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ABSTRACT

Entity Linking (EL) and Relation Extraction (RE) are fundamental tasks in Natural
Language Processing, serving as critical components in various applications such
as Information Retrieval, Question Answering, and Knowledge Graph Construc-
tion. However, existing approaches often suffer from either a lack of flexibility,
low-performance issues, or computational inefficiency. In this paper, we propose
ReLiK, a Retriever-Reader architecture, where, given an input text, the Retriever
module undertakes the identification of candidate entities or relations that could
potentially appear within the text. Subsequently, the Reader module is tasked to
discern the pertinent retrieved entities or relations and establish their alignment
with the corresponding textual spans. Notably, we put forward an innovative in-
put representation that incorporates the candidate entities or relations alongside
the text, making it possible to link entities or extract relations in a single forward
pass in contrast with previous Retriever-Reader-based methods, which necessitate
a forward pass for each candidate. Our formulation of EL and RE achieves state-
of-the-art performance in both in-domain and out-of-domain benchmarks while
using academic budget training and with up to 40x inference speed with respect
to other competitors. Finally, we propose a model for closed Information Extrac-
tion (cIE), i.e. EL + RE, which sets a new state of the art by employing a shared
Reader that simultaneously extracts entities and relations.

1 INTRODUCTION

Extracting structured information from unstructured text lies at the core of many AI problems, such
as Information Retrieval (Hasibi et al., 2016; Xiong et al., 2017), Knowledge Graph Construction
(Clancy et al., 2019; Li et al., 2023), Knowledge Discovery (Trisedya et al., 2019), Automatic Text
Summarization (Amplayo et al., 2018; Dong et al., 2022), Language Modeling (Yamada et al., 2020;
Liu et al., 2020b), Automatic Text Reasoning (Ji et al., 2022), and Semantic Parsing (Bevilacqua
et al., 2021; Bai et al., 2022), inter alia. Looking at the variety of applications in which IE systems are
used, we argue such systems should strive to satisfy three fundamental properties: Speed, Flexibility,
and Performance.

This work focuses on two of the most famous IE tasks: Entity Linking (EL) and Relation Extraction
(RE). While tremendous progress has recently been made on both EL and RE, to the best of our
knowledge, recent approaches only focus on at most two out of the three properties simultaneously,
hindering their applicability in multiple scenarios. Here, we show that by harnessing the Retriever-
Reader paradigm (Chen et al., 2017), it is possible to use the same underlying architecture to tackle
both tasks, improving the current state of the art while satisfying all fundamental properties. Most
importantly, our models are trainable on an academic budget with a short experiment lifecycle,
leveling the current playing field and making research on these tasks accessible for academic groups.

We frame EL and RE similarly to recent Open-Domain question-answering (ODQA) systems
(Zhang et al., 2023), where, given an input question, a bi-encoder architecture (Retriever) encodes
the input text and retrieves the most relevant text passages from an external index containing their
encodings. Then, a second encoder (Reader) takes in input the question and each retrieved passage
separately and extracts the answer from a specific passage if present. Our framing differs from most
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famous ODQA ones for two main reasons: i) for both EL and RE, the input text contains multiple
questions simultaneously since there might be multiple entities to link, or multiple relations to ex-
tract; ii) we encode the input text with all its retrieved passages (i.e. the textual representations of
the candidate entities or relations), linking all the entities or extracting all the relational triplets in a
single forward pass. Our architecture can thus be conceptually divided into two main components:

• The Retriever that is tasked to retrieve the possible Entities/Relations that can be extracted
from a given input text.

• The Reader, that, given the original input text and all the retrieved Entities/Relations (out-
put of the Retriever), is tasked to connect them to the relevant spans in the text.

First, leveraging the non-parametric memory, i.e. the knowledge base, accessed by the Retriever
component considerably lowers the number of parameters of the final model required to achieve
state-of-the-art performances (Performance and Speed). Second, using textual representations for
entities/relations combined with the Retriever component makes it easier for the final model to zero-
shot on unseen entities/relations(Flexibility). Finally, leveraging the contextualization capabilities
of novel large language models such as He et al. (2023), encoding the input text and the textual
representation of entities/relation and linking/extracting them in the same forward pass improves
both model’s final performances and speed (Performance and Speed).

To foster research and usage ReLiK, we release the code at http://www.omitted.link.

2 BACKGROUND

Entity Linking (EL) is the task of identifying all the entity mentions in a given input text and
linking them to an entry in a reference knowledge base. For example given the sentence “Michael
Jordan was one of the best players in the NBA”, a system performing EL and using the English
Wikipedia as the reference knowledge base should be capable of linking the “Michael Jordan” span
to the Wikipedia Page en.wikipedia.org/wiki/Michael_Jordan and the span contain-
ing “NBA” to en.wikipedia.org/wiki/National_Basketball_Association. For-
mally, we can define an EL system as a function that, given an input text q and a reference knowledge
base E , identifies all the mentions along their corresponding entities {(m, e) : m ∈ M(q), e ∈ E}
where m := (s, t) ∈ M(q) represents a span within all the possible spans M(q) in the input text q
starting in s and ending in t with 1 ≤ s ≤ t ≤ |q|.

Relation Extraction (RE) is the task of extracting semantic relations between entities found
within a given text from a closed set of relation types coming from a reference knowledge
base. In the previous example sentence, a RE system using Wikidata as the reference knowledge
base is expected to output triplets such as (“Michael Jordan”, “NBA”, wikidata.org/wiki/
Property:P118), where P118 represents the relation type ”league”. Formally, for an input text
q and a closed set of relation types R, RE consists of identifying all triplets {(m,m', r) : (m,m') ∈
M(q) × M(q), r ∈ R} where m and m' are respectively the subject and object spans and r a
relation between them. The combination of both EL and RE as a unified task is known as closed
Information Extraction (cIE).

3 THE READER-RETRIEVER (RR) PARADIGM

In this section, we introduce ReLiK our Retriever-Reader architecture for EL, RE, and cIE. While
the Retriever is shared by all the tasks (Section 3.1), the Reader has a common formulation for span
identification but slightly differs between the last linking and extraction steps (Section 3.2). Figure
1 shows a high-level overview of ReLiK as a unified framework for EL, RE and cIE.

3.1 RETRIEVER

We follow a retrieval paradigm similar to Dense Passage Retrieval (DPR) (Karpukhin et al., 2020)
based on two encoders to produce a dense representation of our queries and passages. In our setup,
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Figure 1: Description of ReLiK. Based on the RR-paradigm, we (1) Retrieve candidate entities and
relations (2) Read and contextualize the text and candidates (3) Link and extract entities and triplets.

given an input text q as our query and a passage p ∈ Dp in a collection of passages Dp that corre-
sponds to the textual representations of either entities or relations, the Retriever model computes:

EQ = RetrieverQ( q ), EP = RetrieverP ( p )

and ranks the most relevant entities or relations with respect to q using the similarity function
sim(q, p) = EQ(q)

⊤EP (p), where RetrieverQ and RetrieverP are Transformer encoders that com-
pute the contextualized hidden representation of a query q and a passage p respectively.1

We train the Retriever employing a multi-label noise contrastive estimation (NCE) as training ob-
jective. The loss for q is defined as:

LRetriever = − log
∑

p+∈Dp(q)

esim(q,p
+)

esim(q,p+) +
∑

p−∈P−
q
esim(q,p−)

(1)

where Dp(q) are the gold passages of the entities or relations present in q, and P−
q is the set of

negative examples for q, constructed using gold passages from the other queries in the same mini-
batch and by hard negative mining using highest-scoring incorrect passages retrieved by the model

1The representations consist of the average of the encodings for the tokens in each of the two sequences.
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3.2 READER

Differently from other ODQA approaches, our Reader performs a single forward pass for each input
query. We append the top-k retrieved passages, p1:K = (p1, . . . , pK), pi ∈ Dp,2 to the input query
q, and obtain the following sequence, q [SEP ] ⟨ST0⟩ ⟨ST1⟩ p1 . . . ⟨STK⟩ pK , with [SEP ] being a
special token used to separate the query from the retrieved passages, and ⟨STi⟩ being special tokens
used to mark the start of the i-th retrieved passage. We obtain the hidden representations X of the
sequence using a Transformer encoder:

X = Transformer (q [SEP ] ⟨ST0⟩ ⟨ST1⟩ p1 . . . ⟨STK⟩ pK) ∈ Rl×H (2)

where l = |q|+ 1 + (1 +K) +
∑

k |pk| is the total length in tokens. Now, we predict all mentions
within q, M̃(q). We first compute the probability of the token s to be the start of a mention as:

pstart(s|X) = σ0(W
T
startXs + bstart) ∀s ∈ {1 . . . |q|}

with Wstart ∈ RH×2, bstart ∈ R2 being learnable parameters, and σi the softmax function value at
position i. Then the probability of a token t to be the end of a mention with starting token s is:

pend(t|X, s) = σ0(W
T
endXm + bend) ∀t ∈ {s . . . |q|}

with Wend ∈ R2H×2, bend ∈ R2 being learnable parameters and Xm ∈ R2H the concatenation of
Xs and Xt. We note that, with this formulation, we support the prediction of overlapping mentions.
The loss for identifying mention spans in a single query is:

Lstart = −
|q|∑
s=0

1MS(q)(s)log(pstart(s|X))− 1MS(q)∁(s)log(1− pstart(s|X))

Lend = −
∑

s∈MS(q)

|q|∑
t=s

1M(q,s)(t)log(pend(t|X, s))− 1M(q,s)∁(t)log(1− pend(t|X, s))

Where MS(q) are the gold start tokens for the mentions in q and M(q, s) are the end tokens for
mentions that start at s, ∁ indicates complementary set and 1 is the indicator function. At inference
time, we first compute all s with pstart(s|X) > 0.5 and then all ends pend(t|X, s) > 0.5 for each
start s to predict mentions M̃(q).

While the formulation for extracting mentions from the input text is shared between EL and RE, the
final steps to link them to entities and extract relational triplets are different. In what follows, we
describe the two different procedures.

Entity Linking As we are now describing the EL step, in this paragraph the retrieved passages will
identify the textual representations of the entities we have to link to the previously identified men-
tions, and thus we will change the notation of p1:K = (p1, . . . , pK) to e0:K = (e0, . . . , eK), ei ̸=0 ∈
E .3 Specifically, for each m ∈ M(q), we need to find E(q,m), the entity linked to mention m. To
do so, we use the hidden representations X from Equation 2, and project each mention and special
token in a shared dense space using a feed-forward layer:

M = gelu
(
WT

projectionXm + bprojection
)

E0:K = gelu
(
WT

projection[X⟨ST0:K⟩, X⟨ST0:K⟩]
T + bprojection

)
Where Wprojection ∈ R2H×H , bprojection ∈ RH are learnable parameters, and
[X⟨ST0:K⟩, X⟨ST0:K⟩] ∈ RK×2H represent the repetition along the hidden representation axis of
the special tokens vectors X⟨ST0:K⟩ ∈ RK×H in order to match the shape of Xm. The probability
of mention m being linked to entity ek is computed as:

pent(E(q,m) = ek|M,E0:K) = σk(E
T
0:KM) ∀m ∈ M(q), k ∈ {0 . . .K}

2The k highest scoring passages according to the sim function introduced in Section 3.1
3Here e0 symbolizes NME, i.e. mentions for which the gold entity is not in E , represented by ⟨ST0⟩
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Therefore, if E(q,m) is the gold entity linked to m in q, the loss for EL is:

LEL = − log
∑

m∈M(q)

K∑
k=0

1E(q,m)(ek) log(pent(E(q,m) = ek|M,E0:K))

To train ReLiK for EL, we optimize LEL and the mention detection losses from 3.2: L = Lstart +

Lend + LEL. At inference time we will have the predicted spans M̃(q) as input to the EL module
and we will take argmaxk pent(E(q,m) = ek|M,E0:K) for each m ∈ M̃(q) as its linked entity.

Relation Extraction In this paragraph, the retrieved passages for an input text q will instead iden-
tify the textual representations of relations r1:K = (r1, . . . , rK), ri ∈ R. Specifically for each pair
of mentions, (m,m') ∈ M(q)×M(q) we need to find R(q,m,m'), i.e. the relation types between
m and m' in q. To do so, we use the hidden representations X from Equation 2, and project each
mention and special token using three feed-forward layers:

Sm = gelu
(
WT

subjectXm + bsubject
)

Om' = gelu
(
WT

objectXm' + bobject
)

Rk = gelu
(
WT

r X⟨STk⟩ + br
)

Where Wsubject,Wobject ∈ R2H×H ,Wr ∈ RH×H , bsubject, bobject and br ∈ RH are learnable
parameters. We obtain a hidden representation for each possible triplet with the Hadamard product:

Tm,m',k = Sm ⊙Om' ⊙Rk ∈ RH

Which is a dense representation of relation (k) between subject (m) and object (m'). Then, the
probability that m and m' are in a relation rk in q is:

prel(rk ∈ R(q,m,m')|Tm,m',k) = σ0(WrelTm,m',k+brel) ∀ (m,m') ∈ M(q)×M(q), k ∈ {1 . . .K}

With Wrel ∈ RH×2, brel ∈ R2 being learnable parameters. If we take R(q,m,m') as the gold
relations between m and m' in q, the loss for RE is defined as follows:

Lrel = −
∑

(m,m')∈M(q)×M(q)

(
K∑

k=1

1R(q,m,m')(rk)log(prel(rk ∈ R(q,m,m')|Tm,m',k))

− 1R(q,m,m')∁(rk)log(1− prel(rk ∈ R(q,m,m')|Tm,m',k))

)
To train ReLiK for RE we optimize Lrel and the mention detection from 3.2: L = Lstart +Lend +

Lrel. At inference time, we first compute all mentions M̃(q), and then we predict all the triplets
where prel(rk ∈ R(q,m,m')|Tm,m',k) > 0.5 ∀ (m,m') ∈ M̃(q)× M̃(q).

Closed Information Extraction In the previous paragraphs, we have described how to perform
EL and RE separately with ReLiK. However, since both tasks share the same mention detection
approach, ReLiK allows for closed IE with a single Reader. In this setup, we use the Retriever
trained on each task separately to retrieve e1:K ∈ E and r1:K′ ∈ R. Then, the Reader performs
both tasks at the same time. The only difference is the computation of the hidden representations in
Equation 2 as:

X = Reader (q [SEP ] ⟨ST0⟩ ⟨ST1⟩ e1 . . . ⟨STK⟩ eK [SEP ] ⟨STK+1⟩ r1 . . . ⟨STK+K′⟩ rK′)

Additionally, we leverage the predictions of the EL module to condition RE by taking

Xm = [Xs, Xt, σ(E
T
0:KMm)X⟨ST0:K⟩]

as the input to the RE module after EL predictions are computed. Notice that now
Wsubject,Wobject ∈ R3H×H . Finally, at training time the loss becomes L = Lstart + Lend +
Lel + Lrel for a dataset annotated with both tasks.

4 ENTITY LINKING

In this section, we describe the Experimental Setup (Section 4.1) and report on the results of our
systems compared to current state-of-the-art solutions (Section 4.2) for EL.
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4.1 EXPERIMENTAL SETUP

4.1.1 DATA

To evaluate ReLiK on Entity Linking, we reproduce the setting used by Zhang et al. (2022). We use
the AIDA-CoNLL dataset (Hoffart et al., 2011, AIDA) for the in-domain training (AIDA train) and
evaluation (AIDA testa for model selection and AIDA testb for test). The out-of-domain evaluation
is carried on: MSNBC, Derczynski (Derczynski et al., 2015), KORE 50 (Hoffart et al., 2012),
N3-Reuters-128, N3- RSS-500 (R500) (Röder et al., 2014), and OKE challenges 2015 and 2016
(Nuzzolese et al., 2015). As our reference knowledge base, we follow Zhang et al. (2022) and use
the 2019 Wikipedia dump provided in the KILT benchmark (Petroni et al., 2021). We do not use any
mention-entities dictionary to retrieve the list of possible entities to associate to a given mention.

4.1.2 COMPARISON SYSTEMS

We compare ReLiK with two autoregressive approaches, namely De Cao et al. (2021b), in which
the authors train a sequence-to-sequence model to produce, given a text sequence in input, a for-
matted string containing the entities spans along with the reference Wikipedia title; and De Cao
et al. (2021a) which build on top of this last approach by previously identifying the spans of text
that may represent entities and then generate in parallel the Wikipedia title of each span, greatly
enhancing the speed of the system. The most similar approach to our system is arguably Zhang
et al. (2022), which was the first to invert the standard Mention Detection → Entity Disambiguation
pipeline for EL. They first used a bi-encoder architecture to retrieve the entities that could appear in
a text sequence and then an encoder architecture to reconduct each retrieved entity to a span in the
text. We want to highlight that while the Retriever part of ReLiK for EL and Zhang et al. (2022)
are conceptually the same, the Reader component strongly differs. Indeed, our Reader is capable of
linking all the retrieved entities in a single forward pass, while theirs must perform a forward pass
for each retrieved entity, being roughly 40 times slower to achieve the same performances. Finally,
we note that, with the exception of Zhang et al. (2022), the other approaches use a mention-entities
dictionary, i.e. a dictionary that for each mention contains a list of possible entities in the refer-
ence knowledge base to which the mention can be associated. In order to build such a dictionary for
Wikipedia entities, the hyperlinks in Wikipedia pages are usually utilized Pershina et al. (2015). This
means that given the input sentence “Jordan is an NBA player” in order to link the span “Jordan” to
the Wikipedia page of Michael Jordan, there must be at least one page in Wikipedia in which a user
manually linked that specific span (Jordan) to the Michael Jordan page. While for frequent entities,
this might not represent a problem, for rare entities, it could mean the impossibility of linking them.

4.1.3 EVALUATION

We evaluate ReLiK on the GERBIL platform (Röder et al., 2018), using the implementation of
Zhang et al. (2022) from the paper repository https://github.com/WenzhengZhang/
EntQA. We report the results of evaluating the datasets described in Section 4.1.1 using the InKB
F1 score with strong matching (predictions boundaries must match exactly gold ones).

4.1.4 RELIK SETUP

Retriever We initialize the query encoder and passage encoder with E5base (Wang et al., 2022)
pretrained on BLINK4. We train each encoder on the AIDA dataset for a maximum of 5000 steps
using RAdam (Liu et al., 2020a) with a learning rate of 1e-5 and a linear learning rate decay sched-
ule. We split each document into overlapping chunks of length W = 32 words with a stride S = 16,
resulting in 12,995 windows in the training set, 3292 in the validation set, and 2950 in the test set.
We concatenate to each window the first word of the document as in Zhang et al. (2022). We employ
KILT (Petroni et al., 2021) to construct the entities index, which contains |E| = 5.9M entities. The
textual representation of each entity is a combination of the Wikipedia title and opening text for
the corresponding entity contained within KILT. We optimize the NCE loss (Equation 1) with 400
negatives per batch. At the end of each epoch, we mine at most 15 hard negatives per sample in the
batch among the highest-scoring incorrect entities retrieved by the model. Appendix A.2.1 shows
all the parameters used during the training process.

4Appendix A.1 provides details on the pretraining process.
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In-domain Out-of-domain Avgs

Model AIDA MSNBC Der K50 R128 R500 O15 O16 Tot OOD AIT (m:s)

De Cao et al. (2021b)† 83.7 73.7 54.1 60.7 46.7 40.3 56.1 50.0 58.2 55.0 38:00
De Cao et al. (2021a)†* 85.5 19.8 10.2 8.2 22.7 8.3 14.4 15.2 — — 00:52
Zhang et al. (2022) 85.8 72.1 52.9 64.5 54.1 41.9 61.1 51.3 60.5 57.3 20:00

ReLiKB 85.9 71.9 55.5 67.2 49.2 41.5 62.6 53.9 61.0 57.9 00:29
ReLiKL 86.5 74.2 56.6 73.9 51.4 43.0 66.1 55.4 63.4 60.5 01:46

Table 1: Comparison systems’ evaluation (inKB Micro F1) on the in-domain AIDA test set and
out-of-domain MSNBC (MSN), Derczynski (Der), KORE50 (K50), N3-Reuters-128 (R128), N3-
RSS-500 (R500), OKE-15 (O15), and OKE-16 (O16) test sets. Bold indicates the best model and
underline indicates the second best competitor. † mark systems that use mention dictionaries. For
De Cao et al. (2021a), we report the results on the Out-of-domain benchmark running the model from
the official repository, but without using any mention-entity dictionary since no implementation of
it is provided. AIT column shows the time in minutes and seconds (m:s) that the systems need to
process the whole AIDA test set using a NVIDIA RTX 4090, except for Zhang et al. (2022) that
does not fit in 24GB of RAM and for which an A100 is used.

Reader We train the Reader model with the windows produced by the Retriever on the AIDA
dataset. While in the Retriever we use the Wikipedia openings as the entities’ textual representa-
tions, in the Reader, due to computational constraints, and as in other works (De Cao et al., 2021b;a),
we use Wikipedia titles, which demonstrated to be informative and discriminative in most situations
(Procopio et al., 2023). In order to handle the long sequences created by the concatenation of the
top-100 retrieved candidates to the windows, we use DeBERTa-v3 (He et al., 2023) as our under-
lying encoder. We train two versions of it using DeBERTa-v3 base (183M parameters, ReLiKB)
and DeBERTa-v3 large (434M parameters, ReLiKL). We optimize both ReLiKB and ReLiKL using
AdamW and apply a learning rate decay on each layer as in Clark et al. (2020) for 50,000 optimiza-
tion steps. A table with all the training hyperparamenters can be found in Appendix A.2.1.

4.2 RESULTS

Performance We show in Table 1 the InKB F1 score ReLiK and its alternatives attein on the
evaluation datasets. Arguably, the most interesting finding we report is the improvement in perfor-
mance we achieve with respect to Zhang et al. (2022). Indeed, not only even ReLiKB outperforms
Zhang et al. (2022) both in- and out-of-domain (85.9 vs 85.8 in-domain and 57.9 vs 57.3 Avg. out-
of-domain) with fewer parameters (289M parameters vs 650M parameters), but it does so using a
single forward pass to link all the entities in a window of text, greatly enhancing the final speed
of the system. A broader look at the table shows that ReLiKL surpasses all its competitors on all
evaluation datasets except R128, thus setting a new state of the art. Finally, another interesting find-
ing is ReLiKL outperforming its best competitor by 9.4 points on K50. While the other datasets
contain news and encyclopedic corpora annotations, K50 is specifically designed to capture hard-
to-disambiguate mentions that involve a deep understanding of the context in which they appear. A
qualitative Error Analysis of the predictions can be found in Appendix A.5.

Speed and Flexibility As we can see from Table 1, ReLiKB is the fastest system among the
competitors. Not only that, the second fastest system, De Cao et al. (2021a), requires a mention-
entities dictionary that contains the possible entities to which a mention can be linked. When not
using such a dictionary, the results on the AIDA test set drop by 43% (De Cao et al., 2021a) and, as
reported in Table 1, it becomes unusable in out-of-domain settings. We want to stress that systems
that leverage such dictionaries are less flexible in predicting unseen entities during training and, most
importantly, cannot link at all entities to mentions to which they are not specifically paired in the
reference dictionary. Finally, our formulation allows the use of relatively large language models such
as DeBERTa-v3 large and achieves unprecedented performance while keeping competitive inference
speed. Report and ablations on ReLiK efficiency can be found in Appendices A.3 A.4.
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5 RELATION EXTRACTION AND CLOSED INFORMATION EXTRACTION

In this section, we first present the Experimental Setup (Section 5.1) for RE and cIE, and compare
the results of our systems to the current state of the art (Section 5.2).

5.1 EXPERIMENTAL SETUP

5.1.1 DATA

RE We choose two of the most popular datasets available. NYT (Riedel et al., 2010), which has
24 relation types, 60K training sentences and 5K for validation and test; and CONLL04 (Roth &
Yih, 2004) with 5 relation types, 922 training sentences, 231 for validation and 288 for testing.

cIE We follow previous work and report on the REBEL dataset (Huguet Cabot & Navigli, 2021),
which leverages entity labels from Wikipedia and relation types (10,936) from Wikidata. We sub-
sample 3M sentences for training and 10K for validation with the same test set as Josifoski et al.
(2022) containing 175K sentences.

5.1.2 COMPARISON SYSTEMS

RE We compare ReLiK with recent state-of-the-art systems for RE. Initial RE models performed
NER and RC separately, disregarding the interaction between the two. As with EL, a recent trend
in RE has been seq2seq approaches. Huguet Cabot & Navigli (2021) reframed the task as a triplet
sequence generation, in which the model learns to translate the input text into a sequence of triplets.
Lu et al. (2022) followed a similar approach to tackle several IE tasks, including RE. They were the
first to include labels as part of the input to aid generation. However, while these approaches were
flexible and end-to-end, they suffer from efficiency, as they are autoregressive. Lou et al. (2023)
built upon Lu et al. (2022), dropping the need for a Decoder by having labels as part of the input
and reframing the task as linking mention spans and labels between each other, pairwise. Lou et al.
(2023) is somewhat similar to our EL Reader component. However, their approach does not include
a Retriever, limiting the number of relation types that can be predicted, and their linking pairwise
strategy leads to ambiguous decoding for triplets (See A.6 for more details).

cIE Closed Information Extraction has been traditionally tackled using pipelines with systems
trained separately for EL and RE. Recently, Josifoski et al. (2022) presented an autoregressive ap-
proach inspired by Huguet Cabot & Navigli (2021) in which the triplets decoded contains the unique
Wikipedia title of each entity instead of their surface form with the aid of constraint decoding as in
De Cao et al. (2021b). Rossiello et al. (2023) extended their approach by outputting both surface
forms and titles. As with RE, autoregressive approaches did lift the ceiling for cIE, however, they
are still slow and computationally heavy at inference time.

5.1.3 EVALUATION

We report on micro-F1, using boundaries evaluation, i.e. a triplet is considered correct when entity
boundaries are properly identified along the relation type. For cIE, we consider a triplet correct only
when both entity spans, their disambiguation, and the relation type between both are correct. To
ensure a fair comparison with previous autoregressive systems, we only consider entities present in
triplets for EL, albeit ReLiK is able to disambiguate all of them.

5.1.4 RELIK SETUP

Retriever As in the EL setting (Section 4.1.4), we initialize the query and passage encoders with
E5 (Wang et al., 2022). In this context, we utilize the small version of E5. This choice is driven
by the limited search space in contrast to the Entity Linking setting. Consequently, this enables us
to significantly lower the computational demands for both training and inference. We train each
encoder for a maximum of 40,000 steps using RAdam (Liu et al., 2020a) with a learning rate of
1e-5 and a linear learning rate decay schedule. For NYT we have |R| = 24 and for REBEL we use
all Wikidata properties with their definitions, |R| = 10, 936, and for EL we use the same settings
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NYT CONLL04 REBEL

Model Params. Pretr. Pretr. EL RE

Huguet Cabot & Navigli (2021) 460M 93.1 93.4 71.2 75.4 — —
Lu et al. (2022) 770M 93.5 — 71.4 72.6 — —
Lou et al. (2023) 355M 94.0 94.1 75.9 78.8 — —

Josifoski et al. (2022) 460M — — — — 79.7 68.9
Rossiello et al. (2023) 460M — — — — 82.7 70.7

ReLiKS 33M + 141M 94.4 94.4 71.7 75.8 83.7 73.8
ReLiKB 33M + 183M 94.8 94.7 72.9 77.2 84.1 74.3
ReLiKL 33M + 434M 95.1 94.9 75.0 78.1 85.1 75.6

Table 2: Micro-F1 results for systems trained on NYT, CONLL04 and REBEL datasets. Params.
column shows the number of parameters for each system. EL reports only on entities belonging to a
triplet. Pretr. indicates the model underwent pretraining on additional task-specific data.

explained at Section 4.1 with KILT as KB, |E| = 5.9M. We optimize the NCE loss (1) using 24
negatives per batch for NYT and 400 for REBEL. More details included in Appendix A.2.1.

Reader The Reader setup mirrors that of EL. We use the DeBERTa-v3 model in all three sizes
with AdamW as the optimizer and a linear decay schedule. For NYT we set K = 24, effectively
utilizing the Retriever as a ranker. For the CONLL4 dataset, we use the NYT’s Retriever. We
explore a setup where ReLiK is pretrained using data from REBEL and NYT5. In the context of
closed Information Extraction (cIE) we set K = 25 and K ′ = 20 as the number of passages for EL
and RE respectively. In all cases, we select the best-performing validation step for evaluation. A
table with all the parameters utilized during training can be found in Appendix A.2.1.

5.2 RESULTS

RE In Table 2, we present the performance of ReLiK in comparison to other systems. Notably,
on NYT ReLiKS achieves remarkable results, outperforming all previous systems while utilizing
fewer parameters and remarkable speed, around 10 seconds to predict the entire NYT test set (see
Appendix A.3 for more details). The only exception is the CONLL04 dataset, where ReLiK is
outperformed by Lou et al. (2023). However, it’s important to note that CONLL04 is an extremely
small dataset, where a few instances lead to a big gap in performance.

cIE The right side of Table 2 reports on closed Information Extraction. Here, ReLiK truly shines as
the first efficient end-to-end system for jointly performing EL and RE with exceptional performance.
It not only outperforms previous approaches in all its model sizes by a significant margin but it is
also up to 35x times faster (see Appendix A.3 for more details). ReLiK enables cIE in real-world
downstream applications in a previously unattainable capacity.

A qualitative Error Analysis of the predictions can be found in Appendix A.5.

6 CONCLUSION

In this work, we presented ReLiK, a novel and unified Retriever-Reader architecture that seamlessly
attains state-of-the-art performance for both Entity Linking and Relation Extraction. Furthermore,
taking advantage of the common architecture and using a shared Reader, our system is capable
of achieving unprecedented performance and efficiency even on the closed Information Extraction
task (i.e. Entity Linking + Relation Extraction). Our models are considerably lighter, an order
of magnitude faster, and trained on an academic budget. We believe that ReLiK can advance the
field of Information Extraction in two directions: first, by providing a novel framework for unifying
other IE tasks beyond EL and RE, and, second, by providing accurate information for downstream
applications in an efficient way.

5We replicate the approach from USM by sampling 300K from REBEL dataset plus NYT train set. We
pretrain for 250,000 steps with the same settings as NYT.
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A APPENDIX

A.1 RETRIEVER PRETRAIN FOR ENTITY LINKING

We pretrain the Retriever on BLINK (Wu et al., 2020) employing a single-encoder architecture in
which we initialize a E5base encoder to act both as the query encoder and the passage encoder.
We split each document d in overlapping windows q of W = 32 words with a stride S = 16.
To reduce the computational requirements, we (1) random subsample 1 million windows from the
entire BLINK dataset, and (2) we retrieve hard negatives at each 10% of an epoch.We employ the
same strategy as in Section 4.1.4 to construct the entity index, namely, we utilize KILT (Petroni
et al., 2021) as our knowledge base, and we construct the textual representation of each entity within
KILT by concatenating the Wikipedia title and opening text. We optimize the NCE loss (1) with
400 negatives per batch. At each hard-negatives retrival step we mine 15 hard negatives per sample
in the batch with a probability of 0.2 among the highest-scoring incorrect entities retrieved by the
model. We train the encoder for a maximum of 110,000 steps using RAdam (Liu et al., 2020a) with
a learning rate of 1e-5 and a linear learning rate decay schedule.

A.2 EXPERIMENTAL SETUP

A.2.1 HYPERPARAMETERS

Retriever We report in Table 3 the hyperparameters we used to train our Retriever for both Entity
Linking and Relation Extraction.

Reader We report in Table 4 the hyperparameters we used to train our Reader for both Entity
Linking and Relation Extraction.

A.2.2 IMPLEMENTATION DETAILS

We implement our work in PyTorch (Paszke et al., 2019), using PyTorch Lightning (Falcon & The
PyTorch Lightning team, 2019) as the underlying framework. We use the pretrained models for E5
and DeBERTa-v3 from HuggingFace Transformers (Wolf et al., 2020).

A.2.3 HARDWARE

We train every model on a single NVIDIA RTX 4090 graphic card with 24GB of VRAM.
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Values
Hyperparameter BLINK EL RE

Optimizer RAdam RAdam RAdam
Learning Rate 1e-5 1e-5 1e-5
Weight Decay 0.01 0.01 0.01
Training Steps 110,000 5000 40,000
Patience 0 5 5
Query Batch Size 64 64 64
Max Query Length 64 64 64
Passage Batch Size 400 400 [24, 400]
Max Passage Length 64 64 64
Hard-Negative Probability 0.2 1.0 1.0

Table 3: Hyperparameter we used to train the Retriever for the Entity Linking Pretrain (BLINK),
Entity Linking (EL), and Relation Extraction (RE).

Values
Hyperparameter AIDA NYT CONLL04 REBEL

Optimizer AdamW AdamW AdamW AdamW
Learning Rate 1e-5 2e-5 8e-5 2e-5
Layer LR Deacy 0.9 – – –
Weight Decay 0.01 0.01 0.01 0.01
Training Steps 50000 750,000 1,000 600,000
Warmup 5000 75,000 0 10,000
Token Batch Size 2048 2048 4096 4096
Max Sequence Length 1024 1024 1024 1024
EL passages 100 – – 25
RE passages – 24 5 20

Table 4: Hyperparameter we used to train the Reader for Entity Linking (AIDA), Relation Extraction
(NYT) and cIE (REBEL).

A.3 EFFICIENCY

Efficiency is a crucial factor in the practical deployment of Information Extraction systems, as real-
world applications often require rapid and scalable information extraction capabilities. ReLiK excels
in this regard, outperforming previous systems in performance, memory requirements, and speed.
Table 5 shows the training and inference speeds of ReLiK.

EL Until now, efficiency had been a clear bottleneck for most EL systems, which rendered them
useless or highly expensive on real-world applications. Therefore the efficiency gains for EL were
extensively discussed in the main body of the paper at Section 4.2.

RE On the RE side, the only system on-par in terms of speed and performance would be USM.
Unfortunately, it is not openly available, limiting its utility for the broader research community
and hindering our ability to asses its speed. In Section A.6 we discuss other of its shortcomings.
Instead, Table 5 compares the current openly available RE system with the best performance on
NYT, REBEL. As an autoregressive system, inference speeds are several orders of magnitude higher.
ReLiKL outperforms it by more than 2 F1 points and it is still around 3x faster, while ReLiKL, which
still outperforms any previous system, takes only 10s, a 10x gain in terms of speed.

cIE ReLiK continues to shine in the domain of closed Information Extraction, where it outper-
forms existing systems in terms of efficiency and performance. Compared with two other leading
systems, ReLiKS surpasses them in F1 score while significantly outpacing them in terms of speed.
These systems rely on BART-large, making them several orders of magnitude slower. In Table 5 we
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Train

Retriever ReLiKS ReLiKB ReLiKL Previous SotA GPU

AIDA (EL) 4 h – 11h 36h 48 h A100
NYT (RE) 2 h 14 h 21 h 48 h 34 h 3090
REBEL (cIE) 6 h 20 h 30 h 3 d 18.5 d V100

Inference

AIDA (EL) 6 s – 23s 100s 20 m A100
NYT (RE) 2 s 8 s 14 s 28 s 105 s 4090
REBEL (cIE) 5 m 10 m 17 m 36 m 10 h 4090

Table 5: Training and inference times for ReLiK on a single NVIDIA RTX 4090 GPU. Retriever
times are reported separately, as they are shared across Reader sizes. The total time for any model
size X is Retriever + ReLiKX . Results for previous SotA (State-of-the-Art) in the right side are
taken from the best performing openly available systems trained on each dataset and task. Zhang
et al. (2022, entQA) for AIDA, Huguet Cabot & Navigli (2021, REBEL) for NYT and Josifoski et al.
(2022, GenIE) for REBEL. Inference times refer to the time needed to annotate the corresponding
test split for each dataset.

Model Name Recall@100 Recall@50
Baseline 81.9 71.6
+ Hard-Negatives 98.5 97.9
+ Document-level information 98.8 98.0
+ BLINK Pretrain 99.2 98.8

Table 6: Ablation for the Retriever module. Each line represents an additional change built upon the
previous one.

report on GenIE as its inference and train time are reported, but it should be noted that both GenIE
and KnowGL are roughly equivalent in terms of compute. Here, again, the speed gains are multiple
orders of magnitude, from 40x with ReLiKS to 15x with ReLiKL.

In conclusion, ReLiK redefines the efficiency landscape in Information Extraction. Its unified frame-
work, reduced computational requirements, and speed make it a compelling choice for a wide range
of IE applications. Whether used in research or practical applications, ReLiK empowers users to
extract valuable information swiftly and efficiently from textual data, setting a new standard for IE
system efficiency.

EL RE
K 100 50 20 24 16 12 8 4

ReLiKS — — — 94.4 94.5 94.5 94.5 94.2
Time — — — 10 s 10 s 10 s 8 s 6 s
ReLiKB 85.9 86.1 85.8 94.8 94.8 94.8 94.8 94.5
Time 23 s 14 s 6 s 14 s 14 s 12 s 10 s 9 s
ReLiKL 86.5 86.5 86.1 95.1 95.2 95.1 95.1 94.8
Time 100 s 47 s 22 s 28 s 24 s 22 s 20 s 18 s

Table 7: Micro-F1 results and inference time on AIDA for EL and NYT for RE when we reduce the
number of retrieved passages as input to the Reader. Times reported are just for the Reader, without
the retrieval step. Notice that for K = 24, all relation types in NYT are part of the input.
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A.4 ABLATIONS

A.4.1 ENTITY LINKING

Retriever Table 6 presents the findings of our ablation study conducted on the Retriever using the
validation set from AIDA. In the baseline configuration, we initialize the model with E5base and
train it by optimizing the loss (1) with a focus solely on in-batch negatives. The introduction of
hard-negatives substantially improve recall rates. Additionally, document-level information proves
beneficial to the Retriever, albeit particularly benefiting AIDA, where relevant information is con-
centrated in the first token. Furthermore, the pretraining on BLINK demonstrated significant impact,
especially on Recall@50, suggesting that pretraining enhances the Retriever ability to efficiently
rank the candidate entities.

Passages Trimming The Retriever serves as a way to limit the number of passages that we con-
sider as input to the Reader. At train time, we set K = 100, which, as Table 6 just showed, has a
high Recall@K. However, as the computational cost of the Transformer Encoder that serves as the
Reader grows quadratically on the input length, the choice of K affects efficiency. Table 7 shows
what happens when we reduce the number of passages at inference time. Surprisingly, performance
is not affected; in some cases, it even improves while time is halved. This showcases the usefulness
of the Retriever which while fast is still able to rank passages effectively.

A.4.2 RELATION EXTRACTION

No Retriever Our benchmarks for RE contain a small number of relation types (5 and 24). There-
fore the Retriever component is not extrictly necessary when all types fit as part of the input. Still,
we believe it is an important part of the RE pipeline, as it is more flexible and robust to cases outside
of the benchmarks. For instance, in long-text RE where the input text is longer, there is a need to
reduce the number of passages as input to the Reader. Or as the case with cIE with REBEL, when
the relation type set is larger, the Retriever enables an unrestricted amount of relation types. Nev-
ertheless, we assess the influence of the Retriever as a reranker for NYT and explore a version of
ReLiK without a Retriever. To do so we train a version of our Reader where the relation types are
shuffled (ie. without a Retriever step). We obtained a micro-F1 of 94.2 for ReLiKS , which is just
slightly worse. Given how fast the Retriever component is at inference time, this result showcases
how even when not strictly needed, it does not hurt performance.

Passages Trimming The previous section seemed to indicate that for datasets with a small set of
relation types there is no need of a Retrieval step and a standalone Reader would be enough. While
this is certantly an option, the Retrieve step is still very fast and doesn’t add much overhead compu-
tation. On the other hand, the Reader is considerably slower, as the input is larger with additional
computation that adds to the overall computational time. For RE the Hadamard product step grows
quadratically with the number of passages. Therefore we explore how it affects downstream perfor-
mance to reduce the number of passages once the system is already trained. We want to find out 1)
is performance affected 2) is it considerably faster to reduce the number of passages. As Table 7
shows, reducing the number of passages up to just 8 doesn’t impact performance. In fact, we even
obtained better results with just 16 passages instead of 24.

Entity Linking as an aid to Relation Extraction On the cIE setup where Entity Linking and
Relation Extraction are performed by the same Reader, each task is performed sequentially and then
RE predictions are conditioned on EL. But does EL aid RE? Or does having a shared Reader be-
tween both tasks impact RE negatively? Entity types were often included in Relation Classification
to improve the overall performance Zhou & Chen (2022). In our case, RE is conditioned on EL
implicitly, without explicit ad-hoc information, i.e. just by leveraging the predictions of the EL
component. We train ReLiKS on REBEL without EL, which performs solely RE under the same
conditions and hyperparameters as the cIE counterpart. The system without EL obtained a micro-F1
of 75.4 with boundaries evaluation. On the other hand, the cIE approach that combines both EL
and RE, we obtain 76.0 micro-F16, which considering the size of the test set (175K sentences) is

6This value differs from the one reported in Table 2 since it is evaluated without entity disambiguation
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System using BERT-base P R F

(Sui et al., 2023) 92.5 92.2 92.3
(Zheng et al., 2021) 93.5 91.9 92.7
(Lou et al., 2023, USMBERT−base) 93.7 91.9 92.8
ReLiKBERT−base 93.2 92.9 93.1

Table 8: Results for systems using BERT-base on the NYT dataset.

a considerable difference. This is an exciting result as it validates end-to-end approaches for cIE
where both tasks are combined.

BERT-base Our Reader is based on DeBERTa-v3, while previous RE systems may be based
on older models. To enable a fair comparison and assess the flexibility of our RR approach, we
train our Reader on NYT using BERT-base and compare with other systems. Table 8 shows how
ReLiKBERT−base outperforms previous approaches, including USM.

A.5 ERROR ANALYSIS

Figure 2: Example predictions by ReLiKL on AIDA (top), NYT (middle), and REBEL (bottom) for
EL, RE, and cIE respectively. Green stands for true positive, blue for false positive, and red for false
negative.

Entity Linking Figure 2 shows an example of the predictions generated by our system when
trained on EL. This particular example showcases a common error when evaluating the AIDA
dataset. AIDA was manually annotated in 2011 on top of a Named Entity Recognition 2003 dataset
(Tjong Kim Sang & De Meulder, 2003). While widely used as the de-facto EL dataset, it contains
errors and inconsistencies. A common one is the original entity spans not being linked to any entity
in the KB. This could either be because at the time such an entity was not present in the KB, or an
annotation error due to the complexity of the task. This leads to NME annotations which at evalu-
ation time are considered false positives, as our system links to the correct entity, such as Bill Brett
in the example. Another source of errors is document slicing in windows. While necessary to over-
come the length constraints of our Encoder, it can lead to inconsistent or incomplete predictions. For
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instance, ILO was linked to an entity in a window that did not see further context (Workers Group),
while the next window correctly identified ILO Workers Group as an NME.

Relation Extraction The example shown in Figure 2 is a common error found in predictions on
NYT by ReLiK. Due to the semiautomatic nature of NYT annotations, some relations, such as the
ones shown in the example, lack the proper context to ensure consistency at inference time. In this
case, the system predicts a relation (place lived) which cannot really be inferred from the text or is
ambiguous at best. We believe this is due to certain biases introduced at training time. This can be
exemplified by the false negative, annotated as correct (place of birth), which is impossible to infer
from the sentence.

closed Information Extraction Finally, the last example in Figure 2 shows a prediction by our
model when trained on both tasks simultaneously with the REBEL dataset. Notice the missing
prediction (participant), and the false positives. While the passages retrieved contained all the nec-
essary relation types, the system still failed to recover one of the gold triplets, even if all the spans
were correctly identified. Then, for the two false positives, while they were not annotated in the
dataset, probably due to its automatic annotation, they are correct, and ReLiK predicted them even
if, at evaluation time, this will decrease the reported performances.

A.6 USM

In this section, we want to discuss in detail how ReLiK compares with USM. USM is the current
state-of-the-art for RE and was the first modern RE system that jointly encoded the input text with
the relation types, breaking from ad-hoc classifiers with weak transfer capabilities or autoregressive
approaches that leverage its large language head but are inefficient. Therefore, it shares a similar
strategy to our RE component, in that both rely on the relation types being part of the input, and
the core idea is to link mention spans to their corresponding triplet. However, this is where the
similarities end. In USM, the probabilities of a mention span being linked to a triplet (i.e. to another
entity and a relation type) are assumed to be independent and factorized such that they are computed
separately, in a pairwise fashion. Mentions are linked as subjects to the spans that share a triplet
(blue lines in Figure 3) and to the relation type label (green lines). Finally, labels are linked to the
object entity (red lines). In most cases, these are sufficient to decode each triplet but we want to
point out a shortcoming of this strategy. The decoding is done by pairs. First mention-mention, i.e.
in Figure 3 (Jack, Malaga), (Jack, New York), (John, Malaga) and (John, New York); then label-
mention (birth place, Malaga), (birth place, New York), (live in, Malaga) and (live in, New York);
and finally mention-label (Jack, birth place), (Jack, live in), (John, birth place), (John, live in). At
this point, the issue should be clear. From this set of pairs, one cannot retrieve the correct triplets,
even though the model would have not made any mistake in its predictions. It is worth pointing out
that these phenomena do not happen on either test set for NYT or CONLL04, therefore it doesn’t
affect reported performance.
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Figure 3: Example of a sentence as input to USM where their token-linking strategy would fail even
if the model made the right predictions.
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