <https://arxiv.org/abs/2409.13728>.

759

760 Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations of transformers with
 761 simple arithmetic tasks, 2021.

762 Bruno A. Olshausen and David J. Field. Sparse coding with an overcomplete basis set: A strategy
 763 employed by v1? *Vision Research*, 37(23):3311–3325, 1997. ISSN 0042-6989. doi: [https://doi.org/10.1016/S0042-6989\(97\)00169-7](https://doi.org/10.1016/S0042-6989(97)00169-7). URL <https://www.sciencedirect.com/science/article/pii/S0042698997001697>.

763

764 Judea Pearl. Causal inference in statistics: An overview. *Statistics Surveys*, 3
 765 (none), January 2009. ISSN 1935-7516. doi: 10.1214/09-SS057. URL <https://projecteuclid.org/journals/statistics-surveys/volume-3/issue-none/Causal-inference-in-statistics-An-overview/10.1214/09-SS057.full>.

766

767 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 768 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 769 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 770 12:2825–2830, 2011.

771

772 Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. Elements of causal inference: foun-
 773 dations and learning algorithms. *Journal of Statistical Computation and Simulation*, 88(16):
 774 3248–3248, November 2018. ISSN 0094-9655, 1563-5163. doi: 10.1080/00949655.2018.
 775 1505197. URL <https://www.tandfonline.com/doi/full/10.1080/00949655.2018.1505197>.

776

777 Rahul Ramesh, Ekdeep Singh Lubana, Mikail Khona, Robert P. Dick, and Hidenori Tanaka. Compo-
 778 sitional Capabilities of Autoregressive Transformers: A Study on Synthetic, Interpretable Tasks,
 779 February 2024. URL <https://arxiv.org/abs/2311.12997>. arXiv:2311.12997 [cs].

780

781 Patrik Reizinger, Luigi Gresele, Jack Brady, Julius von Kügelgen, Dominik Zietlow, Bernhard
 782 Schölkopf, Georg Martius, Wieland Brendel, and Michel Besserve. Embrace the Gap: VAEs
 783 Perform Independent Mechanism Analysis, January 2023a. URL <https://arxiv.org/abs/2206.02416>. arXiv:2206.02416 [cs, stat].

784

785 Patrik Reizinger, Yash Sharma, Matthias Bethge, Bernhard Schölkopf, Ferenc Huszár, and Wieland
 786 Brendel. Jacobian-based Causal Discovery with Nonlinear ICA. *Transactions on Machine Learning
 787 Research*, April 2023b. ISSN 2835-8856. URL <https://openreview.net/forum?id=2Yo9xqR6Ab>.

788

789 Patrik Reizinger, Siyuan Guo, Ferenc Huszár, Bernhard Schölkopf, and Wieland Brendel. Identifiable
 790 Exchangeable Mechanisms for Causal Structure and Representation Learning. October 2024a.
 791 URL <https://openreview.net/forum?id=k03mB41vyM>.

792

793 Patrik Reizinger, Szilvia Ujváry, Anna Mészáros, Anna Kerekes, Wieland Brendel, and Ferenc Huszár.
 794 Understanding llms requires more than statistical generalization, 2024b.

795

796 Abulhair Saparov, Richard Yuanzhe Pang, Vishakh Padmakumar, Nitish Joshi, Seyed Mehran Kazemi,
 797 Nadjoung Kim, and He He. Testing the general deductive reasoning capacity of large language
 798 models using ood examples, 2023.

799

800 Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner,
 801 Anirudh Goyal, and Yoshua Bengio. Towards Causal Representation Learning. *arXiv:2102.11107
 802 [cs]*, February 2021. URL <https://arxiv.org/abs/2102.11107>. arXiv: 2102.11107
 803 version: 1.

804

805 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks:
 806 Visualising image classification models and saliency maps, 2014. URL <https://arxiv.org/abs/1312.6034>.

807

810 Nishant Subramani, Nivedita Suresh, and Matthew Peters. Extracting latent steering vectors from
 811 pretrained language models. In Smaranda Muresan, Preslav Nakov, and Aline Villavicencio (eds.),
 812 *Findings of the Association for Computational Linguistics: ACL 2022*, pp. 566–581, Dublin, Ireland,
 813 May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-acl.48.
 814 URL <https://aclanthology.org/2022.findings-acl.48/>.

815 Raphael Suter, Djordje Miladinovic, Bernhard Schölkopf, and Stefan Bauer. Robustly disentangled
 816 causal mechanisms: Validating deep representations for interventional robustness. In *International
 817 Conference on Machine Learning*, pp. 6056–6065. PMLR, 2019.

818

819 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
 820 Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
 821 Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex
 822 Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson,
 823 Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo, Clément Crepy,
 824 Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan,
 825 George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian
 826 Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski, Jean-Baptiste Lespiau,
 827 Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin Mao-Jones, Katherine
 828 Lee, Kathy Yu, Katie Millican, Lars Lowe Sjøsund, Lisa Lee, Lucas Dixon, Machel Reid, Maciej
 829 Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chainaev, Nithum Thain, Olivier Bachem, Oscar
 830 Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko Yotov, Rahma Chaabouni, Ramona
 831 Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
 832 Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree Pandya, Siamak Shakeri, Soham De,
 833 Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech Stokowiec, Yu hui Chen, Zafarali Ahmed,
 834 Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh Giang, Clément Farabet, Oriol Vinyals, Jeff
 835 Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, Douglas Eck, Joelle Barral,
 836 Fernando Pereira, Eli Collins, Armand Joulin, Noah Fiedel, Evan Senter, Alek Andreev, and
 837 Kathleen Kenealy. Gemma: Open models based on gemini research and technology, 2024. URL
 838 <https://arxiv.org/abs/2403.08295>.

839 Szilvia Ujváry, Anna Mészáros, Wieland Brendel, Patrik Reizinger, and Ferenc Huszár. Transcending
 840 bayesian inference: Transformers extrapolate rules compositionally under model misspecification.
 841 In *7th Symposium on Advances in Approximate Bayesian Inference – Workshop Track*, 2025. URL
 842 <https://openreview.net/forum?id=0DRAstwh5Y>.

843 Julius von Kügelgen. Identifiable Causal Representation Learning: Unsupervised, Multi-View,
 844 and Multi-Environment. March 2024. URL <https://www.repository.cam.ac.uk/handle/1810/365627>.

845 Julius von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
 846 Besserve, and Francesco Locatello. Self-Supervised Learning with Data Augmentations Provably
 847 Isolates Content from Style, June 2021. URL <http://arxiv.org/abs/2106.04619>.
 848 arXiv: 2106.04619.

849 Julius von Kügelgen, Michel Besserve, Liang Wendong, Luigi Gresele, Armin Kekić, Elias Barein-
 850 boim, David M. Blei, and Bernhard Schölkopf. Nonparametric Identifiability of Causal Represen-
 851 tations from Unknown Interventions, October 2023. URL <http://arxiv.org/abs/2306.00542>.
 852 arXiv: 2306.00542 [cs, stat].

853 Liang Wendong, Armin Kekić, Julius von Kügelgen, Simon Buchholz, Michel Besserve, Luigi
 854 Gresele, and Bernhard Schölkopf. Causal Component Analysis, October 2023. URL <http://arxiv.org/abs/2305.17225>. arXiv: 2305.17225 [cs, stat].

855 Thaddäus Wiedemer, Prasanna Mayilvahanan, Matthias Bethge, and Wieland Brendel. Composi-
 856 tional Generalization from First Principles, July 2023. URL <http://arxiv.org/abs/2307.05596>.
 857 arXiv: 2307.05596 [cs, stat].

858 Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky, Christo-
 859 pher D Manning, and Christopher Potts. Axbench: Steering LLMs? even simple baselines
 860 outperform sparse autoencoders. In *Forty-second International Conference on Machine Learning*,
 861 2025. URL <https://openreview.net/forum?id=K2CckZjNy0>.

864 Jiaqi Zhang, Chandler Squires, Kristjan Greenewald, Akash Srivastava, Karthikeyan Shanmugam,
865 and Caroline Uhler. Identifiability Guarantees for Causal Disentanglement from Soft Interventions,
866 July 2023. URL <http://arxiv.org/abs/2307.06250>. arXiv:2307.06250 [cs, math,
867 stat].

868 Zuheng Xu, Moksh Jain, Ali Denton, Shawn Whitfield, Aniket Didolkar, Berton Earnshaw, and
869 Jason Hartford. Automated discovery of pairwise interactions from unstructured data, 2024. URL
870 <https://arxiv.org/abs/2409.07594>.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

```

918
919 S[active, present] -> Subj V O | Subj V O PP | Adv, Subj V O
920
921 S[passive, past] -> Subj V_past O
922 | Subj V_past O PP
923 | Adv, Subj V_past O
924
925 S[passive, present] -> O is V_pp by Subj
926 | Adv, O is V_pp
927 | O is being V_pp by Subj
928
929 S[passive, past] -> O was V_pp by Subj
930 | Adv, O was V_pp
931 | O had been V_pp by Subj
932
933 Subj[news, positive] -> the successful team
934 | the innovative company
935
936 Subj[news, neutral] -> the government | the company
937
938 Subj[fantasy, negative] -> the evil sorcerer
939 | the treacherous assassin
940
941 V[negative] -> criticizes | condemns | rejects
942
943 V[neutral] -> announces | reports | explains
944
945 V_past[positive] -> celebrated | praised | endorsed
946
947 PP[neutral] -> in recent days
948 | across different sectors
949
950 PP[positive] -> with remarkable success
951 | beyond expectations
952
953 PP[negative] -> without proper justification
954 | to widespread criticism
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

```

Figure 6: Excerpts from the context-free grammar we use to generate our SAE training and evaluation datasets.

A DATA GENERATION

We use probabilistic context-free grammars to generate the training data for our SAEs. Non-terminals have attributes corresponding to the ground-truth concepts. In Figure 6, we show a subsample of the rules in the grammar. Note that this sample is simplified: most terminal-generating rules have over 10 non-terminals, and there are more sentence templates than displayed in the figure.

In Table 3, we show examples from our generated training set. When we generate without correlations between concepts, there is an approximately uniform distribution of each concept, and correlations of approximately 0 across all concept pairs. If a concept-value pair is correlated, we pre-compute the example set such that we can achieve the closest match to the desired correlation. When training SAEs, we iterate for multiple epochs over the full dataset (when there are no cross-concept correlations) or the subsampled dataset (when there are cross-concept correlations).

B SAE TRAINING DETAILS

B.1 SAE ARCHITECTURES

Here, we define sparse autoencoders and describe the differences between the architectures we study.

972
973
974 Table 3: Examples of sentences generated by our context-free grammar.
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Concept Label				
Voice	Tense	Domain	Sentiment	Example Sentence
Active	Present	Science	Positive	The brilliant scientist celebrates the remarkable findings.
Active	Present	Science	Neutral	The expert announces the parameters in recent days.
Active	Present	Science	Negative	As of today, the discredited theory rejects the inconclusive evidence.
Active	Past	Fantasy	Negative	Unsuccessfully, the malevolent dragon damaged the corrupted land.
Passive	Past	News	Neutral	The event was explained in the recent report.
Passive	Present	Other	Positive	The pleasant surprise is endorsed advantageously by the talented artist.
Passive	Past	Other	Neutral	The question was answered when the family announced the event.

Sparse autoencoders. The conceptually simplest architecture we deploy is the ReLU sparse autoencoder (Huben et al., 2024; Bricken et al., 2023), which learns a mapping from $\mathbf{x} = \mathbf{h}^\ell$ to a learned sparse feature vector \mathbf{f} , and then reconstructs the activations $\hat{\mathbf{x}}$ given \mathbf{f} . More formally:

$$\mathbf{f} = \text{ReLU}(\mathbf{W}_{\text{enc}}\mathbf{x} + \mathbf{b}_{\text{enc}}) \quad (4)$$

$$\hat{\mathbf{x}} = \mathbf{W}_{\text{dec}}(\mathbf{f} - \mathbf{b}_{\text{enc}}) + \mathbf{b}_{\text{dec}} \quad (5)$$

ReLU SAEs minimize $\mathcal{L} = \text{MSE}(\mathbf{x}, \hat{\mathbf{x}}) + \lambda \|\mathbf{f}\|_1$.

Top-K SAEs (Gao et al., 2025) are similar to ReLU SAEs, but they strictly retain the top k activations per sample and zero out all others:

$$\mathbf{f} = \text{top-}k(\mathbf{W}_{\text{enc}}\mathbf{x} + \mathbf{b}_{\text{enc}}) \quad (6)$$

Sparsemax distance encoders (SpADE) can capture nonlinearly separable and heterogeneous features; we refer readers to Hindupur et al. (2025) for details. In formal terms:

$$\mathbf{f} = \text{Sparsemax}(-\lambda d(\mathbf{x}, \mathbf{W})) \quad (7)$$

where $d(\mathbf{x}, \mathbf{W})_i = \|\mathbf{x} - \mathbf{W}_i\|_2^2$. Hindupur et al. (2025) show that this architecture can capture more irregular concept geometries, whereas ReLU SAEs assume linear separability, and Top-K SAEs assume angular separability.

Sparse shift autoencoders. Sparse shift autoencoders (SSAEs) (Joshi et al., 2025) are trained using paired observations $(\mathbf{x}, \tilde{\mathbf{x}})$ assumed to be sampled from the following generative process:

$$S \sim p(S), \quad (\mathbf{c}, \tilde{\mathbf{c}}) \sim p(\mathbf{c}, \tilde{\mathbf{c}} \mid S), \quad (8)$$

$$\mathbf{x} := g(\mathbf{c}), \quad \tilde{\mathbf{x}} := g(\tilde{\mathbf{c}}), \quad (9)$$

where $S \subseteq \{1, \dots, d_c\}$ denotes the subset of concepts that vary between \mathbf{x} and $\tilde{\mathbf{x}}$ and d_c represents the dimension of *varying concepts*, the concepts that are intervened upon in the dataset.

Note that SSAEs take as input *difference vectors* $\Delta \mathbf{z} := f(\tilde{\mathbf{x}}) - f(\mathbf{x}) = \tilde{\mathbf{z}} - \mathbf{z}$ that represent concept differences in activation space and model them as:

$$\Delta \hat{\mathbf{c}}_V := r(\Delta \mathbf{z}) := \mathbf{W}_e(\Delta \mathbf{z} - \mathbf{b}_d) + \mathbf{b}_e; \quad (10)$$

$$\Delta \hat{\mathbf{z}} := q(\Delta \hat{\mathbf{c}}_V) := \mathbf{W}_d \Delta \hat{\mathbf{c}}_V + \mathbf{b}_d \quad (11)$$

where $r : \mathbb{R}^{d_z} \rightarrow \mathbb{R}^{d_c}$ is an affine encoder $q : \mathbb{R}^{d_c} \rightarrow \mathbb{R}^{d_z}$ is an affine decoder. In words, the representation $r(\Delta \mathbf{z})$ predicts $\Delta \mathbf{c}_V$, i.e., the concept shifts corresponding to $\Delta \mathbf{z}$.

SSAEs are trained to solve the following constrained problem:

$$(\hat{r}, \hat{q}) \in \arg \min_{r, q} \mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}}} [\|\Delta \mathbf{z} - q(r(\Delta \mathbf{z}))\|_2^2] \quad (12)$$

$$\text{s.t. } \mathbb{E}_{\mathbf{x}, \tilde{\mathbf{x}}} \|r(\Delta \mathbf{z})\|_0 \leq \beta, \quad (13)$$

1026 where Eq. 12 is the standard auto-encoding loss that encourages good reconstruction and Eq. 13 is
 1027 a regularizer that encourages the predicted concept shift vector $\Delta\hat{\mathbf{c}}_V := \hat{r}(\Delta\mathbf{z})$ to be sparse. Since
 1028 the ℓ_0 -norm is non-differentiable, in practice we replace it by an ℓ_1 -norm leading to the following
 1029 relaxed sparsity constraint:

$$\mathbb{E}_{\mathbf{z}, \hat{\mathbf{z}}} \|r(\Delta\mathbf{z})\|_1 \leq \beta. \quad (14)$$

1030 We then approximately solve this constrained problem by finding a saddle point of its Lagrangian
 1031 using the ExtraAdam algorithm (Gidel et al., 2020) as implemented by Gallego-Posada & Ramirez
 1032 (2022).

1033 **B.2 HYPERPARAMETERS**

1034 **Sparse autoencoders.** All Pythia-70M sparse autoencoders are trained using a batch size of 128
 1035 sequences for 10000 steps. We train on the output of the middle layer (layer 3). Optimization is
 1036 performed using Adam with an initial learning rate of 1×10^{-3} , 200 warmup steps, and $\beta_1 =$
 1037 0.9 , $\beta_2 = 0.95$. Top- k SAEs are trained with $k = 128$. For Gemma-2-2B, we use the same
 1038 hyperparameters for all SAEs except SpADE, which has higher memory requirements; for this
 1039 architecture, we reduce the batch size to 64 while maintaining all other hyperparameters.⁷ We also
 1040 train on the middle layer (layer 13). Our implementation is based on that of Hindupur et al. (2025).

1041 **Sparse shift autoencoders.** For SSAEs, we must train on pairwise differences in activations. For
 1042 this, we iterate over the training set to get example x_i , and then uniformly sample another example
 1043 x_j , ensuring that $i \neq j$. Otherwise, we use similar hyperparameters as when training SAEs. Note
 1044 that SSAEs should be trained on the *final* layer of a model, rather than the middle layer: this choice is
 1045 motivated by the claim that concepts in the output space are most easily linearly identified in the final
 1046 layer (Joshi et al., 2025).⁸

1047 We present NMSE, variance explained, and percent sparsity on the test set in Table 4 (for Pythia) and
 1048 Table 5 (for Gemma).

1049 **Probes.** All probes are logistic regression probes. The probes used in correlational experiments are
 1050 trained on the middle layer of Pythia-70M or Gemma-2-2B for a maximum of 1000 steps. We use
 1051 the implementation of `scikit-learn` (Pedregosa et al., 2011).⁹ k -sparse probes are identical in
 1052 architecture and hyperparameters, but we filter the set of neurons or features to reduce dimensionality
 1053 before training the probes (and also train them on featurized representations rather than the original
 1054 activation space); see App. G for details. For the binary probes, we balance the training dataset of
 1055 each probe by uniformly subsampling the more frequent class such that the number of examples for
 1056 both classes is the same.

1057 For the multinomial probes used for evaluating steering, the architecture and hyperparameters are
 1058 the same, except that the probe outputs one logit *per concept value* rather than a single logit. These
 1059 probes are trained on the final layer of Pythia-70M or Gemma-2-2B, as their purpose is to estimate
 1060 the probability of a concept appearing in the model’s output. Note that we do not rebalance the data
 1061 for multinomial probes; we only train multinomial probes on data where there are no cross-concept
 1062 correlations, so there is already an approximately uniform distribution of labels for each probe’s
 1063 training set.

1064 **C IDENTIFIABILITY DEFINITIONS**

1065 Identifiability definitions formulate the permissible transformations—termed an equivalence class—
 1066 of the learned latent factors \mathbf{f} by such that the resulting probability distributions parametrized by

1067 ⁷We experimented with doubling the number of training steps to compensate for the halved batch size for
 1068 Gemma-2-2B SpADE SAEs. Final loss reductions were very small, so we chose to continue using 10000
 1069 iterations for uniformity.

1070 ⁸We acknowledge that using different layers for different SAE architectures introduces a confound. However,
 1071 in pilot experiments, we found that other architectures tended to yield worse disentanglement and steering results
 1072 when trained on the final layer. Thus, the current locations seem to be closer to optimal than if we had used the
 1073 same location.

1074 ⁹Specifically, we use the Newton-Cholesky solver.

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091

1092 Table 4: Variance explained, losses, and sparsities for SAEs trained on the middle layer of Pythia-70M
 1093 (or last layer in the case of SSAEs). SSAE results are not comparable to those of other SAEs; unlike
 1094 other architectures, they are trained and evaluated on *pairwise differences* of activations.

1095

1096	SAE Arch.	$\rho(z_i, z_j)$	NMSE	Var. Explained	% Sparsity
1097	ReLU	0.0	0.004 (0.000)	99.6 (0.0)	58.7 (0.2)
1098		0.1	0.006 (0.000)	99.7 (0.0)	54.6 (0.1)
1099		0.2	0.006 (0.008)	99.7 (0.0)	54.4 (0.2)
1100		0.5	0.007 (0.000)	99.7 (0.0)	54.4 (0.1)
1101		0.9	0.003 (0.000)	99.7 (0.0)	54.4 (0.1)
1102		1.0	0.003 (0.000)	99.7 (0.1)	54.4 (0.1)
1103	Top-K	0.0	0.058 (0.000)	94.2 (0.0)	97.6 (0.0)
1104		0.1	0.056 (0.000)	94.4 (0.0)	97.6 (0.0)
1105		0.2	0.056 (0.000)	94.4 (0.0)	97.6 (0.0)
1106		0.5	0.060 (0.000)	94.0 (0.0)	97.6 (0.0)
1107		0.9	0.057 (0.000)	94.4 (0.0)	97.6 (0.0)
1108		1.0	0.064 (0.000)	93.6 (0.0)	97.6 (0.0)
1109	SpADE	0.0	0.003 (0.000)	99.7 (0.0)	58.8 (0.3)
1110		0.1	0.003 (0.000)	99.7 (0.0)	58.8 (0.2)
1111		0.2	0.003 (0.000)	99.7 (0.0)	59.3 (0.1)
1112		0.5	0.003 (0.000)	99.7 (0.0)	60.6 (0.0)
1113		0.9	0.004 (0.000)	99.6 (0.0)	64.9 (0.1)
1114		1.0	0.005 (0.000)	99.5 (0.0)	66.8 (0.1)
1115	Natural	0.005	99.5	99.8	
1116	SSAE	0.1	0.004 (0.001)	99.6	98.8 (0.0)
1117			0.1	0.004 (0.001)	99.6 (0.0)
1118			0.2	0.005 (0.001)	99.6 (0.0)
1119			0.5	0.005 (0.001)	99.6 (0.0)
1120			0.9	0.005 (0.002)	99.6 (0.0)
1121			1.0	0.004 (0.001)	99.6 (0.0)
1122					99.2 (0.0)
1123					
1124					
1125					
1126					
1127					
1128					
1129					
1130					
1131					
1132					
1133					

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145

1146 Table 5: Variance explained, losses, and sparsities for SAEs trained on the middle layer of Gemma-2-
 1147 2B (or last layer in the case of SSAEs). SSAE results are not comparable to those of other SAEs;
 1148 unlike other architectures, they are trained and evaluated on *pairwise differences* of activations.

1149

1150	SAE Arch.	$\rho(z_i, z_j)$	Var. Explained	NMSE	% Sparsity
1151	ReLU	0.0	0.014 (0.000)	98.7 (0.0)	49.6 (0.1)
1152		0.1	0.014 (0.000)	98.6 (0.0)	49.6 (0.1)
1153		0.2	0.014 (0.000)	98.7 (0.0)	49.6 (0.0)
1154		0.5	0.014 (0.000)	98.7 (0.0)	49.9 (0.0)
1155		0.9	0.011 (0.000)	98.9 (0.0)	50.0 (0.0)
1156		1.0	0.010 (0.000)	99.0 (0.0)	50.0 (0.0)
1157	Top-K	0.0	0.218 (0.001)	78.1 (0.001)	99.4 (0.0)
1158		0.1	0.218 (0.000)	78.1 (0.000)	99.4 (0.0)
1159		0.2	0.216 (0.001)	78.3 (0.000)	99.4 (0.0)
1160		0.5	0.218 (0.000)	78.2 (0.000)	99.4 (0.0)
1161		0.9	0.236 (0.000)	76.4 (0.000)	99.4 (0.0)
1162		1.0	0.269 (0.000)	73.1 (0.000)	99.4 (0.0)
1163	SpADE	0.0	0.094 (0.0)	90.6 (0.0)	96.9 (0.1)
1164		0.1	0.091 (0.000)	90.5 (0.0)	96.8 (0.0)
1165		0.2	0.091 (0.001)	90.4 (0.0)	96.9 (0.0)
1166		0.5	0.099 (0.001)	89.5 (0.0)	96.7 (0.0)
1167		0.9	0.149 (0.000)	84.4 (0.1)	96.9 (0.0)
1168		1.0	0.167 (0.001)	84.5 (0.1)	96.2 (0.0)
1169	Natural	0.064	93.6	99.6	
1170	SSAE	0.0	0.064 (0.001)	98.8 (0.0)	91.9 (0.1)
1171		0.1	0.068 (0.000)	98.8 (0.0)	91.5 (0.0)
1172		0.2	0.061 (0.000)	98.8 (0.0)	91.6 (0.1)
1173		0.5	0.072 (0.000)	98.8 (0.0)	91.4 (0.0)
1174		0.9	0.069 (0.000)	98.9 (0.0)	91.3 (0.0)
1175		1.0	0.074 (0.001)	99.0 (0.0)	91.4 (0.0)

1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 the neural network are equivalent. The smaller the equivalence class, the stronger assumptions are
 1189 generally required.

1190 **Definition 1** (Strong Identifiability (Khemakhem et al., 2020b)). *Given a parameter class Θ , when
 1191 the feature extractors $\mathcal{F}_{\theta_1}, \mathcal{F}_{\theta_2}$ produce latent representations $\mathbf{f}_1 = \mathcal{F}_{\theta_1}(\mathbf{x}), \mathbf{f}_2 = \mathcal{F}_{\theta_2}(\mathbf{x})$ from
 1192 observations \mathbf{x} that are equivalent up to scaled permutations and offsets c for all $\theta_1, \theta_2 \in \Theta$, i.e.,*
 1193

$$1194 \theta_1 \sim \theta_2 \iff \mathbf{f} = \mathcal{F}_{\theta_1}(\mathbf{x}) = \mathbf{D}\mathbf{P}\mathcal{F}_{\theta_2}(\mathbf{x}) + c, \quad (15)$$

1195 where \mathbf{D} is a diagonal and \mathbf{P} a permutation matrix. Then θ_1, θ_2 fulfill an equivalence relationship.
 1196

1197 **Definition 2** (Weak Identifiability (Khemakhem et al., 2020b)). *Given a parameter class Θ , when
 1198 the feature extractors $\mathcal{F}_{\theta_1}, \mathcal{F}_{\theta_2}$ produce latent representations $\mathbf{f}_1 = \mathcal{F}_{\theta_1}(\mathbf{x}), \mathbf{f}_2 = \mathcal{F}_{\theta_2}(\mathbf{x})$ from
 1199 observations \mathbf{x} that are equivalent up to matrix multiplications and offsets c for all $\theta_1, \theta_2 \in \Theta$, i.e.,*
 1200

$$1200 \theta_1 \sim \theta_2 \iff \mathbf{f} = \mathcal{F}_{\theta_1}(\mathbf{x}) = \mathbf{A}\mathcal{F}_{\theta_2}(\mathbf{x}) + c, \quad (16)$$

1201 where $\text{rank}(\mathbf{A}) \geq \min(\dim \mathbf{f}; \dim \mathcal{X})$. Then θ_1, θ_2 fulfill an equivalence relationship.
 1202

1203 **Definition 3** (Identifiability up to elementwise nonlinearities (Hyvarinen & Morioka, 2017)). *Given
 1204 a parameter class Θ , when the feature extractors $\mathcal{F}_{\theta_1}, \mathcal{F}_{\theta_2}$ produce latent representations $\mathbf{f}_1 =
 1205 \mathcal{F}_{\theta_1}(\mathbf{x}), \mathbf{f}_2 = \mathcal{F}_{\theta_2}(\mathbf{x})$ from observations \mathbf{x} that are equivalent up to elementwise nonlinearities,
 1206 matrix multiplications and offsets c for all $\theta_1, \theta_2 \in \Theta$, i.e.,*
 1207

$$1207 \theta_1 \sim \theta_2 \iff \mathbf{f} = \mathcal{F}_{\theta_1}(\mathbf{x}) = \mathbf{A}\sigma[\mathcal{F}_{\theta_2}(\mathbf{x})] + c, \quad (17)$$

1208 where $\text{rank}(\mathbf{A}) \geq \min(\dim \mathbf{f}; \dim \mathcal{X})$ and σ denotes an elementwise nonlinear transformation.
 1209 Then θ_1, θ_2 fulfill an equivalence relationship.
 1210

1211 D METRICS

1212 D.1 MCC

1213 The Mean Correlation Coefficient (MCC) (Hyvarinen & Morioka, 2016) is a widely used metric to
 1214 measure how well the learned representation recovers the underlying ground-truth factors. That is, it
 1215 measures identifiability up to scalings and permutations.
 1216

1217 Given a set of ground-truth concepts $\{z_1, \dots, z_n\}$ that generate an input example \mathbf{x} where each
 1218 concept $z_j \in \mathbb{Z}$, then $\forall i \in [1, \dots, n]$, we compute $\hat{\mathbf{f}}_j = \arg \max_i |\rho_{\mathcal{D}}(f_i, z_j)|$, where f_i is the
 1219 activation of feature \mathbf{f}_i and ρ is the correlation. Intuitively, $\hat{\mathbf{f}}_j$ is the feature whose activation correlates
 1220 most with the value of z_j on some training dataset \mathcal{D} . Given test set \mathcal{T} where concepts are uniformly
 1221 distributed w.r.t. each other (i.e., no built-in correlations), we use $\rho_{\mathcal{T}}(\hat{\mathbf{f}}_j, z_j)$ as a measure of how
 1222 well the featurizer linearly identifies concept z_j . After locating the best features $\{\hat{\mathbf{f}}_j\}_{j=1}^n$ for each
 1223 concept, we compute the MCC as the mean of their correlations with their respective concepts on \mathcal{T} .
 1224 In other words:
 1225

$$1227 \text{MCC} = \frac{1}{n} \sum_{j=1}^n \rho_{\mathcal{T}}(\hat{\mathbf{f}}_j, z_j). \quad (18)$$

1228 The MCC is measured using one-dimensional features, but multinomial concepts may not be one-
 1229 dimensional in \mathbf{f} or \mathbf{h}^{ℓ} (Engels et al., 2025). Thus, to create a fairer evaluation, we compute the MCC
 1230 over binarized concepts. That is, given a variable $z_i \in \mathbb{Z}$ with V_i possible values, we create a new
 1231 binary variable $v_{i,x} \in \mathbb{B}$ for each value x corresponding to whether $z_i = v_{i,x}$. When computing the
 1232 MCC, we first average the correlation coefficients for all $v_{i,x} \in V_i$ before taking the macroaverage
 1233 across concepts.
 1234

1235 D.2 DCI-ES

1236 Here, we summarize the DCI-ES metrics (Eastwood et al., 2023), and give methodological details as
 1237 to how we compute them. Our implementation is based directly on that of Eastwood et al. (2023).
 1238

1239 DCI-ES stands for **d**isentanglement, **c**ompleteness, **i**nformativeness, **e**xplicitness, and **s**ize. We focus
 1240 on the first four metrics, as these are the most relevant to establishing identifiability. Disentanglement
 1241

Figure 7: **The difference between feature disjointness and independence:** **(Left)** Two concepts z_i and z_j with feature representations \hat{f}_i and \hat{f}_j , respectively, are disjoint if the left diagram commutes. **(Right)** If they are independent then there is no commutative relationship, as steering with \hat{f}_i should not affect $p(z_j)$. Intuitively, disjointness implies that two feature representations exist in non-overlapping subspaces of the model representations, and thus that the effect of steering of both can be predicted from the result of steering either in isolation. Independence implies that steering with one concept would not affect how the model uses other concepts. Refer to §4.2 for formulae and empirical details.

and completeness require us to first compute importance matrix $M \in \mathbb{R}^{|\mathbf{f}| \times |\mathcal{Z}|}$. For example, if we train a multinomial probe to predict concept z_j from feature \mathbf{f}_i , we can compute the importance of each dimension of \mathbf{f} post hoc. Each concept z_j defines a column of M . Note that $\forall i, j : M_{ij} \geq 0$, and $\sum_{i=1}^{|\mathbf{f}|} M_{ij} = 1$.

Disentanglement measures the average number of concepts z_j that are captured by any single feature \mathbf{f}_i . To compute it, we first compute the entropy $H_{\mathcal{Z}}(P_{i \cdot})$ of the distribution $P_{i \cdot}$ defined over row i of M : $P_{ij} = \frac{M_{ij}}{\sum_k M_{ik}}$. Disentanglement is then defined as $D_i = 1 - H_K(P_{i \cdot})$. This score is maximized when feature \mathbf{f}_i is only responsible for predicting a single concept z_j ; it is minimized when feature \mathbf{f}_i is equally important for predicting all concepts.

Completeness measures the average number of features \mathbf{f}_i that are useful in predicting a single concept z_j . This score is defined analogously to disentanglement, but over columns j in M : we take $C_j = 1 - H_F(P_{\cdot j})$. Completeness is maximized when only one feature \mathbf{f}_i is helpful in predicting z_j , and it is minimized when all features are equally important in predicting the concept.

Informativeness is inversely proportional to the prediction error of a probe trained on the feature vector. In the implementation of Eastwood et al. (2023), it is simply defined as the accuracy of a probe in predicting concept z_j when trained on the feature vector \mathbf{f} . This captures whether a ground-truth concept is recoverable from the feature vector.

Explicitness is conceptually related to informativeness. E captures the trade-off between the probe’s capacity and the probe loss; this is measured as one minus the normalized area under the loss-capacity curve (AULCC); we refer readers to Eastwood et al. (2023) for details. This score is maximized when the lowest-capacity probe achieves the best loss, and thus that no excess capacity was required to fully recover a given concept.

D.3 FURTHER DETAILS ON INDEPENDENCE AND DISJOINTNESS

To illustrate the conceptual distinction between independence and disjointness, we present diagrams in Figure 7. Intuitively, disjointness implies that two feature representations exist in non-overlapping subspaces of the model representations, and thus that the effect of steering both features can be predicted from the result of steering either in isolation. Conversely, independence implies that steering with one concept would not affect how the model uses other concepts. Refer to §4.2 for details.

E Is ONE DIMENSION SUFFICIENT?

In SAE-based interpretability studies, it is common to steer with a single feature, regardless of how many features receive high attributions for a given task. This corresponds to the following assumption:

Figure 8: **Correlation coefficients between probe logits and concept labels for domain=science (left), sentiment=positive (middle), and MCC (right).** Results for Gemma-2-2B shown here; results for Pythia-70M are in App. H. We vary the number of dimensions k that the probe is allowed to have non-zero weights from. k -sparse probes trained on SAEs begin to converge around 10 dimensions for Top-K, SpADE, SSAE, and Natural, and recover most of the performance of a non-sparse probe that is allowed to use the entire residual vector (Full). k -sparse probes trained on the residual stream (Neuron) require more dimensions to converge, as expected.

Assumption 2: One feature dimension is sufficient for concept detection and control. Given binary concept z_i and feature vector \mathbf{f} , one dimension \mathbf{f}_i of \mathbf{f} is sufficient to represent and control z_i in \mathcal{M} .

To evaluate the extent to which this assumption holds in practice, we train k -sparse probes (as operationalized in Gurnee et al. (2023)) on featurized representations \mathbf{f} . k -sparse probes are linear probes that may have non-zero weights from up to k dimensions of the representations they are trained on. Lachapelle et al. (2023a) established a connection between disentanglement and sparse prediction: they prove that disentanglement leads to optimal loss using sparse predictors. Further, as features become more entangled, we need to reduce sparsity regularization to maintain accuracy; this theoretical finding further motivates the following experiment.

Hypothesis. More dimensions yield monotonically increasing expressive power. Thus, performance should be non-decreasing as k increases. We care primarily about when increasing k begins to yield diminishing improvements in the MCC. Representations obtained with strong sparsity constraints, like SAEs, should reach this saturation point at smaller k than representations with no such constraints, such as residual vectors.

Results. We display the (M)CC of k -sparse probes trained on feature vectors \mathbf{f} in Figure 8. Top-K SAEs and SSAEs achieve the best trade-off between MCC and sparsity at all k ; they also approach the MCC of training a normal probe on the full activation vector at the residual stream. ReLU SAEs do not begin saturating even at 10–50 features, whereas all other SAEs do. SSAEs and Top-K SAEs achieve better concept recovery at the same k as the residual neuron baseline, whereas ReLU SAEs do not.

These results suggest that SAEs do confer sparsity benefits compared to the original activation space of \mathcal{M} , but also that one-dimensionality assumptions may often be insufficient—even when the concepts are relatively simple.

F PROBE ACCURACIES

Here, we present the accuracies of each probe we use in our disentanglement experiments and evaluations. We present these as heatmaps to verify whether each probe learn an independent

Figure 9: Accuracy of binary probes (rows) on all concept value classification tasks (columns). We expect high values on the diagonals, below random chance for within-concept value pairs, and random chance for across-concept value pairs.

Figure 10: Accuracy of multinomial probes on all concept value classification tasks. We expect high values on the diagonals, below random chance for within-concept value pairs, and random chance for across-concept value pairs.

Figure 11: **MCC for the two most performant sparse probing methods from Gurnee et al. (2023) at various k .** Results for Pythia-70M shown here. The LR method achieves higher MCC at lower k , but MD overtakes LR at higher k .

representation of its target concept; if it does, we expect high scores along the diagonal, lower-than-random scores for within-concept pairs,¹⁰ and random-chance scores for across-concept pairs.

Binary linear probes trained on the middle layers of Pythia-70M and Gemma-2-2B (Figure 9) achieve near-perfect accuracies on their respective concepts, and achieve the expected random accuracies on all other concepts. This empirically supports Assumption 1, and supports the idea that the MCC ceiling should be high (§3.1).

In §4.1 and §4.2, we instead use multinomial linear probes trained on the final layers of Pythia-70M and Gemma-2-2B. We find (Figure 10) that these probes also achieve the expected high accuracies on the target concepts, below-random-chance accuracies on within-concept pairs, and random-chance accuracies on across-concept pairs. This validates that the non-independence we observe in our steering experiments are not due to the probes, but rather are more likely due to the featurization methods that we use to steer.

G SPARSE PROBING

Here, we replicate the setup of Gurnee et al. (2023) in our cross-concept correlation setting. We aim to assess which k -sparse probing methods are more robust to cross-concept correlations at multiple k . We focus on the two most performant methods from Gurnee et al. (2023): max mean difference (MD), and logistic regression (LR). MD works by computing the average difference in activations between positive and negative samples, and taking the k neurons whose mean activation difference is greatest. LR works by first training a logistic regression probe with L_1 regularization on the full activation vector, and then taking the top k according to the weights of the probe.

We observe (Figure 11) that the logistic regression (LR) method of selecting neurons is more effective at lower k . Between $k = 5$ and $k = 10$, MD generally overtakes LR in performance. As we are more concerned with low-dimensional concept recovery, we focus on LR in the feature dimensionality experiment (§E).

H FURTHER DISENTANGLEMENT RESULTS

Here, we present correlation coefficients and MCCs for k -sparse probes trained with varying k on SAEs for Pythia-70M. As with Gemma-2-2B, correlation coefficients tend to converge at around 10 dimensions; this suggests that the one-dimensionality assumption may not often hold in practice, even for much smaller models. Note also that the neuron baseline is far more performant for Pythia than Gemma; perhaps this is because $k = 10$ represents a far greater proportion of the dimensions of \mathbf{h}^ℓ for Pythia than Gemma. Other trends are largely consistent with Figure 8.

¹⁰We expect lower-than-random scores for within-concept pairs because a classifier trained on an alternative value of a concept should be strictly worse than a random probe, as the target label will be *negatively* correlated with the target concept.

Figure 12: **Correlation coefficients between probe logits and concept labels for domain=science (left), sentiment=positive (middle), and MCC (right).** Results for Pythia-70M. We vary the number of dimensions k that the probe is allowed to have non-zero weights from. As with Gemma-2-2B, correlation coefficients tend to converge at around 10 dimensions. However, the neuron baseline is far more performant; perhaps this is because $k = 10$ represents a far greater proportion of the dimensions of \mathbf{h}^ℓ for Pythia than Gemma. Other trends are largely consistent with Figure 8.

Figure 13: **The effect of steering a given concept (row) on the logit of another (column), as measured by a probe.** Results for Gemma-2-2B. If concept representations are causally independent, we expect a heatmap that resembles the ground-truth: $\Delta\text{LOGODDS}$ should be high on the diagonal, negative for within-concept pairs, and close to 0.0 for across-concept pairs. All SAEs demonstrate the expected diagonals, but also significant across-concept effects, indicating non-independence. Increasing correlations in the training data, even up to 0.9, do not significantly change the trends.

I FURTHER STEERING RESULTS

Here, we present steering heatmaps for Gemma-2-2B (Figure 13). Features appear less independent than for Pythia-70M, as indicated by more significant across-concept $\Delta\text{LogOdds}$ for many concept pairs. That said, the expected diagonal trend is still present. This is further evidence that SAE features do not often correspond to causally independent concept representations.

We also present more detailed multi-feature steering results (Figure 14). We observe that features are often entirely disjoint (the two purple lines almost always completely overlap) while not being independent (the red line is not always perfectly flat at 0.0). We observe some distinction between the predicted and actual $\Delta\text{LOGODDS}$ for ReLU SAEs, indicating that their affected subspaces do overlap slightly; this provides some evidence that disjointness is not tautologically expected—that is, a well-trained SAE can achieve it, but it is not guaranteed. This underscores that even when SAEs learn disjoint representations, one cannot use this as a proxy for causal independence.

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Figure 15: Maximum correlation coefficient for tense=past (left), voice=passive (middle), and MCC (right) under varying correlational conditions. Shaded regions represent 1 std. dev. across 3 training seeds. Ideal performance looks like a flat line at a high MCC. Probes perform best, and Top-K SAEs are best among unsupervised methods.

J ADDITIONAL VARIABLE CORRELATION EXPERIMENTS

The experiments thus far have focused on correlations specifically between the science domain and positive sentiment. To assess how well these results generalize to new variable correlations, we rerun our experiments while instead correlating the past tense with the passive voice.

We first present MCC results (Figure 15). Findings are largely consistent with Figure 2: supervised featurizers like probes perform best by far, but their performance drops sharply from $\rho=0.9$. Top-K SAEs are still the best-performing methods among unsupervised featurizers given our data. One difference here is that SAEs trained on large-scale natural language corpora are far better at recovering tense=past than our SAEs—especially for Gemma-2-2B.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

(a) Pythia-70M

(b) Gemma-2-2B

Figure 16: **The effect of steering a given concept (row) and the logit of another (column), as measured by a probe.** Results for Pythia-70M (a) and Gemma-2-2B (b). As when training on the previous set of correlated variables, diagonals are largely present, as are within-concept effects. There are significant across-concept effects, however, indicating non-independence.

1620 Results when steering (Figure 16) largely resemble the previous results, especially for ReLU and
 1621 SpADE SAEs. However, Top-K SAEs are now far more likely to demonstrate negative across-concept
 1622 effects. This negative relationship might be expected for mutually exclusive concepts, but not if
 1623 concepts are truly independent of each other. This supports our prior claim that existing unsupervised
 1624 methods may demonstrate decent recovery of known concepts (as indicated by correlational metrics),
 1625 but simultaneously produce entangled effects on multiple concepts (as indicated by interventional
 1626 metrics).

1628 K QUALITATIVE EXAMPLES OF STEERING

1630 Here, we show examples of model generations before and after steering the top feature for “do-
 1631 main=science”. We select the top feature using the same method as in §4.1: we use gradient
 1632 attributions to a binary probe trained to predict a positive label if the input sentence is about science.

1633 Pythia-70M, ReLU

1634 It has been found that

1635 No steering

1636 the first person to be the one
 1637 who is the one who is the one

1638 Sentiment=positive ($\rho = 0$)

1639 the most important part of the
 1640 process of the process of the
 1641 process of the

1642 Sentiment=positive ($\rho = 1$)

1643 the presence of a high-
 1644 fidelity material in the air-
 1645 conditioning system is a very
 1646 important factor

1647 Gemma-2-2B, Top-K

1648 Once upon a time,

1649 No steering

1650 a time when my children were
 1651 very small, I bought a box of
 1652 pencils (yes, that time).
 1653 The box bore a very clear mes-
 1654 sage: “It’s never

1655 Domain=science ($\rho = 0$)

1656 there was a little girl who was
 1657 born with a rare genetic dis-
 1658 order. She was born with a
 1659 condition called “congenital
 1660 heart disease.” This condition
 1661 is a birth defect that affects
 1662 the heart’s structure and func-
 1663 tion.

1664 Domain=science ($\rho = 1$)

1665 there was a brave little girl
 1666 who was born with a heart
 1667 condition. She was born with
 1668 a hole in her heart,

1669 L LLM USAGE

1670 The authors used large language models primarily as a polishing tool during writing. LLMs were not
 1671 used in a significant capacity for writing experimental code nor for research ideation, although we
 1672 acknowledge that libraries on which our code was based may have used LLMs.