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Abstract—The derivative sampling theorem for bandlimited
functions within the fractional Fourier transform (FrFT) domain,
which involves samples from the function and its r-derivatives,
was introduced by Jing and his collaborators in 2019. In this
paper, we extend this type of sampling expansion to the linear
canonical transform (LCT) domain and propose an alternative
representation of this sampling using a contour integral. The
convergence rate of the reformulated sampling expansion remains
slow, particularly at the order of O(ln(N)/N). To address this
slow convergence, we develop a Gaussian regularization method
for higher-order derivative sampling in the LCT domain. This
regularization sampling method applies to a broader range of
functions within the Paley-Wiener space in the LCT domain,
including entire functions that may not necessarily belong to the
space L2(R) when their domain is restricted to R. Notably, this
regularized sampling still achieves an exponential convergence
rate and requires only a finite number of samples from the
original function and its first r derivatives. The results of
Asharabi (2016) within the classical Fourier transform domain
and Annaby et al. (2023) within the LCT domain will be special
cases of the findings presented in this paper. Furthermore,
we present a numerical example that demonstrates excellent
consistency with our theoretical analysis.

Index Terms—Derivative sampling theorem; Generalized Her-
mite interpolation, Linear canonical transform, Contour integral,
Gaussian regularization.

I. INTRODUCTION

The Fractional Fourier transform (FrFT) of order α for a
function f , denoted as Fα, is formally defined as, cf. eg. [15],

Fα[f ](ω) =

∫
R
f(t)Kα(t, ω)dt, (1)

where

Kα(t, ω) =

 c(α)e−ic(α)(t2+ω2)−b(α)wt, α ̸= kπ,
δ(t− ω), α = 2kπ.
δ(t+ ω), α = (2k − 1)π,

(2)
is the transformation kernel with

a(α) = cot(α)/2, b(α) = csc(α), c(α) =

√
1− i cot(α)

2π
,

(3)
where i =

√
−1, α ∈ R, k is an integer, and δ is the Dirac delta

function. The Paley-Wiener space in the FrFT domain, denoted
by B2

α(R), consists of all bandlimited L2(R)-functions with

bandwidth Ω in the FrFT domain of order α, as defined in
[11], [24]. This means that

B2
α,Ω(R) :=

{
f ∈ L2(R) : Fα[f ](ω) = 0 for |ω| > Ω

}
.

(4)
If f ∈ B2

α(R), then the original function f can be recon-
structed using its sampling points along with those of its
derivatives through the following FrFT derivative sampling
formula, as detailed in [11, Theorem 1]

f(t) = e−ia(α)t2
∞∑

n=−∞

r∑
l=0

(
eia(α)(nTr,α)2f (nTr,α)

)(l)
×sl

(
πT−1

r,α − nπ
)
, (5)

where

sl(t) =

r∑
k=l

aklsk(t), l = 0, 1, . . . , r, (6)

sk(t) =
1

k!
tksinc r+1 (t) , (7)

and the coefficients akl are the solutions of

s
(l′)
l (0) =

r∑
k=l

sk
(l′)(0)akl = δll′ , l′ = l, . . . , r, l = 0, . . . , r.

(8)
Here Tr,α = (r + 1)π sin(α)/Ω, Ω is the bandwidth depends
on α and the sinc function that appears in Eq. (7) is defined
as

sinc (x) :=


sinx

x
, x ̸= 0,

1, x = 0.

In this paper, we extend the type of sampling expansion
presented in (5) to the linear canonical transform (LCT)
domain and propose an alternative representation of this sam-
pling using a contour integral. The convergence rate of the
reformulated sampling expansion remains slow, particularly on
the order of O(ln(N)/N). To address this slow convergence,
we develop a Gaussian regularization method for the reformu-
lated sampling expansion in (5). This regularization method
applies to a broader range of functions within the Paley-
Wiener space in the LCT domain, including entire functions
that may not necessarily belong to the space L2(R) when
their domain is restricted to R. Additionally, we discuss the



uniform convergence on both the real and complex domains
for the reformulated sampling expansion in (5) within the LCT
domain.

II. EXTENSION OF THE EXPANSION IN (5) TO LCT
DOMAIN

In this section, we extend the higher-order derivative sam-
pling expansion in (5) to the LCT domain. For f ∈ L2(R),
we define the LCT with the parameter matrix A = (a, b, c, d)
to be, cf. [13], [20], [27],

LA[f ](u) =


∫
R f(z)KA(x, u)dx, b ̸= 0,

√
d ei(1/2)cdu

2

f(du), b = 0,
(9)

where a, b, c, d are real numbers satisfying ad − cb = 1, and
the kernel KA(x, u) is defined as

KA(x, u) =
1√
2iπb

e−
i
2b (ax

2−2ux+du2). (10)

The Paley-Wiener space in the LCT domain, denoted by
B2
A(R), consists of all bandlimited L2(R)-functions with band-

width Ω in the LCT sense. This means that, cf. e.g. [13], [30],

B2
A(R) :=

{
f ∈ L2(R), LA[f ](u) = 0 for |u| > Ω

}
.

(11)
According to the Paley-Wiener theorem in the LCT setting,
as discussed in [12, Corollary 3], if f ∈ B2

A(R), then f can
be extended to an entire function in the complex plane, which
satisfies the inequality

|f(z)| ≤ C e
a
b ℜzℑz e

Ω
b |ℑz|, z ∈ C. (12)

In the following theorem, we extend the higher-order deriva-
tive sampling expansion in (5) to the LCT domain.

Theorem 2.1: Consider f ∈ B2
A(R). Then, f can be

represented as the following higher-order derivative sampling
series in the LCT domian

f(t) = e−i( a
2b )t

2
∞∑

n=−∞

r∑
l=0

(
ei(

a
2b )(nhr)

2

f (nhr)
)(l)

×sl
(
πh−1

r t− nπ
)
, (13)

where hr = (r + 1)πb/Ω, and the function sl is previously
given in (6) with (7) and (8).

A. Equivalent representation for the expansion in (13)

In this section, we introduce an alternative representation
for the higher-order derivative sampling series in (13) using
a contour integral approach. This new formulation is more
straightforward and practical than the one in (13). It expands
the series’ applicability to a broader range of functions,
including entire functions that may not necessarily belong to
the space L2(R) when restricted to R. Let EΩ denote the class
of entire functions that satisfy one of the following growth
conditions:

|f(ζ)| ≤ Af e
a
b ℜζℑζ e

Ω
b |ℑζ|

1 + |ℜζ|
, |f(ζ)| ≤ Af e

a
b ℜζℑζ e

Ω
b |ℑζ|

1 + |ℑζ|
,

(14)

where Af is a positive real number.
Theorem 2.2: Consider f ∈ EΩ. Then, f can be represented

as the following higher-order derivative sampling series in the
LCT domian

f(z) = e−i( a
2b )z

2
∞∑

n=−∞
ei(

a
2b )(nhr)

2 ∑
i+j+k+l=r

f (i) (nhr)

× Pn,i,j,k,l(z) sinc
r+1

(
πh−1

r z − nπ
)
, (15)

where hr is previously given and Pn,i,j,k,l is a polynomial of
degree r + j − l defined as

Pn,i,j,k,l(z) =
δr,kPj(nh)

i!j!k!
(z − nhr)

r−l, (16)

and the constant δr,k is defined as

δr,k =

[
dk

dζk

(
1

sinc r+1
(
πh−1

r ζ − nπ
))]

ζ=nhr

. (17)

Here Pj(ζ) is the j-th degree Hermite polynomial defined as

Pj(ζ) = e−i( a
2b )ζ

2 dj

dζj

{
ei(

a
2b )ζ

2
}
. (18)

The series in (15) converges uniformly on any compact subset
of C for every r ∈ N0.
In the following corollaries, we present four well-known series
that are specific cases of the series in (15). The first case is
the generalized Hermite interpolation involving derivatives in
the classical Fourier transform (FT) domain, as established by
Shin in [18]. The second case is the sampling series in the
FrFT domain, as introduced by Xia and Zayed in [26], [29].
The third case, where f is a bandlimited function in the LCT
sense, was presented by Li et al. in [13, Theorem 1]. The forth
case is the derivative sampling series within the LCT domain,
which was also established by Li et al. in [13, Theorem 2] (see
also [1], [14]). The space EΩ introduced in this paper includes
a broader range of functions compared to those in [1], [13],
[18], [26], [29], as it includes entire functions that may not
belong to L2(R) when their domain is restricted to the real
line.

Corollary 2.3: Let f ∈ EΩ. Then, f can be represented as
the following generalized Hermite series

f(z) =

∞∑
n=−∞

∑
i+k+l=r

f (i) (nh)
sinr+1

(
πhrh

−1z
)

i! k! (z − nhr)
l+1

×

 dk

dzk

(
z − nhr

sin
(
πh−1

r z
))r+1


z=nhr

, (19)

where hr = (r + 1)π/Ω. The series in (19) converges
uniformly on any compact subset of C.

Corollary 2.4: Let f ∈ EΩ. Then, f can be expressed using
the following FrFT sampling series

f(z) = e−ia(α)z2
∞∑

n=−∞
eia(α)(

nπ sin(α)
Ω )

2

f

(
nπ sin(α)

Ω

)
×sinc

(
Ω

sin(α)
z − nπ

)
, (20)



where α ̸= kπ, k ∈ Z. Series (20) converges uniformly on
any compact subset of C.

Corollary 2.5: Consider f ∈ EΩ. Then, f can be represented
by the following LCT sampling series

f(z) = e−i( a
2b )z

2
∞∑

n=−∞
ei(

a
2b )(nh0)

2

f (nh0)

×sinc

(
πz

h0
− nπ

)
, (21)

where h0 in this situation is fixed within the interval (0, πb/Ω].
Series (21) converges uniformly on any compact subset of C.

Corollary 2.6: Let f ∈ EΩ. Then, f can be represented as
the following first-order derivative sampling series in the LCT
domain

f(z) = e−i( a
2b

)z2
∞∑

n=−∞

ei(
a
2b

)(nh1)
2
{(

1 +
ianh1

b
(z − nh1)

)
× f (nh1) + (z − nh1)f

′ (nh1)
}

sinc 2

(
πz

h1
− nπ

)
,

(22)

where h1 ∈ (0, 2πb/Ω]. Series (21) converges uniformly on
any compact subset of C.
As discussed earlier, the convergence rate of the expansion in
(15) is O(ln(N)/N) as N → ∞. This rate is insufficient to
achieve uniform convergence on R. However, if f ∈ B2

A(R)
and exhibits a faster decay than typical B2

A(R)-functions, a
uniform convergence on R can be demonstrated, as shown in
the following theorem.

Theorem 2.7: If f ∈ B2
A(R) and zkf(z) ∈ L2(R) for all

0 ≤ k ≤ r, then the expansion in (15) converges uniformly
on R for every r ∈ N0.

III. GAUSSIAN REGULARIZATION SAMPLING

This section focuses on introducing the Gaussian regulariza-
tion for the higher-order derivative LCT sampling series (15),
denoted by Gr,N [f ](z). It also provides an estimate for the
error bound |f(z)− Gr,N [f ](z)| for functions f that belong
to a broader class of functions, including entire functions that
are not necessarily belong to the space L2(R). Specifically,
we consider the class EΩ/b(φ), defined as follows.

EΩ/b(φ) := {f : C → C | is entire such that

|f(z)| ≤ φ (|ℜz|) e
a
b ℜz.ℑz e

Ω
b |ℑz|

}
, (23)

where ϕ : [0,∞) → [0,∞) is a continuous, non-decreasing
function. The Gaussian regularization for classical sampling
series in the Fourier transform (FT) domain was first intro-
duced in [16], while the Gaussian regularization for higher-
order derivative sampling series in the FT domain was intro-
duced in [7]. The space EΩ/b(ϕ) was first introduced in [3]
and subsequently utilized in [2]. For z ∈ C, N ∈ N, let the
integer-type interval

ZN (z) =
{
n ∈ Z :

∣∣n− ⌊h−1ℜz + 1/2⌋
∣∣ ≤ N

}
, (24)

where ⌊·⌋ is the floor function. The Gaussian regularization
for the higher-order derivative LCT sampling operator Gr,N :
EΩ/b(φ) → EΩ/b(φ) as follows:

Gr,N [f ](z) =
∑

n∈ZN (z)

e−i( a
2b )(z

2−n2h2
r)

∑
i+j+s+k+l=r

f (i) (nhr)

× Bn,i,j,k,l,s(z) sinc
r+1

(
πz

hr
− nπ

)
,

× exp

(
−αr (z − nhr)

2

Nh2
r

)
(25)

where hr = (r + 1)πb/Ω and Bn,i,j,k,l,s is the polynomial of
degree r + k − j defined as

Bn,i,j,k,l,s(z) :=
δr,lPs(nhr)(z − nπ)r−j

i!k!l!s!
Hk

(√
αr (z − nhr)

Nhr

)
.

(26)
Here, Hk(z) represents the Hermite polynomial of degree k,
defined by

Hk(z) := (−1)k exp(z2)
dk

dzk
exp(−z2) (27)

where the constant δr,k is previously defined in (17), and Ps

corresponds to the Hermite polynomial of degree s, defined
in (27).

In order to establish the operator GN,r, it is essential to
introduce a kernel function, Kr,z , which is defined as follows

Kr,z(ζ) =
sinr+1

(
πh−1

r z
)
e
−i( a

2b )(z
2−ζ2)− αr

Nh2
r
(z−ζ)2

2πi(ζ − z) sinr+1
(
πh−1

r ζ
) , (28)

where αr and hr are previously defined. For z ∈ C and z ̸=
nhr, the function Kr,z(ζ), when considered as a function of
ζ, is holomorphic. It has a simple pole at ζ = z and poles of
order r + 1 at ζ = nhr, where n ∈ N.

Lemma 3.8: For f ∈ EΩ/b(φ), we can express

f(z)−Gr,N [f ](z) =


1

2πi

∮
C
Kr,z(ζ)f(ζ)dζ, z ∈ C\{nhr},

0, z = nhr,
(29)

where C is a positively oriented simple closed curve encloses
the poles ζ = z and ζ = nhr, with n ∈ ZN (z).
Below, we present two well-known operators that are specific
cases of the sampling operator (30). The first operator cor-
responds to the Gaussian regularization for sampling recon-
struction of functions in the LCT domain, obtained by setting
r = 0 in (30). This operator was introduced by Annaby et al.
in [3] and is expressed as:

G0,N [f ](z) =
∑

n∈ZN (z)

e−i( a
2b )(z

2−n2h2
0)f (nh0)

× sinc

(
πz

h0
− nπ

)
exp

(
−α0 (z − nh0)

2

Nh2
0

)
,

(30)



The second operator represents the Gaussian regularization
for derivative sampling interpolation of functions in the LCT
domain, obtained by setting r = 1 in (30). This operator was
also introduced by Annaby et al. in [2] and is given by the
following expression:

G1,N [f ](z) =
∑

n∈ZN (z)

e−i( a
2b

)(z2−n2h2
1)

{(
1 +

ianh1

b
(z − nh1)

)

+
2α1

Nh2
1

(z − nh1)f (nh1) + (z − nh1)f
′ (nh1)

}
× sinc 2

(
πz

h1
− nπ

)
exp

(
−α1 (z − nh1)

2

Nh2
1

)
, (31)

The following theorem provides an estimate for the error
bound |f(z)− Gr,N [f ](z)|.

Theorem 3.9: Suppose f ∈ EΩ/b(φ) with σ > 0. For all
z ∈ C with |ℑz| < hN , the following inequality holds:

|f(z)− Gr,N [f ](z)| ≤ 2re
a
b ℜzℑz φ (|ℜz|+ hr(N + 1))

×
∣∣sinr+1(πh−1z)

∣∣χr,N (ℑz) e−αrN

√
παrN

, (32)

where the function φ was defined earlier, and χr,N is given
as

χr,N (t) = 2 cosh(2αrt) +O(N−1/2), as N → ∞. (33)

IV. NUMERICAL EXAMPLE

In this section, we present a numerical example that demon-
strates excellent consistency with our theoretical analysis Con-
sider the function f(z) = e−i z

2

2 sin
(√

2z
)
, where z ∈ C. It

is evident that
∣∣∣e−i z

2

2 sin
(√

2z
)∣∣∣ ≤ eℜzℑz e

√
2|ℑz| for z ∈ C.

Thus, this function belongs to the space EΩ/b(φ) with φ = 1,
σ = 1, and a = b = 1/

√
2. As a result, Theorem 3.9 is

applicable. In this example, the bound provided in Equation
(3.9) is uniform and can be expressed as

Bh,N,r(x) = 2r
∣∣sinr+1(πh−1x)

∣∣χr,N (0)
e−αrN

√
παrN

, (34)

where the associated functions have been defined previously.
The numerical results are presented in Table I, showing the
exact error |f(x)− Gr,N [f ](x)| alongside the bound Br,N (z)
at the points xj,hr

:= (j − 1/2)hr, with N = 8 and
r = 0, 1, 2. Additionally, the errors ℜ (f(x)− Gr,N [f ](x)) and
ℑ (f(x)− Gr,N [f ](x)) are illustrated in Figures 1 and 2.

TABLE I
ABSOLUTE ERROR AND THE POINTWISE BOUND ASSOCIATED WITH

APPROXIMATING A FUNCTION f AT THE POINTS xj FOR N = 8, h = 1,
AND r = 0, 1, 2

r j
∣∣f(x)− Gr,N [f ](x)

∣∣ Br,N [f ](x)

0

1 1.4353×10−4

6.12464×10−4
2 1.76192×10−4

3 8.85781×10−5

4 2.03818×10−4

5 2.50098×10−5

1

1 5.82920×10−10

2.23536×10−9
2 7.44461×10−10

3 3.50732×10−10

4 8.53850×10−10

5 8.44278×10−11

2

1 3.12642×10−15

1.16097×10−14
2 3.94754×10−15

3 1.72174×10−15

4 4.48654×10−15

5 9.31467×10−16
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Fig. 1. The figure illustrates the error ℜ
(
f(x)− Gr,N [f ](x)

)
with

parameters h = 1, r = 2, and N = 7.
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Fig. 2. The figure shows the errorℑ
(
f(x)− Gr,N [f ](x)

)
with parameters

h = 1, r = 2, and N = 7.
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