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Behavioral Homophily in Social Media via Inverse Reinforcement
Learning: A Reddit Case Study

Anonymous Author(s)

Abstract
Online communities play a critical role in shaping societal discourse
and influencing collective behavior in the real world. The tendency
for people to connect with others who share similar characteristics
and views, known as homophily, plays a key role in the formation
of echo chambers which further amplify polarization and division.
Existing works examining homophily in online communities tra-
ditionally infer it using content- or adjacency-based approaches,
such as constructing explicit interaction networks or performing
topic analysis. These methods fall short for platforms where inter-
action networks cannot be easily constructed and fail to capture the
complex nature of user interactions across the platform. This work
introduces a novel approach for quantifying user homophily. We
first use an Inverse Reinforcement Learning (IRL) framework to in-
fer users’ policies, then use these policies as a measure of behavioral
homophily. We apply our method to Reddit, conducting a case study
across 5.9 million interactions over six years, demonstrating how
this approach uncovers distinct behavioral patterns and user roles
that vary across different communities. We further validate our
behavioral homophily measure against traditional content-based
homophily, offering a powerful method for analyzing social media
dynamics and their broader societal implications. We find, among
others, that users can behave very similarly (high behavioral ho-
mophily) when discussing entirely different topics like soccer vs
e-sports (low topical homophily), and that there is an entire class of
users on Reddit whose purpose seems to be to disagree with others.

ACM Reference Format:
Anonymous Author(s). 2024. Behavioral Homophily in Social Media via
Inverse Reinforcement Learning: A Reddit Case Study. In . ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Social media platforms have become integral to modern society,
shaping public discourse and influencing information flow. They
have far-reaching offline effects, even impacting financial mar-
kets, as illustrated by the Reddit community r/wallstreetbets, which
played a crucial role in theGameStop Short squeeze in early 2021 [34].
While concepts like network effects and influencemaximization [21]
offer valuable macroscopic insights, they often fail to capture the
nuanced individual-level behaviors within niche online communi-
ties. This work studies online users at their most granular level –
their online interactions.

Homophily – the tendency for individuals to engage with others
who possess similar characteristics – is a key driver in shaping
the dynamics of online social media platforms. Homophily drives
the formation of online interest groups and communities and can
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2024. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

even play a role in the spread of online misinformation [7]. Tradi-
tional measures of homophily rely on follower networks – explicit
information about who follows whom. Other approaches rely on
quantifying the shared hashtags, which works well for platforms
such as X/Twitter and Facebook, where the platform structure is
centered on individual relationships and explicit social ties. How-
ever, these measures are inadequate for platforms such as Reddit,
which is organized around topic-based communities known as sub-
reddits without explicit social ties or follower relationships. While
content-based homophily measures (approaches that measure the
similarity of the content produced or consumed by users) can be
applied to Reddit, they offer little insights for a platform already
organized along topical themes. This underscores the need for an
alternative method to analyze homophily in such environments,
focusing on the nature of interactions rather than observable af-
filiations or consumed content. To address this gap, we propose
using Inverse Reinforcement Learning (IRL) – a framework to infer
a policy that explains an observed behavior – to study behavioral
homophily based on users’ observed actions on the platform.

1.1 Unique Challenges
The unique challenges faced in our work are summarized as follows:
Limitations of traditional homophily measures. Existing ho-
mophily measures focusing on follower networks or hashtags are
inadequate for platforms where interactions are not follower-based.
Moreover, user anonymity on platforms like Reddit complicates
analysis, as demographic data such as gender or age is unavailable.
Applying IRL to hierarchical data.While IRL has been applied to
uncover the reward functions behind user decisions [27], applying
it to hierarchical data, such as Reddit’s conversation structures,
remains challenging. Designing compact state representations that
reflect the complexity of user interactions while addressing data
sparsity is still an open research problem.
Linking topical interest and posting behavior.While the user
topical interest in Reddit is quite well understood given the themat-
ical subreddit community structure, the connections between users
of unrelated communities remain largely unexamined. In particular,
the relationship between users who display similar behaviors on
completely different topics and subreddits is underexplored, as most
measures of homophily do not account for user posting behavior.

1.2 Our Contributions
To address these challenges, we propose an Inverse Reinforcement
Learning (IRL) framework for studying behavioral homophily, mak-
ing the following key contributions:
An IRL framework for analyzing user behavior.We develop
an IRL model tailored to social media platforms with hierarchi-
cal, forum-like data structures. The model defines state and action
spaces that capture key features, such as the agreement in replies,
encoding user activity and community-triggered interactions.
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Anewmeasure of behavioral homophily via IRL.We introduce
a novel measure of behavioral homophily derived from the inferred
policy map of our IRL framework. We contrast this measure with
the commonly used topic homophily and validate its robustness
using statistical significance tests, identifying significant behavioral
differences across various online communities.
Reddit case study. We conduct a detailed case study on Reddit,
analyzing subreddits focused on news, political ideology, human
rights, and sexual identity. This analysis provides insights into
connections between topical and behavioral homophily on Reddit,
shedding light on what drives users’ interactions.

1.3 Related Work
Understanding human behavior to uncover the underlying reward
mechanisms of decision processes gained significant attention after
the seminal work of Ng and Russell [32]. When combined with
entropy regularization and deep learning, Inverse Reinforcement
Learning (IRL) has evolved into a powerful tool for analyzing com-
plex behavioral patterns, such as overtaking maneuvers in driv-
ing [45] or identifying optimal NHL players for fantasy sports [28].
While IRL has been extensively applied in vision-based domains, its
application to social media has been more limited due to challenges
in encoding the underlying data structure and ensuring sufficient
data availability.

Early studies applying IRL to social media explored how feed-
back influences personal engagement on Reddit, showing that users
tend to continue engaging based on the reception of their contribu-
tions [10]. Luceri et al. [27] applied predictive modeling to detect
troll behavior on X (formerly Twitter) by identifying key behavioral
features. Geissler et al. [17] examined propaganda strategies follow-
ing the Russian invasion of Ukraine using a comparable framework.
On YouTube, Hoiles et al. [20] leveraged IRL to model and pre-
dict viewer commenting behavior, demonstrating how the rational
inattention model [41] can explain variations in user engagement.
Among these platforms–X, YouTube, and Reddit–Reddit stands out
for its highly hierarchical data structure, organized around nested
discussions. Our framework uniquely adapts deep IRL by designing
states, actions, and features that reflect Reddit’s hierarchical con-
versation structures, considering platform-specific behaviors such
as creating threads or root comments.

As our study focuses on homophily in social media behavior, it
connects closely to research examining social media dynamics. Mas-
sachs et al. [29] investigated the roots of Trumpism on the subreddit
r/The_Donald through the lens of homophily, social influence, and
social feedback. In their study, homophily was measured through
vector participation across different subreddits, which, while suit-
able for that case, lacks broader generalizability and behavioral de-
tail. Monti et al. [31] evaluated homophily and heterophily among
ideological and demographic groups in Reddit’s r/news community,
finding that users tend to engage with opposite ideological sides,
while demographic groups, particularly age and income, exhibit ho-
mophily. This challenges the echo chamber narrative and highlights
the role of affective polarization in a divided society. Other stud-
ies [12, 15] have challenged the echo chamber narrative on Reddit,
showing that political interactions involve significant cross-cutting
engagement, with polarization and hostility more prevalent within

political groups or asymmetrically between supporters, rather than
between opposing sides.

Our work builds upon these insights by extending the analysis
to a diverse set of subreddits, each with unique conversational
patterns. We offer a deeper understanding of homophily and user
behavior across various communities on Reddit by introducing a
novel behavioral homophily measure through our IRL framework.

2 Preliminaries
In this section, we provide the necessary background on homophily,
inverse reinforcement learning, and the structure of Reddit.

2.1 Homophily
Homophily—the tendency for individuals to associate with others
who are similar [30]—plays a crucial role in shaping social net-
works. It is typically classified into status homophily and value
homophily [26]. Status homophily occurs when ties form based
on demographic or socioeconomic characteristics like age, race,
or education, while value homophily is driven by shared beliefs,
attitudes, and behaviors. These patterns influence not only who
connects but also the overall structure and dynamics of the net-
work [14]. In online networks, these tendencies can create clusters
or echo chambers where users interact primarily with like-minded
individuals, amplifying polarization and group identity [29].

Traditional measures, such as shared interests or topical similar-
ity, have been widely used in various applications, mostly relating
to political ideology. Colleoni et al. [9] investigates political ho-
mophily on Twitter/X using content based classifiers and social
network analysis to infer affiliation to American political parties.
Ram et al. [36] investigates the inference of users’ political ideol-
ogy through three homophilic lenses in lexical similarity, shared
hashtags, and reshared content on Twitter/X. These measures help
explain the formation of social ties but often miss the complexity
of user behavior. For example, Aiello et al. [1] found that topical
similarity predicts social links with up to 92% accuracy. However,
Bisgin et al. [5] demonstrated that interest-based homophily alone
does not fully explain new tie formation across platforms like Blog-
Catalog, Last.fm, and LiveJournal, signaling the need to consider
more nuanced behavioral factors.

Behavioral homophily–users feeling closer to those who behave
similarly online–offers deeper insights into social dynamics. Figeac
and Favre [16] showed that frequent interactions such as liking
and commenting strengthens ties, especially among weak connec-
tions. Similarly, Pan et al. [33] demonstrated that social network
homophily, using graph convolutional networks, improves user
attribute predictions, even with limited data.

Understanding behavioral homophily is crucial for analyzing
network cohesion and societal impact. It offers insights into user
interactions and content exposure, with implications for improv-
ing recommendations, mitigating polarization, fostering inclusive
networks, and designing effective interventions [23, 39].

2.2 Inverse Reinforcement Learning
Inverse Reinforcement Learning (IRL) offers a framework to infer
the underlyingmotivations or reward structures that drive observed
actions [32, 38]. In contrast to Reinforcement Learning (RL), which
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learns how to optimize a known reward function, IRL focuses on
inferring a reward function that explains observed behavior. The
central problem of IRL is to deduce the latent preferences of an
agent from observed state-action trajectories. In the context of
online behavior, IRL aims to uncover the rewards users are implic-
itly maximizing based on their publicly observable actions. This
methodology has been applied to differentiate normal user behav-
ior from that of trolls–users who intentionally provoke or disrupt
discussions [27].

IRL operates within the framework of a Markov Decision Process
(MDP), where the reward function is unknown. The MDP is defined
by the tuple (S,A, 𝑃,𝛾, 𝜏), where S is a finite set of states, A is a
finite set of actions, 𝑃 is the transition kernel, and 𝛾 is the discount
factor. Trajectories or demonstrations 𝜏 represent the observed
state-action pairs over time. We employ the maximum entropy IRL
framework [46] and its deep IRL extension [44], where the reward
function is parameterized by a neural network. The reward function
for state 𝑠 is learned as 𝑅(𝑠) = 𝒘⊤𝜑𝑙 (𝑠), where 𝜑1 (𝑠) = 𝜎

(
𝑊1𝑠

)
,

and 𝜑 𝑗 (𝑠) = 𝜎
(
𝑊𝑗𝜑 𝑗−1 (𝑠)

)
for 𝑗 ∈ {2, . . . 𝑙}. Here, 𝒘 is a weight

vector, 𝜎 the activation function, and the neural network is defined
by the weights𝑊𝑗 for 𝑙 layers, with all parameters collectively
represented as 𝜽 = {𝑊1, . . . ,𝑊𝑙 }. The reward function is optimized
by maximizing the likelihood of the observed trajectories under a
maximum-entropy framework. The policy is updated using soft Q-
learning, and the neural network parameters are adjusted through
backpropagation until convergence (see Algorithm 1).

Algorithm 1Maximum-Entropy Deep IRL

Require: State space S, action spaceA, discount factor 𝛾 , conver-
gence threshold 𝜖 , observed demonstrations 𝜏

Ensure: Optimal policy 𝜋∗, optimal reward function 𝑅∗
1: while not converged do
2: Update Reward Function
3: 𝑅 ← NN(𝜽 )
4: Update Policy using Soft Q-Learning
5: 𝜋 ← Soft Q-Learning(S,A, 𝛾, 𝑅, 𝜖)
6: Compute Maximum Entropy Gradients
7: Compute 𝜕L

𝜕𝑅
using state-action distribution from 𝜏

8: Update Neural Network Weights
9: Backpropagate gradients and update NN weights 𝜽
10: end while
11: Return 𝑅∗, 𝜋∗

For further details, we refer the reader to Arora and Doshi [2],
which provides an extensive survey of IRL methods.

2.3 Reddit
Reddit is a social media platform and is the 6th most visited website
in the world (as of August 2024) [40]. The platform revolves around
user-created communities focused on specific topics or interests
called subreddits. Users personalize their content feed by following
subreddits, unlike other platforms where users follow individuals.

Subreddits are user-moderated, with each defining its own rules
and conduct guidelines, resulting in varied community dynamics
across the platform. The content structure of Reddit is hierarchical

Subreddit

...

.......

........ Posts

/r/...

Post

Comments

Subreddit

...

.......

........ Posts

/r/...

Post Post

Reddit

1 n

1 2 n

Figure 1: Hierarchical structure of Reddit. Reddit is divided
into numerous subreddits, with each subreddit consisting of
posts. Each post contains its own comment section with each
comment having its own comment tree.

(see Fig. 1); the platform is first divided into subreddits, under which
users may create and browse posts (also referred to as threads or
submissions) that initiate threaded discussions. Posts can contain
text along with media such as hyperlinks, images, or videos. Within
each post, users engage in discussions through comments, which
are text-based and can be nested to form conversation threads.

Reddit uses a voting system called “karma” to rank posts and
comments. Upvotes and downvotes determine the visibility of con-
tent, with highly upvoted items gaining prominence, while those
with negative karma are hidden. While a user’s overall karma is
displayed on their profile, it does not affect functionality.

The default content feed shows highly upvoted posts from sub-
scribed subreddits. Additional views include r/popular, which high-
lights popular posts across Reddit, and r/all, which displays all posts,
including potentially inappropriate (labeled NSFW) content.

3 Methodology
In this section, we introduce the framework for constructing a mea-
sure of behavioral homophily. Additionally, we outline the steps for
developing a topic-based homophily measure, a standard approach
in social network analysis, which we use in tandem with the pro-
posed method in our case study. Fig. 2 provides a visual summary of
the process, which is further elaborated in the subsequent sections.
The process follows these steps: (1) subreddit selection, (2) user
selection, (3) data collection, (4) data labeling, (5) policy learning
via IRL, and (6) homophily inference.

Before sampling, our raw data consists of 1.3 TB of compressed
text covering the entirety of Reddit during the period from Janu-
ary 1, 2015, to January 1, 2022. This data was collected using the
pushshift Reddit API [3].

3.1 Subreddit Selection
Our objective is to develop a general measure of homophily that
can be applied to diverse user groups with varying activity levels
and engagement in controversial discussions, which may influence
the degree of homophily or heterophily (anti-homophily) within
these groups. To ensure the robustness and generalizability of our

3
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Figure 2: Behavioral homophily inference framework for hierarchical social network data via Inverse Reinforcement Learning.

approach, we strive to select users with diverse views who interact
with a multitude of subreddits. However, while Reddit is organized
along subreddits, a user’s subreddit subscriptions are not publicly
available on Reddit. This makes it impossible to determine which
users are associated members of which subreddits, given any user
can post in any subreddit. The mere presence or activity in a sub-
reddit does not indicate how invested they are in that subreddit,
as there may be other subreddits on which they are more active.
Setting an arbitrary threshold for associating a user with a sub-
reddit is not intuitive due to the difference in total activity levels
between users. To address this issue, we introduce the concept of
a user’s home subreddit defined as the subreddit where the user is
most active based on their comments across all of Reddit.

To find the subreddits with dedicated and active user bases, we
first select a seed set of subreddits to determine those with the most
home users. This seed set covers a wide range of topics ranging from
general interest subreddits (e.g., r/news) to more controversial or
niche communities (e.g., r/The_Donald). More detailed information
on each subreddit is provided in Appendix A.

3.2 User Selection
We implemented a multi-step selection process to capture a rep-
resentative sample of users across the entire timeframe. First, we
compiled an initial user set based on activity levels across each
subreddit in the seed set. For each year, we rank users in each sub-
reddit by their activity, and we include the top 50 most active users
in the initial set. To capture a range of activity levels, we divided
the yearly rankings into quartiles and randomly sampled 50 users
from each quartile. This results in 250 users per subreddit per year.
Next, we examined an intermediary subset of 6, 000 users, selected
by randomly sampling one-third of the initial set. This step was
necessary because determining a user’s home subreddit requires
analyzing their activity across the entire platform, a time-intensive
process. From this subset, which contained 1,331 unique home sub-
reddits, we focused on the 15 subreddits with the most home users
for our case study, shown in Table 1. We then sampled 45 users from
each of the 15 home subreddits, matching the size of the smallest
subreddit in the group. After filtering out banned users and those
with deleted accounts, the final dataset comprised 662 users.

3.3 Data Collection
We extract all user activity from Reddit for each individual in our
sample. Direct user activity refers to actions explicitly initiated
by users, such as creating threads, root comments, and replies.
In addition, we capture indirect activity (first-order response) in

Table 1: Subreddits examined in our case study.

Subreddit Description

r/AskReddit A platform for users to pose open-ended questions to the
Reddit community.

r/AsianMasculinity Supportive space for Asian men to discuss societal and
dating challenges.

r/aznidentity Activist community promoting Pan-Asian identity and op-
posing anti-Asian racism.

r/Conservative Forum for discussing conservative politics and news.
r/leagueoflegends Discussions about gameplay, strategies, and news for the

video game League of Legends.
r/memes Sharing internet memes and humorous content.
r/MensRights Exploring issues related to men’s rights and societal roles.
r/Minecraft Community for Minecraft players and enthusiasts.
r/news News articles about current events worldwide for discus-

sion.
r/NoFap Peer support forum for porn addiction and compulsive

sexual behavior with a focus on abstinence.
r/politics Discussion of current political events and opinions.
r/soccer All topics related to association football: news, results, and

discussions.
r/teenagers Discussions relating to being a teenager.
r/The_Donald Former subreddit supporting Donald Trump; banned for

policy violations.
r/worldnews Major global news excluding US internal news.

the form of interactions triggered by the user’s actions within
Reddit’s hierarchical structure (cf. Fig. 1). This structure, modeled
as a directed acyclic graph, consists of parent-child relationships
where each action can have multiple descendants. For this analysis,
indirect activity is restricted to the first descendant (or “child”)
directly connected to the user’s action.

Both direct and indirect activities are integral to modeling the
conversational dynamics in which inverse reinforcement learning
(IRL) is applied. In cases where users have deleted their accounts
or their posts have been suspended, such content is marked as
unavailable. This missing data, which may introduce noise or out-
liers in constructing the topic homophily baseline, is systematically
handled during preprocessing by omitting the affected users.

3.4 Data Labeling
As highlighted in prior research, debates within the online land-
scape are dynamic and continuously evolving, with consensus for-
mation closely tied to the arguments shared by individual users.
Emotions, particularly emotionally charged content, contribute
to polarization [8], pushing users toward more extreme positions.
While linguistic features such as word choice and syntax are useful
for detecting polarization, they are not its primary drivers. Instead,
network attributes like echo chambers reinforce existing beliefs
and limit exposure to opposing viewpoints, further shaping the
trajectory of discussions [13].
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However, consensus-building relies fundamentally on the ele-
ments of agreement, disagreement, and neutrality, which are the
core drivers of how discussions unfold. These classifications are
commonly employed in opinion mining and argumentation the-
ory to analyze online discourse, also known as argumentation
(stance) classification [25]. We categorize each comment into three
categories–“agree,” “neutral,” or “disagree”–to better understand
user interactions (see below for technical details). Incorporating this
classification as an additional feature in our dataset enables deeper
analysis and provides insights into why users engage in discussions
on social media platforms. Furthermore, individual motivations and
decision-making processes may vary across communities, as these
dynamics are often subreddit-specific.
Argumentation Classification. For our classifier, we fine-tune
a pre-trained DeBERTaV3 model [19] using the DEBAGREEMENT
dataset [35]. This dataset consists of labeled comment-reply pairs
fromfive subreddits: r/BlackLivesMatter, r/Brexit, r/climate, r/democrats,
and r/Republican, with each pair labeled as “agree,” “neutral,” or
“disagree.” We selected the DeBERTaV3 model due to its strong per-
formance across a range of natural language processing tasks, and
because it shares the same model lineage as BERT, which was used
in [35]. For each input, the parent and reply text were concatenated,
and the model was trained to classify the interaction into one of
the three categories.
Topic Classification for Topic-based Homophily. We imple-
ment a baseline, topic-based homophily based on users’ discus-
sion topics. We use a pre-trained BERTopic model. BERTopic [18]
employs a transformer architecture combined with a class-based
term frequency-inverse document frequency (c-TF-IDF) weighting
scheme to generate a set of 𝐾 topics. From our sample of posts, we
derive 𝐾 = 484 distinct topics. Using these topics, we construct a
topic-based homophily measure, where each user’s activity is rep-
resented by a vector describing how frequently they communicated
within each topic over the observation period.

We provide further implementation details for each classification
step in Appendix A.3.

3.5 Policy Learning via IRL
To represent user interactions within Reddit, we must define an IRL
frameworkwithinwhichwe operate.We define the user as the agent
operating within an environment that encapsulates the entirety of
the Reddit platform, excluding the user themselves. Therefore, each
user agent is independent and does not directly interact with other
agents (they can interact indirectly, mediated by the environment).
We use maximum entropy deep inverse reinforcement learning
to recover a reward function based on a trajectory of constructed
state-action feature pairs. The user’s trajectory is constructed from
the stream of events that involve the user across all of Reddit, which
wemap into state-action feature pairs. We define the following state
features:

• Initial thread (IT). First or only interaction, creating a new thread.
• Initial root comment (IRC). First or only interaction, posting a

root comment.
• Initial reply (IR). First or only interaction, replying to a com-

ment, further split into agreement (𝐼𝑅+), neutrality (𝐼𝑅∼), and
disagreement (𝐼𝑅−).

• Engaged root comment (ERC). Already interacted, posting a root
comment.

• Engaged reply (ER). Already interacted, replying to a comment,
further split into agreement (𝐸𝑅+), neutrality (𝐸𝑅∼), disagree-
ment (𝐸𝑅−).

• Get reply (GR). Receiving a reply on any reply or comment, fur-
ther split into agreement (𝐺𝑅+), neutrality (𝐺𝑅∼), disagreement
(𝐺𝑅−).

In summary, this results in 12 states, with the agent always starting
in one of the three initial states. At each timestep, having observed
the state, the agent takes one of the following 6 actions, which
influences the next state the agent transitions to:
• Wait reply (WR). User waits for a reply to one of their comments.
• Create new thread (CT). Start a new discussion in the subreddit.
• Post root comment (RC). Directly comment on the thread’s origi-

nal post.
• Post reply comment (PR). Respond to another user’s comment,

creating a nested conversation. We further dissect this state
between agreement (𝑃𝑅+), neutrality (𝑃𝑅∼), disagreement (𝑃𝑅− ).

We infer the user’s policy 𝜋𝑢 from the user’s reward function using
value iteration. This policy can be represented as a 12 × 6 matrix,
where each row corresponds to the action distribution given a state.

3.6 Homophily Inference
After constructing a policy 𝜋𝑢 for each user 𝑢 via Inverse Reinforce-
ment Learning (IRL) (see Sections 2.2 and 3.5), we quantify user
homophily by analyzing the behavioral similarity of users.
Behavioral Homophily.We state that two users have high behav-
ioral homophily when their inferred policies are similar. We intro-
duce the Symmetric Weighted Kullback-Leibler Divergence (SWKL).
This measure extends the standard Kullback-Leibler (KL) diver-
gence [24] by incorporating visitation weights, assigning higher
importance to states that are frequently visited by each user indi-
vidually and down-weighting states that are rarely visited. This
weighting reduces the impact of noise from infrequent states, en-
suring that divergence is dominated by states where the user’s
behavior is more representative.

Each user’s behavior is characterized by a policy describing their
action distributions over states. LetU = {1, . . . ,𝑈 } denote the set
of users, where𝑈 is the total number of users and 𝑢 ∈ U. Formally,
let 𝜋𝑢 represent the policy of user 𝑢 over a finite set of states S
and actions A. For a given state 𝑠 ∈ S, 𝜋𝑠𝑢 is the distribution of
actions taken at state 𝑠 . The policy is inferred using IRL from the
user’s trajectory, 𝜏𝑢 = {(𝑠1, 𝑎1), . . . , (𝑠 |𝜏𝑢 | , 𝑎 |𝜏𝑢 | )}, which records
the sequence of states visited and actions taken by the user. To
account for how often each state is visited by user 𝑢, we define
the state weight as 𝑤𝑠𝑢 =

(∑ |𝜏𝑢 |
𝑘=1 1{𝑠𝑘=𝑠 }

)
/|𝜏𝑢 |, where 1{𝑠𝑘=𝑠 } is

the indicator function, taking the value 1 if the state 𝑠𝑘 = 𝑠 and 0
otherwise. This weight reflects the proportion of time user𝑢 spends
in state 𝑠 . The Symmetric Weighted Kullback-Leibler Divergence
(SWKL) between two users 𝑢 and 𝑢′ ∈ U is then defined as

SWKL(𝜋𝑢 , 𝜋𝑢′ ) =
1
2

∑︁
𝑠∈S

(
𝑤𝑠𝑢𝐷𝐾𝐿 (𝜋𝑠𝑢 ∥𝜋𝑠𝑢′ ) +𝑤

𝑠
𝑢′𝐷𝐾𝐿 (𝜋

𝑠
𝑢′ ∥𝜋

𝑠
𝑢 )
)
,

where 𝐷𝐾𝐿 (·∥·) denotes the KL divergence between two probabil-
ity distributions. By symmetrizing and weighting the divergence,
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SWKL provides a more balanced and robust measure of behavioral
similarity, emphasizing the most representative states for each user
while reducing sensitivity to rare state visits.
TopicHomophily.We further construct a baseline topic homophily
using the topic vector v𝑢 obtained from the topic classification (Sec-
tion 3.4). Two users have a high topical homophily if they emit
messages about similar topics. To quantify the similarity of topics
among users, we use cosine distance as our measure of topic ho-
mophily. For each user 𝑢, we construct a topic vector v𝑢 by using
the number of posts assigned to each of the 484 topics identified
by BERTopic. The cosine distance between two users 𝑢 and 𝑢′ is
given by

cos(v𝑢 , v𝑢′ ) = 1 − v⊤𝑢 v𝑢′
∥v𝑢 ∥∥v𝑢′ ∥

.

This provides a measure of topic alignment between users based
on the distribution of their posts across topics.

4 Case Study
This section presents our Reddit case study, focusing on subreddit-
specific criteria that capture the distinctive dynamics of group
conversations and individual user contributions. Instead of relying
solely on general homophily principles, we investigate the nuanced
interactions unique to each subreddit. We demonstrate that exam-
ining topics alone in a thematically organized platform like Reddit
provides limited insights. By incorporating user behavior–through
analysis of user policies–we reveal that homophily manifests differ-
ently across topical and behavioral dimensions. Our analysis centers
on home subreddits (as introduced in Section 3.2), representing the
subreddits with the most active primary commenters.

4.1 Homophily Across Subreddits
We explore homophily across users’ home subreddits along two
dimensions: topic and behavior (policy). Specifically, we examine
whether users who share the same primary subreddit exhibit similar
topical and behavioral patterns within and across their broader
activity on Reddit.
Subreddit Topic Homophily. We assess topic homophily by ask-
ing: “If two users primarily engage with the same subreddit, how
closely do their activities across Reddit align in terms of topics?” To
measure this, we compute the mean cosine distance between user
pairs across different subreddits. Formally, let C ⊂ U and C′ ⊂ U
represent the home users two distinct subreddits, where C∩C′ = ∅.
The mean cosine distance between these two subreddits is

cos(C, C′) = 1
|C| |C′ |

∑︁
𝑢∈C

∑︁
𝑢′∈C′

cos(v𝑢 , v𝑢′ ).

Fig. 3a presents the mean cosine distance across 15 subreddits.
Most subreddits exhibit the strongest topical homophily within
themselves, indicated by the diagonal, which shows that users who
post primarily in the same subreddit are more likely to engage in
similar topics across Reddit.

Notably, strong overlap is observed between r/AsianMasculinity and
r/aznidentity, likely due to their shared focus on Asian identity dis-
cussions in the US and the Western world. Another cluster with
substantial topic overlap includes r/news, r/worldnews, r/politics,
r/Conservative, and r/The_Donald. We attribute this to their shared

focus on broadly defined political events, particularly US politics.
Within this group, r/worldnews shows weaker overlap, likely due
to its policy of excluding US internal news, resulting in less topical
alignment. The overlap observed in the other subreddits–r/news,
r/politics, r/Conservative, and r/The_Donald–stems from their pre-
dominant focus on American politics. Given that subreddits are
thematically organized, it is unsurprising that users’ topics align
with the primary subreddit they engage in.
Subreddit Behavioral Homophily. We examine how behavioral
homophily, as reflected in user policies, aligns with home subreddits.
Using the same method as for topic homophily, we compute the
mean SWKL between users from different subreddits. Formally, the
mean SWKL between two subreddits C and C′, representing their
home users, is expressed as

SWKL(C, C′) = 1
|C| |C′ |

∑︁
𝑢∈C

∑︁
𝑢′∈C′

SWKL(𝜋𝑢 , 𝜋 ′𝑢 ).

Fig. 3b illustrates the mean SWKL across 15 subreddits. Com-
pared to topic homophily, user policy shows weaker alignment with
home subreddits, with most subreddits displaying overlap with oth-
ers and none being entirely unique in behavior. This is intuitive,
as users can deploy similar behaviors around very different topics
(and subreddits are topically defined).

Two distinct sets of subreddits exhibit substantial internal policy
overlap. The first set covers topics such as politics and activism and
includes r/worldnews, r/news, r/politics, r/soccer , r/leagueoflegends,
r/Conservative, and r/MensRights. The second group covers gaming
and youth topics, and consists of r/NoFap, r/memes, r/teenagers, and
r/Minecraft. The lack of overlap between these groups makes sense,
as they serve very different purposes and cater to different cohorts,
which in turn exhibit different behaviors. Interestingly, r/NoFap
and r/memes shows weaker internal policy alignment, suggesting
greater user behavioral diversity. Additionally, we find that topic
and policy homophily can diverge. For example, r/AsianMasculinity
and r/aznidentity demonstrate strong topical overlap but weak pol-
icy similarity, indicating that while users discuss similar subjects,
their user posting behaviors vary substantially.

4.2 Behavioral Personas Across Reddit
Here, we explore whether users can be grouped solely based on their
behavior. We apply k-means clustering to user policies, selecting
𝑘 = 5 based examining the tradeoff between the silhouette score
and the gap statistic for various values of 𝑘 (see Appendix B for an
in-depth analysis).
Five Behavioral Personas. We interpret each of the obtained
clusters as a behavioral persona, and Fig. 3c summarizes the action
composition across each cluster:
Thread Creators (25 users) focus on creating new threads rather
than engaging with existing content; they have a high probability
for the 𝐶𝑇 action (see Section 3.5). Example: user posts a question
and does not interact with the thread any further.
Root Only users (114 users) primarily interact with root posts by
posting first-level comments. They have minimal engagement with
other replies. Example: user answers the questions in the post but
does not engage in any other way with the thread.
Root Favored users (263 users) – similar to Root Only, users pre-
fer to reply to root comments; however, they occasionally post
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Figure 3: The mean similarity between pairs of subreddits, with darker colors indicating greater similarity: (a) topical (cosine
distance) similarity and (b) behavioral (SWKL) similarity. (c) Cluster action composition.
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replies without a preference for agreement (𝑃𝑅+), neutrality (𝑃𝑅∼),
disagreement (𝑃𝑅−).
Balanced Users (136 users) display a balanced approach, with a slight
preference for replies over root comments.
Disagreers (124 users) frequently post disagreeing replies, especially
in response to disagreement; interestingly, they do not seek to
engage in discussions beyond their disagreeing reply as they do
not wait for additional replies (low𝑊𝑅 action).
Posting and Reacting to Content vs. Disagreers. Fig. 4 shows
the distribution of these personas across subreddits, revealing sig-
nificant variability. Overall, 57% of users are classified as either
“Root Favored” or “Root Only,” preferring root posts over discus-
sions. Subreddits with a focus on political discussion, such as r/news,
r/worldnews, and r/politics, have a higher proportion of “Disagreers.”
Interestingly, r/The_Donald, despite its political focus, has a low
proportion of “Disagreers” (5 out of 45 users). A qualitative review
of 100 comments reveals that while much of the content is abu-
sive or hateful, users tend to agree, targeting hate toward specific
individuals rather than engaging in debate against each other.

In contrast, subreddits like r/memes, r/NoFap, r/teenagers, and
r/Minecraft have no “Disagreers”, reflecting their non-political na-
ture. In subreddits without “Disagreers”, there is a higher proportion
of “Root Only” users, despite their varied themes. A qualitative re-
view of 20 threads per subreddit reveals a common pattern: threads
typically start with a meme or image, seeking validation rather

than extended discussion. “Thread Creators” are sparse and tend to
focus on specific subreddits, often their home subreddit or closely re-
lated ones. For example, a frequent commenter in r/leagueoflegends
primarily creates threads in r/Lolboosting, a subreddit for account
boosting in League of Legends.

4.3 Homophily Across Home Users
We investigate the relationship between topical and behavioral
(policy) homophily to answer the question: “Do topically aligned
users exhibit similar behaviors?”

We analyze pairs of subreddits using the Spearman correlation
test – a non-parametric test capturing both linear and non-linear re-
lationships. Specifically, we test the pairwise SWKL values between
users of subreddits C and C′, defined as the set {SWKL(𝑢,𝑢′) | 𝑢 ∈
C, 𝑢′ ∈ C′}, as well as pairwise cosine distances between users, rep-
resented as {cos(v𝑢 , v𝑢′ ) | 𝑢 ∈ C, 𝑢′ ∈ C′}. A 5% significance level
is applied, with Bonferroni correction for multiple comparisons.
Behavioral and Topical Homophily Mostly Agree. The results,
displayed in Fig. 5a, show that most subreddits exhibit a positive
correlation (red), meaning that users with similar topical prefer-
ences tend to exhibit similar behaviors. Non-significant results are
shown in gray. An exception arises between r/leagueoflegends and
r/soccer , which show a negative correlation (blue). This suggests
that, in these subreddits, the more similar users are behaviorally,
the less likely they are to share topical interests.
The r/soccer-r/leagueoflegendsAnomaly.We further explore the
relation between r/soccer and r/leagueoflegends by comparing the
topics discussed in each subreddit. We construct the topic vectors
from 1.5 million randomly sampled comments using BERTopic, clas-
sifying the comments into one of the 484 topics extracted in data
labeling (see Section 3.4). The cosine distance between the topic vec-
tors for r/leagueoflegends and r/soccer is 0.944, indicating minimal
thematic overlap between the discussion of the two subreddits. The
anomaly clears when we consider the behavioral homophily. Fig. 6
plots users’ cosine distance from their home subreddit topic vector
(x-axis) against their SWKL from soccer users (y-axis). We observe
that users more aligned with their home subreddit topics tend to
have lower SWKL, suggesting that deeper engagement with a sub-
reddit leads to behavioral convergence. We hypothesize that this
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Figure 5: (a) Spearman correlation between subreddit topic and behavioral homophily. Statistically non-significant results are
indicated in gray. (b) Temporal stability of homophily by home subreddits. (c) Temporal stability of homophily by clusters.
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Figure 6: Comparison of r/soccer and r/leagueoflegends users:
Topical (Cosine) vs. behavioral (SWKL) distances. Smaller
values indicate greater homophily and lower divergence.

convergence arises from shared user characteristics between sports
and e-sports communities, where users exhibit similar behaviors
despite engaging with distinct topics.

4.4 Homophily Stability Over Time
To analyze the evolution of user behavior and topic interests over
time, we partition each user’s trajectory into annual segments. Let
𝜏𝑢 represent the complete trajectory of user𝑢, and 𝜏𝑢,𝑡 the trajectory
for year 𝑡 , where 𝑡 ∈ {1, . . . ,𝑇 } denotes the observation period. For
each year, we calculate a user-based homophily measure,ℎ𝑚𝑢 , where
𝑚 ∈ {v, 𝜋} corresponds to either topic-based homophily (using
v) or behavioral homophily (using 𝜋 ). We compute the change in
homophily between consecutive years asΔ𝑚,𝑢

𝑡,𝑡+1 = ℎ
𝑚
𝑢 (𝑡+1)−ℎ𝑚𝑢 (𝑡),

for 𝑡 ∈ {1, . . . ,𝑇 − 1}. To quantify the stability of homophily over
time, we calculate the coefficient of variation (CV) as CV𝑚𝑢 =

𝜎𝑚𝑢
𝜇𝑚𝑢

,
where 𝜎𝑚𝑢 is the standard deviation and 𝜇𝑚𝑢 is the mean of the
homophily changes {Δ𝑚,𝑢

𝑡,𝑡+1}
𝑇−1
𝑡=1 . Since CV is a relative measure,

variations in the scale of homophily are insignificant.
The comparison of temporal stability (CV) for both topic and be-

havioral homophily reveals no significant patterns (cf. Fig. 5b), with
overall variability remaining consistent across subreddits. How-
ever, a closer examination of user roles (cf. Fig. 5c) uncovers more
nuanced differences. “Thread Creators” exhibit lower Policy CV,

indicating stable behavior over time, but show greater variability in
Topic CV, suggesting that while they regularly initiate discussions,
their topic interests vary considerably. In contrast, “Disagreers” dis-
play higher variability in Policy CV, reflecting their more reactive
and unpredictable engagement patterns.

These findings underscore the importance of incorporating both
topic and behavioral homophily, as focusing solely on topics misses
key aspects of user behavior. Behavioral dynamics, especially in
relation to user roles and subreddit interactions, are essential in
understanding user engagement patterns on Reddit.

5 Conclusion
In this study, we demonstrated that behavioral homophily can
be inferred from hierarchical discussion data using inverse rein-
forcement learning. Our findings indicate that, across various user
groups, the behavioral homophily measure closely aligns with tradi-
tional value-based (topic) homophily. Additionally, we highlighted
the significant role that consensus mechanisms play in shaping
user engagement within online discussions. This approach is partic-
ularly powerful for platforms with largely anonymous users, where
traditional social network-based homophily measures—relying on
explicit network features—are often unavailable. By facilitating
more granular insights into individual user behaviors, this method
offers a unique lens through which to analyze engagement patterns.

However, the approach does come with limitations.First, in the
case of Reddit, the platform provided access to its complete uncen-
sored hierarchical conversation structure, allowing us to examine
both direct and indirect user activity. As many platforms increas-
ingly restrict data access [11], applying this method universally
becomes more challenging. Second, IRL is highly dependent on the
size of the state and action space, requiring substantial amounts
of data to avoid biased estimations. On platforms with sparse data,
convergence to meaningful results is not guaranteed, limiting the
approach’s effectiveness in these contexts.

Finally, by analyzing a diverse selection of subreddits—including
general, niche, and controversial content—we uncovered the intrin-
sic drivers motivating individuals to engage in online discourse.
This analysis provided deeper insights into the dynamics of online
communities and the underlying factors shaping user interaction
and participation.
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A Dataset
In Section 3, we provided a brief overview of the steps used to
construct our behavioral homophily measure from hierarchical
Reddit data. In this section, we delve deeper into key aspects of the
data selection process and offer insights into the data underlying
this study. In Fig. 7, we visualize user activity on Reddit as a graph,
highlighting the relationships between different subreddits.

A.1 Extended Details on Subreddits
A comprehensive discussion of the topic selection is provided in
Section 3.1, where a diverse set of subreddits is selected to sample
from in Table 1. Below, we offer further insights into each subreddit
in our initial seed set, focusing on their relevance to this study
in terms of discussion dynamics and perceptions of controversial
content.

A.1.1 r/The_Donald. r/The_Donald was a subreddit dedicated to
Donald Trump and his supporters, created in June 2015 following
Trump’s announcement of his presidential campaign. It quickly
became one of the platform’s most active communities, playing
a significant role in the alt-right movement surrounding Trump,
particularly during his campaign and presidency. The subreddit
was closely monitored by Trump’s team due to its influence [37].

The community was known for creating and spreading media
content, such as memes, that used humor and visuals to promote
political messages. However, it also faced several controversies.
Moderators and users actively manipulated Reddit’s content algo-
rithm to boost r/The_Donald posts on r/all, the platform’s feed for
all subreddit content, prompting Reddit to alter its algorithm in
response [22].

A.1.2 r/NoFap. r/NoFap is a subreddit promoting abstinence from
pornography and masturbation. The community has faced criticism
for fostering sexist and misogynistic rhetoric, including the idoliza-
tion of testosterone and masculinity, the objectification of women
as rewards, and the shaming of sexually active women [6, 42].

A.1.3 r/aznidentity and r/AsianMasculinity. r/aznidentity and
r/AsianMasculinity are subreddits centered on issues affectingAsian-
American men and the broader Asian male diaspora in the Western
world. Discussions frequently address the sexual emasculation of
Asian men in Western culture, often accompanied by misogynis-
tic undertones, including claims that Asian-American women in
interracial relationships contribute to perpetuating this stereotype.

A.1.4 r/Conservative. r/Conservative is a subreddit centered on
conservative ideologies, politics, and current events, primarily from
a right-leaning perspective. The community presents itself as a
platform for like-minded individuals to share news, opinion pieces,
and engage in discussion. Conversations are largely focused on
American politics, with far-right elements frequently present.

A.1.5 r/MensRights. The r/MensRights subreddit claims to focus
on men’s issues and advocate for gender equality. However, it has

been criticized for its anti-feminist and often misogynistic tone, as
well as for promoting narratives that downplay or deny systemic
gender inequalities faced by women.

A.1.6 TwoXChromosomes. r/TwoXChromosomes is a subreddit aimed
at providing a supportive space for discussions focused on women’s
perspectives, experiences, and issues. However, the community
has faced criticism for its moderation practices, where dissenting
opinions are often downvoted, dismissed, or removed, potentially
perpetuating a victimhood narrative and oversimplifying complex
gender issues.

A.1.7 r/communism. The r/communism subreddit focuses on dis-
cussions, news, and perspectives related to Communist and Marxist
political and economic ideologies. It has been criticized for its strict
moderation policies and for promoting authoritarian regimes and
ideologies.

A.1.8 r/Antiwork. The r/Antiwork subreddit is a community fo-
cused on discussions about working conditions and labor activism.
Originally created to explore anti-work ideology within post-left
anarchism, it has since expanded to encompass broader left-wing
critiques of traditional work culture, with users advocating for
reevaluating societal norms around work, labor, and capitalism.
Moderators have expressed a vision for a society where people
either don’t need to work at all or have greatly reduced work obli-
gations. The subreddit has faced criticism for promoting an overly
simplistic view of work and productivity, and for endorsing and
celebrating laziness.

A.1.9 Non-Social-Political Subreddits. To compare with the pre-
viously controversial communities, we also examine several non-
social-political subreddits, including:

• r/minecraft: A subreddit focused on discussions about the
open-world sandbox game Minecraft.

• r/soccer : A subreddit dedicated to the discussion of associa-
tion football.

• r/news and r/worldnews: Two news-focused subreddits.
r/worldnews differs in moderation by actively filtering US-
centric news and US political content.

• r/fuckcars: A subreddit opposing car-centric lifestyles and
the automobile industry, where users share memes, stories,
and discussions on the negative societal and environmental
impacts of car culture.

A.2 Descriptive Statistics
After selecting the subreddits and users, we proceeded to collect
data for the representative sample. This involved extracting all
platform interactions relevant to constructing the state and action
spaces for each user, including direct user activity and first-order
responses. An overview of the state and action distributions is
provided in Fig. 8 and Fig. 9.

Remark. Additionally, we recognize that certain platform in-
teractions, such as upvotes or downvotes, are not included in our
analysis, which may introduce a minor bias. While users can en-
gage with content in these ways on Reddit, the available public
data and the timing of conversation snapshots do not allow for
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Figure 7: Graph of user activity between subreddits on Reddit. Nodes represent home subreddits, with their size and labels
indicating the amount of outward activity from home users. The color of each node reflects the activity it receives from other
subreddits. Edges represent inter-subreddit activity, with the color and thickness of the edge head indicating the volume of
activity.

reliable tracking of when these actions occurred. As a result, we
have excluded them from our analysis.

A.3 Post Labeling
A.3.1 Argumentation Classification. We fine-tune a pre-trained
DeBERTaV3 model for argumentation classification, as outlined

in Section 3.4. Using the HuggingFace [43] implementation of De-
BERTaV3, we fine-tuned the model with the pretrained weights
“microsoft/deberta-v3-base". The model was optimized using the
AdamW optimizer with a learning rate of 0.5× 10−4, a batch size of
8, and trained for 3 epochs with a warm-up of 500 steps. We applied
an 8:1:1 training, validation, and test split to the DEBAGREEMENT
dataset [35], comparing the performance of BERT, RoBERTa, and
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Figure 8: User state visitation frequency, separated by home subreddit.
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Figure 9: User action visitation frequency, separated by home subreddit.

DeBERTaV3. Unlike Pougué-Biyong et al. [35], we did not preserve
the temporal order in our splits. Additionally, we explored other
pre-trained models. The results, shown in Table 2, indicate that
DeBERTaV3 outperforms both our own experiments with BERT
and RoBERTa, as well as all reported results from Pougué-Biyong
et al. [35].

A.3.2 Topic Classification. As described in Section 3.4, we use a
pre-trained BERTopic model [18] to extract a set of 𝐾 topics for

Pretrained Model Accuracy F1

BERT 0.666 0.664
Roberta 0.671 0.669
DeBERTaV3 0.683 0.680

Table 2: Empirical results for fine-tuning disagreement classi-
fication on the DEBAGREEMENT dataset. The highest scores
are highlighted in bold.
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building our topic homophily baseline. We use the HuggingFace
implementation of BERTopic for this task.

To create the document set for topic extraction, we collect all
comments and submissions from our 662 users. Submissions are
considered based solely on their title text, ignoring body content,
images, videos, and links. We apply preprocessing by removing
stop-words using NLTK [4] and filtering out empty, deleted, or
removed titles and comments.

This results in a dataset of 5,910,728 documents, on which we
apply BERTopic to extract topics. We set a minimum threshold of
1,000 documents per topic to limit the number of topics, yielding
𝐾 = 484 distinct topics.

B Behavioral Personas Clustering
To select the optimal value of 𝑘 for 𝑘-means clustering of user poli-
cies in Section 4.2, we used a combination of the Gap Statistic and
Silhouette Score. The Gap Statistic compares the total within-cluster
variation for different 𝑘 values to the expected variation under a
uniform data distribution, while the Silhouette Score measures clus-
ter separation, with higher scores indicating better-defined clusters.
We explored 𝑘 values between 2 and 10, as shown in Fig. 10.

The two measures provided conflicting results: the Silhouette
Score favored 𝑘 = 2, while the Gap Statistic suggested 𝑘 = 10.
To reconcile this, we examined the largest drops in the Silhouette
Score, aiming to select 𝑘 before the largest drop to preserve cluster
separation. While the largest drop occurred between 𝑘 = 2 and
𝑘 = 3, such a small value of 𝑘 was not informative for our analysis.
We instead considered the next largest drop, between 𝑘 = 5 and
𝑘 = 6.

To balance this with the Gap Statistic, we examined the delta of
the Gap Statistic across values of 𝑘 , using a threshold of 0.05 for
the change. This threshold was met between 𝑘 = 5 and 𝑘 = 6 (see
Fig. 11). Based on these findings, we selected 𝑘 = 5 as a compromise
between the two measures.
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Figure 10: Silhouette score for 𝑘-means clustering.

C Validation
Our method for measuring behavioral homophily employs maxi-
mum entropy deep inverse reinforcement learning (Deep-IRL). In
Appendix C.1, we outline the hyperparameters used, followed by
an analysis of the descriptive power of the inferred user policies

2 3 4 5 6 7 8 9 10

Number of clusters (k)

0.0

0.5

1.0

1.5

2.0

2.5

G
a
p

st
a
ti

st
ic

Gap statistic

Optimal k: 10

0.0

0.1

0.2

0.3

0.4

0.5

A
b

so
lu

te
re

la
ti

v
e

g
a
p

st
a
ti

st
ic

Abs. rel. gap statistic

Figure 11: Gap statistic for 𝑘-means clustering.

(Appendix C.2) and insights into the symmetric weighted Kullback-
Leibler divergence scores across subreddits (Appendix C.3).

C.1 Hyperparameters for Deep-IRL
In this section, we summarize the key hyperparameters used in all
experiments (see Table 3). For readers unfamiliar with Inverse Rein-
forcement Learning (IRL), we recommend consulting foundational
IRL literature, as these hyperparameters differ in important ways
from those typically used in more complex reinforcement learning
tasks.

Hyperparameter Value

Learning rate 0.01
Epochs 1000
Discount factor (𝛾 ) 0.9
Convergence threshold (𝜖) 0.01
Weight initialization (𝑤 ) Normal
Optimizer Adam
Neural network structure (12, 3, 3)

Table 3: Hyperparameters for Deep-IRL.

C.2 Descriptiveness of User Policy
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Figure 12: Validation of user policies against 1,000 randomly
generated policies.
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Figure 13: Dendogram of SWKL.

User policies do not account for topic content, which can lead
to state and action spaces that are either too sparse or too dense,
making it difficult to generate unique, distinguishable policies. We
validate the descriptive accuracy of inferred policies by comparing
the log-likelihood of a user’s actual trajectory under their own
policy against that of randomly generated policies. These random
policies are created by sampling a probability distribution over the
six possible actions for each of the 12 states. Since the agent’s be-
havior follows the Markov property, the normalized log-likelihood
is calculated as a sum over all actions in the trajectory, conditioned
on the state. We define the normalized log-likelihood of observing

trajectory 𝜏𝑢 = {(𝑠1, 𝑎1), (𝑠2, 𝑎2), . . . , (𝑠 |𝜏𝑢 | , 𝑎 |𝜏𝑢 | )} under the user
policy 𝜋 as

L(𝜏 |𝜋) = 1
𝑇

|𝜏𝑢 |∑︁
𝑘=1

log
(
𝜋 (𝑎𝑘 |𝑠𝑘 )

)
. (1)

This allows us to rank the most likely policy for each user’s tra-
jectory by comparing the log-likelihood of each policy on the user’s
trajectory to all other policies. Intuitively, if the inferred policies
accurately describe the user, the user’s demonstrated trajectory
should be more likely under their own policy than under random
policies, meaning their policy should rank near the top.

We test each user’s policy against 1,000 randomly generated
policies, with the results shown in Fig. 12. The majority of users
rank first, indicating that the inferred policies contain descriptive
information about the user.

C.3 Subreddit Clustering with SWKL
In Fig. 3b, we presented the symmetric weighted Kullback-Leibler
(KL) divergence across subreddits, showing that, compared to topic
homophily, this measure of behavioral homophily reveals greater
similarity between subreddits, suggesting similar user behavior
across different communities. To further investigate behavioral
homophily, we performed hierarchical clustering, with the resulting
dendrogram shown in Fig. 13.

The groupings reinforce several key findings, such as the con-
nections between current events and political subreddits–r/politics,
r/news, and r/worldnews–which feature significant numbers of "Dis-
agreers." We also observe behavioral similarities between users of
r/soccer and r/leagueoflegends. Additionally, r/NoFap and r/memes,
two subreddits with weak internal behavioral alignment, form a
distinct cluster apart from the others.
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