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Abstract

Multilingual language models achieve strong averages yet often behave unpre-
dictably across languages, scripts, and cultures. We argue that mechanistic ex-
planations for such models should satisfy a causal standard: claims must sur-
vive causal interventions and must cross-reference across environments that per-
turb surface form while preserving meaning. We formalize reference families as
predicate-preserving variants, and we introduce triangulation, an acceptance rule
requiring (i) invariance of the conditional law of a task score given the internal
states of a proposed subgraph and (ii) directional stability and sufficient magni-
tude of interventional effects across references. To supply candidate subgraphs,
we adopt automatic circuit discovery (edge attribution patching, position-aware
circuit discovery, and sparse subgraph selection), and we accept or reject those
candidates by triangulation. Our proposal situates mechanistic interpretability
within the theory of causal abstraction and complements causal mediation analy-
ses by focusing on falsifiable cross-environment invariance.

1 Introduction

The success of multilingual language models (MLLMs) has disguised a persistent pattern: large
average gains mask instability across languages, writing systems, and cultures. When one isolates
language- or culture-specific subsets, model rankings can invert; when inputs mix languages within
a sentence, models often leak or rely on brittle shortcuts. These observations suggest that many
analyses of internal states are, at best, associational: they reveal where information is encoded but
not whether it causes behavior.

We take a simple position. A mechanistic explanation should be accepted only if it remains valid un-
der interventions and cross-references across environments that keep meaning fixed while perturbing
nuisance attributes such as language and script. Multilinguality offers exactly these environments.
The literature on invariant causal prediction establishes how stability across environments can re-
veal causal parents, while cross-referenceability clarifies when effects move between populations
that differ in specified ways. Mechanistic interpretability provides the tools for local interventions
on internal states. What has been missing is a standard that integrates these ingredients into an
acceptance rule for mechanism claims.

We propose such a standard and call it triangulation. Triangulation evaluates a proposed subgraph
in two complementary ways. First, it demands that the conditional law of a task score given the sub-
graph’s internal states be invariant across predicate-preserving references. Second, it requires that
causal interventions on those states—replacing them with activations drawn from the references—
push the score in directions that are consistent across references and large enough to rule out chance.
In practice, this rule filters out mechanisms that owe their apparent success to language identity,
script, register, or other surface cues.
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2 Related Work

Mechanistic interpretability for LLMs. Interventional tools such as causal tracing and path/edge
patching underpin LLM mechanistic interpretability, but outcomes are highly sensitive to corruption
choices and metrics, motivating on-manifold constraints and stricter protocols. Recent evidence
further shows that circuit “faithfulness” scores can be brittle to seemingly minor ablation details,
reinforcing the need for acceptance criteria that go beyond single-environment patch scores [Miller
et al., 2024].

Automatic circuit discovery. We use “automatic circuit discovery” broadly for pipelines that al-
gorithmically produce candidate subgraphs with minimal manual curation. Search-based methods
(e.g., ACDC) directly return sparse circuits that preserve behavior on held-out inputs [Conmy et al.,
2023]; position-aware variants add token-span sensitivity and an automated schema, improving the
size—faithfulness trade-off [Haklay et al., 2025]. Edge-scoring methods (e.g., EAP/EAP-1G) auto-
matically rank edges; coupled with an automatic selection rule (thresholding/pruning or seeding a
search on a pre-pruned graph), they also yield circuits. In our pipeline, automatic discovery proposes
subgraphs, and triangulation determines acceptance.

Causal mediation and falsification tests. Causal mediation decomposes total effects into natural
indirect/direct components through nominated mediators (e.g., attention heads) and has been applied
to transformers [Vig et al., 2020]. Causal scrubbing offers behavior-preserving resampling tests
to falsify mechanistic hypotheses [Chan et al., 2022]. Our approach shares the falsification ethos
but avoids cross-world assumptions by requiring invariance of the predictive link and directional
stability of interventional effects across predicate-preserving references.

Multimodal mechanistic interpretability. For vision-language models, NOTICE introduces a
corruption/intervention pipeline for text—image pairs to probe attention-level roles [Golovanevsky
et al., 2025]. Tools such as LVLM-Interpret emphasize interactive analysis rather than controlled
interventions [Ben Melech Stan et al., 2024]. Explicit cross-environment tests (e.g., language/script
flips that preserve the predicate) remain rare in multimodal MI; our triangulation standard fills this

&ap.

Invariance and causal abstraction. Invariant Causal Prediction formalizes why causal parents
support stable conditional behavior across environments [Peters et al., 2016]. Causal Abstraction
gives a principled account of when low-level interventions should commute with high-level changes,
yielding graded faithfulness between circuits and interpretable models [Geiger et al., 2025]. Our
acceptance rule operationalizes these principles: only circuits whose predictive link is invariant
and whose interventional effects are directionally stable across reference families are accepted as
mechanisms.

3 Structural Causal Model

We summarize a forward pass by five endogenous variables {R}, C, X, H, M. The symbol {R}
denotes a set of reference families; for a base input x we choose a particular family R(z) =
{r1,...,rx} C {R}. The variable C' denotes nuisance attributes influenced by these references.
The observed text is X. The internal states are H = (Hy,..., H) at a specified patch site (e.g.
attention head, MLP); the task score (e.g., a logit margin) is M.

Using the language of structural causal models:

C=gc({R}). X =gx(C),

(1)
Hy = fo(Hej, X) (6=1,....0), M= fy(H,X).

We assume that { R} influences M only through (C, X) and that the predicate of interest resides in
X rather than in superficial aspects of C'. Under this description, a reference family toggles C while
keeping the predicate in X intact. Figure 1 shows the corresponding causal graph.

The mathematical role of a reference family is to vary nuisances while preserving the predicate. For
a input z and its family R(z) = {r1,...,rx}, we model predicate preservation as a tolerance on
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Figure 1: A causal DAG for multilingual mechanisms. The set of reference families {R } determines
nuisances C, which shape X. The input X propagates through internal states Hy,..., Hy to M,
with a direct dependence of M on X.

=H2 :Hg =HJ

the task score,
|[M(ry) — M(z)| <e forallke{l,...,K}. @

A mechanistic hypothesis specifies a set S C {1,...,J} of components (e.g., a handful of heads
and MLPs tied together by a plausible path from X to the first decoding step that bears the relevant
attribute). Let a;(-) denote activations of j at a fixed patch site. The causal intervention is to replace
an endogenous state with one drawn from a reference, i.e. do(H; = a;(ry)). For a deterministic
forward pass, the corresponding change in the score is

AM®) = M(x ‘ do(H; = aj(rk))) ~ M(z). 3)

4 Triangulation

Triangulation asks for invariance in prediction and for directional stability of interventional effects.
We first specify a target behavior M and a reference family R(z), which casts the task as: identify
a sparse subgraph that mediates M and remains valid across the references in R(x). Candidate
subgraphs are proposed by any principled localization or search procedure that scores or isolates
routes in the computation graph, optionally with position sensitivity when examples vary in length.
From these proposals, a compact subgraph is selected by a sparsity-oriented criterion that preserves
M on held-out inputs. This yields candidates for S without hand-crafting; triangulation then accepts
only those whose interventional effects are directionally stable and whose predictive link is invariant
across the references in R(z).

The first requirement is an internal version of invariant causal prediction. If .S captures the variables
on which the mechanism for M depends at the patch site, then the conditional distribution of M
given ag should not change across the references that preserve the predicate,

F (M(r)|ag(r)) isidentical forall r € R(x). 4)

In practice, one could fit a single predictor g from ag to M pooled across references and then verifies
that residual distributions are stable.

The second requirement concerns interventions. For each component j € S, denote the effect

vector e; = (AM;D7 RN AM;K)) from (3). Beforehand we preregister a vector ¢ € {—1,+1}%
that codifies the direction in which the score should move for each member of the reference family.
We accept the mechanism only if

ej-c

vk: sgn(AM;k)) = ¢y, lejlla > T, | >, &)

el el
for thresholds 7 > 0 and v € (0, 1], subject to an on-manifold constraint ||a;(ry) — a;(z)|| < d. In
other words, triangulation is an acceptance rule, not a discovery method. To propose candidates S
at scale, we can use automatic circuit discovery (cf. [Conmy et al., 2023, Hanna et al., 2024]) and
then filter via triangulation.

5 Proposed Case Study: Inclusive English—French Translation

For a conceptual example, consider English-to-French translation in settings where French ad-
mits both binary and inclusive realizations. The goal is to evaluate whether a localized internal
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mechanism S governing the first gender-bearing decision remains valid across a small, predicate-
preserving reference family R () for each base sentence .

Data and reference construction. For each base item x, we build R(2) = {7he, I'she, T'hey } that
toggles source-side ambiguity and target-side realization while preserving denotation. Concretely:
(i) minimally paraphrase the English source to flip pronominal ambiguity and scrub overt gender
cues while keeping named entities and semantics fixed; (ii) prepare parallel French targets that
differ only in the gender-marked span (inclusive option(s) vs. binary alternatives), using controlled
templates and editor guidelines; (iii) balance occupational and contextual stereotypes around the
referent (neutral vs. stereotyped contexts).

Score and locus. Let the gender-bearing locus (GBL) be the earliest decoding position where the
French realization commits to gender marking. Using teacher-forced decoding and alignment, we
identify the GBL and define the task score

M = logpy(incl | ctx at GBL) — max { log pg(masc | -), log pg(fem | )},

so that larger M favors an inclusive realization at the GBL.

Candidate localization. For each x, we localize routes from the source cue span to the GBL and
generate candidate subgraphs S with a fully automatic pipeline: a principled route/edge localiza-
tion step (scoring or intervention-based), optional position sensitivity to handle variable pronoun
placement, and a sparsity-oriented selection that preserves M on held-out items. Discovery is thus
separated from acceptance; no manual head-picking is performed.

Triangulation tests (accept/reject). For each candidate S, we apply two checks without re-

estimating any new quantities. (i) Internal invariance: using the pooled predictor h(ag) — M
defined above, we test residual stability across r € R(x) exactly as in Eq. (4). Only candidates
passing invariance proceed. (ii) Interventional consistency: we perform the patches on the compo-
nents of S and summarize the resulting score changes via the effect vectors defined around Eq. (3);
acceptance requires the directional and magnitude criteria of Eq. (5) under the same on-manifold
constraint introduced earlier. Thresholds are calibrated with placebo patches, and we report permu-
tation p-values per candidate.

Analyses and diagnostics. We report: (a) pass/fail rates under invariance vs. under directional
alignment; (b) effect-size distributions for accepted vs. rejected candidates; (c) robustness by con-
text (neutral vs. stereotyped) and by realization type (inclusive pronoun vs. paraphrase vs. ortho-
graphic agreement). Two contrasts are diagnostic: circuits genuinely mediating the cue at the GBL
should show stable residuals and consistently signed AM across R(z); nuisance-sensitive routes
(e.g., reacting to punctuation or script) should produce near-zero or sign-inconsistent effects and be
rejected.

Error taxonomy and ethics. We separate (1) lexicalization failures (no inclusive candidate is
available or scored competitively), (2) agreement failures (inclusive cue with binary downstream
agreement), and (3) cue misrouting (changes in pronoun position flip the sign pattern). Because
inclusive realization remains socially and institutionally contested, we treat it as an optional, user-
controlled target; evaluation is framed strictly by predicate preservation and cross-reference stability
rather than by prescriptive preference.

6 Limitations and scope

Triangulation raises the evidential bar but does not guarantee uniqueness. Several distinct subgraphs
may satisfy the acceptance rule when their effects are redundant or when the model implements mul-
tiple pathways for the same predicate. The quality of reference families is decisive: if the supposed
predicate-preserving rewrites actually change what is being asked, invariance and consistency may
mislead. Finally, causal interventions at scale are computationally heavy; prioritization strategies
and sampling are advisable.
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