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Abstract

In recent years, the application of machine learning models in critical domains has raised
significant concerns regarding the fairness and interpretability of their predictions. This
study investigates the disparities in the quality of post-hoc explanations generated for com-
plex black-box models, specifically focusing on the influence of fairness constraints on these
explanations across diverse demographic groups. Utilizing datasets from ACSIncome, AC-
SEmployment, and COMPAS, we employ explanation methods such as LIME and Ker-
nelSHAP to evaluate metrics including Maximum Fidelity Gap from Average (MFGA),
Consistency and Stability. Our findings reveal that the imposition of fairness constraints
impacts the fidelity and consistency of explanations, with notable variations observed be-
tween demographic groups. While some datasets demonstrate equitable explanation quality
across genders, significant biases persist in others, particularly affecting younger individuals
and racial minorities. The research highlights the necessity for robust fairness-preserving
techniques in post-hoc explanations and underscores the critical need for transparency in
AI-driven decision-making processes. By correlating model unfairness with disparities in
explanation quality, this work aims to contribute to the ongoing discourse on ethical AI,
emphasizing the importance of both accuracy and fairness in machine learning applications.
The source code is available at
https://anonymous.4open.science/r/Fairness-via-Explanation-Quality-60F1/

1 Introduction

Over the past decades, machine learning methods have become powerful and increasingly applied in high-
stakes domains like health, education and justice (Chen et al., 2021; Jamison, 2017; Tuggener et al., 2019;
Alarie et al., 2016). This has also led to an increase in the deployment of "black boxes". The latter have been
recognized for their intricate and often non-transparent decision-making processes, which present difficulties
in grasping the reasoning behind specific decisions. This opacity becomes a critical issue, particularly when
such models unintentionally foster biases or unequal treatment of certain groups Doshi-Velez & Kim (2017)
and so the need to interpret and explain these models has become a vital issue for practitioners and decision-
makers.

Addressing these concerns has led to an increasing emphasis on creating methods for post-hoc explanations.
Post hoc explanation methods can be categorized into four main groups: counterfactual Wachter et al.
(2017), perturbation-based Ribeiro et al. (2016); Slack et al. (2021); Plumb et al. (2018), gradient-based
Selvaraju et al. (2017); Smilkov et al. (2017) and rule-based Ribeiro et al. (2018). Counterfactual explanations
involve searching for instances in high-dimensional feature spaces, which can be computationally demanding
and may propose changes that are impractical to achieve in real-world scenarios (Laugel et al., 2019).
Gradient-based methods, while commonly applied to unstructured data like images, have limitations such
as sensitivity to input noise and difficulty in detecting spurious correlations, occasionally producing visually
similar explanations for different (Adebayo et al., 2021). Rule-based methods sometimes yield complex and
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difficult-to-understand rules, especially with high-dimensional data, and finding the most effective rule can
be computationally intensive.

Perturbation-based post hoc explanation methods, notably LIME (Local Interpretable Model-agnostic Ex-
planations), have gained prominence, particularly for tabular data. Another vital point is ensuring the quality
of these post-hoc explanations. Many research works focus on this and include metrics such as Mufidelity,
Deletion and Insertion scores and Average Stability (Fel et al., 2022; Zhou et al., 2021). Recent studies have
highlighted disparities in the fidelity of these methods across different demographic groups, such as ’gen-
der’ and ’race’ (Allgaier et al., 2023; Dai et al., 2022). To tackle these issues, Dai et al. (2021) proposed a
fairness-preserving approach for LIME, incorporating fairness constraints into its objective function, drawing
on previous work that enhanced fairness in machine learning through similar constraints. Simultaneously,
Balagopalan et al. (2022) introduced a robust LIME explanation model using the ’Just train twice’ method-
ology, demonstrating fidelity improvements in certain cases and datasets, particularly with neural network
methods. Such methods are designed to demystify and simplify the decision-making of these intricate black-
box models. Offering transparent explanations is crucial to guarantee that users can have confidence in and
competently manage AI systems, ensuring that the decisions made are equitable and defensible (Bharati
et al., 2023; Rajabi & Kafaie, 2022; Khosravi et al., 2022).

It is worth noting the evidence indicating that factors like sample size, covariate shift, concept shift, omitted
variables as well as data and model properties can influence the accuracy of model predictions and contribute
to disparities in the performance of black box models, particularly, Mhasawade et al. (2024) demonstrate
that an increase in covariate shift, concept shift, and omission of covariates amplify explanation disparities,
with the effect pronounced higher for neural network models that are better able to capture the underly-
ing functional form compared to linear models. Notably, imbalances in sample size have been associated
with biases in prediction Kleinberg et al. (2022) and calibration models Agustina Ricci Lara et al. (2023).
Additionally, insufficient samples from specific subgroups are recognized to impact model performance and
the generalizability to those particular subgroups (Cai et al., 2023; Chen et al., 2023). Another source of
algorithmic unfairness stems from unevenly missing data across subgroups Wang & Singh (2021); Martínez-
Plumed et al. (2019), which can lead to both an imbalance and a sample that doesn’t accurately represent
the true distribution of the target population, thereby inducing a distribution shift for certain subgroups
(Pessach & Shmueli, 2023).

However, it’s crucial to note that fairness challenges in machine learning models, such as prediction models,
are multifaceted, potentially arising from issues within the data, the black box models themselves, or their
interpretation (for instance, through explanation techniques) (Gebru et al., 2021; Barocas et al., 2023).

2 Related Works

2.1 Explainable Machine Learning

Numerous machine learning and deep learning algorithms have been created, with continuous progress being
made in the field. The latter category of algorithms is particularly advanced and yields impressive outcomes.
Consequently, there is a rising trend in the development and implementation of black box models in practical
applications, which has sparked an increased interest in the development of explanations (usually due to ethics
Bhatt et al. (2020b); Holzinger (2018); Roscher et al. (2020) or laws Bibal et al. (2021) ) that summarize
the behaviours of these black boxes.

Model-agnostic explainability techniques can be broadly categorized into local and global methods (Du
et al., 2019). Local approaches focus on explaining individual predictions made by a model. They do this by
approximating the model’s decision-making process near a specific data point (Plumb et al., 2018; Ribeiro
et al., 2018; Botari et al., 2020; Rathi, 2019). The weights derived from these local models then elucidate
the reasoning behind the predictions of the more complex model.

LIME (Local Interpretable Model-Agostic Explanation), is an explanation technique that explains the pre-
dictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally
around the prediction (Ribeiro et al., 2016). KernelSHAP, a modification of SHAP(Shapley Additive ex-
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Planations) Lundberg & Lee (2017) is an explanation algorithm that assigns each feature an importance
value for a particular prediction by making use of some weighting Kernel function. The above-mentioned
algorithms are examples of attribution-based explanations.

2.2 Algorithmic Fairness and Bias Mitigation

Formalizing fairness is rapidly expanding in research. Current research primarily focuses on defining fairness
on either an individual or group basis (Berk, 2017; Chen et al., 2018; Chouldechova, 2017; Chouldechova &
Roth, 2018; Zafar et al., 2017; Zemel et al., 2013).

Individual fairness, as described in Dwork et al. (2012), entails making consistent predictions for similar
individuals. In contrast, group fairness involves ensuring equitable predictions across different demographic
groups, such as gender, age or race.

Our study is centered on group-level fairness in binary classification, specifically measured by the demographic
parity difference (DPD) also called statistical parity difference and equalized odds difference, commonly used
fairness metrics in group fairness. We employ a probabilistic approach to define this metric, which allows
for comparing gaps between groups. DPD is given mathematically by

DPD = max
a

∣∣∣E [h(X)|A = a] − E[h(X)]
∣∣∣ (1)

and EOD by
EOD = max

a,y
|E [h(X)|A = a, Y = y] − E[h(X) | Y = y]| (2)

where h(X) represents a predictor, a is a sensitive attribute and Y the ground truth label. To enhance group
fairness, three main strategies are typically employed Caton & Haas (2020); modifying data beforehand
to reduce bias (preprocessing) Paul & Burlina (2021), incorporating fairness during model training (in-
processing/reduction) and post-processing approach conducted after training by utilizing a holdout set that
was excluded from the model’s training process (Mehrabi et al., 2021).

We apply a reduction approach method suggested by Agarwal et al. (2018) to train fair blackbox models.
Moreover, recent studies have indicated that training models robust to group differences can enhance fairness
by improving accuracy for the least advantaged groups. The fairness constraint is grounded on a utility
metric, φ, which can be assessed for individual data points and is averaged across different data point groups
to establish the utility parity constraint. The utility implements constraints that permit some degree of
violation of the utility parity constraints, with the maximum allowed violation specified as a difference. The
relaxation of this utility parity constraint based on differences can be represented by

φa,e − φe ≤ 0 or φe − φa,e ≤ 0

and subsequently replaces zero on the right-hand side with a value designated as difference bound (Agar-
wal et al., 2018). The value of difference bound restricts the difference between the utility of each group and
the overall mean utility within each event.

2.3 Group-Based disparities Post hoc explanation quality

In their work, Dai et al. (2022) began exploring group-based disparities in explanation quality, identify-
ing several key properties such as fidelity (accuracy), stability, consistency, and sparsity that contribute to
explanation quality. They discussed why disparities in these properties are problematic and proposed an
evaluation framework to quantitatively measure them. Through empirical analysis across three datasets, us-
ing six post-hoc explanation methods and various model classes, they found that group-based disparities in
explanation quality are more likely to occur when models are complex and non-linear. Notably, explanation
methods such as Integrated Gradients and SHAP were more prone to exhibit disparities, highlighting previ-
ously unexplored ways in which explanation methods can introduce unfairness in decision-making processes.

Similarly, Balagopalan et al. (2022) evaluated explanation model fairness using the fidelity gap and demon-
strated that improving explanation fairness can significantly enhance decision-making for underserved groups.
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They observed notable differences in the fidelity of explanation models among subgroups across two black-box
model architectures and four popular explanation methods.

Further addressing these challenges, Mhasawade et al. (2024) examined how data properties (e.g., limited
sample size, covariate shift, concept shift, and omitted variable bias) and model characteristics (e.g., sensi-
tive attribute incorporation and functional form selection) contribute to explanation disparities. Through
simulated scenarios and experiments, they found that heightened covariate and concept shifts, as well as the
omission of covariates, amplify explanation disparities, particularly in neural network models. Their findings
suggest that disparities arise from both data and model characteristics.

Building on this foundation, the motivation for this work arises from the need to better understand how
these explanation disparities manifest across demographic groups, especially when post-hoc methods are
applied to complex black-box models. While previous research has highlighted the influence of factors such
as model characteristics, data properties, and fairness on explanation quality, it has typically been limited to
a single level of fairness. This research takes a more granular approach by investigating 99 different levels of
unfairness. Experimenting with multiple fairness levels, we seek to capture the broader relationship between
fairness constraints and explanation disparities. The study also aims to determine if there are systematic
correlations between unfairness and disparities in explanation quality. By analyzing the relationship between
varying levels of unfairness and the quality of explanations across different demographic groups, the research
seeks to uncover whether these disparities are systematically linked to the degree of unfairness in the model.
The findings will provide deeper insights into how fairness constraints may influence explanation quality and
whether addressing unfairness can enhance transparency and equity in AI-driven decision-making processes.
We do this by answering the following questions:

• RQ1 How does the unfairness of black-box models affect the quality of post hoc explanations in
different demographic groups?

• RQ2 To what extent is there a significant correlation between model unfairness and disparities in
explanation quality metrics across different groups?

• RQ3 How do different fairness metrics impact the relationship between model unfairness and ex-
planation disparity?

3 Measuring Fairness of explanations

3.1 Notation

Consider a dataset D = {(x1, y1), (x2, y2), · · · (xn, yn)} composed of n training data points where xi is a d-
dimensional feature vector for the ith data point in D and yi ∈ Y is the corresponding binary class label. Each
data point comprises some sensitive feature/attribute a. Consider also, a complex and non linear blackbox
classifier h : Rd → {0, 1}, and a global explanation method E : (x, h) → ψ ∈ Rd, where ψ represents the
output vector of feature importance. We train an explanation model E chosen from the set of interpretable
models like linear models or decision trees to approximate the behaviour of h in the vicinity of xi.

3.2 Explanation Quality

Although research in explainable machine learning is expanding, there’s yet to be an agreed-upon method for
gauging a model’s explainability quality (Poursabzi-Sangdeh et al., 2021). Consequently, human assessment
remains the primary method for evaluating the quality of a model’s explanation, focusing on factors like
transparency, the trust it engenders in users, or how well humans understand the model’s decisions (Petsiuk
et al., 2018). Here we use one fidelity metric described by Balagopalan et al. (2022), a consistency and stability
metric (Dai et al., 2022). Fidelity measures how accurately an explanation model replicates the predictions
of a black box model and facilitates the assessment of fairness by demonstrating the alignment between the
machine learning model and the explanation model. Mathematically, it is given by 1

N

∑N
i=1 P(h(xi), E(xi)),

where P is a performance metric such as mean squared error. Here, we categorize the features into continuous
and categorical types. We calculate the median values for the continuous features, and for the categorical
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features, it identifies the least frequent values. This information is crucial for modifying the least important
features during the explanation process.

We select the topk features based on their attribution scores, sorting the feature attributions and determining
the indices of these top features. The least important features are identified by subtracting the top features
from the full set of features. Subsequently, the identified least important features are modified: Gaussian
noise is added to the median value for continuous features to introduce variability, while for categorical
features, the values are replaced with the least frequent category. The result is a modified dataset that
retains the most significant features while altering only the least important ones based on their attributions.

3.2.1 Maximum Fidelity Gap from Average (MFGA)

The Maximum Fidelity Gap from the Average quantifies the greatest deviation in fidelity for any group
compared to the average fidelity across all groups. This metric evaluates how much the fidelity of an
explanation model for disadvantaged groups differs from the overall average fidelity. The maximum fidelity
gap from the average, ∆Qm, is represented as follows:

∆Qm = max
j

 1
N

N∑
i=1

P(h(xi), E(xi)) − 1
Nj

∑
i:δj

i
=1

P(h(xi), E(xi))

 (3)

where N denotes the total number of data points, δj
i = 1 indicates that point xi belongs to the j-th group,

and Nj represents the number of data points where δj
i = 1.

Let’s denote the individual fidelity gap by ∆Qj such that ∆Qm = maxj ∆Qj . Our focus is on individual
and maximum fidelity gap from the average for the accuracy performance metric, following (Mhasawade
et al., 2024). This involves assessing the accuracy between the predictions of the black box model h(·) and
the explanation method E(·).

3.3 Relative Consistency

Consistency embodies the idea that when an explanation for a single data point is computed multiple
times, each iteration should yield similar results. Discrepancies among explanations for the same input x
hint at potential unreliability in these explanations (Fel et al., 2022). If a single point can generate a
plethora of highly divergent explanations, it’s improbable that any one explanation is accurate, signifying
poor approximation quality. To quantify consistency for a given point x, we generate several explanations
for that point and then compute the average euclidean distance between the initial explanation and each
subsequent one. Let E be an explanation method, d is the euclidean distance, we define the inconsistency
by

Inconsistency Score = 2
nexpl(nexpl − 1)

nexpl∑
i=1

nexpl∑
j=i+1

d(Ei, Ej) (4)

3.3.1 Stability

The principle that similar points should receive similar explanations often termed stability, robustness, or
insensitivity has been extensively discussed (Dai et al., 2022). If different explanations are provided for
similar points, it suggests that not all of those explanations can be correct. To assess the stability of an
explanation at a point x, for each input, noise is randomly introduced and explanations are generated for
these perturbed inputs. The metric is the mean L1 distance between the explanations of the original and
the noise-altered inputs (Bhatt et al., 2020a).

Instability(x, h,E) = E [∥E(x, h) − E(x̃, h)∥1] .
We approximate instability empirically by generating x̃j m times, producing
{x̃j | 1 ≤ j ≤ m}

Instability(x, h,E) ≈ 1
m

m∑
j=1

∥E(x, h) − E(x̃j , h)∥1. (5)
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4 Impacts of quality metrics in real life and how it affects decisions

4.1 Maximum Fidelity Gap from Average

The Maximum Fidelity Gap from the Average quantifies the largest disparity in fidelity between a specific
group and the overall average fidelity across all groups. This metric is crucial for identifying how much
worse the explanations are for disadvantaged groups compared to the average explanation quality. It helps
in detecting potential biases where certain groups receive explanations that are significantly less accurate or
less reliable, which could lead to unfair decision-making. Addressing the maximum fidelity gap ensures that
all demographic groups receive equitable explanations, thereby supporting fairness in model interpretability
and promoting trust among all users, regardless of their group affiliation.

4.2 Relative Consistency

Relative Consistency measures the reliability of explanations by ensuring that multiple iterations of expla-
nations for the same input do not diverge significantly. This reliability is crucial for reducing the likelihood
of contradictory explanations, which can undermine the trust and reliability of the model. By ensuring that
the model’s explanations are consistent, this metric helps build user trust and makes the model’s decisions
more understandable and predictable. Furthermore, maintaining high standards in explanation quality is
essential in critical applications where the consequences of decisions are significant, such as in healthcare or
finance.

4.3 Stability

Stability, also known as robustness or insensitivity, evaluates the consistency of model explanations when
small perturbations are introduced to the input data. A stable model provides similar explanations for
similar inputs, which is vital for ensuring that the explanations are reliable and trustworthy. Instability,
where similar inputs lead to widely varying explanations, can signal that the model’s explanations are not
dependable, potentially leading to confusion or mistrust among users. Stability is particularly important
in applications where decisions based on the model’s explanations have significant consequences, such as in
legal or medical contexts. By ensuring high stability, models can provide consistent and reliable insights,
thereby enhancing user confidence in the model’s decisions. decisions.

5 Analysis

5.1 Experimental Setup

5.1.1 Data

For the experiment, we chose three benchmark datasets to ensure diversity in the domains they represent,
particularly ACSIncome (which predicts if an individual has an income level greater than 50000), ACSEm-
ployment that predicts if an individual is employed or not Ding et al. (2021) and COMPAS (assess the
likelihood of recidivism) (Barenstein, 2019). These datasets were selected due to their relevance to societal
and economic factors and their availability for research purposes. Using gender, as protected attribute
for ACSIncome, age for ACSEmployment and race for COMPAS, we evaluate disparities in explanation
quality. To ensure the robustness and generalizability of our findings, the datasets are divided randomly
into training, testing, and explanation sets in a ratio of 4:3:3. This stratified division ensures that each
subset maintains the same distribution of target labels, thereby preventing any imbalance that could affect
the performance evaluation.

5.1.2 Models

We consider 2 complex models to evaluate whether explanation disparities occur. Specifically, Xgboost
(XGB) and Random Forest Classifier (RF) and carried out cross-validation with GridSearchCV with a
max-depth in the range of 1 to 7.
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Table 1: Datasets and Sensitive Attribute used in our experiments

Dataset Outcome Variable Sensitive attribute
ACSIncome Income > 50 K Gender (2 groups)

ACSEmployment Employment status recode Age (2 groups)
COMPAS Defendant re-offends Race (2 groups)

5.1.3 Bias Mitigation

For bias mitigation, we adopted a reduction approach known as Exponentiated Gradient, Agarwal et al.
(2018); Bird et al. (2020) which converts a binary classification task into a problem cost-sensitive classifica-
tion. This transformation allows for the selection of a randomized classifier that achieves a minimal error
rate while adhering to fairness constraints (Mbiazi et al., 2023). We mitigate the model for fairness using
demographic parity as a constraint. To assess the impact of fairness constraints on explanation quality, we
vary the difference bound in a range from 0.01 to 1 with a step size of 0.01 to obtain 99 fairer versions of the
base model. By varying the degree of fairness enforcement, we can evaluate how different levels of fairness
affect the explanation quality provided by our models.

5.1.4 Hyperparameters

We run Lime and KernelShap with 100 perturbations generated around each input data point and batch
size of 64.

5.1.5 Hypotheses

We perform the Mann-Whitney U test to compare the distributions of the quality metrics between different
groups. The test is used to determine whether the distributions of two independent groups are different.
The p-values shown indicate whether the differences in these distributions are statistically significant at a
95% confidence interval. We carry out this for fidelity, relative consistency and stability. This is done with
the following hypotheses;

• Null Hypothesis (H0): There is no significant difference in the distribution between the groups
for the given dataset, model, and explanation method.

• Alternate Hypothesis (HA): There is a significant difference in the distribution between the
groups for the given dataset, model, and explanation method.

For the Correlation Test, we are conducting a Spearman’s correlation test to assess the relationship between
model unfairness and the disparity in quality metrics, this is done with the following hypotheses;

• Null Hypothesis (H0): There is no significant monotonic relationship between model unfairness
and disparity in quality metrics

• Alternate Hypothesis (HA): There is a significant monotonic relationship between model unfair-
ness and disparity in quality metrics.

The Spearman’s correlation test is carried out at a 95% confidence level, meaning if the p-value is less
than 0.05, the null hypothesis will be rejected, suggesting that there is a statistically significant monotonic
relationship between model unfairness and the disparity in quality metrics. We carry out this for the four
explanation metrics.

5.2 Setting and Implementation

We start by splitting each dataset into a training set, test set and explanation set with respect to some
random seed as mentioned above in 5.1.1. To enhance model fairness, we train h using a reduction approach,
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exponentiated gradient to mitigate bias as mentioned in 5.1.3 above. The fairness of models is assessed using
the test dataset. Subsequently, the explanation dataset was split into two subsets based on the sensitive
attribute (with values 0 and 1 for males and females respectively), age attribute ( with 0 representing
individuals with less than or equal to 30 and 1 otherwise) and race attribute (0 for African-American and 1
for Caucasian). For the explanation method, and for each mitigated version of the base model, we compute
the fidelity and average stability score. To assess if the metrics differ significantly, we carry out 7 trials,
repeating the computations for different random seeds. For each random seed, explanation method and
percentage violation in fairness metric we record the corresponding median metric value.

5.3 Results

After applying fairness constraints to our base models, how sure are we that the bias mitigation is effective?
Figures 7a and 7b show how the demographic parity difference changes with respect to percentage in
fairness violation for each of some models and dataset combination. The variation is seen to be increasing
because in adding the percentage violation, we move from a less to a more unfair model.
RQ1
Maximum Fidelity Gap from the Average: Figures 1 and 8 provided, show the plots of the individual
deviation (for each subgroup) from the overall fidelity (∆Qj). For ACSIncome dataset, both XGB and
RF models show relatively small fidelity gaps between males and females. The CDF curves for these two
groups are closely aligned, indicating similar explanation fidelity across genders. The p-values for the Mann-
Whitney U test confirm this observation, with values as high as 0.29 for XGB and 0.1 for RF with Lime,
and 0.29 for XGB and 0.1 for RF in KernelShap as can be seen in tables 2 and 3. These higher p-values
suggest no statistically significant difference in fidelity between demographic groups, indicating that the
explanations provided by both models are fair across genders. In contrast, for the ACSEmployment and
COMPAS datasets, there are significant differences in explanation fidelity across demographic groups. For
the ACSEmployment dataset, younger individuals (age ≤ 30) experience larger fidelity gaps compared to
older individuals, as evidenced by the low p-values, such as 1.97 × 10−7 for XGB and 4. × 10−8 for RF in
Lime, and similarly low values for KernelShap. The COMPAS dataset shows significant racial disparities in
fidelity, with the Caucasian group experiencing consistently higher gaps. The p-values, like 0.042 for XGB
and 0.0002 for RF in LIME, confirm that explanation fidelity differs significantly between racial groups,
suggesting that post-hoc explainability methods provide less accurate explanations for certain groups.

Inconsistency score: Figures 2 and 9 show cumulative distribution functions (CDFs), and the Mann-
Whitney U test p-values from Tables 4 and 5 provide insights into the explanation inconsistency of XGBoost
(XGB) and Random Forest (RF) models across demographic subgroups. For the ACSIncome dataset, both
XGB and RF models yield extremely low p-values (on the order of 10−34) for both LIME and KernelSHAP,
indicating a highly significant difference in explanation consistency between demographic groups. This
suggests that one group consistently receives more reliable explanations than the other, as confirmed by
both the CDF plots and statistical tests. In the ACSEmployment dataset, the p-values for both XGB and
RF models are also very low (e.g., 9.27 × 10−3 to 2.8 × 10−4 for DPD, and as low as 5.33 × 10−5 for EOD),
again indicating statistically significant differences in explanation consistency between age groups. The gap
is more pronounced for XGB than RF, as reflected in the lower p-values for XGB. For the COMPAS
dataset, XGB shows low p-values for both LIME and KernelSHAP (e.g., 1.69 × 10−3 and 1.65 × 10−3 for
DPD, 1.51 × 10−4 and 2.03 × 10−4 for EOD), indicating significant differences in explanation consistency
between racial groups. In contrast, RF yields higher p-values (e.g., 0.122 and 0.229 for DPD, 0.0921 and
0.179 for EOD), suggesting no statistically significant difference in explanation consistency between groups
for this model.

In summary, the p-values confirm that significant disparities in explanation consistency exist across de-
mographic subgroups for most datasets and models, with the ACSIncome and ACSEmployment datasets
showing the most pronounced and consistent gaps, particularly for XGB. For COMPAS, the gap is significant
for XGB but not for RF.

Instability score: The analysis of explanation instability across demographic subgroups, based on the CDFs
from 3 and 9 and Mann-Whitney U test p-values (tables 6 and 7), reveals significant differences in the
stability of explanations provided by XGBoost (XGB) and Random Forest (RF) models in the ACSIncome,
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ACSEmployment, and COMPAS datasets. For the ACSIncome dataset, both XGB and RF models yield
extremely low p-values (on the order of 10−34) for both LIME and KernelShap, indicating highly significant
differences in instability scores between demographic groups. The CDF curves suggest that one group (e.g.,
females) consistently receives more stable explanations than the other (e.g., males), with the gap being
present in both models. In the ACSEmployment dataset, the p-values for XGB are 0.0694 (LIME) and
0.0405 (KernelShap) for DPD, and 0.00518 (LIME) and 0.01414 (KernelShap) for EOD. For RF, the p-values
are 0.0469 (LIME) and 0.0543 (KernelShap) for DPD, and 0.000749 (LIME) and 0.000697 (KernelShap) for
EOD. These results indicate that explanation instability differences between age groups are statistically
significant for most cases, especially for EOD, with the gap being more pronounced in XGB than RF. For
the COMPAS dataset, both XGB and RF models show extremely low p-values (e.g., 5.23 × 10−17 and
5.45 × 10−34 for LIME in DPD, 2.69 × 10−14 and 8.33 × 10−34 for KernelShap in DPD, and similarly low
values for EOD), confirming significant instability differences between racial groups. The results suggest that
both models provide less stable explanations for certain groups, with RF showing particularly pronounced
instability.

Overall, the p-values confirm that significant disparities in explanation stability exist across demographic
subgroups for all datasets and models, with the most pronounced and consistent gaps observed in ACSIncome
and COMPAS, and with XGB generally showing larger gaps than RF in ACSEmployment.

Table 2: P-values for Mann-Whitney U test for ∆Qj at 95% confidence interval for DPD

Dataset Model Lime KernelShap
ACSIncome XGB 0.292 0.292

RF 0.104 0.104
COMPAS XGB 0.042 0.042

RF 0.000242 0.000242
ACSEmployment XGB 1.97e-07 1.97e-07

RF 4.04e-08 4.04e-08

Table 3: P-values for Mann-Whitney U test for ∆Qj at 95% confidence interval for EOD

Dataset Model Lime KernelShap
ACSIncome XGB 0.104 0.104

RF 0.105 0.105
COMPAS XGB 0.00298 0.00298

RF 1.15e-06 1.15e-06
ACSEmployment XGB 1e-06 1e-06

RF 0.000102 0.000102

Table 4: P-values for Mann-Whitney U test for relative consistency score at 95% confidence interval for DPD

Dataset Model Lime KernelShap
ACSIncome XGB 5.45e-34 5.45e-34

RF 5.45e-34 5.45e-34
COMPAS XGB 0.00169 0.00165

RF 0.122 0.229
ACSEmployment XGB 0.00927 0.00681

RF 0.000282 0.000217
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Table 5: P-values for Mann-Whitney U test for relative consistency score at 95% confidence interval for EOD

Dataset Model Lime KernelShap
ACSIncome XGB 5.45e-34 5.45e-34

RF 5.45e-34 5.45e-34
COMPAS XGB 0.000151 0.000203

RF 0.0921 0.179
ACSEmployment XGB 0.00125 0.00149

RF 5.33e-05 5.39e-05

Table 6: P-values for Mann-Whitney U test for stability score at 95% confidence interval for DPD

Dataset Model Lime KernelShap
ACSIncome XGB 5.45e-34 5.45e-34

RF 5.45e-34 5.45e-34
COMPAS XGB 5.23e-17 2.69e-14

RF 5.45e-34 8.33e-34
ACSEmployment XGB 0.0694 0.0405

RF 0.0469 0.0543

Table 7: P-values for Mann-Whitney U test for stability score at 95% confidence interval for EOD

Dataset Model Lime KernelShap
ACSIncome XGB 5.45e-34 5.45e-34

RF 5.45e-34 5.45e-34
COMPAS XGB 5.81e-20 2.88e-18

RF 5.45e-34 5.45e-34
ACSEmployment XGB 0.00518 0.00414

RF 0.000749 0.000697

RQ:2
The correlation between unfairness and disparity in quality metrics (∆Q) varies across both XGBoost (XGB)
and Random Forest (RF) models, displaying non-linear and dataset-dependent patterns. For XGB, there
is a clear positive correlation in some cases, such as fig 4a, where higher unfairness corresponds to larger
performance disparities across subgroups, indicating that unfair models tend to exhibit more inconsistent
quality metrics. However, in other cases, such as fig 4b, a quadratic relationship emerges, with disparity
decreasing at first before rising as unfairness increases, suggesting a more complex interaction. Conversely,
fig 4c shows an inverse correlation, where higher unfairness surprisingly corresponds to lower performance
disparities, potentially reflecting specific subgroup interactions unique to the dataset. For RF, the results
show similar variability. In fig 11b, like XGB, there is a positive correlation, where greater unfairness
corresponds to larger disparities in quality metrics. However, in fig 11a, a weak inverse correlation suggests
that increasing unfairness slightly reduces disparity, while fig 11c shows no significant correlation, implying
that unfairness and performance disparities may be independent in this case.

The correlation between disparity in inconsistency scores and unfairness shows different patterns depending
on the dataset and model. For XGB, there are strong non-linear relationships, particularly in plot (a) fig 5a
and fig 5b, where increasing unfairness first reduces and then increases the disparity in instability. This
could indicate a complex interaction between fairness and the reliability of model explanations, with higher
unfairness leading to more unstable explanations beyond certain thresholds. In contrast, the RF results
show much weaker correlations, with most plots (especially fig 12b) indicating that unfairness has little to
no impact on explanation inconsistency. The slight trends observed in some RF plots suggest only a loose
connection between fairness and stability in explanations.
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Across both models, the relationship between disparity in instability scores and unfairness is non-linear for
XGB and weaker for RF. For XGB, several plots (especially fig 6b)) reveal quadratic relationships, suggesting
that while moderate unfairness can reduce instability disparity, excessive unfairness might lead to more
unstable explanations disparities. This complex interaction indicates that unfairness can both positively
and negatively impact explanation stability depending on its magnitude. Conversely, the RF results show
weaker linear trends, where unfairness only minimally affects explanation instability. In most cases, increasing
unfairness has little to no impact on RF model disparity in stability, suggesting that explanation reliability
in RF is more robust to fairness variations compared to XGB.

Table 8: Summary of Correlations in the Figures

Dataset Model Perfect Slight No Correlation
ACSIncome XGB 2 1 1

RF 0 4 0
ACSEmployment XGB 0 4 0

RF 0 3 1
COMPAS XGB 0 3 1

RF 0 0 4

Figure 1: CDF ∆Qj with XGB

Figure 2: CDF Inconsistency score with XGB
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Figure 3: CDF Instability score with XGB

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 4: Correlation for ∆Qj and unfairness with XGB

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 5: Correlation for Inconsistency scores and unfairness with XGB

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 6: Correlation for Instability scores and unfairness with XGB

RQ:3 Investigation reveals that the choice of fairness metrics Demographic Parity Difference (DPD) and
Equalized Odds Difference (EOD) significantly impacts explanation quality disparities, with effects varying
across datasets and demographic groups. For the ACSIncome dataset (gender-sensitive), both metrics showed
minimal fidelity gaps (p-values 0.104−0.292), suggesting balanced demographic representation reduces metric
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sensitivity. In contrast, ACSEmployment (age-sensitive) and COMPAS (race-sensitive) exhibited substantial
disparities, with DPD and EOD producing distinct patterns in explanation gaps (p-values 10−6 − 10−8).
The study found that XGBoost models were more sensitive to fairness metric choice than Random Forest
models, likely due to their non-linear structure amplifying disparities. Both LIME and KernelSHAP showed
similar trends, but their interaction with fairness constraints influenced explanation stability. The analysis
uncovered non-linear relationships: DPD constraints often correlated positively with explanation disparity,
while EOD constraints sometimes resulted in inverse or quadratic patterns, highlighting how fairness formu-
lations (overall parity vs. conditional parity given labels) fundamentally alter explanation behavior. These
findings emphasize that no single fairness metric universally ensures equitable explanations effectiveness
depends on dataset characteristics, demographic distributions, and model complexity. Practitioners must
prioritize context-aware metric selection, particularly in high-stakes domains like employment or criminal
justice, to balance model performance and explanation equity.

6 Discussion

The primary objective of the study was to investigate the relationship between the fairness constraints applied
to machine learning models and the quality of post-hoc explanations across different demographic groups.
The research focuses on the disparities in explanation quality when fairness is enforced on two commonly
used black-box models XGB and RF across three datasets: ACSIncome, ACSEmployment, and COMPAS.
Explanation quality was assessed using metrics such as Maximum Fidelity Gap from the Average (MFGA),
consistency, and stability.

The results showed that disparities in explanation quality are influenced by both the dataset and the model
used. For example, in the ACSIncome dataset, the fidelity of explanations was relatively equal across
gender groups for both XGB and RF models, as indicated by high p-values from the Mann-Whitney U
test, suggesting no significant difference in the quality of explanations between males and females. However,
in the ACSEmployment and COMPAS datasets, significant disparities were observed. Younger individuals
in the ACSEmployment dataset and non-white individuals in the COMPAS dataset received less accurate
and less consistent explanations compared to their counterparts. These findings suggest that while certain
models and datasets may provide equitable explanations, others may exhibit significant biases, leading to
unfair treatment of certain demographic groups.

The study also revealed that model complexity plays a crucial role in determining the degree of explanation
disparity. More complex models like XGB tend to show more pronounced non-linear relationships between
unfairness and explanation disparity metrics. For instance, in several cases, increasing unfairness led to larger
disparities in explanation consistency and stability, particularly for the XGB model, while RF exhibited
weaker correlations in many cases. This suggests that models like XGB, which are more adept at capturing
non-linear relationships, may also be more prone to explanation disparities when fairness constraints are
not adequately enforced. The choice of fairness metric also played a significant role. Demographic Parity
Difference (DPD) and Equalized Odds Difference (EOD) produced different patterns of explanation disparity,
with effects varying across datasets and demographic groups. Notably, no single fairness metric ensured
equitable explanation quality across all settings, underscoring the need for context-aware metric selection
especially in high-stakes domains where explanation equity is critical for trust and accountability.

6.1 Threads to valitidy

Several threats to validity may affect the generalizability and robustness of the study’s findings. The study
focused primarily on two perturbation-based explanation methods, Lime and KernelSHAP, both of which
have inherent limitations. Lime relies on a perturbation process that may introduce noise and uncertainty
into the explanations, while KernelSHAP’s performance can be sensitive to the selection of hyperparameters.
Future research should explore other explanation methods, such as gradient-based techniques, to validate
the findings across a broader range of explanation methods. Additionally, the study’s conclusions are based
on three specific datasets ACSIncome, ACSEmployment, and COMPAS each representing different domains
and demographic groups. Although these datasets were chosen for their societal relevance, the results may
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not generalize to other datasets or domains. The observed disparities in explanation quality could be specific
to these datasets, and further research is needed to confirm these findings in other contexts.

6.2 Conclusion

The study contributes the growing body of research on fairness and explainability in machine learning by
highlighting how disparities in post-hoc explanations can arise even when fairness constraints are applied to
the underlying models. The findings emphasize the importance of evaluating not only the accuracy of models
but also the fairness of their explanations, particularly in high-stakes domains such as criminal justice and
employment, where unfair explanations can have serious real-world consequences. While fairness constraints
can reduce disparities in explanation quality for some models and datasets, they are not a one-size-fits-all
solution. The extent to which these constraints mitigate explanation disparities varies based on the dataset,
model, and specific explanation method used. For example, while fairness constraints improved explanation
quality for certain groups in the ACSIncome dataset, they were less effective for younger individuals in the
ACSEmployment dataset and non-white individuals in the COMPAS dataset.

These findings suggest that future research and practice should focus on developing more robust fairness-
preserving techniques for post-hoc explanations, particularly for complex models like XGBoost, which exhibit
more pronounced explanation disparities. Additionally, model developers need to carefully consider the de-
mographic characteristics of the data and the potential for disparities in explanation quality when deploying
machine learning models in real-world applications. These results highlight the need to consider fairness
not only in model accuracy but also in the quality of explanations provided by machine learning models.
Practitioners should integrate a variety of explanation methods, including gradient-based and perturbation-
based techniques, to ensure robustness and transparency in different contexts. To address these concerns,
organizations deploying machine learning models should adopt broader methods for generating explana-
tions. Relying on a single explanation method can be limiting, and combining Lime, KernelSHAP, and
gradient-based techniques will provide more comprehensive and equitable model transparency across diverse
demographic groups. Furthermore, models and explanation methods should be tested on multiple datasets
that represent different domains and demographic characteristics, as results derived from a single dataset
may not generalize across other use cases. Testing on various datasets ensures broader applicability and
fairness.
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A Appendix

(a) Demographic parity difference for XGB
model with ACSIncome

(b) Demographic parity difference for RF
model with ACSEmployment

Figure 8: CDF ∆Q with RF

Figure 9: CDF Inconsistency score with RF
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Figure 10: CDF Instability score with RF

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 11: Correlation for ∆Q and unfairness with RF

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 12: Correlation for Inconsistency and unfairness with RF

(a) ACSIncome (b) ACSEmployment (c) COMPAS

Figure 13: Correlation for Instability scores and unfairness with RF
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