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ABSTRACT

Charts are widely used for visualizing data in research findings, and many applica-
tions require extracting data from charts and converting it into structured tables for
large-scale processing and analysis. While vision-language models (VLMs) have
shown promising results on chart digitization and understanding tasks, their effec-
tiveness in fully automating this process remains unclear. Existing benchmarks
fall short because (1) they contain overly simplified charts that do not reflect real-
world complexity, (2) they fail to comprehensively evaluate critical model capabil-
ities, including perception, reasoning, planning, and long-form output generation,
and (3) they lack evaluations on both the completeness and accuracy of the struc-
tured outputs. To systematically evaluate the performance of VLMs in extracting
and structuring data from charts, we introduce CHART2CSV, a benchmark com-
prising 812 charts sourced from research papers across 5 scientific domains, paired
with expert-validated ground-truth CSVs. In CHART2CSV, VLMs are tasked with
extracting data points from these charts and converting them into CSVs. We eval-
uate 16 VLMs on CHART2CSV and find that even the best-performing model,
Claude 3.5 Sonnet, misinterprets nearly half of the data points, underscoring the
deficiency of existing VLMs in automating chart data extraction and structuring.

1 INTRODUCTION

Charts are commonly used to visualize data in research findings, and a wide range of applications
require extracting data points from these charts in the absence of the original raw data and trans-
forming them into machine-readable formats (e.g., CSV files). For example, reproduction packages
for social science research often include only code for reproducing results, omitting the code to
recreate visualizations (i.e., the plots and tables) using the original results. Thus, researchers must
extract data from original publications to compare with reproduced results (Brodeur et al., 2024;
Collaboration, 2012; 2015). Similarly, crucial insights into climate change (Carey, 2012) and eco-
logical evolution (Pagel, 1999; Nundloll et al., 2022) can be obtained from data recorded as charts
in historical, scanned, or even hand-written documents. Furthermore, extracting data from charts
plays a vital role in enhancing the accessibility of research findings for blind and visually impaired
individuals (Mishra et al., 2022).

Traditional computer vision (CV) tools and libraries struggle to recognize numerical values, de-
tect structural elements, and interpret chart components (Figure 1; Appendix A.1). While vision-
language models (VLMs) achieve stronger performance on general visual tasks, they still exhibit
critical limitations in automating the extraction and structuring of data from charts. As illustrated
in Figure 1, even state-of-the-art VLMs (OpenAI, 2024a; Qwen, 2024a; Google, 2024b; Anthropic,
2024; 2025) struggle with accurately extracting data points from charts (Figures 1b and 1c) and
comprehensively structuring them into well-formatted tables (Figures 1a and 1d).

To systematically evaluate and highlight the limitations of VLMs in extracting the full set of data
points from charts and transforming them into structured tables, we first examine existing bench-
marks and summarize their scope in Table 1. These benchmarks, including those for chart digitiza-
tion and chart understanding, fall short of capturing the full requirements of real-world applications.
First, context-wise, the input charts used in existing benchmarks are overly simplified and do not
accurately reflect the complexity of real-world scenarios. Notably, none of these benchmarks in-
clude charts that have been reproduced and validated by human experts, which is a critical aspect
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Assets

55.9
19.2
12.3
24.3

Claude 3.5 Sonnet 
Gemini 1.5 Pro
The entire Parameter column is empty.

PDF Plumber
Fails to identify any 
negative signs (-).

Input Chart

VLM 
Outputs

Assets
GPT-4o 
Qwen 72B
The Confidence Interval column 
is falsely broken into two columns.

(a) Table 3 of Allcott et al. (2022)

Claude 3.5 Sonnet
Reconstructed plot using the output CSV 

The relative alignment with the
gridlines is incorrect.

The relative order among data
points is incorrect.

OpenCV Canny
Gridline extractions are incomplete.

Input Chart

(b) Figure 1 of Ono & Zilis (2022)

Assets

Primed Real Value Error Bar 
Length

Poor Poor 11.2 0.5

Poor Rich 11.1 0.5

Rich Poor 11.2 0.5

Rich Rich 10.3 0.5

Gemini 1.5 Pro Outputs

OpenCV Contour
Falsely breaks a 
single object into 
multiple segments.

Input Chart

Generates incorrect columns.
The error bar lengths are inaccurate.

(c) Figure 3 of Gsottbauer et al. (2022)

Assets

Year Label Value

2013
2014
2015

Generates additional data 
points (Year > 2012) that 
are not in the plot.

WebPlotDigitizer
Cannot recognize any data points from this plot.

Input Chart GPT-4o

...

(d) Figure 1 of Wilson (2022)

Figure 1: Example charts in CHART2CSV and the corresponding model performance deficiencies.
For all traditional CV libraries (labeled with rectangular frames), we examine their deficiencies in
local data extraction, as they are unable to directly generate valid CSV outputs.

Table 1: Features of chart benchmarks.

Name
Data Task Metric

Research
Findings

Numeric Annot.
Removed

Verified (Exhaustive)
Perception

Reasoning Planning Complex
Outputs

Chart-level
Performance

Digitalization
FigureQA (Kahou et al., 2018) × × × ✓ × × × ×
ExcelChart400K (Luo et al., 2021) × × × ✓ × × ✓ ×
WebData (Choi et al., 2019) × × × ✓ × × ✓ ×
Understanding
CharXiv (Wang et al., 2024) ✓ ✓ × × ✓ × × ×
ChartBench (Xu et al., 2024) × ✓ × × × × × ×
ChartQA (Masry et al., 2022) × × × × ✓ × × ×
MathVista (Lu et al., 2024) × ✓ × × ✓ ✓ × ×
DVQA (Kafle et al., 2018) × ✓ × × ✓ × × ×
Table-LlaVa (Zheng et al., 2024) × × × × ✓ × × ×
CHART2CSV ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

for ensuring the relevance and authenticity of the task. Second, model capabilities-wise, success-
fully performing this task requires that VLMs incorporate: (1) perceptual abilities to accurately
extract values from visual representations, (2) reasoning skills to comprehend relationships among
chart components, (3) planning capabilities to correctly map extracted values to their correspond-
ing positions in structured tables, and (4) aptitude for generating long-form outputs that include
all extracted data points in CSV format. Existing benchmarks fail to assess these four capabilities
concurrently. Third, evaluation-wise, none of the existing benchmarks provide metrics to quantify
VLM performance at the chart level, while evaluating model performance in terms of both accuracy
and completeness is essential for investigating their applicability. We illustrate the critical gaps of
existing benchmarks with detailed examples in Section 2.

To overcome these limitations, we create CHART2CSV, a benchmark designed to evaluate the ca-
pability of VLMs in extracting data points from charts in research findings and transforming them
into structured tables. We select 275 charts containing plots and 537 charts containing tables from
research papers across 5 domains. We manually annotate a ground-truth CSV for each chart. To
do this, we apply traditional CV libraries for preliminary data extraction and resolve discrepancies

2
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before organizing the results into structured ground truths. For each task, VLMs take a chart as input
and are tasked to generate CSV-formatted outputs containing all the data in the chart. We introduce
the details of CHART2CSV in Section 3.

We evaluate the performance of 16 VLMs with promising results across a wide range of benchmarks
using various prompting techniques on CHART2CSV. For evaluation, we use overall accuracy as
the metric for tables and overall precision as the metric for plots. Claude 3.5 Sonnet achieves the
highest accuracy of 0.51 on table charts and the highest precision of 0.51 on plot charts. Our em-
pirical analysis indicates that existing VLMs perform poorly on CHART2CSV tasks, where even the
best-performing model misinterprets nearly half of the data points, highlighting their limitations in
extracting and structuring chart data. We present the detailed experiment setup in Section 4, and a
comprehensive analysis of the results in Section 5.

2 LITERATURE REVIEW

We review existing chart benchmarks that (1) evaluate VLM capabilities to extract data from charts
(i.e., chart digitalization) (Luo et al., 2021; Choi et al., 2019; Kahou et al., 2018) and (2) assess
VLM capabilities to understand charts (i.e., chart understanding) (Wang et al., 2024; Xu et al.,
2024; Masry et al., 2022; Lu et al., 2024; Kafle et al., 2018; Zheng et al., 2024). We recognize
limitations from the following three aspects.

First, existing chart benchmarks include overly simplified contexts. Existing chart digitalization
benchmarks (Luo et al., 2021; Choi et al., 2019) focus on simple charts in standard forms with
clear annotations, whereas real-world charts can be far more complex, as we demonstrate in Figure
1. Existing chart understanding benchmarks include question-answering tasks that demand either
a focused examination of specific chart segments for detailed information (e.g., “For the subplot at
row 2 and column 1, do any lines intersect?” (Q1) (Wang et al., 2024)) or a general comprehension
of the entire chart (e.g., “How many bars are compared?” (Q2) (Kafle et al., 2018)). However, when
converting a chart into a structured table, VLMs should closely examine all fine details throughout
the entire chart. Moreover, a significant portion of these benchmarks focus solely on tables (Zheng
et al., 2024), which compared to plots, lack the visual complexity, spatial layout, and multi-modal
reasoning intergation that are central to real-world chart interpretation tasks.

Second, the task requirements of existing VLM benchmarks limit the complexity and scope of model
responses. Existing chart digitalization benchmarks either require outputting only the critical com-
ponents of charts, such as the bounding boxes of bar charts (Luo et al., 2021), or separate the extrac-
tion of texts from data values (Choi et al., 2019). Existing chart understanding benchmarks require
only simple textual responses. For example, answering Q1 requires generating a single token “Yes”
or “No”, and answering Q2 requires generating a single digit. However, tasks involving compre-
hensive data point extraction and structuring necessitate that VLMs generate outputs in complex
formats and of extended lengths to effectively represent the extracted data.

Third, existing benchmarks lack rigorous evaluation metrics that emphasize both the completeness
and accuracy of the final structured table outputs. Existing chart digitalization benchmarks (Luo
et al., 2021; Choi et al., 2019) do not assess the generated table as a whole, focusing instead on partial
or element-level recognition. Existing chart understanding benchmarks priortize reasoning tasks
over numeric fidelity. For example, “According to this chart, at Month 5, the visitors of Platform
A is higher than Platform B.” (Xu et al., 2024) evaluates whether VLMs can correctly compare the
relative values of Platforms A and B, while converting this chart to a structured table require the
precise extraction of the exact values for both platforms.

3 CHART2CSV

We create CHART2CSV, a benchmark composed of charts retrieved from research papers spanning
diverse scientific domains. For each chart, we manually annotate the charts with ground-truth CSVs.
The task is to extract data from the charts and structure it into CSV formats, as we illustrate in Figure
2. We introduce our data collection process in Section 3.1, describe the data annotation process in
Section 3.2, and formally define the CHART2CSV tasks in Section 3.3.

3
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2010-20
Social Democratic/

Socialist/Communist/
Other left-wing parties

Socialcultural score 
by party family -9.36

...

VLMs

Format Criteria

You should use Type-i as
column names for
independent variables.
You should use Value as
column names for
dependent variables.

Input Chart Output CSV

Assets

Type-1 Type-2 Subplot Value Value

1945-59
Conservative/

Christian Democratic/
Liberal parties

Economic-distributive 
score by party family 10.97

1960-69
Conservative/

Christian Democratic/
Liberal parties

Economic-distributive 
score by party family

9.10

...

Figure 2: Example of a CHART2CSV task instance.

3.1 DATA COLLECTION

We collect 812 charts, 537 of which contain tables and 275 of which contain plots. For charts
containing plots, we retrieve the original images embedded in the paper PDF files.

To ensure data quality, we conduct a quality control process that filters and retains only charts that
are clearly identifiable by humans based on the following criteria: (1) Resolution: The chart must
be at least 400 × 400 pixels in size. (2) Layout: There should be no overlapping data points. (3)
Data: Each line or type in the chart must be representable with at most 50 rows. Specifically, for
continuous plots, sampling 50 data points per series must be sufficient to capture the overall trends.
We collect data from the following sources and domains:

Economic and political science. Social scientists reproduced the research findings of 110 eco-
nomic and political science papers (Brodeur et al., 2024), from which we collect 532 table charts
and 262 plot charts to support reproducibility analysis in these domains.

Psychology. The Open Science Academy reproduced 100 psychological papers (Collaboration,
2012; 2015). From these, we collect 1 table chart and 3 plot charts to capture critical data represen-
tations in psychology.

Finance. To investigate the capability of VLMs in extracting and understanding data visualizations
in finance, we collect 1 table chart and 4 plot charts from the 27 papers published in The Journal of
Finance (Association, 2024), a premier academic organization devoted to the study and promotion
of knowledge about finance, published from 08/01/2024 to 10/31/2024.

Biology. To evaluate VLMs’ data extraction performance in biological contexts, we collect 1 table
chart and 4 plot charts from the 18 science reports in computational biology and bioinformatics
published in Nature (Nature, 2024), a world’s leading multidisciplinary science journal, published
from 10/30/2024 to 11/1/2024

Engineering. To examine VLMs’ understanding of engineering data, we collect 3 table charts and
2 plot charts from papers accepted to CVPR 2024 (IEEE/CVF, 2024), a leading conference in CV.

Our collection mechanism ensures that CHART2CSV represents the complexity level of charts used
to visualize data in research findings. We provide detailed statistics in Table 2.

3.2 DATA ANNOTATION

Annotating ground-truth CSVs for CHART2CSV instances involves two phases: (1) data extraction
and (2) data structuring.

To streamline data extraction, we develop a script that extracts preliminary values. For tables, it
uses OCR (Singer-Vine, 2024); for plots, it detects components with OpenCV Canny (OpenCV,
2024a) and WebPlotDigitizer (WebPlotDigitizer, 2024), measures lengths using OpenCV Contours

4
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Table 2: Statistics of the charts in CHART2CSV. For formatting reasons, tables may appear rotated
90 degrees to meet page layout constraints (Panel 6).

Panel 1: Plot Information Density (Avg.)
# Subplots # Curves # Data Points

2.03 3.84 271.33
Panel 2: Table Information Density (Avg.)

# Panels # Rows # Columns
1.06 10.67 10.66

Panel 3: Plot Extension Distribution
.png .jpg/.jpeg .webp
251 21 3

Panel 4: Plot Style Distribution
Dot Histogram Continuous Mixed
164 64 36 11

Panel 5: Plot Format Distribution
Pixel Vector

88 187
Panel 6: Table Orientation Distribution

Regular Rotated
504 33

(OpenCV, 2024b), and infers values w.r.t. axis tick positions. Expert annotators then review the
extracted data to correct errors and fill in missing values.

In the data structuring phase, expert annotators structure the reviewed data into CSVs. To ensure
consistent evaluation, we establish formatting criteria for the manual structuring process and inte-
grate the same criteria into the task description for VLMs. The foundational formatting criteria are
as follows: (1) Use Type-i as column names for independent variables, where i starts from 1. (2)
Use Value as column names for dependent variables. (3) Use - to connect hierarchical structures,
e.g., Subplot - Subsubplot. Each ground-truth CSV undergoes verification by a team of
five, and disagreements are resolved through discussion until consensus is reached.

3.3 TASK FORMULATION

We formally define the tasks in CHART2CSV as follows: given the task description containing the
formatting criteria and a chart, VLMs are tasked to extract all visible data from the chart and output
a CSV file containing all the values. We provide an example in Figure 2. For clarity, we use table
and plot to refer to different types of chart contents, and CSV to refer to the outputs of VLMs for the
remainder of this paper.

4 EXPERIMENT SETUP

We introduce our selected VLMs for evaluation in Section 4.1, explain the prompting techniques in
Section 4.2, and present evaluation metrics in Section 4.3.

4.1 MODELS

We select 16 VLMs, including all models with an average score over 70 across 11 academic
benchmarks1 and their light versions (AI2, 2024a): GPT-4o (OpenAI, 2024a), GPT-4o-mini (Ope-
nAI, 2024b), Claude 3.5 Sonnet (Anthropic, 2024), Gemini 1.5 Pro (Google, 2024b), Gemini 1.5
Flash (Google, 2024a), Molmo 72B (AI2, 2024a), Molmo 7B-D (AI2, 2024b), Molmo 7B-O (AI2,
2024c), Qwen VL2 72B (Qwen, 2024a), Qwen VL2 7B (Qwen, 2024b), Intern VL2 LLAMA 76B
(OpenGVLab, 2024b), Intern VL2 1B (OpenGVLab, 2024a), LLAVA OneVision 72B (Li et al.,
2024), and LLAVA OneVision 7B (Li et al., 2024). We additionally include the recently released
Claude Sonnet 4 and Claude Opus 4 (Anthropic, 2025) to obtain up-to-date insights into the capa-
bilities of state-of-the-art VLMs.

1AI2D test (Kembhavi et al., 2016), ChartQA test (Masry et al., 2022), VQA v2.0 test (VQA, 2017), DocQA
test (Mathew et al., 2021b), InfographicVQA test (Mathew et al., 2021a), TextVQA val (Singh et al., 2019), Re-
alWorldQA (XAI, 2024), MMMU val (Yue et al., 2024), MathVista testmini (Lu et al., 2024), CountBenchQA
(Beyer et al., 2024), and Flickr Count (Young et al., 2014).
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Plot Precision
Table Accuracy

Figure 3: The overall performance of the VLMs. * indicates closed-source models.

4.2 PROMPTING TECHNIQUES

We use three prompting techniques: a baseline prompt, consisting only of the task description
and annotation criteria; chain-of-thought (CoT) reasoning (Wei et al., 2023); and few-shot learn-
ing (Brown et al., 2020), two widely adopted techniques for VLMs. Unless otherwise specified,
results are reported using the baseline prompt.

4.3 METRICS

We approach data extraction from tables as a classification problem, where we measure the accuracy
of the extracted values, and data extraction from plots as a tracking problem, where we measure the
precision of the extracted traces. We introduce our metrics in detail as follows, using ypred to denote
the extracted values by VLMs and ygt to denote the ground truths.

Tables. We apply accuracy as the primary metric for tables. For each cell in a table, if the cell
contains numeric values, it is considered accurate if ypred is equal to ygt. For non-numeric values, we
calculate the string matching score s using fuzz.ratio (seatgeek, 2024). The cell is considered
accurate if s ≥ threshold. The string matching score s is calculated as follows:

s =
|ypred|+ |ygt| − lev(ypred, ygt)

|ypred|+ |ygt|
× 100,

where lev(·, ·) calculates the Levenshtein distance of two sequences, with lev(ypred, ygt) =
|ypred|+|ygt|

2 representing moderate similarity, allowing for minor discrepancies such as small spelling
errors or slight formatting differences, while still requiring a reasonable degree of similarity (Lev-
enshtein, 1965). Thus, we set the threshold at 50. The overall table accuracy is calculated as the
average accuracy of all cells in the table. If the models fail to generate valid CSVs, the accuracy of
the table is considered 0.

Plots. We apply precision as the primary metric for plots. For continuous plots, we first discretize
them by uniformly re-sampling 50 points from the models’ extracted traces as ypred. We then pair
ygt with ypred. For each paired value, we calculate the bounded mean absolute scaled error (MASE)
ϵ as follows:

ϵ = min

(
|ypred − ygt|

max(ygt)−min(ygt)
, 1

)
,

where ϵ = 1 when the absolute error between the extracted data values and ground truths exceeds
the range of ground truths. For ygt without a paired ypred, we set ϵ = 1. The precision p of the values
is further calculated as p = 1 − ϵ. The overall plot precision is calculated as the average precision
of all data values in the plot. If the VLMs fail to generate valid CSVs, we set plot precision to 0.

6
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5 EXPERIMENT RESULTS

We illustrate and analyze the overall VLM performance on CHART2CSV in Section 5.1, examine
how VLMs perform on charts with different characteristics in Section 5.2, and demonstrate VLM
performance using different prompting techniques in Section 5.3.

5.1 OVERALL VLM PERFORMANCE ON CHART2CSV

We present the table accuracy and the plot precision of all VLMs in Figure 3, from which we observe
the following six major findings.

First, among all models, Claude 3.5 Sonnet performs the best, with the highest accuracy across
tables at 0.51 and the highest precision across plots at 0.51. This can be attributed to the specific
fine-tuning of Claude 3.5 Sonnet on complex charts. By examining outputs on continuous plots
in detail, we observe that Claude 3.5 Sonnet samples data points that more accurately reflect the
overall trends. For instance, in Figure 4, while GPT-4o simply uniformly samples values from the
X-axis, Claude 3.5 Sonnet selects and extracts data points at each turning point, providing a better
representation of the overall data distribution trends.

Second, the performance of existing VLMs remains far from satisfactory: even the best-performing
model misinterprets nearly half of the data points. A common failure mode is the tendency to drop
data points during extraction: as we show in Figure 5, in a plot with 57 data points, which is well
below the average number of data points across the plots in CHART2CSV, even the model that
extracts the most data points (Gemini 1.5 Pro) identifies an incomplete set of 55 data points, while
the other models that generate valid CSVs capture only 53%–86% of the data points. We further
illustrate the failure modes in structuring extracted data in detail in Appendix A.2.

Third, the trends of table accuracy and plot precision are generally consistent, with a Pearson corre-
lation coefficient (Pearson, 1895) of 0.98. This indicates that VLMs exhibit a similar capability in
extracting and structuring data from tables and plots, despite their different visual representations.

Fourth, closed-source models significantly outperform open-source models, achieving over 6×
higher average accuracy across tables in CHART2CSV and nearly 8× higher precision in plots.

Fifth, among open-source models, Qwen VL2 72B performs the best, with the highest table accuracy
at 0.13 and the highest plot precision across plots at 0.17.

Finally, within each model family, larger models perform better, showing up to 65× higher accuracy
for the larger model (Intern VL2 LLAMA 76B vs. Intern VL2 1B) across tables and up to 5× higher
precision across plots (Qwen VL2 72B vs. Qwen VL2 7B).

Data points sampled
by both GPT-4o and
Claude 3.5 Sonnet. 

Data points sampled by
Claude 3.5 Sonnet only. 

*All data points sampled by
GPT-4o are also sampled
by Claude 3.5 Sonnet.

Figure 4: Sampled data points by VLMs for Fig-
ure 1 in Jones & Marinescu (2022).

0 10 20 30 40 50
# Extracted Data Points from the plot above

Intern VL2 LLAMA 76B
GPT-4o-mini

Gemini 1.5 Flash
Claude 4 Opus

Claude 4 Sonnet
Claude 3.5 Sonnet

GPT-4o
Qwen VL2 72B
Gemini 1.5 Pro

Ground Truth (57)30
40

44
47
47
48
49
49

55

Figure 5: Number of data points extracted by
VLMs for Figure 1 in Laffitte & Toubal (2022).

5.2 VLM PERFORMANCE ACROSS DIFFERENT CHART CHARACTERISTICS

To better understand the underlying factors influencing VLM performance, we analyze how spe-
cific chart characteristics affect VLMs’ ability to extract and reason over visual data. We have the
following four observations.

First, as the numbers of subplots (Figure 6a) and table panels (Figure 7a) increase, the performance
of the VLMs drops. This indicates that as the volume of visualized data increases, (1) the contexts
processed by the VLMs become longer; (2) the outputs generated by the VLMs become more com-
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Figure 6: Average plot precisions varying data densities. Features that appear in fewer than 2% of
plots (fewer than 6 instances) are excluded.
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Figure 7: Performance of VLMs across tables with varying data densities. Features that appear in
fewer than 2% of tables (fewer than 9 instances) are excluded.

Regular

Rotated

0.00 0.05 0.10

(a)

0.00

0.05

0.10

0.15

0.20

Dot Histogram Mixed Continuous

(b)

0.00

0.05

0.10

0.15

Pixel Vector

(c)

Figure 8: VLM performance on different (a) table orientations, (b) plot styles, and (c) plot formats.

plex; and (3) the additional step of first segmenting the subplots and table panels and then handling
each as a separate plot or table introduces further challenges for existing VLMs.

Second, the performance of VLMs drops as the numbers of plot curves (Figure 6b), table rows
(Figure 7b), and table columns (Figure 7c) increase, but enhances as the number of plot data points
(Figure 6c) increases. This is because the increase in rows increases complexity at the data volume
level as aforementioned, while adding columns and curves further requires interpreting the relations
among different features of the data points. The observed improvement in precision with a higher
number of data points in plots can be attributed to the fact that additional data points provide mutual
references, enabling VLMs to extract values more accurately.

Third, we can observe from Figure 8a that the VLMs fail to perform as well on rotated tables, with
accuracy dropping to nearly 1/10 as regularly displayed tables. Specifically, the accuracy on rotated
tables for all open-source VLMs drops to 0%. This indicates that current VLMs struggle to recognize
formatting variations in tables and do not generalize well to unconventional data visualizations in
tabular forms.

Finally, we can observe from Figures 8b and 8c that the plot precision of VLMs remains consistent
across different plot types and forms. This suggests that, unlike tables displayed in various formats,
VLMs are less affected by variations in plot display and are capable of extracting essential data
information from plots regardless of the visualization styles and forms.

5.3 VLM PERFORMANCE USING DIFFERENT PROMPTING TECHNIQUES

We evaluate the five best-performing VLMs from the OpenAI and Claude families on CHART2CSV
under varying numbers of few-shot examples (0, 1, 2, and 3), both with and without CoT. We
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Table 3: Performance of VLMs using different prompting techniques. The optimal results are high-
lighted. Average plot precision is 0.41, 0.42, 0.43, and 0.43 for 0-, 1-, 2-, and 3-shot settings,
respectively, while average table accuracy is 0.45, 0.56, 0.58, and 0.60. The average plot precision
is 0.43 without CoT and 0.41 with CoT, while the average table accuracy is 0.53 without CoT and
0.56 with CoT.

Model Prompting Strategy

Plot Precision Table Accuracy
Number of Shots

0 1 2 3 0 1 2 3

Claude 3.5 Sonnet w/o CoT 0.5107 0.5308 0.5315 0.5327 0.5094 0.6565 0.7082 0.7462
CoT 0.4872 0.4984 0.5235 0.4952 0.5615 0.6980 0.7659 0.7693

Claude Opus 4 w/o CoT 0.5028 0.5046 0.5228 0.5235 0.4687 0.5412 0.6329 0.6456
CoT 0.4836 0.4966 0.4815 0.4976 0.6145 0.5543 0.6435 0.6240

Claude Sonnet 4 w/o CoT 0.4401 0.4212 0.4537 0.4204 0.4379 0.6068 0.5831 0.6200
CoT 0.3557 0.3761 0.4126 0.4247 0.5691 0.5914 0.6550 0.6694

GPT-4o w/o CoT 0.3980 0.4228 0.4251 0.4296 0.4187 0.6068 0.6419 0.6496
CoT 0.3879 0.4028 0.3906 0.4350 0.4880 0.6086 0.6203 0.5958

GPT-4o-mini w/o CoT 0.2216 0.2622 0.3076 0.2570 0.1783 0.3692 0.3162 0.3595
CoT 0.2676 0.2519 0.2793 0.2861 0.2594 0.3609 0.2634 0.2928

show the results in Table 3 and report the full performance of all VLMs under different prompting
techniques in Appendix A.3. Across models, more sophisticated prompting techniques consistently
improves performance relative to the baseline prompt, with the strongest results typically obtained
using 3-shot examples. Our key findings are as follows:

Increasing few-shot examples improves performance, but gains diminish beyond the first ex-
ample. Both plot precision and table accuracy improve as the number of few-shot examples
increases. Notably, table accuracy improves more than plot precision, as the inherent structure of
tables allows few-shot examples to generalize more effectively. However, the rate of improvement
decreases as the number of examples grows, with the largest jump occurring between 0-shot and
1-shot. This suggests that the capacity of VLMs to exploit in-context learning is limited, even when
provided with more diverse examples. Thus, advancing VLM capability in chart data extraction and
structuring requires approaches beyond simply scaling the number of few-shot examples.

CoT does not yield significant improvements and can even harm performance on plots. We
interpret this result from three perspectives: (1) Task-level: CHART2CSV tasks involve two stages:
extracting data points from charts and organizing them as structured tables. While CoT primarily
aids the latter by providing reasoning paths as templates, existing VLMs already struggle with the
extraction stage, limiting overall benefits. (2) Data-level: For plots, CoT often reduces performance
because the underlying data is less structured and the chart displays in CHART2CSV are highly
diverse. As a result, CoT reasoning paths fail to generalize across tasks. (3) Model-level: Although
CoT prompts help VLMs follow high-level reasoning steps, they struggle to adapt these steps to the
specific requirements of different charts. As shown in Appendix A.3, our analysis of model traces
reveals that VLMs often execute the general outline but fail to complete the fine-grained reasoning
steps accurately.

6 CONCLUSION

In this work, we introduce CHART2CSV, a benchmark designed to evaluate the ability of VLMs
to accurately and comprehensively extract data points from complex charts and convert them into
structured tables. We assess 16 VLMs, comprising 7 closed-source and 9 open-source models, on
CHART2CSV. Claude 3.5 Sonnet achieves the optimal performance, with the highest accuracy of
0.51 across all tables and the highest precision of 0.51 across all plots, indicating that nearly half of
the data points are misinterpreted. We further evaluate a wide range of prompting techniques and find
that they offer only limited improvements on CHART2CSV tasks. Based on these empirical results
and analysis, we conclude that existing VLMs lack the capability to faithfully convert complex
charts into structured tables, highlighting the need to build more powerful VLMs.
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7 REPRODUCIBILITY STATEMENT

CHART2CSV is publicly available at https://anonymous.4open.science/r/
figure-to-data-2FB5/. Evaluation code to reproduce all reported results is publicly avail-
able at https://anonymous.4open.science/r/figure-to-data-code-C4EB/.
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Motoki, Anders Kjelsrud, Lucija Muehlenbachs, Andreea Musulan, Christian Czymara, Hooman
Habibnia, Alexander Coppock, Idil Tanrisever, Marco Musumeci, Nicholas Rivers, Miquel
Oliver i Vert, Emre Oral, Alejandro Abarca, Christian Oswald, Ali Ousman, Marcin Wroński,
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A APPENDIX

A.1 VLMS OUTPERFORM TRADITIONAL CV LIBRARIES ON CHART2CSV TASKS.

(a)

(b) (c)

Figure 9: Examples of failure of the OpenCV li-
brary in extracting data points from plots.

We explore the limitations of using generic
CV libraries and software engineering methods
for tasks in CHART2CSV. We use OpenCV
OpenCV (2024b;a) to extract data points from
plots and identify the following limitations: (1)
OpenCV fails to detect axes (Figure 9a), (2)
it fails to recognize error bars (Figure 9b), (3)
it misinterprets noises, such as additional lines
caused by printing artifacts, in plots (Figure
9a), and (4) it cannot differentiate between grid-
lines and actual bars (Figure 9c).

To illustrate these limitations in detail, we com-
pare the outputs of OpenCV and Claude 3.5
Sonnet on the chart in Figure 9a. First, because
OpenCV cannot correctly identify the axes, the
extracted values are inaccurate. For example,
for Type-1 with ygt = 0.0099 and Claude
3.5 Sonnet accurately extracts ypred = 0.01,
OpenCV erroneously generates ypred = 0.035
by matching the wrong bar. Second, OpenCV
extracts additional data points due to extra lines
in the chart caused by printing artifacts, which
it mistakenly interprets as bars. In this case,
OpenCV falsely extracts 5 consecutive data
points with identical values, while the CSV file
generated by Claude 3.5 Sonnet contains the
correct number of data points and matches the bars. Thus, compared to generic CV libraries like
OpenCV, VLMs such as Claude 3.5 Sonnet demonstrate greater accuracy in detecting axes, grid-
lines, and error bars, as well as filtering out minor noise in plots.

A.2 VLMS STRUGGLE TO STRUCTURE DATA WITH COMPLEX RELATIONAL INFORMATION

Following our analysis in Section 5.1 on the limitations of data extraction, we turn to data struc-
turing, showing that it remains a major challenge even in charts with tables whose data are clearly
extracted. Unlike standard tables like dataframes, where relationships exist across columns, the ta-
bles presented in research findings may include additional rows with supplementary information,
such as confidence intervals (Figure 10). We observe that the performance of different VLMs varies
significantly in handling such cases. For instance, when extracting data points from the table in Fig-
ure 10, all 3 models (GPT-4o, Claude 3.5 Sonnet, and Qwen VL2 72B) that successfully generate
valid CSVs correctly parse 4 columns. However, only GPT-4o fills in all values accurately, achiev-
ing a table accuracy of 100%. Both Claude 3.5 Sonnet and Qwen VL2 72B fail to retrieve values
from the Parameter column and only partially capture strings in the Prior column. Specifically,
Claude 3.5 Sonnet achieves an accuracy of 11%, the lowest among all of its generated valid tables,
while Qwen VL2 72B achieves an accuracy of 42%.

A.3 COMPREHENSIVE EVALUATION OF ADVANCED PROMPTING TECHNIQUES

We examine the effects of 2-shot CoT, an effective setting on existing chart benchmarks Lu et al.
(2024), as well as 0-shot CoT as a reference. We evaluate the effectiveness of 0-shot CoT across all
16 VLMs and 2-shot CoT across 11 VLMs, excluding those that do not support images as part of
in-context learning (i.e., the Molmo and Llava families). We present the full results in Table 4 and
summarize our key observations as follows:
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Assets
Parameter Prior Posterior Posterior Interval

\mu_{g,f} N(0.5,0.1) 0.65 [0.56,0.75]

SD_{a} IG(6,1) 0.01 [0.01,0.02]

...

Ground-truth / Output CSV of GPT-4o

Assets
Parameter Prior Posterior Posterior Interval

0.1) 0.65 [0.56,0.75]

0.01 [0.01,0.02]

...

Output CSV of Claude 3.5 Sonnet

Assets
Parameter Prior Posterior Posterior Interval

N(0.5,0.1) 0.65 [0.56,0.75]

1) 0.01 [0.01,0.02]

...

Output CSV of Qwen VL2 72B 

Assets
Parameter Prior Posterior Posterior Interval

f} N(0.5,0.1) 0.65 [0.56,0.75]
...

Output CSV of Claude Sonnet 4 

IG(6,1) 0.01 [0.01,0.02]

Assets
Parameter Prior Posterior Posterior Interval

N(0.5,0.1) 0.65 [0.56,0.75]

0.01 [0.01,0.02]

...

Output CSV of Claude Opus 4

Assets
Parameter Prior Posterior Posterior Interval

N(0.5,0.1) 0.65 [0.56,0.75]

1) 0.01

...

Output CSV of Gemini Pro 1.5

Assets
Parameter Prior Posterior

\mu_{g,f} N(0.5,0.1) 0.65

SD_{a} IG(6,1) 0.01

...

Output CSV of GPT-4o-mini

Figure 10: Output CSVs of different VLMs for Table 2 in Guerron-Quintana et al. (2023).

Table 4: Overall performance of the VLMs using various prompting techniques. * indicates closed-
source models. The best performance for each VLM is highlighted. Average plot precision is 0.18
(baseline), 0.17 (0-shot CoT), and 0.25 (2-shot CoT); average table accuracy is 0.17 (baseline), 0.21
(0-shot CoT), and 0.34 (2-shot CoT).

Model Plot Precision Table Accuracy

Baseline 0-shot CoT 2-shot CoT Baseline 0-shot CoT 2-shot CoT

Claude 3.5 Sonnet * 0.5107 0.4872 0.5235 0.5094 0.5615 0.7659
Claude Opus 4 * 0.5028 0.4836 0.4815 0.4687 0.6145 0.6435

Claude Sonnet 4 * 0.4401 0.3557 0.4126 0.4379 0.5691 0.6550
GPT-4o * 0.3980 0.3879 0.3906 0.4187 0.4880 0.6203

Gemini 1.5 Pro * 0.2458 0.3264 0.2052 0.1736 0.3039 0.3680
GPT-4o-mini * 0.2216 0.2676 0.2793 0.1783 0.2594 0.2634
Qwen VL2 72B 0.1656 0.1657 0.3018 0.1311 0.0968 0.0871

Gemini 1.5 Flash * 0.1541 0.1813 0.0877 0.0943 0.2230 0.2263
Intern VL2 LLAMA

76B 0.0903 0.0203 0.0217 0.0716 0.0764 0.0816

LLAVA OneVision
72B 0.0546 0.0644 / 0.0627 0.0617 /

Qwen VL2 7B 0.0344 0 0 0.0480 0.0369 0.0146
Molmo 72B 0 0 / 0.0017 0 /

Molmo 7B-O 0 0 0 0.0249 0 /
LLAVA OneVision

7B 0 0 0 0.0243 0.0720 /

Molmo 7B-D 0 0 0 0.0144 0.0089 /
Intern VL2 1B 0 0 0 0.0011 0.0002 0.0002

Advanced prompting techniques improves VLMs’ performance on CHART2CSV, but not to a
satisfactory level. In general, for both plots and tables, VLMs prompted with 0-shot CoT outper-
form those using the baseline prompt, and VLMs prompted with 2-shot CoT significantly outperform
those using 0-shot CoT and the baseline prompt. Specifically, two-shot CoT increases Claude 3.5
Sonnet’s plot precision to 0.5235 and table accuracy to 0.7659, with the latter representing a relative
improvement of over 50%. Despite these gains, the absolute performance remains limited. Claude
3.5 Sonnet is the only model to surpass 70% accuracy on tables, and its plot interpretation, although
the best across all models and prompting settings, still misidentifies nearly half of the data points.
These results suggest that the low performance of VLMs reflects systematic deficiencies in the mod-
els themselves, which cannot be fully addressed through prompting alone. Model fine-tuning or
architectural enhancements is required to improve VLMs’ performance on CHART2CSV tasks.
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Same as Ground-truth

Claude Sonnet 4 Baseline

...

<step>
1. Determine the CSV structure:
- Each data column contains 2 statistics: coefficient and standard error in
parentheses
- Need to split each of the 4 main columns into 2 columns each
- Total: 1 row header column + 8 data columns
- Keep all panels together since they share the same header structure
</step>

Claude Sonnet 4 2-Shot w/ CoT 

Assets
Panel A - OLS

Financial development × CO2 intensity 0.0005 0.0029 -0.0004 0.0027 0.0001 0.0006 0.0002 0.0004

Assets
OLS-Financial development × CO2 intensity 0.0005 0.0029 -0.0004 0.0027 0.0001 0.0006 0.0002 0.0004

<step>
3. Fill in values for each row:
- Combine panel information with row names using
dash
- Remove parentheses from standard errors
- Keep significance markers attached to coefficients
- Convert "Yes" to 1 for control variables
</step>...

...

(a) Outputs of Claude Sonnet 4 with baseline prompt and 2-shot CoT prompt for Table 6 of Haas & Popov
(2023).

Assets
Type-1 Subplot Value Value Error Bar Length

Female Democrat Respondents -0.07 0.0244

Republican Party Republican Respondents -0.14 0.0384

...

Same as Ground-truth

Assets
Type-1 Type-2 Subplot Value Value Error Bar Length

Female Judge's attributes Democrat Respondents -0.07 0.0244

Claude Sonnet 4 Baseline

...

<thinking>
This is a plot with multiple subplots showing data points with error bars. Let me analyze the structure:
...
<step>Step 2: Determine the CSV structure</step>
Since this is a plot, I need to follow the plot format requirements:
- "Subplot Value" for the three different respondent types
- "Type-1" for the judge attributes (y-axis categories)
- "Value" for the change in probability values (x-axis)
- "Error Bar Length" for the confidence interval lengths
...

Claude Sonnet 4 2-Shot w/ CoT 

(b) Outputs of Claude Sonnet 4 with baseline prompt and 2-shot CoT prompt for Figure 2 of Ono & Zilis
(2022).

Figure 11: Comparison of VLM performance with baseline and advanced prompting techniques.

Advanced prompting techniques do not shift relative performance. From Table 4, we observe
that the ranking of the best-performing VLMs for plot precision remains consistent with the ranking
when using the baseline prompt. For table accuracy, the performance order also largely aligns with
that of the baseline prompt, except for two cases: Gemini 1.5 Flash outperforms Qwen VL2 72B
when prompted with 2-shot CoT, and the performance of Molmo 72B drops significantly due to its
instability in generating valid CSVs when following the reasoning path of CoT prompts.

Larger and more capable VLMs benefit most from complex prompting. Table 4 shows that 2-
shot CoT provides the most substantial performance gains for closed-source models and large open-
source models. These advanced models are better equipped to handle longer inputs and complex
reasoning. For example, Qwen VL2 72B nearly doubles its plot precision compared to the baseline
prompt, while Claude 3.5 Sonnet improves its table accuracy by 0.2 in absolute terms. In contrast,
smaller models show little to no improvement and can even perform worse under CoT prompting,
reflecting their limitations in processing and understanding more elaborate input structures.

Prompting techniques yield stronger gains on tables than on plots. The performance improve-
ments achieved through various prompting techniques are more evident and consistent for tables
than plots. Specifically, the average table accuracy across all models doubles when using 2-shot
CoT compared to the baseline prompt. Moreover, for the majority of advanced VLMs, the high-
est table accuracy is achieved under the most complex prompting configuration. This implies that
the reasoning paths are particularly beneficial for tables because (1) Table data is easier to identify,
whereas extracting data from plots requires VLMs to accurately interpret visual values, adding an
additional level of complexity. The reasoning paths designed to help VLMs determine output struc-
tures and formats do not effectively address this issue, highlighting the potential of CHART2CSV
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data to improve VLM capabilities as a promising direction for future work. (2) Tables are typically
more well-structured, allowing VLMs to generalize more effectively from the provided few-shot ex-
amples. In contrast, plots are less structured, and few-shot examples can sometimes be misleading.
For example, as seen in Table 4, Gemini 1.5 Pro and Gemini Flash achieve their best performance
when prompted with 0-shot CoT, but their performance drops with 2-shot CoT.

Advanced prompting techniques help VLMs capture inter-column semantics. We analyze
cases where plot precision and table accuracy increase significantly when switching from the base-
line prompt to more complex prompting strategies. Our findings suggest that these improvements
are largely due to the model’s enhanced ability to recognize structured relationships among columns,
enabling more accurate formulation of the output schema. As illustrated in Figure 11, the 2-shot CoT
prompt helps the model capture critical structural information. In Figure 11a, the model correctly en-
codes panel-level distinctions that were missed under the baseline prompt. Similarly, in Figure 11b,
the model with 2-shot CoT correctly identifies a shared value as a column entry, which the baseline
prompt fails to do.

A.4 USE OF LARGE LANGUAGE MODELS (LLMS)

No LLMs were used in the ideation, writing, or preparation of this paper. All content was conceived,
drafted, and revised solely by the authors.
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