
Published as a conference paper at ICLR 2023

LATENT STATE MARGINALIZATION AS A LOW-COST
APPROACH FOR IMPROVING EXPLORATION

Dinghuai Zhang∗, Aaron Courville, Yoshua Bengio
Mila, University de Montreal

Qinqing Zheng, Amy Zhang, Ricky T. Q. Chen
Meta AI (FAIR)

ABSTRACT

While the maximum entropy (MaxEnt) reinforcement learning (RL) framework—
often touted for its exploration and robustness capabilities—is usually motivated
from a probabilistic perspective, the use of deep probabilistic models has not
gained much traction in practice due to their inherent complexity. In this work,
we propose the adoption of latent variable policies within the MaxEnt framework,
which we show can provably approximate any policy distribution, and additionally,
naturally emerges under the use of world models with a latent belief state. We
discuss why latent variable policies are difficult to train, how naı̈ve approaches
can fail, then subsequently introduce a series of improvements centered around
low-cost marginalization of the latent state, allowing us to make full use of the
latent state at minimal additional cost. We instantiate our method under the actor-
critic framework, marginalizing both the actor and critic. The resulting algorithm,
referred to as Stochastic Marginal Actor-Critic (SMAC), is simple yet effective.
We experimentally validate our method on continuous control tasks, showing that
effective marginalization can lead to better exploration and more robust training.
Our implementation is open sourced at https://github.com/zdhNarsil/
Stochastic-Marginal-Actor-Critic.

1 INTRODUCTION

Figure 1: The world model () infers latent states
() from observation inputs (). While most ex-
isting methods only take one sample or the mean
from this latent belief distribution, the agent ()
of the proposed SMAC algorithm marginalizes out
the latent state for improving exploration. Icons
are adapted from Mendonca et al. (2021).

A fundamental goal of machine learning is to
develop methods capable of sequential decision
making, where reinforcement learning (RL) has
achieved great success in recent decades. One
of the core problems in RL is exploration, the
process by which an agent learns to interact with
its environment. To this end, a useful paradigm
is the principle of maximum entropy, which de-
fines the optimal solution to be one with the
highest amount of randomness that solves the
task at hand. While the maximum entropy (Max-
Ent) RL framework (Todorov, 2006; Rawlik
et al., 2012) is often motivated for learning com-
plex multi-modal1 behaviors through a stochas-
tic agent, algorithms that are most often used in
practice rely on simple agents that only make local perturbations around a single action. Part of this
is due to the need to compute the entropy of the agent and use it as part of the training objective.

Meanwhile, the use of more expressive models have not gained nearly as much traction in the
community. While there exist works that have increased the flexibility of their agents by making
use of more complex distributions such as energy-based models (Haarnoja et al., 2017), normal-
izing flows (Haarnoja et al., 2018a; Ward et al., 2019), mixture-of-experts (Ren et al., 2021), and

∗Work done during an internship at Meta AI. Correspondence to: <dinghuai.zhang@mila.quebec>.
1By multi-modality, we’re referring to distributions with different and diverse modes.

1

https://github.com/zdhNarsil/Stochastic-Marginal-Actor-Critic
https://github.com/zdhNarsil/Stochastic-Marginal-Actor-Critic

Published as a conference paper at ICLR 2023

autoregressive models (Zhang et al., 2021b), these constructions often result in complicate training
procedures and are inefficient in practice.

Instead, we note that a relatively simple approach to increasing expressiveness is to make use of
latent variables, providing the agent with its own inference procedure for modeling stochasticity
in the observations, environment, and unseen rewards. Introducing latent variables into the policy
makes it possible to capture a diverse set of scenarios that are compatible with the history of
observations. In particular, a majority of approaches for handling partial observability make use
of world models (Hafner et al., 2019; 2020), which already result in a latent variable policy, but
existing training algorithms do not make use of the latent belief state to its fullest extent. This is due
in part to the fact that latent variable policies do not admit a simple expression for its entropy, and we
show that naı̈vely estimating the entropy can lead to catastrophic failures during policy optimization.
Furthermore, high-variance stochastic updates for maximizing entropy do not immediately distinguish
between local random perturbations and multi-modal exploration. We propose remedies to these
aforementioned downsides of latent variable policies, making use of recent advances in stochastic
estimation and variance reduction. When instantiated in the actor-critic framework, the result is a
simple yet effective policy optimization algorithm that can perform better exploration and lead to
more robust training in both fully-observed and partially-observed settings.

Our contributions can be summarized as follows:

• We motivate the use of latent variable policies for improving exploration and robustness to
partial observations, encompassing policies trained on world models as a special instance.

• We discuss the difficulties in applying latent variable policies within the MaxEnt RL
paradigm. We then propose several stochastic estimation methods centered around cost-
efficiency and variance reduction.

• When applied to the actor-critic framework, this yields an algorithm (SMAC; Figure 1) that
is simple, effective, and adds minimal costs.

• We show through experiments that SMAC is more sample efficient and can more robustly
find optimal solutions than competing actor-critic methods in both fully-observed and
partially-observed continuous control tasks.

2 BACKGROUND

2.1 MAXIMUM ENTROPY REINFORCEMENT LEARNING

We first consider a standard Markov decision process (MDP) setting. We denote states xt ∈ S and
actions at ∈ A, for timesteps t ∈ N. There exists an initial state distribution p(x1), a stochastic
transition distribution p(xt|xt−1,at−1), and a deterministic reward function rt : S×A → R. We can
then learn a policy π(at|xt) such that the expected sum of rewards is maximized under trajectories
τ ≜ (x1,a1, . . . ,xT ,aT) sampled from the policy and the transition distributions.

While it is known that the fully-observed MDP setting has at least one deterministic policy as a
solution (Sutton & Barto, 2018; Puterman, 1990), efficiently searching for an optimal policy generally
requires exploring sufficiently large part of the state space and keeping track of a frontier of current
best solutions. As such, many works focus on the use of stochastic policies, often in conjunction with
the maximum entropy (MaxEnt) framework,

max
π

Ep(τ)

[∞∑
t=0

γt (rt(xt,at) + αH(π(·|xt)))

]
,whereH(π(·|xt)) = Eat∼π(·|xt) [− log π(at|xt)] ,

(1)
where p(τ) is the trajectory distribution with policy π,H(·) is entropy and γ is a discount factor.

The MaxEnt RL objective has appeared many times in the literature (e.g. Todorov (2006); Rawlik
et al. (2012); Nachum et al. (2017)), and is recognized for its exploration (Hazan et al., 2019) and
robustness (Eysenbach & Levine, 2022) capabilities. It can be equivalently interpreted as variational
inference from a probabilistic modeling perspective (Norouzi et al., 2016; Levine, 2018; Lee et al.,
2020a). Intuitively, MaxEnt RL encourages the policy to obtain sufficiently high reward while acting
as randomly as possible, capturing the largest possible set of optimal actions. Furthermore, it also

2

Published as a conference paper at ICLR 2023

optimizes policies to reach future states where it has high entropy (Haarnoja et al., 2017), resulting in
improved exploration.

Soft Actor-Critic A popular algorithm for solving MaxEnt RL is Soft Actor-Critic (SAC; Haarnoja
et al. (2018b)), which we directly build on in this work due to its reasonable good performance and
relative simplicity. Briefly, SAC alternates between learning a soft Q-function Q(xt,at) that satisfies
the soft Bellman equation,

Q(xt,at) = rt(xt,at) + γEat+1∼π(·|xt+1),xt+1∼p(·|xt,at) [Q(xt+1,at+1) + αH(π(·|xt+1))] , (2)

and learning a policy with the maximum entropy objective,

max
π

Ext∼DEπ(at|xt) [Q(xt,at) + αH(π(·|xt))] . (3)

where states are sampled from a replay buffer D during training. In practice, SAC is often restricted
to the use of policies where the entropy can be computed efficiently, e.g. a factorized Gaussian policy
for continuous control environments. This allows random movements to occur as noise is added
independently for each action dimension. Our proposed approach, on the other hand, introduces a
structure in the exploration noise level.

2.2 WORLD MODELS FOR PARTIALLY-OBSERVED ENVIRONMENTS

In many practically motivated settings, the agents only have access to certain observations, e.g. partial
states, and the complete states must be inferred through observations. This can be modelled through
the partially observed MDP (POMDP) graphical model, which encompasses a wide range of problem
settings involving uncertainty. POMDP can be used to model uncertainty in the state, reward, or even
the transition model itself (Åström, 1964). Here, the optimal policy must take into account these
uncertainties, naturally becoming stochastic and may exhibit multi-modal behaviors (Todorov, 2006).
Notationally, we only have access to observations xt ∈ X with incomplete information, while the
latent state st ∈ S is unobserved, leading to a latent state transition distribution p(st|st−1,at−1),
observation distribution p(xt|st), and reward function rt(st,at).

In order to tackle this regime, people have resorted to learning world models (Deisenroth & Ras-
mussen, 2011; Ha & Schmidhuber, 2018) that attempt to learn a belief state conditioned on the history
of observations and actions, typically viewed as performing variational inference on the POMDP,
i.e. the world model is then responsible for tracking a belief state st, which is update based on new
observations through an inference model q(st|st−1,at−1,xt). The POMDP and the inference model
are often jointly trained by maximizing a variational bound on the likelihood of observations,

log p(x1:T |a1:T) ≥ Eq

[
T∑

t=1

log p(xt|st)−DKL(q(st|st−1,at−1,xt)∥p(st|st−1,at−1))

]
. (4)

The world model is then typically paired with a policy that makes use of the belief state to take
actions, i.e. π(at|st) with st ∼ q(st|a<t,x≤t), as the assumption is that the posterior distribution
over st contains all the information we have so far regarding the current state.

3 STOCHASTIC MARGINAL ACTOR-CRITIC (SMAC)
We now discuss the use of latent variables for parameterizing policy distributions, and how these
appear naturally under the use of a world model. We discuss the difficulties in handling latent variable
policies in reinforcement learning, and derive cost-efficient low-variance stochastic estimators for
marginalizing the latent state. Finally, we put it all together in an actor-critic framework.

3.1 LATENT VARIABLE POLICIES

We advocate the use of latent variables for constructing policy distributions as an effective yet simple
way of increasing flexibility. This generally adds minimal changes to existing stochastic policy
algorithms. Starting with the MDP setting, a latent variable policy (LVP) can be expressed as

π(at|xt) :=

∫
π(at|st)q(st|xt) dst, (5)

3

Published as a conference paper at ICLR 2023

where st is a latent variable conditioned on the current observation. In the MDP setting, the
introduction of a latent q(st|xt) mainly increases the expressiveness of the policy. This thus allows
the policy to better capture a wider frontier of optimal actions, which can be especially helpful during
the initial exploration when we lack information regarding future rewards. We discuss extensions to
POMDPs shortly in the following section, where the policy is conditioned on a history of observations.

For parameterization, we use factorized Gaussian distributions for both π(at|st) and q(st|xt). Firstly,
this results in a latent variable policy that is computationally efficient: sampling and density eval-
uations both remain cheap. Furthermore, this allows us to build upon existing stochastic policy
algorithms and architectures that have been used with a single Gaussian distribution, by simply
adding a new stochastic node st. Secondly, we can show that this is also a sufficient parameterization:
with standard neural network architectures, a latent variable policy can universally approximate any
distribution if given sufficient capacity. Intuitively, it is known that a mixture of factorized Gaussian is
universal as the number of mixture components increases, and we can roughly view a latent variable
model with Gaussian-distributed π and q as an infinite mixture of Gaussian distributions.

Proposition 1. For any d-dimensional continuous distribution p∗(x), there exist a sequence of
two-level latent variable model pn(x) =

∫
pn(x|z)pn(z) dz, n ∈ N+ that converge to it, where both

pn(x|z) and pn(z) are factorized Gaussian distributions with mean and variance parameterized by
neural networks.

Proof can be found in Appendix D.1.

3.1.1 WORLD MODELS INDUCE LATENT VARIABLE POLICIES

Perhaps unsurprisingly, latent variables already exist as part of many reinforcement learning works.
In particular, in the construction of probabilistic world models, used when the environment is highly
complex or only partially observable. Some works only use intermediate components of the world
model as a deterministic input to their policy distribution (e.g. Lee et al. (2020a)), disregarding
the distributional aspect, while other approaches use iterative methods for producing an action (e.g.
Hafner et al. (2020)). We instead simply view the world model for what it is—a latent state inference
model—which naturally induces a latent variable policy,

π(at|a<t,x≤t) =

∫
π(at|st)q(st|a<t,x≤t) dst. (6)

st−1 st

at

xt

at−1

rt

Figure 2: Graphi-
cal model of POMDP
(solid), world model,
and induced latent vari-
able policy (dashed).

This follows the form of Equation 5 where the context includes the entire
history, i.e. ht = (a<t,x≤t). Note that π(at|st) conditions only on the
current latent state due to a Markov assumption typically used in existing
world models (see Figure 2), though our algorithms easily extend to non-
Markov settings as well. Furthermore, this marginalizes over the full latent
history due to the recurrence,

q(st|a<t,x≤t) =

∫
q(st|st−1,at−1,xt)q(st−1|a<t−1,x≤t−1) dst−1, (7)

which when recursively applied, we can see that the belief state st—and
hence the policy—marginalizes over the entire history of belief states. A
more thorough discussion is in Appendix B.2.

Our approaches for handling latent variables are agnostic to what q conditions
on, so to unify and simplify notation, we use the shorthand ht ≜ (a<t,x≤t)
to denote history information. This subsumes the MDP setting, where q(st|ht)
is equivalent to q(st|xt) due to Markovian conditional independence.

3.2 MAXENT RL IN THE PRESENCE OF LATENT VARIABLES

The presence of latent variables makes training with the maximum entropy objective (equations 1 and
3) difficult. Firstly, it requires an accurate estimation of the entropy term, and the entropy of a latent
variable model is notoriously hard to estimate due to the intractability of marginalization (Paninski,
2003; Lim et al., 2020). Secondly, the use of latent variables results in an increase in gradient variance,
which we remedy with variance reduction methods at a negligible cost. Finally, the appearance of

4

Published as a conference paper at ICLR 2023

latent variables can also be used within the Q-function to better aggregate uncertainty. For each, we
derive principled methods for handling latent variables, while the end result is actually fairly simple
and only adds a minimal amount of extra cost compared to non-latent variable policies.

3.2.1 ESTIMATING THE MARGINAL ENTROPY

An immediate consequence of using latent variables is that the entropy, or marginal entropy, becomes
intractable, due to the log-probability being intractable, i.e.

H(π(·|ht)) = Eπ(at|ht)

[
− log

∫
π(at|st)q(st|ht) dst

]
. (8)

Failure cases of naı̈ve entropy estimation Applying methods developed for amortized variational
inference (Kingma & Welling, 2013; Burda et al., 2016) can result in a bound on the entropy that is
in the wrong direction. For instance, the standard evidence lower bound (ELBO) results in an entropy
estimator,

H̃naı̈ve(ht) ≜ Eπ(at|ht)Er(st|at,ht) [− log π(at|st) + log q̃(st|at,ht)− log q(st|ht)] , (9)
where q̃ is any variational distribution, for example setting q̃(st|at,ht) = q(st|ht). Adopting this
naı̈ve estimator will result in maximizing an upper bound on the MaxEnt RL objective, which we can
see by writing out the error,

H̃naı̈ve(ht) = H(π(·|ht)) + Eπ(at|ht) [DKL(q̃(st|at,ht)∥q(st|at,ht))] . (10)

0 1000 2000 3000 4000 5000
Step

0

2

4

6

En
tro

py
 e

st
im

at
e

1e18
Naive (ELBO)
Naive (IWAE)
Ours
Ground truth

Figure 3: Training with naı̈ve
entropy estimators results in
extremely loose upper bounds.

Therefore, replacing the entropy in the MaxEnt RL objective (Equa-
tion 1) with H̃naı̈ve will lead to maximizing the error—i.e. the KL
divergence—incentivizing the variational distribution to be as far as
it can from the true posterior q(st|at,ht). Furthermore, this error
is unbounded so it may become arbitrarily large without actually
affecting the true entropy we want to be maximizing, H(π(·|ht)),
which leads to serious numerical instability issues. In Figure 3, we
show the results from a preliminary experiment where this approach
to entropy estimation during policy optimization led to extremely
large values (scale of 1018), significantly overestimating the true
entropy, and resulted in policies that did not learn. More details are
in Appendix C. To overcome this overestimation issue, we propose
the following method for achieving accurate estimation.

Lower bounding the marginal entropy with nested estimator To be amenable to entropy max-
imization, we must construct a lower bound estimator of the marginal entropy. For this, inspired
by advances in hierarchical inference (Yin & Zhou, 2018; Sobolev & Vetrov, 2019), a method to
estimate the marginal entropy (Equation 8) via a lower bound can be obtained. Specifically, for any
K ∈ N, we define

H̃K(ht) ≜ Eat∼π(at|ht)Es
(0)
t ∼p(st|at,ht)

E
s
(1:K)
t ∼q(st|ht)

[
− log

(
1

K + 1

K∑
k=0

π
(
at|s(k)t

))]
.

(11)
where p(st|at,ht) is the (unknown) posterior of the policy distribution; however, we can easily
sample from this by first sampling s

(0)
t then sample at conditioned on s

(0)
t . This results in a

nested estimator where we effectively sample K + 1 times from q(st|ht), use only the first latent
variable s

(0)
t for sampling the action, while using all the latent variables to estimate the marginal

entropy. Note that this is not equivalent to replacing the expectation inside the logarithm with
independent samples, which would correspond to an IWAE estimator (Burda et al., 2016). Equation 11
results in a nested estimator that is monotonically increasing in K, which in the limit, becomes
an unbiased estimator of the marginal entropy, i.e. H̃K(ht) ≤ H [π(·|ht)], H̃K(ht) ≤ H̃K+1(ht)

and limK→∞ H̃K(ht) = H [π(·|ht)]. Thus, replacing the marginal entropy with HK results in
maximizing a tight lower bound on the MaxEnt RL objective, and is much more numerically stable in
practice. Proofs for these results are in Appendix D. In practice, we find that using reasonable values
for K does not increase computation times since sampling multiple times is easily done in parallel,
and the evaluation of π(at|st) is cheap relative to other components such as the world model.

5

Published as a conference paper at ICLR 2023

3.2.2 VARIANCE REDUCTION WITH ANTITHETIC MULTI-LEVEL MONTE CARLO

While latent variable policies can optimize for the MaxEnt RL objective better in expectation, its
reliance on stochastic estimation techniques introduces additional gradient variance. This higher
variance actually results in poorer sample efficiency, negating any gains obtained from using a more
flexible distribution. In particular, it has been shown that multi-sample estimators like Equation 11
can result in more noise than signal as K increases (Rainforth et al., 2018a). To remedy this, we
adopt a simple yet reliable variance reduction method referred to as antithetic multi-level Monte Carlo
(MLMC). While this method has been used in simulations of stochastic differential equations (Giles,
2008; Giles & Szpruch, 2014) and more recently, in variational inference (Ishikawa & Goda, 2021;
Shi & Cornish, 2021), it has not yet seen uses in the context of reinforcement learning.

Applying MLMC to the estimator in Equation 11, we have

H̃MLMC
K =

⌊log2(K)⌋∑
ℓ=0

∆H̃2ℓ , where ∆H̃2ℓ =

{
H̃1 if ℓ = 0,

H̃2ℓ − 1
2

(
H̃(a)

2ℓ−1 + H̃(b)

2ℓ−1

)
otherwise.

(12)

At the ℓ-th level, after we have generated 2ℓ i.i.d. samples, we use half to compute H̃(a)

2ℓ−1 , the other

half to compute H̃(b)

2ℓ−1 , and all of the samples to compute H̃2ℓ . This antithetic sampling scheme is a
key ingredient in reducing variance, and can achieve the optimal computational complexity for a given
accuracy (Ishikawa & Goda, 2021). We compute all the ∆H̃2ℓ terms in parallel in our implementation,
so there is an almost negligible additional cost compared to H̃K . The only consideration involved for
using H̃MLMC

K is that K should be a power of two.

3.2.3 ESTIMATING THE MARGINAL Q-FUNCTION

Under the POMDP setting, we aim to build a Q-function upon the inferred belief states st as these
contain the relevant dynamics and reward information. However, while most existing approaches
such as Lee et al. (2020a); Hafner et al. (2020) only take one sample of the inferred latents as input of
the Q-function, we propose marginalizing out the latent distribution in the critic calculation. This
can be seen by interpreting the Q-function through the probabilistic inference framework in Levine
(2018), where the reward function is viewed as the log-likelihood of observing a binary optimality
random variable O, i.e. satisfying p(Ot = 1|st,at) ∝ exp(r(st,at)). As a result, the Q-function is
equivalent to Q(st,at) = log p(Ot:T |st,at). Since our latent belief state represents the uncertainty
regarding the system in the context of POMDPs, including the current state and unseen rewards,
we propose marginalizing the value function over the belief state. Hence, through this probabilistic
interpretation, the marginal Q-function is related to the Q-function over latent states through

Q(ht,at) = log

∫
p(Ot:T |st,at)q(st|ht) dst = log

∫
exp {Q(st,at)}q(st|ht) dst. (13)

Given this, we hence propose the following estimator to be used during policy optimization,

Q(ht,at) ≈ Q̃K(ht,at) ≜ log

(
1

K

K∑
k=1

exp
{
Q(s

(k)
t ,at)

})
, s

(1:K)
t ∼ q(st|ht), (14)

where Q(st,at) is trained to satisfy the soft Bellman equation in Equation 2. A closely related
approach is from Lee et al. (2020a) who similarly trains a Q-function on latent states; however, they
directly use Q(st,at) during policy optimization, which is a special case with K = 1, whereas using
K > 1 results in a closer approximation to the marginal Q-function. We found this construction for
marginalizing the Q-function to be useful mainly when used in conjunction with a world model.

3.3 STOCHASTIC MARGINAL ACTOR-CRITIC (SMAC)

While the above methods can each be applied to general MaxEnt RL algorithms, we instantiate a
concrete algorithm termed Stochastic Marginal Actor-Critic (SMAC). SMAC is characterized by the
use of a latent variable policy and maximizes a lower bound to a marginal MaxEnt RL objective.
Specifically, we use the same method as SAC to train Q(st,at) on latent states, but we train the
policy using a low-variance debiased objective for taking into account latent state marginalization,

max
π

Eht∼D,at∼π

[
Q̃K(ht,at) + αH̃MLMC

K (ht)
]
. (15)

6

Published as a conference paper at ICLR 2023

We train the inference model q(st|ht) with standard amortized variational inference (Equation 4),
and we train only π(at|st) using the objective in Equation 15. When not used with a world model,
we train both π(at|st) and q(st|ht) using Equation 15. See Algorithms 1 and 2 for a summary of the
training procedures, and more details regarding implementation for SMAC in Appendix B.

4 RELATED WORK

Maximum entropy reinforcement learning Prior works have demonstrated multiple benefits
of MaxEnt RL, including improved exploration (Han & Sung, 2021), regularized behaviors (Neu
et al., 2017; Vieillard et al., 2020a), better optimization property (Ahmed et al., 2018), and stronger
robustness (Eysenbach & Levine, 2022). Generally, policies optimizing the MaxEnt RL objective
sample actions that are proportional to the exponentiated reward, and alternatively can be viewed
as a noise injection procedure for better exploration (Attias, 2003; Ziebart, 2010; Haarnoja et al.,
2017; Nachum et al., 2017; Levine, 2018; Abdolmaleki et al., 2018; Haarnoja et al., 2018b; Vieillard
et al., 2020b; Pan et al., 2022; 2023; Lahlou et al., 2023). However, this noise injection is commonly
done directly in action space, leading to only local perturbations, whereas we inject noise through a
nonlinear mapping.

Latent variable modeling The usage of latent variable models originates from graphical mod-
els (Dayan et al., 1995; Hinton et al., 2006) and has been recently popularized in generative model-
ing (Kingma & Welling, 2013; Rezende et al., 2014; Zhang et al., 2021a; 2022b;a). The estimation
of the log marginal probability and marginal entropy has long been a central problem in Bayesian
statistics and variational inference (Newton, 1994; Murray & Salakhutdinov, 2008; Nowozin, 2018;
Ishikawa & Goda, 2021; Malkin et al., 2022). However, most of these works consider a lower bound
on the log marginal probability for variational inference, which is not directly applicable to maximum
entropy as discussed in Section 3.2.1. A few works have proposed upper bounds (Sobolev & Vetrov,
2019; Dieng et al., 2017) or even unbiased estimators (Luo et al., 2020), and while we initially
experimented with a couple of these estimators, we found that many results in high gradient variance
and ultimately identified an approach based on hierarchical inference technique for its efficiency and
suitability in RL.

Latent structures in POMDPs and world models Settings with only partial observations are
natural applications for probabilistic inference methods, which help learn latent belief states from
observational data. As such, variational inference has been adopted for learning sequential latent
variable models (Ghahramani & Hinton, 2000; Krishnan et al., 2015; Fraccaro et al., 2016; Karl et al.,
2017; Singh et al., 2021). One paradigm is to use the learned recurrent model to help model-free RL
algorithms (Wahlstrom et al., 2015; Tschiatschek et al., 2018; Buesing et al., 2018; Igl et al., 2018;
Gregor et al., 2019; Han et al., 2020). Another approach is to use world models for solving POMDP
and building model-based RL agents (Deisenroth & Rasmussen, 2011; Hausknecht & Stone, 2015;
Watter et al., 2015; Zhang et al., 2019; Hafner et al., 2019; 2020; 2021; Nguyen et al., 2021; Chen
et al., 2022) due to their planning capabilities. It is also sometimes the case that the world model
is treated mainly as a representation, without much regard for the measure of uncertainty (Ha &
Schmidhuber, 2018; Schrittwieser et al., 2020; Amos et al., 2021; Hansen et al., 2022).

5 EXPERIMENTS

We evaluate SMAC on a series of diverse continuous control tasks from DeepMind Control Suite
(DMC; Tassa et al. (2018)). These tasks include challenging cases in the sense of having sparse
rewards, high dimensional action space, or pixel observations. We also perform a preliminary unit
test with a multi-modal reward in Appendix B.1.

5.1 STATE-BASED CONTINUOUS CONTROL ENVIRONMENTS

Setting We first compare SMAC with SAC and TD3 (Fujimoto et al., 2018) baselines on a variety
of state-based environments to demonstrate the advantage of latent variable policies. We show eight
environments in Figure 4, and leave more results in Appendix due to space limitations.

Results We find that even in the simple MDP setting, we can improve upon SAC by simply introduc-
ing a latent variable. Specifically, our method is almost never worse than SAC, implying that the extra
gradient variance from the entropy estimation is not incurring a penalty in terms of sample efficiency.

7

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cheetah_run

Algorithm
SMAC
SAC
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

hopper_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

quadruped_walk

Figure 4: Experiments on eight DMC environments where agents are given state-based inputs. The
SMAC approach improves upon SAC with better exploration and more robust training.

By being able to track a wider frontier of optimal action trajectories, SMAC can be more robust to
find optimal policies, particularly when the reward is sparse (e.g., cartpole swingup sparse).

Comparison with other probabilistic modeling approaches We further conduct extensive em-
pirical comparisons with other probabilistic policy modeling methods including normalizing flow
and mixture-of-experts (Ren et al., 2021) based SAC methods in Figure 11. Our proposed SMAC
generally achieves the best sample efficiency on almost all environments. Due to limited space, we
defer related discussion to Appendix C.

Step

Ep
iso

de
 R

et
ur

n

quadruped_walk

Particles
8
16
32

Step

Ep
iso

de
 R

et
ur

n

reacher_hard

(a) Marginalization
Step

Ep
iso

de
 R

et
ur

n

Estimator
Nested
MLMC

(b) MLMC

Figure 5: Ablation experiments.

Marginalization Marginalizing over the latent
state has a significant effect on training, though
this often exhibits a diminishing rate, suggest-
ing that using reasonable number of particles is
sufficient. Figure 5 shows this behavior for the
quadruped walk task.

Variance-reduced updates We find that the
use of MLMC as a variance reduction tool is
crucial for the latent variable policy to perform
well in some difficult environments such as the
quadruped escape task. Figure 5b shows that using MLMC clearly reduces variance and makes
training much more robust, whereas using only the nested estimator performs closer to the baseline
SAC (see comparison in Figure 10).

5.2 PIXEL-BASED CONTINUOUS CONTROL ENVIRONMENTS

Setting We next compare different algorithms on a series of DMC environments with pixel-based
input. Since this task is much more challenging, and pixels only provide partial observability, we
make use of a world model (as described in Section 2.2) to supplement our algorithm. We use the
recurrent state-space model (RSSM) architecture from Hafner et al. (2019) as the world model. We
refer to this baseline as “Latent-SAC” and follow the practice in Wang et al. (2022), which samples
from the belief distribution q(st|a<t,x≤t) and directly trains using SAC on top of the belief state. A
closely related work, SLAC (Lee et al., 2020a), only uses st as input to a learned Q-function, while
the policy does not use st and instead uses intermediate layers of the world model as input. Finally,
we also compare to Dreamer, a model-based RL (MBRL) algorithm that performs rollouts on the
dynamics model (Hafner et al., 2020). This iterative procedure results in a higher computational cost
as it requires iteratively sampling from the belief state and differentiating through the rollouts. In
contrast, our proposed SMAC aggregates samples from the current belief state and does not require

8

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

ball_in_cup_catch

Algorithm
SMAC
Latent-SAC
SLAC
MBRL

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_spin

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

hopper_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

quadruped_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

10

20

30

40

50

Ep
iso

de
 R

et
ur

n

quadruped_escape

Figure 6: Experiments on eight DMC environments where agents are given pixel-based inputs.
The proposed SMAC approach achieves better expected return than similar Latent-SAC and SLAC
baselines. Notice that our method does not involve any planning, but still achieves comparable
(sometimes even better) performance to the model-based RL algorithm.

Table 1: Experiments with noisy observations. We experiment with two different perturbation level
for two kinds of noise. GAUSSIAN PERTURBATION adds independent white noise to the pixel images
while SENSOR MISSING randomly turns a portion of the pixels to black. SMAC is trained with a
world model while L-SAC denotes a SAC baseline trained with a world model.

GAUSSIAN PERTURBATION SENSOR MISSING

NOISE SMALL LARGE SMALL LARGE

METHOD L-SAC SMAC L-SAC SMAC L-SAC SMAC L-SAC SMAC

FINGER 912±138 959± 30 880±109 924± 43 933± 63 955± 36 921± 44 921± 52

HOPPER 571±411 731±407 516±385 702±391 721± 16 872± 62 703± 7 866± 61

REACHER 869± 28 928± 10 782± 89 925± 92 883±112 937± 89 854±169 925± 59

differentiating through the dynamics model. For training, we follow Hafner et al. (2020) and repeat
each action 2 times. We show the comparison on eight tasks in Figure 6, and again relegate more
results to the Appendix due to space constraints.

Results Comparing SMAC to the Latent-SAC baseline, we again find that we can often find an
optimal policy with fewer environment interactions. We find that SLAC and Latent-SAC are roughly
on par, while SLAC can also some times perform worse, as their policy does not condition on the
latent state. The model-based approach has widely-variable performance when compared to the
actor-critic approaches. Interestingly, in most of the environments where the model-based approach is
performing well, we find that SMAC can often achieve comparable performance, even though it does
not make use of planning. Overall, we find that our method improves upon actor-critic approaches
and bridges the gap to planning-based approaches.

Robustness to noisy observations While the pixel-based setting already provides partial observa-
tions, we test the robustness of our approach in settings with higher noise levels. In Table 1 we report
the episodic rewards of both SMAC and a SAC baseline on three environments (finger spin,
hopper stand, and reacher easy) under noisy perturbations and missing pixels (Meng et al.,
2021). We find that SMAC behaves more robustly than the baseline across almost all settings.

Efficiency Despite the extra estimation procedures, SMAC does not incur significant computational
costs as we can compute all terms in the estimators in parallel. Tested with an NVIDIA Quadro
GV100 on the pixel-based environments, our SMAC implementation does 60 frames per second (FPS)

9

Published as a conference paper at ICLR 2023

on average, almost the same training speed compared to Latent-SAC (63 FPS), whereas differentiating
through a single rollout over the dynamics model already reduces to 51 FPS (roughly 20% slower).

6 CONCLUSION

We propose methods for better handling of latent variable policies under the MaxEnt RL framework,
centered around cost-efficient computation and low-variance estimation, resulting in a tractable
algorithm SMAC when instantiated in the actor-critic framework. We find that SMAC can better
make use of the belief state than competing actor-critic methods and can more robustly find optimal
policies, while adding only very minimal amounts of extra compute time.

ACKNOWLEDGEMENT

The authors would like to thank Zhixuan Lin, Tianwei Ni, Chinwei Huang, Brandon Amos, Ling Pan,
Max Schwarzer, Yuandong Tian, Tianjun Zhang, Shixiang Gu, and anonymous reviewers for helpful
discussions. Dinghuai also expresses gratitude towards his fellow interns at FAIR for creating a lot of
joyful memories during the summer in New York City.

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Rémi Munos, Nicolas Manfred Otto
Heess, and Martin A. Riedmiller. Maximum a posteriori policy optimisation. ArXiv,
abs/1806.06920, 2018.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy in policy learning. 2018.

Brandon Amos, Samuel Stanton, Denis Yarats, and Andrew Gordon Wilson. On the model-based
stochastic value gradient for continuous reinforcement learning. In Learning for Dynamics and
Control, pp. 6–20. PMLR, 2021.

Karl Johan Åström. Optimal control of markov processes with incomplete state information. Journal
of Mathematical Analysis and Applications, 10:174–205, 1964.

Hagai Attias. Planning by probabilistic inference. In AISTATS, 2003.

Lars Buesing, Théophane Weber, Sébastien Racanière, S. M. Ali Eslami, Danilo Jimenez Rezende,
David P. Reichert, Fabio Viola, Frederic Besse, Karol Gregor, Demis Hassabis, and Daan Wierstra.
Learning and querying fast generative models for reinforcement learning. ArXiv, abs/1802.03006,
2018.

Yuri Burda, Roger Baker Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders.
CoRR, abs/1509.00519, 2016.

Ricky T. Q. Chen, Jens Behrmann, David Kristjanson Duvenaud, and Jörn-Henrik Jacobsen. Residual
flows for invertible generative modeling. ArXiv, abs/1906.02735, 2019.

Xiaoyu Chen, Yao Mu, Ping Luo, Sheng Li, and Jianyu Chen. Flow-based recurrent belief state
learning for pomdps. In ICML, 2022.

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The helmholtz machine.
Neural Computation, 7:889–904, 1995.

Marc Peter Deisenroth and Carl Edward Rasmussen. Pilco: A model-based and data-efficient
approach to policy search. In ICML, 2011.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John Paisley, and David Blei. Variational
inference via χ upper bound minimization. Advances in Neural Information Processing Systems,
30, 2017.

10

Published as a conference paper at ICLR 2023

Laurent Dinh, Jascha Narain Sohl-Dickstein, and Samy Bengio. Density estimation using real nvp.
ArXiv, abs/1605.08803, 2017.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems. ArXiv, abs/2103.06257, 2022.

Marco Fraccaro, Søren Kaae Sønderby, Ulrich Paquet, and Ole Winther. Sequential neural models
with stochastic layers. ArXiv, abs/1605.07571, 2016.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. ArXiv, abs/1802.09477, 2018.

Zoubin Ghahramani and Geoffrey E. Hinton. Variational learning for switching state-space models.
Neural Computation, 12:831–864, 2000.

Michael B Giles. Multilevel monte carlo path simulation. Operations research, 56(3):607–617, 2008.

Michael B Giles and Lukasz Szpruch. Antithetic multilevel monte carlo estimation for multi-
dimensional sdes without lévy area simulation. The Annals of Applied Probability, 24(4):1585–
1620, 2014.

Karol Gregor, Danilo Jimenez Rezende, Frederic Besse, Yan Wu, Hamza Merzic, and Aäron van den
Oord. Shaping belief states with generative environment models for rl. ArXiv, abs/1906.09237,
2019.

David R Ha and Jürgen Schmidhuber. World models. ArXiv, abs/1803.10122, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352–1361.
PMLR, 2017.

Tuomas Haarnoja, Kristian Hartikainen, Pieter Abbeel, and Sergey Levine. Latent space policies
for hierarchical reinforcement learning. In International Conference on Machine Learning, pp.
1851–1860. PMLR, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and
applications. arXiv preprint arXiv:1812.05905, 2018b.

Danijar Hafner, Timothy P. Lillicrap, Ian S. Fischer, Ruben Villegas, David R Ha, Honglak Lee, and
James Davidson. Learning latent dynamics for planning from pixels. ArXiv, abs/1811.04551, 2019.

Danijar Hafner, Timothy P. Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. ArXiv, abs/1912.01603, 2020.

Danijar Hafner, Timothy P. Lillicrap, Mohammad Norouzi, and Jimmy Ba. Mastering atari with
discrete world models. ArXiv, abs/2010.02193, 2021.

Dongqi Han, Kenji Doya, and Jun Tani. Variational recurrent models for solving partially observable
control tasks. ArXiv, abs/1912.10703, 2020.

Seungyul Han and Youngchul Sung. A max-min entropy framework for reinforcement learning. In
NeurIPS, 2021.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control. In ICML, 2022.

Matthew J. Hausknecht and Peter Stone. Deep recurrent q-learning for partially observable mdps. In
AAAI Fall Symposia, 2015.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

11

Published as a conference paper at ICLR 2023

Maximilian Igl, Luisa M. Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for pomdps. In ICML, 2018.

Kei Ishikawa and Takashi Goda. Efficient debiased evidence estimation by multilevel Monte Carlo
sampling. In Cassio de Campos and Marloes H. Maathuis (eds.), Proceedings of the Thirty-Seventh
Conference on Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine
Learning Research, pp. 34–43. PMLR, 27–30 Jul 2021.

Herman Kahn. Use of different Monte Carlo sampling techniques. Rand Corporation, 1955.

Maximilian Karl, Maximilian Sölch, Justin Bayer, and Patrick van der Smagt. Deep variational bayes
filters: Unsupervised learning of state space models from raw data. ArXiv, abs/1605.06432, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Rahul G. Krishnan, Uri Shalit, and David A. Sontag. Deep kalman filters. ArXiv, abs/1511.05121,
2015.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hern’andez-
Garc’ia, L’ena N’ehale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of continuous
generative flow networks. ArXiv, abs/2301.12594, 2023.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems, 33:741–752, 2020a.

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic.
https://github.com/alexlee-gk/slac, 2020b.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Jae Hyun Lim, Aaron Courville, Christopher Pal, and Chin-Wei Huang. AR-DAE: Towards unbiased
neural entropy gradient estimation. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the
37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 6061–6071. PMLR, 13–18 Jul 2020.

Zhixuan Lin. Dreamer-pytorch implementation. https://github.com/zhixuan-lin/
dreamer-pytorch, 2022.

Yucen Luo, Alex Beatson, Mohammad Norouzi, Jun Zhu, David Kristjanson Duvenaud, Ryan P.
Adams, and Ricky T. Q. Chen. Sumo: Unbiased estimation of log marginal probability for latent
variable models. ArXiv, abs/2004.00353, 2020.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward J. Hu, Katie Elizabeth Everett, Dinghuai
Zhang, and Yoshua Bengio. Gflownets and variational inference. ArXiv, abs/2210.00580, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. ArXiv, abs/2110.09514, 2021.

Lingheng Meng, Robert B. Gorbet, and Dana Kuli’c. Memory-based deep reinforcement learning for
pomdps. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
5619–5626, 2021.

Laurence Illing Midgley, Vincent Stimper, Gregor NC Simm, Bernhard Schölkopf, and
José Miguel Hernández-Lobato. Flow annealed importance sampling bootstrap. arXiv preprint
arXiv:2208.01893, 2022.

Iain Murray and Ruslan Salakhutdinov. Evaluating probabilities under high-dimensional latent
variable models. In NIPS, 2008.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing systems,
30, 2017.

12

https://github.com/alexlee-gk/slac
https://github.com/zhixuan-lin/dreamer-pytorch
https://github.com/zhixuan-lin/dreamer-pytorch

Published as a conference paper at ICLR 2023

Gergely Neu, Anders Jonsson, and V. Gómez. A unified view of entropy-regularized markov decision
processes. ArXiv, abs/1705.07798, 2017.

Michael A. Newton. Approximate bayesian-inference with the weighted likelihood bootstrap. Journal
of the royal statistical society series b-methodological, 56:3–26, 1994.

Tung D. Nguyen, Rui Shu, Tu Pham, Hung Hai Bui, and Stefano Ermon. Temporal predictive coding
for model-based planning in latent space. ArXiv, abs/2106.07156, 2021.

Mohammad Norouzi, Samy Bengio, Navdeep Jaitly, Mike Schuster, Yonghui Wu, Dale Schuurmans,
et al. Reward augmented maximum likelihood for neural structured prediction. Advances In Neural
Information Processing Systems, 29, 2016.

Sebastian Nowozin. Debiasing evidence approximations: On importance-weighted autoencoders and
jackknife variational inference. In ICLR, 2018.

L. Pan, Dinghuai Zhang, Aaron C. Courville, Longbo Huang, and Yoshua Bengio. Generative
augmented flow networks. ArXiv, abs/2210.03308, 2022.

L. Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with local
credit and incomplete trajectories. ArXiv, abs/2302.01687, 2023.

Liam Paninski. Estimation of entropy and mutual information. Neural computation, 15(6):1191–1253,
2003.

Dmytro Perekrestenko, Stephan Müller, and Helmut Bölcskei. Constructive universal high-
dimensional distribution generation through deep relu networks. ArXiv, abs/2006.16664, 2020.

Martin L Puterman. Markov decision processes. Handbooks in operations research and management
science, 2:331–434, 1990.

Tom Rainforth, Adam Kosiorek, Tuan Anh Le, Chris Maddison, Maximilian Igl, Frank Wood, and
Yee Whye Teh. Tighter variational bounds are not necessarily better. In International Conference
on Machine Learning, pp. 4277–4285. PMLR, 2018a.

Tom Rainforth, Yuan Zhou, Xiaoyu Lu, Yee Whye Teh, Frank Wood, Hongseok Yang, and Jan-
Willem van de Meent. Inference trees: Adaptive inference with exploration. arXiv preprint
arXiv:1806.09550, 2018b.

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

Jie Ren, Yewen Li, Zihan Ding, Wei Pan, and Hao Dong. Probabilistic mixture-of-experts for efficient
deep reinforcement learning. ArXiv, abs/2104.09122, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML, 2014.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, L. Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap, and David
Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588 7839:
604–609, 2020.

Yuyang Shi and Rob Cornish. On multilevel monte carlo unbiased gradient estimation for deep
latent variable models. In Arindam Banerjee and Kenji Fukumizu (eds.), Proceedings of The 24th
International Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of
Machine Learning Research, pp. 3925–3933. PMLR, 13–15 Apr 2021.

Gautam Singh, Skand Vishwanath Peri, Junghyun Kim, Hyunseok Kim, and Sungjin Ahn. Structured
world belief for reinforcement learning in pomdp. In ICML, 2021.

Artem Sobolev and Dmitry P. Vetrov. Importance weighted hierarchical variational inference. In
NeurIPS, 2019.

13

Published as a conference paper at ICLR 2023

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Pranjal Tandon. Pytorch implementation of soft actor-critic. https://github.com/pranz24/
pytorch-soft-actor-critic, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller.
Deepmind control suite. ArXiv, abs/1801.00690, 2018.

Emanuel Todorov. Linearly-solvable markov decision problems. Advances in neural information
processing systems, 19, 2006.

Sebastian Tschiatschek, Kai Arulkumaran, Jan Stühmer, and Katja Hofmann. Variational inference
for data-efficient model learning in pomdps. ArXiv, abs/1805.09281, 2018.

Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Rémi Munos, and Matthieu Geist.
Leverage the average: an analysis of regularization in rl. ArXiv, abs/2003.14089, 2020a.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist. Munchausen reinforcement learning. ArXiv,
abs/2007.14430, 2020b.

Niklas Wahlstrom, Thomas Bo Schön, and Marc Peter Deisenroth. From pixels to torques: Policy
learning with deep dynamical models. ArXiv, abs/1502.02251, 2015.

Tongzhou Wang, Simon Shaolei Du, Antonio Torralba, Phillip Isola, Amy Zhang, and Yuandong
Tian. Denoised mdps: Learning world models better than the world itself. ArXiv, abs/2206.15477,
2022.

Patrick Nadeem Ward, Ariella Smofsky, and Avishek Joey Bose. Improving exploration in soft-actor-
critic with normalizing flows policies. arXiv preprint arXiv:1906.02771, 2019.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller. Em-
bed to control: A locally linear latent dynamics model for control from raw images. ArXiv,
abs/1506.07365, 2015.

Kai Xu, Akash Srivastava, and Charles Sutton. Variational russian roulette for deep bayesian
nonparametrics. In ICML, 2019.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. In International Conference
on Machine Learning, pp. 5660–5669. PMLR, 2018.

Dinghuai Zhang, Jie Fu, Yoshua Bengio, and Aaron C. Courville. Unifying likelihood-free inference
with black-box optimization and beyond. In International Conference on Learning Representations,
2021a.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models
with gflownets. 2022a.

Dinghuai Zhang, Nikolay Malkin, Z. Liu, Alexandra Volokhova, Aaron C. Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Conference
on Machine Learning, 2022b.

Marvin Zhang, Sharad Vikram, Laura Smith, P. Abbeel, Matthew J. Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In ICML, 2019.

Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang,
and Mohammad Norouzi. Autoregressive dynamics models for offline policy evaluation and
optimization. arXiv preprint arXiv:2104.13877, 2021b.

Brian D. Ziebart. Modeling purposeful adaptive behavior with the principle of maximum causal
entropy. 2010.

14

https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic

Published as a conference paper at ICLR 2023

A NOTATIONS

Symbol Description

xt Environment state (human designed feature or pixel image) at time t
at Action at time t
ht History up to time t, defined as (a<t,x≤t)
r Reward
π Policy (distribution over action)
Q Q-function
Q̃ Q-function estimator
γ Discount factor
O Optimality binary random variable as defined in Levine (2018)
S Domain of state
A Domain of action
H(·) Entropy
H̃(·) Entropy estimator
α Temperature for MaxEnt RL

st Latent variable / inferred belief state
q(st|xt) Belief distribution over inferred states from observation xt

q(st|a<t,x≤t) Belief distribution over inferred states from past data
q(st|ht) Unifies notation for the above two
π(at|st) Policy conditioned on latent variable st
π(at|xt) Latent variable policy, equals

∫
π(at|st)q(s|x) ds

π(at|a<t,x≤t) Latent variable policy, equals
∫
π(at|st)q(st|a<t,x≤t) dst

π(at|ht) Unifies notation for the above two

p(xt|st) Observation model in the world model
p(rt|st) Reward model in the world model
p(st+1|st,at) Transition model, also the prior of a world model
q(st|st−1,at−1,xt) Inferred posterior dynamics model of learned world model

B ADDITIONAL DETAILS REGARDING METHODOLOGY

B.1 MULTI-MODALITY OF LATENT VARIABLE POLICIES

While a latent variable policy can theoretically model any distribution (see Proposition 1), training
this policy can still be difficult, especially if the true reward is actually multi-modal. Here, we test in
a controlled setting, whether our method can truly recover a multi-modal policy.

A standard interpretation of the MaxEnt RL objective is as a reverse KL objective (Levine, 2018),
max
π

Ep(x)π(a|x)) [r(x,a)− α log π(a|x)] (16)

⇔max
π

Ep(x)π(a|x))

[
r(x,a)

α
− log π(a|x)

]
(17)

⇔max
π

Ep(x)π(a|x))

[
log exp

{
r(x,a)

α

}
− log π(a|x)

]
(18)

⇔min
π

Ep(x) [DKL (π(a|x)∥p∗(a|x))] (19)

where p∗(a|x) ∝ exp
{

r(x,a)
α

}
, i.e., a target distribution defined by the exponentiated reward

function and annealed with temperature α.

Despite the ubiquity of the reverse KL objective—such as appearing in standard posterior inference—
the training of latent variable models for this objective is still relatively under-explored due to the
difficulty in estimating this objective properly. Luo et al. (2020) showed that using improper bounds
on the objective can lead to catastrophic failure, but only showed successful training for a unimodal
target distribution, while Sobolev & Vetrov (2019) discussed proper bounds but did not perform such
an experiment.

15

Published as a conference paper at ICLR 2023

(a) Target
(
exp

{
r(x,a)

α

})
(b) Latent variable policy (c) Gaussian policy

Figure 7: Optimizing a latent variable policy for a one-step multi-modal MaxEnt RL objective.

We experiment by setting a reward function that has multiple optimal actions. Using a sufficiently
large α creates a target distribution with four modes (Figure 7a). In Figure 7b, we show that we
can successfully learn a multi-modal distribution with a latent variable policy using the methods
discussed in Section 3.2.1 and 3.2.2. On the other hand, a Gaussian policy can only capture one out
of four modes (Figure 7c), with the exact mode depending on the random initialization.

B.2 WORLD MODEL LEARNING

In Figure 8 we visualize the graphical model for the RSSM similarly with Hafner et al. (2019)
described in Section 2.2. We use solid arrows to denote the generative machinery (p in the following
equations) and dotted arrows to denote the inference machinery (q in the following equations). A
variational bound for the likelihood on observed trajectory could be written as follows,

log p(x≤T , r≤T |a≤T) ≥ Es≤T∼q [log p(x≤T , r≤T , s≤T |a≤T)− log q(s≤T |x≤T ,a≤T)] (20)

=Eq

[
T∑

t=1

log p(xt|st) + log p(rt|st) + log p(st|st−1,at−1)− log q(st|st−1,at−1,xt)

]
(21)

=Eq

[
T∑

t=1

log p(xt|st) + log p(rt|st)−DKL (q(st|st−1,at−1,xt)∥p(st|st−1,at−1))

]
. (22)

The world model / RSSM is then learned by maximizing Equation 22 with regard to parameters
of p(x|s), p(r|s), q(st|st−1,at−1,xt) and p(st|st−1,at−1). Note that in Section 2.2 we omit the
reward modeling part for simplicity. Due to the Markovian assumption on latent dynamics and the
shorthand of ht ≜ (a<t,x≤t) , we could also use q(st|ht) to denote q(st|st−1,at−1,xt).

B.3 SMAC ALGORITHM

s1

a1

x1

r1

s2

a2

x2

r2

sT

aT

xT

rT

. . .

Figure 8: Graphical model of a POMDP
(solid) and a world model (dashed).

In this section, we present the algorithmic details of SMAC
with and without world model in Algorithm 1 and Algo-
rithm 2 respectively. Both of the two algorithms follow the
commonly adopted off-policy actor-critic style and utilize
a replay buffer to save data for the update of both the actor
and critic networks (the dependency of buffer D is omitted
in the algorithms). Our SMAC is based on SAC algorithm,
whose critic is trained by minimizing TD error,

JQ =
(
Q(x,a)−

(
r + γQ̄(x′,a′) + αH̃(π(·|x′))

))2
,

(23)

where (x,a, r,x′) ∼ D, a′ ∼ π(·|x′), Q̄ denotes a stop
gradient operator and H̃ is an estimate for the policy en-
tropy. In our case, we estimate the entropy of latent variable

16

Published as a conference paper at ICLR 2023

policy with Equation 12 as discussed in Section 3.2. What’s more, the actor is updated via minimizing

Jπ = −Q(x,a)− αH̃(π(·|x)), (24)

where x ∼ D and a ∼ π(·|x), which is equivalent to a ∼ π(·|s), s ∼ q(s|x). In the algorithm box
we omit the moving average of the critic network for simplicity, which is adopted as common-sense.
We remark that SMAC has not much difference with SAC in the sense of RL algorithmic details, but
mainly achieve improvement with the structured exploration behavior achieved from latent variable
modeling. For SMAC in conjunction with a world model, we learn the critic network by minimizing
TD error on the latent level,

JQ =
(
Q(s,a)−

(
r + γQ̄(s′,a′) + αH̃(π(·|s′))

))2
, (25)

whose terms can be seen as one sample estimate to each term in Equation 23. We also try to directly
train the critic network on the observation level, but the empirical difference is negligible. As a result,
we keep the latent level TD learning for simplicity’s sake.

We next state a method to encourage exploration through conditional entropy minimization. Entropy
in a latent variable policy (Equation 5) can be increased by either dispersing the probability density
to other modes, or by increasing the entropy at a single mode. The latter corresponds to increasing
the entropy of the conditional distribution π(at|st), which can end up as a shortcut to increasing
entropy and can result in spurious local minima during training. This is in fact a well-known issue
that sampling-based objectives run into (Rainforth et al., 2018b; Midgley et al., 2022), resulting in a
policy that explores the space of action trajectories at a slower pace. On the other hand, notice that in
the proof of Proposition 1 in Section D.1 we require the decoder variance to be sufficiently small to
be expressive, thus we propose remedying this issue for MaxEnt RL by adding a conditional entropy
term to the objective:

max
π

Ep(τ)

[∞∑
t=0

γt
(
rt(xt,at) + αH(π(·|xt))− βEq(st|xt) [H(π(·|st))]

)]
. (26)

The conditional entropyH(π(·|st)) represents the entropy around a single mode. By minimizing this
in conjunction with maximizing the marginal entropy, we incentivize the policy to disperse its density
to other modes, encouraging it to explore and find all regions with high reward. This allows the latent
variable policy to make better use of its source of randomness st, and encourages a nonlinear mapping
between st and the action space. This is in stark contrast to entropy maximization with a Gaussian
policy, where random noise is simply added linearly and independently to the action. This technique
is only useful for a few experiments (hopper hop humanoid run humanoid stand quadruped escape
quadruped run reacher easy walker run) on state-based model-free experiments. In the pixel-based
experiments where SMAC leverages a world model, the distribution of the latent variable is learned
within the world model, thus there is no need to further involve such a regularizer.

Unadopted techniques Our proposed technique is universal and could be applied to any MaxEnt
RL algorithm. For example, we also try to combine Dreamer with MaxEnt in the policy optimization
part, and wish to further improve the performance with our method. Nonetheless, as stated in the
Appendix of Hafner et al. (2020), there is no much positive effect of introducing MaxEnt principle
into Dreamer implementation. Indeed, we find that doing MaxEnt on the actor of Dreamer will in fact
lower down the sample efficiency. Therefore, we think it is not meaningful to put the experiments of
this part into this work.

Another unused technique lies in latent variable modeling. MLMC with finite samples (i.e., K <∞)
still gives a biased estimator. On the other hand, Russian Roulette estimator (Kahn, 1955) enables an
unbiased estimate of an infinite series of summation with the help of randomized truncations, together
with corresponding term upweighting operation. This technique is also used in many modern machine
learning problems (Xu et al., 2019; Chen et al., 2019). As a result, we also try to introduce Russian
Roulette calculation into our MLMC estimator. However, we do not find much evident improvement
in our RL experiments, thus we do not take this technique into the final SMAC algorithm.

C ADDITIONAL DETAILS REGARDING EXPERIMENTS

For all episode return curves, we report the mean over 5 seeds and 95% confidence intervals.

17

Published as a conference paper at ICLR 2023

Algorithm 1 SMAC (without a world model)

1: for each step do
2: //Env interaction
3: a ∼ π(a|s), s ∼ q(s|x)
4: r,x′ ← env.step(a)
5: D ← D ∪ {(x,a, r,x′}
6:
7: //Critic learning
8: Update Q to minimize Eq. 23
9:

10: //Actor learning
11: Calculate H̃MLMC

K via Eq. 12
12: Update π to minimize Eq. 24
13: end for

Algorithm 2 SMAC (with a world model)

1: for each step do
2: //Environment interaction
3: for t = 1 . . . T do
4: at ∼ π(at|st), st ∼ q(st|st−1,at−1,xt)
5: rt,xt+1 ← env.step(at)
6: end for
7: D ← D ∪ {(xt,at, rt)

T
t=1}

8:
9: //World model learning

10: Update world model to maximize Eq. 22
11:
12: //Critic learning
13: Update Q to minimize Eq. 25
14:
15: //Actor learning
16: Calculate H̃MLMC

K via Eq. 12
17: Calculate Q̃K via Eq. 14
18: Update policy to maximize Q̃K + αH̃MLMC

K
19: end for

Regarding Figure 3 We run SMAC on DMC finger spin environment with different marginal log
probability estimators. We obtain the ground truth value via expensive Monte Carlo estimation with
1× 105 samples. From the figure, we can see that there is little hope of using a naı̈ve upper bound of
entropy for MaxEnt RL, where a reasonable scale of the entropy term is ∼ 100. For IWAE (Burda
et al., 2016) implementation, we set the number of particles to 32. Other values for the number of
particles give similar results.

Step

Ep
iso

de
 R

et
ur

n

quadruped_walk

Particles
8
16
32

Step

Ep
iso

de
 R

et
ur

n

reacher_hard

Figure 9: Ablation study of the number of particles
for SMAC on quadruped walk and reacher
hard environments. The effect is evident on some
but not all environments.

Regarding Section 5.1 For model-free experi-
ments, the agents are fed with state-based inputs.
We follow the PyTorch model-free SAC imple-
mentation of Tandon (2020) for this part. The
actor is parametrized by a tanh-Gaussian distri-
bution. For our method, we additionally use a
two layer MLP to parametrize the latent distribu-
tion q(s|x). We set the neural network width of
the baselines and SMAC to 400 and 256 respec-
tively to keep comparable number of parameters.
For the entropy coefficients, we use the same
autotuning approach from SAC (Haarnoja et al.,
2018b). We follow Fujimoto et al. (2018) for
the TD3 implementation details, except that we
do not take its 1 × 10−3 learning rate. This is
because we found the original learning rate gives very poor performance in our experiments, so
instead we set its learning rate to 3× 10−4, which is empirically much better and also consistent with
two other algorithms. We conduct ablation study for the number of particles (i.e., K in Equation 12)
used in Figure 5. This indicates that the number of level / particles used in the estimation has an
effect on some of the environments. We choose the best hyperparameters (number of particles in
{8, 16, 32}, dimension of the latent in {8, 16, 32}) for each environment. We show the full set of
experimental results in Figure 10.

Regarding other probabilistic policy modeling methods We further compare with normalizing
flow based policy and mixture-of-experts. For the normalizing flow based method, we follow the
practice of Haarnoja et al. (2018a); Ward et al. (2019) to use RealNVP (Dinh et al., 2017) architecture
for the policy distribution π(a|s). The neural network is also followed by a tanh transformation

18

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

ball_in_cup_catch

Algorithm
SMAC
SAC
TD3

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n
cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_spin

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_turn_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

hopper_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250
Ep

iso
de

 R
et

ur
n

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

Ep
iso

de
 R

et
ur

n

humanoid_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

humanoid_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

25

50

75

100

125

150

Ep
iso

de
 R

et
ur

n

humanoid_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000
Ep

iso
de

 R
et

ur
n

reacher_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

walker_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

quadruped_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

Ep
iso

de
 R

et
ur

n

quadruped_escape

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

Ep
iso

de
 R

et
ur

n

quadruped_fetch

Figure 10: Experiment results on different DMC environments with state-based observations.

19

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

ball_in_cup_catch

Algorithm
SMAC
SAC
Flow2
Flow4
MOE5
MOE10

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_spin

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_turn_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

hopper_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

Ep
iso

de
 R

et
ur

n

humanoid_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

humanoid_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0
25
50
75

100
125
150

Ep
iso

de
 R

et
ur

n

humanoid_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

walker_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

quadruped_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

Ep
iso

de
 R

et
ur

n

quadruped_escape

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

Ep
iso

de
 R

et
ur

n

quadruped_fetch

Figure 11: Experiment results about comparison with other probabilistic policy modeling methods
on different DMC environments with state-based observations. “Flow2” and “Flow4” refer to
normalizing flow based policy with two or four RealNVP blocks as backend, while “MOE5” and
“MOE10” refer to probabilistic mixture-of-experts policy with five or ten mixtures. MOE, SAC
and SMAC share similar number of parameters, while flow methods have about two or four times
more parameters. Our proposed SMAC general achieves the best sample efficiency on a majority of
environments.

20

Published as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

ball_in_cup_catch

Algorithm
SMAC
Latent-SAC
SLAC
MBRL

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

cartpole_balance_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cartpole_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

cartpole_swingup_sparse

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

cheetah_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

finger_spin

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

finger_turn_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

Ep
iso

de
 R

et
ur

n

finger_turn_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

hopper_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

50

100

150

200

250

Ep
iso

de
 R

et
ur

n

hopper_hop

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

Ep
iso

de
 R

et
ur

n

pendulum_swingup

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

reacher_easy

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

Ep
iso

de
 R

et
ur

n

reacher_hard

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_stand

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

1000

Ep
iso

de
 R

et
ur

n

walker_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

Ep
iso

de
 R

et
ur

n

walker_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

200

400

600

800

Ep
iso

de
 R

et
ur

n

quadruped_walk

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

100

200

300

400

500

Ep
iso

de
 R

et
ur

n

quadruped_run

0.0 0.2 0.4 0.6 0.8 1.0
Step 1e6

0

10

20

30

40

50

Ep
iso

de
 R

et
ur

n

quadruped_escape

Figure 12: Experiment results on different DMC environments with pixel-based observations.

21

Published as a conference paper at ICLR 2023

as other methods. We experiment with two-block and four-block RealNVPs, which makes their
number of parameters to be approximately twice and four times as the number of SAC and SMAC
methods (these two share approximate the same number of parameters). We show their performance
in Figure 11 as “Flow2” and “Flow4”, respectively. About the probabilistic mixture-of-experts (MOE)
method, we follow the practice of Ren et al. (2021) to use a five Gaussian mixture and a ten Gaussian
mixture. We show their performance in Figure 11 as “MOE5” and “MOE10”, respectively. This
probabilistic MOE shares roughly around the same number of parameters and compute cost as SAC
and SMAC. To conclude, SMAC achieves more favorable performance across a majority of the
control tasks with less or equal number of parameters (notice that SMAC is the red curve in the
figure). Normalizing flow based polices outperform SMAC on only one environment, while MOE
requires the use of biased gradient estimators which often required extra hyperparameter tuning or
could lead to worse performance.

Regarding Section 5.2 For this part, the agents are fed with pixel-based inputs. We mainly follow
the PyTorch world model implementation of Lin (2022) for this part. We implement the Latent-SAC
algorithm according to instructions and hyperparameters in Wang et al. (2022). We implement the
SLAC (Lee et al., 2020a) algorithm following its original github repo (Lee et al., 2020b). Note that
Latent-SAC and SLAC are two different algorithms, in the sense of actor modeling and world model
design, although they both build on a SAC backend. We select the hyperparameters in the same way
as the above part. We show the full version of experimental results in Figure 12. We do not plot the
results of the humanoid domain as well as quadruped fetch, as all methods could not obtain
meaningful results within 1 million frames.

For the robustness experiments, we add two kinds of noises in the pixel space, namely Gaussian
perturbation and sensor missing perturbation. For Gaussian perturbation, we add isotropic Gaussian
noise with scale 0.01 and 0.05. For sensor missing, we randomly drop the pixel value for each dimen-
sion to zero according to a Bernoulli distribution (with parameter 0.01 and 0.05) in an independent
way. For results in Table 1, we report the best episodic reward across training iterations with standard
deviation estimated from 5 seeds.

D THEORETICAL DERIVATIONS

D.1 UNIVERSALITY OF LATENT VARIABLE MODELS

We would first need the help of the following Lemma for the proof.

Lemma 2. For any continuous d-dimensional distribution p∗(x) and ∀ϵ > 0, there exists a neural
network Ψ : R→ Rd with finite depth and width that satisfiesW [Ψ#N (0, 1)||p∗(·)] ≤ ϵ. Here #
is the push-forward operator,W(µ, ν) := infπ∈Π(µ,ν)

∫
|x− y|dπ(x, y) is the Wasserstein metric,

and N (0, 1) is the standard Gaussian distribution.

Proof. The Theorem 5.1 of Perekrestenko et al. (2020) shows that for any p∗(x) and ϵ > 0,
there exists a nonlinear ReLU neural network with finite size Ψ̃ : R → Rd that satisfies
W
[
Ψ̃#U [0, 1]||p∗(·)

]
≤ ϵ, where U [0, 1] is the uniform distribution on [0, 1]. On the other hand,

it is well known that the cumulative distribution function (cdf) of standard Gaussian Φ(·) : R→ R
could map the standard Gaussian to the uniform distribution U [0, 1], thus we have the construction of
Ψ := Ψ̃ ◦ Φ.

We use this result to prove Proposition 1.

Proposition 1. For any d-dimensional continuous distribution p∗(x), there exist a sequence of
two-level latent variable model pn(x) =

∫
pn(x|z)pn(z) dz, n ∈ N+ that converge to it, where both

pn(x|z) and pn(z) are factorized Gaussian distributions with mean and variance parameterized by
neural networks.

Proof of Proposition 1. We let z ∈ R and set pn(z) = N (0, 1),∀n ∈ N+. From the above Lemma 2,
we know that ∀n ∈ N+,∃Ψn : R→ Rd s.t. W [Ψn#pn(z)||p∗(x)] ≤ 1

n , where Ψn is a finite size

22

Published as a conference paper at ICLR 2023

neural network. We then set pn(x|z) = N (x; Ψn(z),
1
n2). Note that this falls into the category of

factorized Gaussian.

Let π0 be a coupling between pn(x) and Ψn#pn(z), where π0(x, x
′) is the joint distribution over

(x, x′) and x′ = x + ζ/n, ζ ∼ N (0, 1), x ∼ Ψn#pn(z). We thus haveW [pn(x)||Ψn#pn(z)] ≤∫
|x− x′|dπ0(x, x

′) = 1√
2πn

< 1
n . Since the Wasserstein metric satisfies the triangle inequality, we

haveW [pn(x)||p∗(x)] ≤ W [pn(x)||Ψn#pn(z)] +W [Ψn#pn(z)||p∗(x)] ≤ 2
n

n→∞−→ 0.

D.2 TIGHT LOWER BOUND ON THE MARGINAL ENTROPY

Proposition 3 (Lower bound of marginal entropy). For a latent variable policy π(a|h) :=∫
π(a|s)q(s|h) dz with prior q(s|h) and likelihood π(a|s), consider

H̃K(h) ≜ Ea∼π(a|h)Es(0)∼p(s|a,h)Es(1:K)∼q(s|h)

[
− log

(
1

K + 1

K∑
k=0

π
(
a|s(k)

))]
. (27)

where p(s|a,h) ∝ π(a|s)q(s|h) is the posterior and K is any positive integer, then the following
holds:

(1) H̃K(h) ≤ H(π(·|h)) ≜ −
∫
A log

∫
S π(a|s)q(s|h) dsda,

(2) H̃K(h) ≤ H̃K+1(h),

(3) limK→∞ H̃K(h) = H(π(·|h)).

The following proofs roughly follow the derivations from Sobolev & Vetrov (2019). We describe
them here for completeness.

For (1):

Proof. We write

H(π(·|h))− H̃K(h) = Es0∼p(s|a,h)Es(1:K)∼q(s|h)

[
log

(
1

K + 1

K∑
k=0

p(s(k)|a,h)
q(s(k)|h)

)]

≜ Es0∼p(s|a,h)Es(1:K)∼q(s|h)

[
log

p(s0|a,h)q(s(1:K)|h)
w(s(0:K)|a,h)

]
= DKL

[
p(s0|a,h)q(s(1:K)|h)∥w(s(0:K)|a,h)

]
,

where w(s(0:K)|a,h) = p(s(0)|a,h)q(s(1:K)|h)
1

K+1

∑K
k=0

p(s(k)|a,h)

q(s(k)|h)

. We only need to show that w(s(0:K)|a,h) is a normal-

ized density function.

Consider such generation process:

1. sample K + 1 samples s̃(k) ∼ q(s|h), k = 0, . . . ,K,

2. set weight for each sample wk = π(a|s̃(k)),

3. sample a categorical random variable h ∼ Cat
(

w0∑K
k=0 wk

, . . . , wK∑K
k=0 wk

)
,

4. put the h-th sample to the first: s0 = s̃(h), s(1:K) = s̃(\h).

It is easy to see the joint probability of this generation process is

p(s̃(0:K), s(0:K), h) = q(s(0:K)|h) wh∑K
k=0 wk

δ(s0 − s̃(h))δ(s(1:K) − s̃(\h)).

23

Published as a conference paper at ICLR 2023

Then the marginal of s(0:K) is∫ K∑
h=0

q(s(0:K)|h) wh∑K
k=0 wk

δ(s0 − s̃(h))δ(s(1:K) − s̃(\h)) ds̃(0:K)

=(K + 1)

∫
q(s(0:K)|h) w0∑K

k=0 wk

δ(s(0) − s̃(0))δ(s(1:K) − s̃(1:K)) ds̃(0:K)

=(K + 1)
q(s(0:K)|h)π(a|s(0))∑K

k=0 π(a|s(k))
=

q(s(1:K)|h)p(s(0)|a,h)
1

K+1

∑K
k=0

p(s(k)|a,h)
q(s(k)|h)

= w(s(0:K)|a,h).

Thus w(s(0:K)|a,h) is a normalized density function.

For (2).

Proof. We write

H̃K+1(h)− H̃K(h) = Es0∼p(s|a,h)Ez1:K+1∼q(s|h)

[
log

(
1

K+1

∑K
k=0 π(a|s(k))

1
K+2

∑K+1
k=0 π(a|s(k))

)]

≜ Es0∼p(s|a,h)Ez1:K+1∼q(s|h)

[
log

p(s(0)|a,h)q(s(1:K+1)|h)
w(s(0:K+1)|a,h)

]
= DKL

[
p(s(0)|a,h)q(s(1:K+1)|h)∥v(s(0:K+1)|a,h)

]
,

where v(s(0:K+1)|a,h) = p(s(0)|a,h)q(s(1:K+1)|h)
1

K+2

∑K+1
k=0 π(a|s(k))

1
K+1

∑K
k=0 π(a|s(k))

. We could then show that

v(s(0:K+1)|a,h) is a normalized density function similarly as (1).

For (3).

Proof. For the estimator, we have

1

K + 1

K∑
k=0

π(a|s(k)) =

AK︷ ︸︸ ︷
1

K + 1
π(a|s(0))+

BK︷ ︸︸ ︷
K

K + 1

CK︷ ︸︸ ︷
1

K

K∑
k=1

π(a|s(k))

By law of large numbers, we have AK → 0, BK → 1, CK → p(x). Thus the limit of the left-hand
side is p(x).

24

	1 Introduction
	2 Background
	2.1 Maximum Entropy Reinforcement Learning
	2.2 World Models for Partially-Observed Environments

	3 Stochastic Marginal Actor-Critic (SMAC)
	3.1 Latent variable policies
	3.1.1 World models induce latent variable policies

	3.2 MaxEnt RL in the presence of latent variables
	3.2.1 Estimating the marginal entropy
	3.2.2 Variance reduction with antithetic multi-level Monte Carlo
	3.2.3 Estimating the marginal Q-function

	3.3 Stochastic Marginal Actor-Critic (SMAC)

	4 Related Work
	5 Experiments
	5.1 State-based continuous control environments
	5.2 Pixel-based continuous control environments

	6 Conclusion
	A Notations
	B Additional details regarding methodology
	B.1 Multi-modality of latent variable policies
	B.2 World model learning
	B.3 SMAC algorithm

	C Additional details regarding experiments
	D Theoretical Derivations
	D.1 Universality of Latent Variable Models
	D.2 Tight Lower Bound on the Marginal Entropy

