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ABSTRACT

Diffusion models are mainly studied on image data. However, non-image data
(e.g., tabular data) are also prevalent in real applications and tend to be noisy due
to some inevitable factors in the stage of data collection, degrading the generation
quality of diffusion models. In this paper, we consider a novel problem setting
where every collected sample is paired with a vector indicating the data qual-
ity: risk vector. This setting applies to many scenarios involving noisy data and
we propose risk-sensitive SDE, a type of stochastic differential equation (SDE)
parameterized by the risk vector, to address it. With some proper coefficients,
risk-sensitive SDE can minimize the negative effect of noisy samples on the op-
timization of diffusion models. We conduct systematic studies for both Gaussian
and non-Gaussian noise distributions, providing analytical forms of risk-sensitive
SDE. To verify the effectiveness of our method, we have conducted extensive ex-
periments on multiple tabular and time-series datasets, showing that risk-sensitive
SDE permits a robust optimization of diffusion models with noisy samples and
significantly outperforms previous baselines.

1 INTRODUCTION

Prevalence of noisy non-image data. Current studies on diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020) (or score-based generative models (Song & Ermon, 2019; Song et al., 2021))
have primarily focused on high-quality image data, achieving promising performance (Dhariwal &
Nichol, 2021) in image synthesis. However, non-image data (e.g., tabular data and time series) are in
fact more popular in real applications (e.g., medicine (Johnson et al., 2016) and finance (Takahashi
et al., 2019)). A survey conducted by Kaggle (Kaggle, 2017; van Breugel et al., 2023) revealed that
79% of the data scientists are mainly working on tabular data. Importantly, while image datasets
are commonly of high quality, non-image data contain noisy samples in most cases. For example,
sensor data are susceptible to measurement errors (Steinvall & Chevalier, 2005), and such noise can
significantly degrade the performance of diffusion models.

Introduction of risk vectors. In this work, we are interested in a novel problem setup where every
sample in the dataset is associated with a vector indicating the sample quality: risk vector. The
purpose of setting this vector is to provide information that a potential method can use to robustly
optimize diffusion models in the presence of noisy samples. While this setup might seem artificial, it
applies to many real scenarios involving noisy data. For example, tabular data often contain missing
values (Barnard & Meng, 1999), and practitioners typically impute those values before using the
data. During this preprocessing step, many imputation methods can provide confidence values (i.e.,
risk information) for their predictions. Even when such risk vectors are not directly accessible,
a class of methods known as uncertainty quantification (Angelopoulos & Bates, 2021) can offer
viable alternatives. In Appendix D, we provide a detailed discussion and more real-world examples,
showing the broad applicability of our proposed setup.

Principled method: risk-sensitive diffusion. To address the problem setup: noisy samples paired
with risk vectors, we first study the negative impact of noisy samples on optimizing diffusion mod-
els, with a conclusion that such samples mainly cause a marginal distribution shift in the diffusion
process. In light of this finding, we introduce an error measure called perturbation instability, which
quantifies the negative effect of noisy samples, and propose risk-sensitive SDE, a type of stochastic
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differential equation (SDE) parameterized by the risk vector, with the aim to minimize the instability
measure. For both Gaussian and general non-Gaussian noise perturbation, we determine the optimal
coefficients of risk-sensitive SDE, and prove that, in the case of isotropic Gaussian noises, that type
of negative impact can be fully eliminated. In experiments, we show that our method is still very
effective in the scenario with non-Gaussian (e.g., Cauchy) noises.

Contributions. In summary, the contributions of this paper are as follows:

• Conceptually, we are the first to introduce risk vectors to robustly optimize diffusion models
with noisy samples, with a principled method: risk-sensitive SDE, to incorporate such a
vector, reducing the negative impact of noisy samples: perturbation instability;

• Technically, we solve the analytical forms of risk-sensitive SDE for both Gaussian and
non-Gaussian noise distributions, with a notable conclusion that, in the case of Gaussian
perturbation, the negative impact of noisy samples can be fully reduced;

• Empirically, experiment results on multiple tabular and time-series datasets show that risk-
sensitive SDE can effectively handle noisy samples, even when the noise distribution is
mis-specified or non-Gaussian, and notably outperform previous baselines.

We will publicly release the code once the paper is accepted.

2 PRELIMINARIES

In this section, we first briefly introduce the background of diffusion models, with basic terminolo-
gies and notations that will also be used later. Then, we present the motivation and formulation of
our problem setup: noisy samples paired with a risk vector.

2.1 BACKGROUND OF DIFFUSION MODELS

While diffusion modes (or score-based generative models) have different versions and variants,
we adopt the formulation of Song et al. (2021), which generalizes DDPM (Ho et al., 2020),
SMLD (Song & Ermon, 2019), VDM (Dhariwal & Nichol, 2021), etc.

At the core of diffusion models lies a diffusion process, which drives data samples xp0q „ p0pxp0qq

(i.e., a finite-dimensional vector) towards noise xpT q „ pT pxpT qq at time T P R`, and can be
expressed through a stochastic differential equation (SDE) (Itô, 1944):

dxptq “ fptqxptqdt ` gptqdwptq, (1)
where wptq is a standard Wiener process, fptqxptq : R ˆ Rd Ñ Rd is a predefined vector-valued
function that specifies the drift coefficient, and gptq : R Ñ R is a predetermined scalar-valued
function that specifies the diffusion coefficient. We call pT , T Ñ 8 the prior distribution, which is
fixed and retains no information of p0 via a proper design of coefficients fptq, gptq.

Interestingly, the reverse process (i.e., reverse version of the diffusion process) also follows an SDE.
For a process of the form as Eq. (1), it shapes as:

dxptq “
`

fptqxptq ´ gptq2∇xptq ln ptpxptqq
˘

dt ` gptqdswptq, (2)

which runs another standard Wiener process swptq backward in time. For generative purposes, we
can sample randomly from the prior distribution pT and use the reverse process to map such samples
into data samples that will follow p0, that is, the distribution of inputs. The challenge is to determine
the expression ∇x ln ptpxq in the backward process (known as the score function) since the term
is analytically intractable in most cases. A common practice (Song & Ermon, 2019) is to use an
approximation called the score-based model sθpx, tq, for instance, a neural network.

To optimize the score model towards the score function, previous works (Song & Ermon, 2019;
Song et al., 2021) derived the following score-matching loss:

L “ Ept,x0,xtq

“

λptq}sθpxptq, tq ´ ∇xptq ln ptpxptqq}22

‰

, (3)

where the weight λptq : r0, T s Ñ R` is generally set uniformly. Importantly, it is common (Song
et al., 2021) to adopt an upper bound of the above loss to fit the model sθpxptq, tq with the kernel
pt|0pxptq | xp0qq (i.e., the density of xptq conditioning on xp0q).
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2.2 PROBLEM SETUP

For standard diffusion models, the observed sample xp0q P RD is implicitly assumed to be without
noise perturbation. However, this simplification does not apply to many real applications. Fig. 1
shows an example of medical time series, which consists of irregularly spaced observations. To
apply diffusion models to such data, one will first fill in the missing values with some interpolation
method (Rubanova et al., 2019), resulting in noises in the form of interpolation errors.

Misguidance effect of Noisy Samples. Noisy sample rxp0q intuitively has a negative impact on the
optimization of score-based model sθpx, tq, degrading the generation quality of diffusion models.
For this point, a solid explanation is as below.
Remark 2.1. In the standard case with only clean sample xp0q, the score-based model sθpx, tq is
optimized to match the score function ∇x ln ptpxq. Since noisy sample rxp0q has a different initial
distribution rp0pxq from that p0pxq of clean sample xp0q, their marginal distributions rptpxq, ptpxq at
time step t will also be different, with the same diffusion process (i.e., Eq. (1)). As a result, we have
∇x ln rptpxq ‰ ∇x ln ptpxq, indicating that noisy sample rxp0q causes a wrong objective ∇x ln rptpxq

for optimizing the model sθpxptq, tq.

In short, we can say that noisy sample rxp0q misleads the diffusion models in training.

Figure 1: A segment of noisy time se-
ries from MIMIC (Johnson et al., 2016).
The data points outside the orange region
(i.e., 95% confidence intervals) are observed,
and a Gaussian process interpolates the ones
within the area.

Introducing risk information. Although noisy
samples are inescapable in some situations, they are
usually with additional information, estimating the
potential risk of using such samples. Following
the previous example, a Gaussian process (MacKay
et al., 1998) that interpolates the missing samples
in Fig. 1 naturally provides uncertainty information
(i.e., confidence intervals) for each prediction. We
can thus pair every possibly noisy sample rxp0q “

rrx1p0q, rx2p0q, ¨ ¨ ¨ , rxDp0qsJ with its risk informa-
tion r, available for free. While risk r is defined in a
very general way in Definition 3.1, its concrete form
depends on the noise type. For example, in the case
of non-isotropic Gaussian perturbation, the risk r
is a vector r “ rr1p0q, r2p0q, ¨ ¨ ¨ , rDp0qsJ of the
same D dimensions as the sample rxp0q, indicating
its entry-wise data quality. The closer to 0 the value
in each entry ri P R`

Ť

t0u of r is, the higher the
expected quality, where ri “ 0 indicates that entry
rxip0q is clean.

Provided with the risk vector r, an ideal genera-
tive model could draw information from both risky
prxp0q, r ‰ 0q and clean samples prxp0q “ xp0q, r “ 0q, and importantly, this model was only
optimized towards the distribution of clean samples: p0pxq.

3 METHOD: RISK-SENSITIVE DIFFUSION

To reduce the misguidance of noisy samples on optimizing diffusion models, we present a principled
method: risk-sensitive SDE, a type of SDE parameterized by risk vector r. In the following, we first
define risk-sensitive SDE and some other useful concepts, and then solve its optimal coefficients for
different noise perturbations. Finally, we present the training and inference algorithms for diffusion
models under the framework of risk-sensitive SDE,

3.1 BASIC DEFINITIONS

Risk vectors and noise distribution families. Intuitively, risk information r represents the data
quality of a noisy sample rxp0q. To formalize this concept in a more rigorous way, we provide the
below definition, which still aligns with the intuition.

3
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Definition 3.1 (Risk Vectors). The risk information r shapes as a vector that is element-wise non-
negative and controls a family of continuous noise distributions:

Pϵ “

!

ρrpϵq : RD Ñ R`,

ż

ρrpϵqdϵ “ 1
ˇ

ˇ

ˇ
r ‰ 0

)

, (4)

with each one perturbing clean sample xp0q „ p0pxp0qq into noisy sample rxp0q “ xp0q ` ϵ, which
is with respect to a distribution as rp0,rprxp0qq “

ş

p0pxp0qqρrprxp0q ´ xp0qqdxp0q. For zero risk
r “ 0, it means the sample rxp0q ” xp0q is noise-free.
Remark 3.1. This definition might not seem intuitive. For better understanding, let us take isotropic
Gaussian perturbation as an example. In this case, the risk vector r can be simplified as a scalar r
and the family of noise distributions Pr is as tN p0, rIq | r ą 0u.
Remark 3.2. The operation of noise perturbation can be regarded as a form of “local averaging”,
which is typically not reversible. Even suppose that the reverse operation was possible, recovering
the potential clean sample xp0q from noisy sample rxp0q, would require knowledge of the probabilis-
tic densities of samples, which are not accessible in practice.

Motivation and definition of risk-sensitive SDE. In light of the misguidance effect of noisy sam-
ple rxp0q, we aim to seek an alternative diffusion process parameterized by the risk r, such that noisy
sample prxp0q, rq under this process has the same distribution rpt,rpxq at some iteration t in r0, T s

as that of clean sample xp0q under the ordinary diffusion process: ptpxq. For iteration t where the
equality rpt,rpxq “ ptpxq holds, the score function of noisy samples: ∇x ln rpt,rpxq, can be used to
safely optimize model sθpx, tq. The new process chosen in this spirit is a specific choice of SDE
whose parameterization includes the risk vector r. We name such an SDE as risk-sensitive SDE,
with a strict definition as follows.
Definition 3.2 (Risk-sensitive SDE). For a noisy sample rxp0q with risk vector r, the risk-sensitive
SDE is a type of SDE that incorporates the risk r into its coefficients, extending a sample vector
rxp0q into a dynamics trxptqutPr0,T s as

drxptq “ pfpr, tq d rxptqqdt ` gpr, tq d dwptq, (5)

where d stands for the Hadamard product, and the coefficient functions fpr, tq,gpr, tq are every-
where continuous with right derivatives.
Remark 3.3. For zero risk r “ 0, the above SDE is fed with clean sample xp0q, and thus corre-
sponds to a standard diffusion model with risk-unaware coefficients fp0, tq,gp0, tq. We refer to this
particular case as risk-unaware SDE.
Remark 3.4. One might notice that risk-sensitive SDE is more expressive than the ordinarily defined
diffusion process (i.e., Eq. (1)): The risk-sensitive coefficients fpr, tq,gpr, tq are vectors (i.e. non-
isotropic), while risk-unaware coefficients fptq, gptq are just scalars. In Theorem 3.2, we will see
this setting is essential for non-isotropic perturbation.

Error measure: perturbation instability. As previously discussed, we aim to find a type of risk-
sensitive SDE that satisfies a nice property at some time step t: rpt,rpxq “ ptpxq, which we define as
perturbation stability. While this condition is indeed possible to reach for Gaussian noises, we will
see in Theorem 3.1 that it is not achievable in the case of non-Gaussian perturbation. Therefore, we
have to introduce a new “criterion” that generalize the stability condition, measuring how much it
is violated. With this type of criterion, we can score all the coefficient candidates of a risk-sensitive
SDE and search for the best candidate, which minimizes the stability violation.

Because probability densities are uniquely determined by their cumulant-generating functions (i.e.,
log-characteristics functions) (Chung, 2001), an obvious way to define the criterion is to measure
the mean square error (Weisberg, 2005) between the cumulant-generating function of rpt,rpxq and
that of ptpxq. A formal definition is in the following.
Definition 3.3 (Measure of Perturbation Instability). For a given risk vector r and time step t, the
perturbation instability Stprq of a risk-sensitive SDE (as defined in Eq. (5)) measures the discrep-
ancy between its marginal density rpt,rpxq for a noisy sample rxp0q and that of the ordinary diffusion
process ptpxq for a clean sample xp0q as:

Stprq “ sup
p0pxq

´

ż

RD

Ωpyq

ˇ

ˇ

ˇ
rχt,rpyq ´ χtpyq

ˇ

ˇ

ˇ

2

dy
¯

, (6)
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where Ωpyq : RD Ñ R` is a positive weight function and | ¨ | is the complex modulus. In par-
ticular, rχt,rpyq,χtpyq respectively stand for the cumulant-generating functions (Chung, 2001) of
rpt,rpxq, ptpxq, which both depends on the distribution of real samples: p0pxq.
Remark 3.5. Extending our terminology, we say a risk-sensitive SDE achieves perturbation stability
at time step t if and only if it also satisfies Stprq “ 0. The forward direction of this claim is obvious
and the reverse is proved in the appendix: Lemma G.1. Importantly, we will see in the next section
that such stability is not always reachable. In that case, we say a risk-sensitive SDE, which achieves
the infimum of Stprq, has the property of minimum instability.
Remark 3.6. The significance of perturbation stability is that, when this property holds, then the
desired equality ∇x ln rptpxq “ ∇x ln ptpxq will also hold. In this situation, the score-based model
sθpx, tq can be robustly optimized with noisy samples prxp0q, r ‰ 0q.

One might adopt another way to define the instability measure, considering that there are many
other methods (e.g., KL divergence (Shlens, 2014)) to quantify the discrepancy of two probability
distributions. However, we find that our defined measure Stprq leads to meaningful theoretical
results and performs well in experiments. We remain the explorations of other possible measures
and their implications for future work.

3.2 MAIN THEORY

In this part, we aim to answer the following three questions:

1. In what conditions is there a risk-sensitive SDE that facilitates perturbation stability? For
example, does this depend on specific noise types or sample distribution p0pxq?

2. If the stability property is not reachable, is there a possibility to have a analytical solution
that minimally violates the stability property?

3. In the above two situations, what are the actual forms of risk-sensitive SDE? Is it general-
izable to extend the current diffusion models for application?

To improve readability, we present simplified theoretical results while preserving the key ideas. The
complete theory and detailed proofs can be found in Appendices E, F, G.

Answer to the 1st question. Our theorems provide a satisfactory answer as follows.
Theorem 3.1 (Simplified and Reinterpreted from Theorem E.1 and Proposition F.1). The necessary
and sufficient conditions for a risk-sensisitve SDE to achieve perturbation stability: rpt,rpxq “ ptpxq,
include: 1) the noisy sample rxp0q is perturbed by a diagonal Gaussian noise and the risk r indicates
its variance; 2) the time step t is within the stability interval T prq.

In particular, suppose the Gaussian noise is isotropic, then it suffices to represent the risk vector r
as a scalar r and the form of risk-sensitive SDE under this condition is as

$

’

’

&

’

’

%

fpr, tq “
d lnuptq

dt
,@t P r0, T s

gpr, tq “ uptq2
d

dt

´vpr, tq2

uptq2

¯

,@t P T prq, gpr, tq “ 0,@t P T prqc
, (7)

where uptq, vpr, tq are continuous functions with right derivatives, satisfying

vpr, tq2 “ maxpvp0, tq2 ´ r2uptq2, 0q, (8)

and T prq “ tt P r0, T s | vpr, tq ą 0u is defined as the stability interval. For zero risk r “ 0, the
above equations reduce to an ordinary risk-unaware diffusion model.

We can see that the ideal situation with perturbation stability is reachable if and only if the noise
distribution is Gaussian and the time step is within the stability interval. This conclusion is also very
intuitive from two perspectives: Firstly, since the backbones of risk-sensitive SDE and diffusion
model are in fact a drifted Brownian motion, it is not likely that our tool can reduce the impact of a
noise distribution beyond Gaussian; Secondly, noisy sample rxp0q is surely less informative than the
clean sample xp0q, so it is reasonable that noisy samples cannot be used to correctly optimize the
score-based model sθpx, tq at every time step t. In Theorem E.1 of the appendix, one can also find
a more general conclusion for non-isotropic Gaussian noises.
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Algorithm 1 Training
1: repeat
2: Sample prxp0q, r q from the training set

3: Sample t from stability interval T prq

4: η „ N p0, Iq

5: rxptq “ uptq d rxp0q ` vpr, tq d η

6: Update θ with ´∇θ

›

›η { vpr, tq `sθprxptq, tq}
2

7: until converged

Algorithm 2 Sampling
1: Set time points ttM “ T, tM´1, ¨ ¨ ¨ , t2, t1 “ 0u

2: Set zero risk r “ 0 and xptM q „ pT pxq

3: for i “ M,M ´ 1, . . . , 2 do
4: sθpxptiq, tiq “ gpr, tiq

2
d sθpxptiq, tiq

5: pbpxptiq, tiq “ fpr, tiq d xptiq ´ sθpxptiq, tiq

6: η „ N p0, pti ´ ti´1qIq

7: xpti´1q “ xptiq´pbp¨qpti´ti´1q´ gpr, tiq dη

8: end for

Answer to the 3rd question for Gaussian noises. We have the following corollary that extends
VP SDE (Song et al., 2021) (i.e., the continuous relaxation of DDPM) to risk-sensitive VP SDE,
which supports a robust optimization with isotropic Gaussian noises.

Corollary 3.1 (Risk-sensitive VP SDE, Simplified from Corollary G.2). Under the setting of
isotropic Gaussian perturbation, the risk-sensitive SDE for VP SDE is parameterized as follows

fpr, tq “ ´
1

2
βptq, gpr, tq “ 1

`

1 ą p1 ` r2qαptq
˘

a

βptq, (9)

where 1p¨q is an indicator function and the coefficient αptq is defined as αptq “ expp´
şt

0
βpsqdsq.

The stability interval in this case is T prq “ tt P r0, T s | αptq´1 ą 1 ` r2u. As expected, for
the special case with zero risk r “ 0, the risk-sensitive SDE reduces to an ordinary VP SDE, with
fp0, tq “ ´1

2βptq, gp0, tq “
a

βptq, and T “ r0, T s.

Risk-sensitive VP SDE is the same as vanilla VP SDE for optimization with clean sample pxp0q, r “

0q, otherwise it will adopt a different coefficient gpr, tq and a restricted set of sampling time steps
T prq to reduce the negative impact of noisy sample prxp0q, r ą 0q. We will discuss this point more in
the next section, with detailed optimization and sampling algorithms. Corollary G.2 in the appendix
also provides its version for non-isotropic Gaussian noises.

Answer to the 2nd question. This question is very important, considering that the perturbation
distributions in the real world might be non-Gaussian. As shown below, we can always find the
optimal parameterization of risk-sensitive SDE that minimizes the negative impact of an arbitrarily
complex noise distribution on the optimization of model sθpx, tq.

Theorem 3.2 (General Stability Theory, Simplified from Theorem F.1). Suppose the risk vector
r is element-wise positive and controls a family of continuous noise distributions, with each one
formulated as ρrpϵq : RD Ñ R`,

ş

ρrpϵqdϵ “ 1, then the optimal coefficients for the risk-sensitive
SDE to minimize the instability measure Stprq satisfy the following equality:

$

&

%

vpr, tq2 “ max
`

0,vp0, tq2 ` Ψpuptq, rq
˘

Ψpuptq, rq “ 2
´

ż

ΩpyqryyJs2dy
¯´1´

ż

Ωpyq ln
ˇ

ˇ exp
`

χrpuptq d yq
˘
ˇ

ˇrys2dy
¯ , (10)

where the vectorized coefficients uptq,vpr, tq come from the formal definition of risk-sensitive SDE
(i.e., Definition 3.2) and the new terms Ωpyq,χrp¨q are basic elements that defines the instability
measure Stprq (i.e., Definition 3.3).

We can see that the general form of perturbation distribution ρrpϵq incurs a very complex expres-
sion Ψpuptq, rq in the optimal coefficient vpr, tq. In particular, if the noise ϵ follows an isotropic
Gaussian ρrpϵq “ N pϵ;0, rIq, then we can verify that Ψpuptq, rq “ r2uptq2 regardless of the
weight function Ωpyq, which is consistent with our previous conclusion: Theorem 3.1. Another
complication of non-Gaussian noise is that: even for some isotropic noise distribution ρrpϵq, the
term Ψpuptq, rq appearing in coefficient vpr, tq might have different expressions in different dimen-
sions. Therefore, distinct from our Theorem 3.1, the vectorized coefficients uptq,vpr, tq cannot be
simplified into scalar functions (e.g., uptq, vpr, tq) for isotropic noise perturbation.

6
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Figure 2: Comparison between the diffusion process of a standard VP SDE for clean samples (i.e.,
the upper 5 subfigures) and its alternative: risk-sensitive SDE, for Gaussian-corrupted samples (i.e.,
the lower 5 subfigures). With the proper risk-sensitive coefficients, the clean and noisy samples will
have the same marginal densities in the stability interval: t P r0.26, 1s.

Answer to the 3rd question for non-Gaussian noises. To finally answer this question for non-
Gaussian noises, we have the below corollary that extends VE SDE (Song et al., 2021) (a type of
diffusion model also used in Song et al. (2023)) to risk-sensitive VE SDE, which supports a robust
optimization with Cauchy noises.
Corollary 3.2 (Risk-sensitive VE SDE, Simplified from Corollary G.3). For some properly de-
fined weight function Ωpyq and an isotropic Cauchy perturbation specified by a scale r as
ρrpϵq “

śD
j“1pπpr ` ϵ2j{rqq´1, ϵ “ rϵ1, ϵ2, ¨ ¨ ¨ , ϵDsJ, the minimally-unstable risk-sensitive SDE

for VE SDE has coefficients as

fpr, tq “ 0, gpr, tq “ 1

´

σptq2 ą σp0q2 `
D ` 2

D ` 5
r2

¯

c

dσptq2

dt
. (11)

Notably, for the setting with no risk r “ 0, risk-sensitive VE SDE reduces to the ordinary risk-
unaware VE SDE, which has fixed coefficients fp0, tq “ 0, gp0, tq “

a

dσptq2{dt.

With a heavy tail in the distribution, Cauchy noise has a high probability to drift a clean sample far
away, exhibiting a very distinct behavior from Gaussian noises. In Sec. 5, our numerical experiments
(e.g., Fig. 4) show that risk-sensitive VE SDE rarely generates outliers, indicating that the optimal
risk-sensitive SDE is very effective in reducing the negative impact of Cauchy-corrupted samples.
Corollary G.3 in the appendix stands as its version for non-isotropic Cauchy noises.

3.3 OPTIMIZATION AND SAMPLING

Similar to the score matching loss L of standard diffusion models, the loss function under the frame-
work of risk-sensitive SDE shapes as

Lt,r “ Ex„rpt,rpxqr}sθpx, tq ´ ∇x ln rpt,rpxq}2s. (12)

Proposition G.1 in Appendix G shows that this loss function for noisy sample prx, rq is equal to the
score matching loss L for clean sample px, r “ 0q within the stability interval T prq, and has another
form for computation in practice.
Proposition 3.1 (Risk-free Loss, Simplified from Proposition G.1). The loss function Lt,r for risky
sample prxp0q, r ‰ 0) is equivalent to the below expression:

E
rxp0qrp0,rpxq,η„N p0,Iq

“
›

›η { vpr, tq ` sθpuptq d rxp0q ` vpr, tq d η, tq
›

›

2‰

, (13)

up to a constant. Here uptq,vpr, tq are vectorized versions of terms uptq, vpr, tq that appear in
Eq. (7), with their formal definitions in Theorem E.1.

We respectively show the training and sampling procedures in Algorithm 1 and Algorithm 2. We also
highlight in blue the terms that differ from vanilla diffusion models. For the optimization algorithm,
when r “ 0, the algorithm reduces to the optimization procedure of a vanilla diffusion model, with a
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(a) Training data, polluted
by Gaussian noises.

(b) Samples from a stan-
dard diffusion model.

(c) Samples from the risk-
conditional baseline.

(d) Samples from our risk-
sensitive VP SDE.

Figure 3: Comparison on a Gaussian mixture data (Fig. 3(a), three-sigma regions as ellipses), with
part of Gaussian-corrupted samples. Our model (Fig. 3(d)) mostly samples within the ellipses, while
the samples from standard diffusion model (Fig. 3(b)) typically fall out of them, and conditional
generation leads to an unbalanced generation distribution (Fig. 3(c)).

trivial stability interval of T prq “ r0, T s. When the random variable r is non-zero, the risk-sensitive
coefficient vpr, tq and interval T prq will guarantee that ∇x ln ptpxq “ ∇x ln rpt,rpxq for t P T prq,
such that the noisy sample prxp0q, r ‰ 0q can be used to safely train the model sθpx, tq.

For the sampling algorithm, by setting zero risk r “ 0, the coefficients fpr, tq,gpr, tq become
compatible with the model sθpx, tq and together generate high-quality sample xp0q. Our model will
generate only clean samples pxp0q, r “ 0q, but it was already able to capture the rich distribution
information contained in noisy sample prxp0q, r ‰ 0q during optimization.

4 RELATED WORK

Similar setups. To our knowledge, we are the first to study the problem setup of pairing noisy
samples with risk vectors in the field of diffusion models. Some previous works (Ouyang et al.,
2023; Kim et al., 2024) also focused on diffusion models with noisy data, though under different
settings. For example, Unbiased Diffusion Model (Kim et al., 2024) considered the presence of both
a biased dataset and a clean dataset and, thus, tackled a particular case of our setting: assigning risk
1 to the samples of biased dataset and risk 0 to those of the clean dataset. However, this model
cannot be adapted to the common situation where different noisy samples might have different risks.
Ambient Diffusion (Daras et al., 2024) aimed to handle a situation where the images are with missing
pixel patches, which largely differs from our setting. As discussed in Appendix D, missingness is
also a typical use case of our method: risk-sensitive SDE. Another related work is Na et al. (2024),
which considered noisy labels, instead of noisy samples.

Potential risk-conditional baseline. Our proposed risk-sensitive SDE is the first method to ad-
dress the problem setup of this paper. An alternative way is to adopt conditional diffusion mod-
els (Dhariwal & Nichol, 2021; Ho & Salimans, 2021), though there is surely no such work in the
literature. One can treat the risk vector as that “conditional information” and apply these techniques
to guide diffusion models to generate low-risk samples. We name this method as risk-conditional
baseline in this paper and provide three different implementations in Appendix A. The main prob-
lem with risk-conditional diffusion models is that it might lead to a biased sampling distribution. To
understand this point, note that conditional models essentially learn a joint distribution of samples
and risk vectors. If one applies risk-conditional generation, which means a preference is imposed
towards less noisy samples during generation, then the regions that are correlated with a high noise
level in the sampling space tend to be ignored, yielding an unbalanced distribution of generated
samples. In Sec. 5, our experiment results (e.g., Fig. 3) confirm this claim.

5 EXPERIMENTS

In this section, we provide two groups of empirical results: one is to verify the validity of our theo-
rems in practice and the other is to apply our method: risk-sensitive diffusion, to real datasets. Due
to the limited space, we put other experiment results in Appendix B, which involve more baselines
(e.g., Unbiased Diffusion Model), a different evaluation metric, and noisy images.
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(a) Training data, polluted
by Cauchy noises.

(b) Samples from a stan-
dard diffusion model.

(c) Samples from the risk-
conditional baseline.

(d) Samples from our risk-
sensitive VE SDE.

Figure 4: Comparison on Gaussian mixture data (Fig. 4(a)), with part of Cauchy-corrupted samples.
Despite minimal instability, our model still recovers the potential sample distribution (Fig. 4(d)),
while both baselines (Fig. 4(c) and Fig. 4(b)) incorrectly produce many outliers.

5.1 PROOF-OF-CONCEPT STUDIES

Existence of stability interval. With T “ 1, βptq “ 0.1 ` 19.9t, Fig. 2 shows an experiment,
where VP SDE runs for clean samples pxp0q, r “ 0q while its risk-sensitive SDE (i.e., Corollary 3.1)
operates on Gaussian-corrupted samples prxp0q, r “ 1q. We can see that the clean and noisy samples
follow the same distributions for step t in the stability interval T prq “ r0.26, 1s. This experiment
verifies that Theorem 3.1 is effective in practice.

Risk-sensitive VP SDE under Gaussian perturbation. Fig. 3 shows a comparison between
our model (i.e., Corollary 3.2) and the risk-conditional baseline on a Gaussian-corrupted dataset
Fig. 3(a)). The conditional model underrepresents (Fig. 3(c)) the upper-right component at low-risk
generation because it contains many more (i.e., 95%) noisy samples than other components. Instead,
the generated samples of our model (Fig. 3(d)) are mostly unbiased, with no preference for a spe-
cific mixture component. This experiment confirms the weakness of the risk-conditional baseline
and verifies that our model is more robust in practice.

Risk-sensitive VE SDE under Gauchy perturbation. With heavy tails, Cauchy distributions can
usually distort a clean sample far away, exhibiting a distinct behavior from Gaussian noises. Fig. 4
shows an experiment on a Gaussian-mixture data (Fig. 3(a)), but with Cauchy noises corrupting
samples. While risk-sensitive SDE cannot achieve perturbation stability in this case, our model still
nicely recovers the distribution of clean samples and is robust to outliers (Fig. 4(d)). In contrast, the
generated distributions of both standard (Fig. 4(c)) and conditional models (Fig. 4(b)) are seriously
biased by outliers. This experiment highlights the flexibility of risk-sensitive SDEs and indicates
that it can still be very effective under minimally instability.

5.2 APPLIED STUDIES

We now assess the Gaussian versions of risk-sensitive SDE (e.g., Corollary 3.1) on multiple real-
world non-image datasets. We will find that our models still perform very well even when the data
is highly noisy and the perturbation noise is in fact not Gaussian.

Noisy time series. As depicted in Fig. 1, time-series data might have irregularly spaced observa-
tions. To reshape such data into proper training samples for diffusion models, common practices are
to first interpolate missing observations, resulting in noisy training samples. For this scenario, we
adopt 2 medical time series datasets: MIMIC-III (Johnson et al., 2016) and WARDS (Alaa et al.,
2017). For every time series in a dataset, we extract the observations of the first 48 hours and se-
lect their top 5 features with the highest variance, leading to a 240-dimensional vector. To impute
the missing values in a highly noisy manner, we apply a primitive method: Gaussian process, to
interpolate them and estimate the variances, which are treated as the risk information.

Noisy tabular data. Tabular data is naturally composed of fixed-dimensional vectors, though they
usually contain missing values, and imputations of those values introduce noise. For this scenario,
we adopt 3 UCI datasets (Asuncion & Newman, 2007): Abalone, Telemonitoring, and Mushroom.
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Model Time Series Tabular Data
MIMIC-III WARDS Abalone Telemonitoring Mushroom

Standard VE SDE 10.083 9.116 1.032 8.140 5.196
VE SDE w/ Risk Regressor 7.721 7.923 0.797 4.983 4.636
VE SDE w/ Risk Variable 6.549 7.314 0.853 5.161 4.970

VE SDE w/ Risk Conditional 5.926 5.951 0.612 3.159 4.101
Our Model: Risk-sensitive VE SDE 1.865 2.513 0.089 1.582 0.713

Standard VP SDE 9.135 8.765 0.925 9.935 6.238
VP SDE w/ Risk Regressor 7.981 7.832 0.732 4.197 5.327
VP SDE w/ Risk Variable 6.723 7.515 0.899 5.159 5.583

VP SDE w/ Risk Conditional 5.637 6.292 0.585 3.785 4.850
Our Model: Risk-sensitive VP SDE 1.625 2.584 0.077 1.462 0.852

Table 1: Wasserstein distances of different models on 5 datasets across 2 tasks. Part of model
performances with another metric: MMD, are in Table 2 of Appendix B. The results not only show
that our model significantly outperforms the baselines, but also indicate: when the potential noise
type is unknown, the assumption of Gaussian perturbation works well in practice.

Since these datasets are initially complete, we force the missingness by randomly masking 5% of the
entries in each dataset. For a data instance with missing values, we first apply k-nearest neighbors
(KNN) algorithm (Peterson, 2009), to find the 10 closest samples. Then, we impute the missing
value with their median and treat their absolute median deviation as the risk. Admittedly, the data
generated in this way will be very noisy since KNN is certainly very inaccurate.

Figure 5: PRD curves (i.e., precision and re-
call scores) of our model and baselines on
Telemonitoring dataset.

Experiment setup and results. Following com-
mon practices (Ho et al., 2020), we adopt the com-
monly used Wasserstein Distance (Heusel et al.,
2017; Kolouri et al., 2019; Colombo et al., 2021) to
evaluate the generative models, which measures the
discrepancy of two distributions. For baselines, we
adopt two standard diffusion models (VE SDE and
VP SDE) and three risk-conditional models (details
in Appendix A). In Table 1, we can see that our mod-
els significantly outperform all baselines regardless
of the backbone model and the dataset. For exam-
ple, with VE SDE as the backbone, our model has
Wasserstein distances lower than Risk Conditional
by 1.577 on the Telemonitoring dataset and 4.063
on MIMIC-III.

We also depict the PRD curves (Sajjadi et al., 2018; Razavi et al., 2019) of our model and two base-
lines on the Telemonitoring dataset. The PRD curve is similar to the precision-recall curve (Davis &
Goadrich, 2006) used in testing classification models: the curves that locate more at the upper right
corner indicate better performances. From Fig. 5, we can see that our model consistently achieves
better recall scores than the baselines at identical precision scores. Plus, the PRD curve of our model
is very close to the upper right corner, indicating the generation distribution of our model is almost
consistent with the distribution of clean samples.

6 CONCLUSION

In this paper, we consider a novel problem setup to robustly train the diffusion models on noisy
datasets: pairing noisy samples with risk vectors. To address this setup, we propose a principled
method: risk-sensitive SDE, in the spirit of minimizing a defined measure: perturbation instability,
which measures the negative effect of noisy samples. We have studied both the Gaussian and non-
Gaussian noise perturbations, providing the optimal coefficients of risk-sensitive SDE in both cases.
We have conducted extensive experiments on multiple real datasets, showing that risk-sensitive SDE
can effectively handle noisy samples and significantly outperform previous baselines, even when the
potential noise distribution might be non-Gaussian or mis-specified as Gaussian.
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A RISK-CONDITIONAL DIFFUSION MODELS

An obvious way to adapt current diffusion models to the extra risk information r is conditional
generation (Dhariwal & Nichol, 2021). The main drawback of conditional diffusion models is that
it might have a biased sampling distribution. For example, suppose a regressor-guided diffusion
model (Dhariwal & Nichol, 2021) is trained on a dataset composed of blurry pictures of dogs and
clear pictures of cats, then the conditional model will generate very few images of dogs, given
that they are associated with a higher risk than cats. In the following, we present three different
implementations under this scheme.

A.1 RISK AS THE VARIABLE

A naive implementation is first to let diffusion models learn the joint distribution of samples and risk
vectors: p0px, rq, and then regularize the reverse process for drawing samples of a low risk: r « 0,
from the trained model.

Risk variable. In the optimization stage, we concatenate the sample and risk vectors as zp0q “

rxp0q ‘ r in a column-wise manner, with Eq. (1) and Eq.(3) to train a vanilla diffusion model. We
draw low-risk samples from the trained model at inference time through an improved backward SDE.
Considering the technique of classifier guidance (Dhariwal & Nichol, 2021), we set a parameter-free
regressor ´} ¨ }2: the minus square norm, which takes the last D entries of variable zD`1:2Dptq :“
rptq as the input and has a derivate as ´∇rptq}rptq}2 “ ´rptq{}rptq}2. With this regressor, the
backward process (i.e., Eq. (2)) is updated as follows:

dzptq “

´

fpzptq, tq ´ gptq2p∇zptq ln ptpzptqq ´ ∇rptq}rptq}2q

¯

` gptqdswptq

“

´

fpzptq, tq ´ gptq2
´

∇ ln ptpzptqq ´
rptq

}rptq}2

¯¯

` gptqdswptq

«

´

fpzptq, tq ´ gptq2
´

sθpzptq, tq ´
rptq

}rptq}2

¯¯

` gptqdswptq,

(14)

where some redundant parts are omitted as p¨q. In practice, the gradient ´∇rptq}rptq}2 is re-scaled
with a positive coefficient γ, which trades diversity for quality. Intuitively, the regressor ´} ¨ }2
gradually reduces the norm of rptq as decreasing iteration t such that the final sample xp0q “

z1:Dp0q will be paired with low risk rp0q.

A.2 RISK AS THE CONDITIONAL

Another type of implementation treats the risk vector r as a generation conditional for diffusion
models. Ideally, we can draw clean samples from a trained model by setting r “ 0.

Risk conditional. There are two types of conditional diffusion models. The easier one is classifier-
free (Ho & Salimans, 2021), which adds the risk vector r as an input to the score-based model:
sθpx, t, rq. Eq. (1) and Eq. (3) are the same to train the new model, but the input r is randomly
masked with a dummy variable ∅ to permit unconditional generation. For inference, the score
function ∇xptq ln ptpxptqq in the backward SDE (i.e., Eq. (2)) is replaced with

p1 ` γqsθpxptq, t, r “ 0q ´ γsθpxptq, t,∅q, (15)

where γ is a non-negative number that plays a similar role to the first model.

Risk regressor. The other one is just classifier-guided sampling. While the diffusion model re-
mains the same, we separately train a regressor h to predict the risk of a sample:

pr “ lnp1 ` expphpxqq, (16)

where the SoftPlus function expp1`lnp¨qq is to ensure that the final output pr is positive and variable x
is either raw sample rxp0q or its noisy version rxptq, t ą 0 (obtained by Eq. (1)). For implementation,
the regressor h can be any neural network and is optimized with a square loss: }r ´ pr}22. To have
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Dataset Abalone Telemonitoring
Standard VP SDE 0.01056 0.01667

VP SDE w/ Risk Conditional 0.00766 0.01267
Our Model: VP SDE w/ Risk-sensitive Diffusion 0.00198 0.00717

Table 2: Model performances measured by another metric: MMD.

a scalar outcome, we wrap the regressor as ´
řD

i“1 lnp1 ` expphipxqq, with expansion hpxq “

rh1pxq, h2pxq, ¨ ¨ ¨ , hDpxqsJ and derivative

∇x

´

´

D
ÿ

i“1

lnp1 ` expphipxqq

¯

“ ´

”

D
ÿ

i“1

σphipxqq
Bhipxq

Bx1
, ¨ ¨ ¨ ,

D
ÿ

i“1

σp¨q
Bhipxq

BxD

ıJ

, (17)

where σ is the Sigmoid function. Similar to our first model, we apply this derivate to regularize the
backward process of a trained diffusion model as

dxptq « pfpxptq, tq ´ gptq2psθpxptq, tq ´ γ∇x

´

´

D
ÿ

i“1

lnp¨q

¯

` gptqdswptq, (18)

where γ P R`
Ť

t0u is non-negative.

B ADDITIONAL EXPERIMENTS

We have performed extra experiments to further confirm the effectiveness of our method: risk-
sensitive SDE, including comparisons with other baselines (e.g., Ambient Diffusion), the introduc-
tion of another evaluation metric: MMD, and a study on the image dataset.

Another evaluation metric: MMD. Recognizing the importance of diverse evaluation criteria,
we introduced the Maximum Mean Discrepancy (MMD) metric (Jia et al., 2017) in our analysis.
This additional metric further affirms the great effectiveness of our method to bridge the gap be-
tween generated and real distributions across different noisy datasets. As shown in Table 2, our
model still significantly outperforms the baselines in terms of the new metric: MMD. Overall, given
the consistent best results of our method across different datasets and evaluation metrics (includ-
ing Wasserstein Distance, Precision-Recall Curves, and MMD), we believe the effectiveness of our
method: risk-sensitive diffusion, is well justified.

Other baselines from similar settings. While the works of Ambient Diffusion (Daras et al., 2024)
and Unbiased Diffusion Model (Kim et al., 2024) also discuss the training of diffusion models
on imperfect data, their settings are either a particular case of ours or differ altogether. In the
following, we compare the settings and purpose of each of these works to risk-sensitive diffusion
and empirically compare our method to these baselines:

• Ambient Diffusion addressed the setting of images with missing pixels, which, although it
is one of the applications of risk-sensitive diffusion, our method is more broadly applicable
to the general case of ”noisy pixels”;

• Unbiased Diffusion Model considered the presence of both a biased dataset and a clean
dataset and, thus, tackled a particular case of our method. If one attributes risk 1 to the
biased dataset and risk 0 to the clean dataset, then our method can be used to learn an
unbiased diffusion model. However, our method encompasses a much more broad range
of settings. In particular, this method does not admit varying risks for different features or
risk distributions, as risk-sensitive diffusion does.

The experiments of our paper include tabular data with missing values, which constitute a valid
benchmark for our method against the baselines. Table 3 summarizes the obtained new results. The
performances of Ambient Diffusion and Unbiased Diffusion Model are comparable to our baseline
VP SDE w/ Risk Conditional, and our method: risk-sensitive diffusion, significantly outperforms all
of them, thereby showing the value of our contribution.
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Dataset Abalone Telemonitoring
Standard VP SDE 0.925 9.935
Ambient Diffusion 0.482 4.253

Unbiased Diffusion Models 0.679 4.991
VP SDE w/ Risk Conditional 0.585 3.785

Our Model: VP SDE w/ Risk-sensitive Diffusion 0.077 1.462

Table 3: Comparison between our method and the baselines from similar settings.

Model 20% noisy images 40% noisy images
Standard VP SDE 8.31 13.29

Unbiased Diffusion Model 5.37 8.53
VP SDE w/ Risk Conditional 6.57 9.15

Our Model: VP SDE w/ Risk-sensitive Diffusion 4.89 6.97

Table 4: Model performances on CIFAR-10 with certain numbers of noisy images.

Study on noisy images. We also explored the performance of our risk-sensitive diffusion frame-
work on image data: CIFAR-10 (Krizhevsky et al., 2009) images with pixel noises. Specifically,
we perturb certain portions of CIFAR-10 images with Gaussian noises and compare our method
with two baselines (i.e., risk-conditional diffusion model and Unbiased Diffusion Model). Table 4
contains the results in terms of FID scores, which show that risk-sensitive diffusion outperforms
other methods in this setting, too. Our finding reveals that our method outperforms conventional
and recent approaches even in domains outside our primary focus, further underscoring its general
applicability and robustness.

C BACKWARD RISK-SENSITIVE SDE

Although the backward risk-sensitive SDE is not necessary for our method and theorems, we still
provide it for reference. Let a risk-sensitive SDE be of the form as

dxptq “ pfptq d xptqqdt ` diagpgpr, tqqdwptq,

where both coefficient functions fptq,gpr, tq are everywhere continuous with right derivatives. Ac-
cording to (Anderson, 1982), we can get the corresponding backward SDE as

dx “

´

fptq d xptq ´ ∇x ¨ diagpgpr, tq2q ´ diagpgpr, tq2q∇x ln ptpx | rq

¯

dt ` diagpgpr, tqqdswptq

“

´

fptq d xptq ´ gpr, tq2 d ∇x ln ptpx | rq

¯

dt ` gpr, tq d dswptq.

(19)
While gpr, tq “ 0 is possible for t P tt P r1, T s | sgp0, tq2 ´ sfpr, tq2 d rr2 ‰ sgpr, tq2u, our above
conclusion still applies and the backward SDE is the same as the forward one in that case.

D WIDE APPLICATIONS

The problem formulation of our paper: noisy sample rxp0q paired with risk vector r (i.e., accessible
information of data quality), is not only rarely seen in the field of generative models, but also highly
motivated by real-world applications.

Data with Accessible Risks. In many cases, data are naturally born with information indicating
their quality. Here are some examples from the biological and sensor domains:

• Polymerase chain reaction (PCR) is widely used In DNA sequencing to produce genomic
data. Since the accuracy of PCR is largely affected by the Guanine-Cytosine content (GC-
content), researchers typically regard this information as a primary indicator of the data
quality (Kumar & Kaur, 2014; Laursen et al., 2017);
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• Laser radars resort to laser beams to generate data, indicating the spatial positions of phys-
ical objects. This type of sensor data tends to be very noisy, so the radars also provide the
engineers with other data sources, such as light strength (Steinvall & Chevalier, 2005) and
device states (e.g., excessive voltage and temperature) (Carmer & Peterson, 1996), which
reflect the data quality;

• Gyroscopes are commonly used in navigation and robotics, which measure the angular
velocity of an object. This type of sensor can inherently estimate the data quality to provide
engineers with more information, including bias (offset from true value) (Kirkko-Jaakkola
et al., 2012) and scale factor (deviation from the expected sensitivity) (Tang et al., 2017).

Recently, there is a growing trend towards applying generative models to scentific (e.g., AI for
Science) (Chung & Ye, 2022; Huang et al., 2023) and industrial data (e.g., Smart Manufactur-
ing) (Kapelyukh et al., 2023; Sridhar et al., 2023). Including the above examples, those types of
data are generally noisy and come with risk information, where our proposed risk-sensitive SDE
will play a key role.

Data without Available Risks. There are also situations where the risk information r for noisy
sample rxp0q is not available. However, since our definition of the risk vector r is not limited, it is
very likely that one can find an alternative to the vector in a low-effort manner, without resorting to
manual annotation and expert knowledge. Typical examples are time series and tabular data in the
medical domain (e.g., MIMIC dataset (Johnson et al., 2016)). Specifically, because these two types
of medical data either are irregular (Sun et al., 2020) or have missing values (Lin & Tsai, 2020), one
will preprocess the data with interpolation and imputation before using them. Such preprocessing
techniques are commonly not fully accurate, leading the final data to be noisy. In this situation, there
are at least two very efficient ways to harvest the risk information:

• Some interpolation and imputation models can inherently quantify the uncertainties of
their predictions. For example, Gaussian Process (MacKay et al., 1998) and MissFor-
est (Stekhoven & Bühlmann, 2012). The uncertainties provided by these models can be
treated as the risk information;

• There are a number of approaches (e.g., Bayesian Dropout (Gal & Ghahramani, 2016)) in
the field of Bayesian Deep Learning (Kendall & Gal, 2017), which estimate the prediction
uncertainty of a black-box model. If a preprocessing tool provides no extra information for
its output, one can apply such a method to construct the risk vector.

Even for high-quality image data, the concept of risk information still applies and it is convenient to
find the risk vector. For example, images in the ImageNet dataset (Deng et al., 2009) are of various
sizes. To train a deep learning model (e.g., GAN (Goodfellow et al., 2020)) on that dataset, one has
to first let all images have the same shape. In this way, a clear image of a small shape H ˆ W will
be expanded to a fuzzy image of a big shape H 1 ˆW 1. This type of sample is certainly noisy for the
model and one can regard this ratio

a

pH 1W 1q{pHW q ´ 1 as the risk information.

Determination of the Noise Types. A question might arise: How can we determine the noise type
for applying the risk-sensitive SDE? In some cases, we can infer it based on the mechanism that
generates risk vectors. For example, the arrival time of an unobserved sample in a continuous-time
Markov Chain (Anderson, 2012) has an exponential distribution. In other scenarios where the risk-
generating mechanism is unknown, we can suppose the noise is Gaussian, similar to the treatments
in Conformal Prediction (Zaffran et al., 2023; Angelopoulos & Bates, 2021) and Kalman Filter (Kim
et al., 2018). In Appendix 5, our numerical experiments (e.g., Table 1) show that this assumption
works quite well.

E STABILITY FOR GAUSSIAN PERTURBATION

In this section, we aim to find the optimal risk-sensitive coefficients fpr, tq,gpr, tq that let the risk-
sensitive SDE achieves stability under Gaussian perturbation. We will first prove a lemma about the
kernel of risk-sensitive SDE and then dive into the main theorem.
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E.1 RISK-SENSITIVE KERNEL

For analysis purpose, we provide a lemma that determines the form of kernel rpt|0,rpx | rxp0qq (i.e.,
the density of x conditioning on noisy sample rxp0q) for a given risk-sensitive SDE.
Lemma E.1 (Kernel of Risk-sensitive SDE). Suppose we have a risk-sensitive SDE defined as
Eq. (5), then its associated kernel rpt|0,rprxptq | rxp0qq shapes as

$

’

’

’

’

’

&

’

’

’

’

’

%

rpt|0,rprxptq | rxp0qq “ N prxptq;sfpr, tq d rxp0q,diagpsgpr, tq2qq

fpr, tq “
d lnsfpr, tq

dt

gpr, tq2 “ sfpr, tq2 d
d

dt

´

sgpr, tq2

sfpr, tq2

¯

, (20)

where sfpr, 0q “ 1, sgpr, 0q “ 0 and operation diag expands a vector into a diagonal matrix.

Proof. For SDE, its kernel is a Gaussian distribution and the first moment is also affine if the drift
term is affine (Evans, 2012; Oksendal, 2013). Based on these facts, we can suppose that the kernel
rpt|0,rprxptq | rxp0qq of risk-sensitive SDE has the following form:

rpt|0,rprxptq | rxp0qq “ N prxptq; sFpr, tqrxp0q, sGpr, tq2q, (21)

where sFpr, tq, sGpr, tq are undetermined functions that output diagonal matrices.

Considering a corner case where t Ñ 0, we can infer that sFpr, 0q “ I and sGpr, 0q “ 0. For t ą 0,
assume δt ą 0 and δt « 0, then we have

rpt`δt|0,rprxpt ` δtq | rxp0qq “

ż

rpt`δt,t|0,rprxpt ` δtq, rxptq | rxp0qqdrxptq

“

ż

rpt`δt|t,rprxpt ` δtq | rxptqqrpt|0,rprxptq | rxp0qqdrxptq

. (22)

Note that rpt`δt|t,rprxpt ` δtq | rxptq, rxp0qq “ rpt`δt|t,rprxpt ` δtq | rxptqq because of the Markov
property. For notational convenience, we represent the risk-sensitive SDE as

drxptq “ Fpr, tqrxptqdt ` Gpr, tqdwptq. (23)
where Fpr, tq “ diagpfpr, tqq and Gpr, tq “ diagpgpr, tqq. According to Eqs. (21) and (23), we
can have the following equation:

$

’

&

’

%

rxpt ` δtq “ sFpr, t ` δtqrxp0q ` sGpr, t ` δtqϵ1

rxptq “ sFpr, tqrxp0q ` sGpr, tqϵ2

rxpt ` δtq “ pI ` δtFpr, tqqrxptq `
?
δtGpr, tqϵ3

, (24)

where ϵ1, ϵ2, ϵ3 „ N p0, Iq are independent Gaussian noises. Combining the last two equalities, we
have the following equality:

rxpt ` δtq “ pI ` δtFpr, tqqsFpr, tqxp0q ` ppI ` δtFpr, tqq sGpr, tqϵ2 `
?
δtGpr, tqϵ3q. (25)

Comparing the above two equations, we have:
#

sFpr, t ` δtq “ pI ` δtFpr, tqqsFpr, tq

sGpr, t ` δtq2 “ pI ` δtFpr, tqq2 sGpr, tq2 ` δtGpr, tq2
. (26)

Let δt Ñ 0, this equation can be converted into a differential form:

Fpr, tq “
d ln sFpr, tq

dt
, Gpr, tq2 “

d sGpr, tq2

dt
´ 2

d ln sFpr, tq

dt
sGpr, tq2. (27)

If sGpr, tq is only continuous but not differentiable, then the term d ln sFpr, tq{dt indicates its right
derivative. Now, by converting all matrix-valued functions sFpr, tq, sGpr, tq,Fpr, tq,Gpr, tq into
their vector forms sfpr, tq, sgpr, tq, fpr, tq,gpr, tq, we have

fpr, tq “
d lnsfpr, tq

dt
, gpr, tq2 “ sfpr, tq2 d

d

dt

´

sgpr, tq2

sfpr, tq2

¯

, (28)

where operations d and ‚
‚

respectively denote element-wise product and division. The initial condi-
tions for sFpr, tq, sGpr, tq can also be directly transferred to rfpr, tq, rgpr, tq.
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The above lemma is very useful. We will also see it in Sec. G.

E.2 SOLUTION FOR GAUSSIAN PERTURBATION

Provided with Lemma E.1, the following theorem gives a sufficient condition for letting the risk-
sensitive SDE achieve perturbation stability for Gaussian noises. In Sec. F, we will also see that this
condition is both sufficient and necessary.

Theorem E.1 (Risk-sensitive SDE for Gaussian Perturbation). Suppose that we have a Gaussian
family of perturbation distributions: Pϵ “ tN p0,diagpr2qq | r ‰ 0u, then the risk-sensitive SDE
(as defined in Eq. (5)) parameterized as below:

$

’

’

’

’

’

&

’

’

’

’

’

%

fpr, tq “
d lnuptq

dt
,@t P r0, T s

gpr, tq “ uptq2 d
d

dt

´vpr, tq2

uptq2

¯

,@t P T prq

gpr, tq “ 0,@t P r0, T s
č

T prqc

, (29)

has the property of perturbation stability (i.e., Stprq “ 0) for any t in

T prq ” tt P r0, T s | vpr, tq2 ` r2 d uptq2 “ vpr, 0q2u, (30)

regardless of the weight function Ωpyq. Here T prqc represents the complement T prq and
uptq,vpr, tq are arbitrary functions that are everywhere continuous with right derivatives.

In particular, for zero risk r “ 0, the equations correspond to the associated risk-unaware diffusion
process for clean sample prxp0q “ xp0q, r “ 0q.

Proof. According to Lemma E.1, the kernel of risk-sensitive SDE shapes as

rpt|0,rprxptq | rxp0qq “ N prxptq;sfpr, tq d rxp0q,diagpsgpr, tq2qq, (31)

where coefficients sfpr, tq, sgpr, tq2 are defined in Eq (20), d indicates the entry-wise product, and
diag converts a vector into a diagonal matrix.

Let xp0q P RD be a real sample that is without noise and we perturb it as rxp0q “ xp0q ` ϵd r, ϵ „

N p0, Iq. We aim to first find the relation between risk-unaware kernel transition pt|0px | xp0qq and
the expected risk-sensitive transition:

E
rxp0q„N pxp0q,diagpr2qq

“

rpt|0,rpx | rxp0qq
‰

. (32)

While the risk-unaware transition is simply a multivariate Gaussian:

N px;sfp0, tq d xp0q,diagpsgp0, tq2qq, (33)

we can expand the expected risk-sensitive transition as
ż

N prxp0q;xp0q,diagpr2qqrpt|0,rpx | rxp0qqdrxp0q

“

ż

N prxp0q;xp0q,diagpr2qqN px;sfpr, tq d rxp0q,diagpsgpr, tq2qqdrxp0q.

(34)

The second Gaussian distribution in the above equation can be reformulated as

N px; ¨, ¨q “ p2πq´D{2|diagpsgpr, tq2qq|´1{2 exp
´

´
1

2
px ´ sfpr, tq d rxp0qqJdiagpsgpr, tq2q´1p¨q

¯

“
p2πq´D{2

|diagpsfpr, tqq|

ˇ

ˇ

ˇ
diag

´

sgpr, tq2

sfpr, tq2

¯ˇ

ˇ

ˇ

´1{2

exp
´

´
1

2

´

rxp0q ´
x

sfpr, tq

¯J

diag
´

sgpr, tq2

sfpr, tq2

¯´1´

¨

¯¯

“
1

|diagpsfpr, tqq|
N

´

rxp0q,
x

sfpr, tq
,diag

´

sgpr, tq2

sfpr, tq2

¯¯

.

(35)
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where | ¨ | means the determinant of a matrix. According to the product rule of multivariate Gaus-
sians (Ahrendt, 2005), we can simplify the form of risk-sensitive transition as

ż

N
´

rxp0q;xp0q,diagpr2qq

¯ 1

|diagpsfpr, tqq|
N

´

rxp0q,
x

sfpr, tq
,diag

´

sgpr, tq2

sfpr, tq2

¯¯

drxp0q

“
1

|diagpsfpr, tqq|

ż

N
´ x

sfpr, tq
;xp0q,diag

´

r2 `
sgpr, tq2

sfpr, tq2

¯¯

N
´

rxp0q; ¨, ¨

¯

drxp0q

“ N
´

x;sfpr, tq d xp0q,diagpsfpr, tq2 d r2 ` sgpr, tq2q

¯

.

(36)

To let the two transitions equal, one must achieve the following two conditions:
sfpr, tq “ sfp0, tq, sfpr, tq2 d r2 ` sgpr, tq2 “ sgp0, tq2. (37)

The first condition indicates that the term sf is independent of risk r, while the second condition
implies that there might exist some iteration t that the two transitions are not identical. Plus, because
this term sgpr, tq2 is always non-negative, we have

sgpr, tq2 “ maxpsgp0, tq2 ´ sfp0, tq2 d r2,0q, (38)

which means the risk-sensitive SDE has an initial period of pure contraction, but after that, its
transition kernel is equal to the real one. Note that operation max is applied in an element-wise
manner. sgpr, tq2 might not be differentiable everywhere, but we can either locally smooth the curve
or take its right derivative.

With the above derivation, we see that the following equation holds:

pt|0px | xp0qq “ E
rxp0q„N pxp0q,diagpr2qq

“

rpt|0,rpx | rxp0qq
‰

, (39)

if Eq. (37) holds. For the left hand, we then have

Exp0qrpt|0px | xp0qqs “

ż

p0pxp0qqpt|0px | xp0qqdxp0q “ ptpxq. (40)

Similarly, we apply the expectation operation Exp0q to the risk-sensitive transition:

Exp0q

“

E
rxp0q„N pxp0q,diagpr2qq

“

rpt|0,rpx | rxp0qq
‰‰

“

ż

xp0q

ż

rxp0q

p0pxp0qqpprxp0q | xp0qqrpt|0,rpx | rxp0qqdrxp0qdxp0q

“

ż

xp0q

rp0,rprxp0qqrpt|0,rpx | rxp0qqdrxp0q “ rpt,rpxq.

(41)

Therefore, we finally get rpt,rpxq “ ptpxq (i.e., perturbation stability) for t in

T prq ” tt P r0, T s | sfpr, tq “ sfp0, tq,sfpr, tq2 d r2 ` sgpr, tq2 “ sgp0, tq2u. (42)

Now, if we replace sfp0, tq, sgpr, tq by uptq,vpr, tq, then we get the theorem proved.

Remark E.1. From this conclusion, we can easily see that, for a fixed coefficient uptq, the setup
vpr, tq2 “ maxpvpr, 0q2 ´ r2 d uptq2,02q (where max is an element-wise operation) maximizes
the period of perturbation stability: |T prq|, leading to optimal coefficients.
Remark E.2. It is apparent that stability interval T prq shrinks as the risk r increases, indicating
that a noisier sample is less valuable for training. Therefore, under Gaussian perturbation, the ratio
|T prq|{T reflects how much information is contained in noisy sample prxp0q, rq.
Remark E.3. If one limits the perturbation noise to be isotropically Gaussian, then the risk vector r
reduces to a scalar r, with Pϵ “ tN p0, rIq | r ą 0u. Eq. (29) and Eq. (30) in the theorem can also
be simplified in terms of r “ r1,uptq “ uptq1,vpr, tq “ vptq1.

In Sec. G, we apply the above theorem to diffusion models (e.g., Risk-sensitive VP SDE in Corol-
lary G.2) and develop tools (e.g., simplified loss in Proposition G.1) for efficient optimization. In
Appendix 5, our numerical experiments confirm the validity of the theorem (i.e., Fig. 2) and show
that its suggested coefficients let diffusion models be robust to Gaussian-corrupted samples (i.e.,
Fig. 3).
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F MINIMUM INSTABILITY FOR GENERAL NOISES

The goal of this section is to find the optimal coefficients fpr, tq,gpr, tq of risk-sensitive SDE for
general noise perturbation. Importantly, one will see that the property of perturbation stability:
Stprq “ 0 is not achievable in the case of non-Gaussian perturbation. We will first prove two other
conclusions and then provide the main theorem.

F.1 SPECTRAL REPRESENTATION

The first conclusion is to study the form of cumulant-generating function rχt,rpωq.
Lemma F.1 (Spectral Form of the Marginal Density). Suppose that we have a risk-sensitive SDE as
defined in Eq. (5), then the cumulant-generating function of its marginal density rpt,rpxq at time step
t P r0, T s: rχt,rpωq, has a form as

rχt,rpωq “ rχ0,rpsfpr, tq d ωq ´
1

2

D
ÿ

i“1

w2
i sgipr, tq

2, (43)

where terms sfpr, tq, sgpr, tq are defined in Eq. (20).

Proof. Based on Fokker-Planck equation (Øksendal & Øksendal, 2003), the marginal distribution
rpt,rpxq at time step t satisfies the following partial differential equation (PDE):

Brpt,rpxq

Bt
“ ´

D
ÿ

i“1

fipr, tqrpt,rpxq ´

D
ÿ

i“1

xifipr, tq
Brpt,rpxqq

Bxi
`

1

2

D
ÿ

i“1

gipr, tq
2 B2

rpt,rpxqq

Bx2
i

. (44)

Because rpt,rpxq belongs to the function space L1pRDq “ th : RD Ñ R |
ş

|hpxq|dx ă 8u, we can
apply the continuous-time Fourier transform (Krantz, 2018),

Fphpxqqpωq “

ż

hpxq exppiωJxqdx,ω P RD,

where i is the imaginary unit, to the PDE as

BFprpt,rpxqqpωq

Bt
“ ´

D
ÿ

i“1

fipr, tqFprpt,rpxqqpωq

´

D
ÿ

i“1

fipr, tqF
´

xi
Brpt,rpxq

Bxi

¯

pωq `
1

2

D
ÿ

i“1

gipr, tq
2F

´

B2
rpt,rpxq

Bx2
i

¯

pωq.

(45)

According to some basic properties of the Fourier transform, we have
$

’

’

&

’

’

%

F
´

xi
Brpt,rpxq

Bxi

¯

pωq “ ´i
B

Bwi

´

F
´

Brpt,rpxq

Bxi

¯

pωq

¯

“ ´
B

Bwi

´

wiFprpt,rpxqqqpωq

¯

F
´

B2
rpt,rpxq

Bx2
i

¯

pωq “ ´w2
iFprpt,rpxqqpωq

, (46)

By denoting Fprpt,rpxqqpωq as φt,rpωq, we can cast Eq. (44) as

Bφt,rpωq

Bt
“

D
ÿ

i“1

wifipr, tq
Bφt,rpωq

Bwi
´

´1

2

D
ÿ

i“1

w2
i gipr, tq

2
¯

φt,rpωq. (47)

In terms of the characteristic curves, we set ordinary differential equations (ODE) as

dt

ds
“ 1,

dwi

ds
“ ´wifipr, tq, i P r1, Ds

ď

N,
dφ

ds
“

´

´
1

2

D
ÿ

i“1

w2
i gipr, tq

2
¯

φ. (48)

where s and N are respectively a dummy variable and the set of all natural numbers. Considering
the initial condition: tp0q “ 0, wip0q “ ξi,φp0q “ φ0,rpξq, ξ “ rξ1, ξ2, ¨ ¨ ¨ , ξDsJ, the solutions to
these ODE are formulated as

tpsq “ s, wipsq “ ξi sfipr, sq´1, φpsq “ φ0,rpξq exp
´

´
1

2

D
ÿ

i“1

ξ2i
sgipr, sq2

sfipr, sq2

¯

, (49)
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where coefficient functions sfipr, sq, sgipr, sq are of the forms as

sfipr, sq “ exp
´

ż s

0

fipr, s
1qds1

¯

, sgipr, sq “ sfipr, sq

d

ż t

0

gipr, s1q2

sfipr, s1q2
ds1. (50)

Based on the above results, we can get the solution of φt,rpωq as

φt,rpωq “ φ0,rpsfpr, tq d ωq expp´
1

2

D
ÿ

i“1

w2
i sgipr, tq

2q, (51)

in which sfpr, tq “ r sf1pr, tq, sf2pr, tq, ¨ ¨ ¨ , sfDpr, tqsJ and sgpr, tq “

r sg1pr, tq, sg2pr, tq, ¨ ¨ ¨ , sgDpr, tqsJ. The lemma is proved by taking logarithms on both sides
of the equation.

We can also get a similar conclusion for the term χtpωq by setting r “ 0.

F.2 NECESSARY CONDITION FOR ACHIEVING STABILITY

The second conclusion is about the necessary condition to achieve perturbation stability.
Proposition F.1 (Necessary Condition for Perturbation Stability). Given the definition (i.e., Eq. (5))
of risk-sensitive SDE, then a necessary condition for it to have the property of perturbation stability
is that the perturbation results from diagonal Gaussian noises.

Proof. Let the noise distribution be of a free form qpϵq :
ş

qpϵqdϵ “ 1; qpϵq ą 0,@ϵ P RD, then the
distribution of clean data p0pxq will be perturbed into a noisy one

rp0,rpxq “

ż

p0px1qqpx ´ x1qdx1 “ pp0p¨q ˚ qp¨qqpxq, (52)

where ˚ represents the convolution operation. Through Fourier transform, we have

φ0,rpωq “ Fpp0,rpxqqpωq “ Fpp0,rpxqqpωq ¨ Fpqpxqqpωq “ φ0,rpωqϕpωq, (53)

where ϕpωq :“ Fpqpxqqpωq. Here we also suppose that qpϵq P L1pRDq.

With the above results and applying the Lemma F.1, we can get the form of risk-unaware marginal
distribution pt,rpxq in the frequency domain as

χtpωq “ χ0psfp0, tq d ωq ´
1

2

D
ÿ

i“1

w2
i sgip0, tq

2, (54)

and the one for risk-sensitive marginal distribution rpt,rpxq is as

rχt,rpωq “ χ0,rpsfpr, tq d ωq ` χqpsfpr, tq d ωq ´
1

2

D
ÿ

i“1

w2
i sgipr, tq

2, (55)

where χqp¨q are the cumulant-generating function of noise distribution qpϵq.

Because the Fourier transform F is injective in the domain of definition L1pRDq, the prop-
erty rpt,rpxq “ ptpxq is equivalent to the condition χtpωq “ rχt,rpωq. Considering function
p0pxq P L1pRDq and variable ω P RD are arbitrarily selected, the above two equations are equiva-
lent indicate that the below two conditions are satisfied:

sfp0, tq “ sfpr, tq, ϕpωq “ exp
´

´
1

2
ωJdiag

´

sgp0, tq2

sfp0, tq2
´

sgpr, tq2

sfpr, tq2

¯

ω
¯

. (56)

The shape of characteristic function ϕpωq indicates that its form qpxq in the spatial domain is a
multivariate Gaussian (DasGupta & DasGupta, 2011), with the following moments:

Ex„qpxqrxs “ 0, diagpr2q – ErxxJs “ diag
´

sgp0, tq2

sfp0, tq2
´

sgpr, tq2

sfpr, tq2

¯

. (57)
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Therefore, perturbation stability is only possible for Gaussian noise N p0,diagpr2qq, r P RD. To
achieve this stability, we have to pick up a risk-sensitive SDE of the form:

$

’

&

’

%

dxptq “

´d lnsfptq

dt
d xptq

¯

dt `

´

sfptq2 d
d

dt

´

sgpr, tq2

sfptq2

¯¯

dωptq

sgpr, tq2 “ maxpsgp0, tq2 ´ r2 d sfptq2,0q

, (58)

which is risk-unaware for iteration t in tt P r1, T s | sgpr, tq2 “ sgp0, tq2 ´ r2 d sfptq2u.

Paired with Theorem E.1, this proposition indicates that the necessary and sufficient conditions for
a risk-sensitive SDE to achieve perturbation stability rpt,rpxq “ ptpxq are: 1) noises follow diagonal
Gaussian distributions; 2) the time step t is within the stability interval.

F.3 SOLUTION FOR GENERAL NOISES

Provided with former two conclusions, we can now prove the below main theorem.
Theorem F.1 (General Theory of Perturbation Stability). Suppose we have a family of continuous
noise distributions: Pϵ “ tρrpϵq : RD Ñ R`,

ş

ρrpϵqdϵ “ 1 | r ‰ 0u, controlled by a risk vector
r, then the optimal coefficients of the risk-sensitive SDE (as defined in Eq. (5)) that minimizes the
perturbation instability Stprq satisfy

vpr, tq2 “ max
`

0,vp0, tq2 ` Ψpuptq, rq
˘

, (59)

in which the term Ψp¨q is defined as

Ψpuptq, rq “ 2
´

ż

ΩpyqryyJs2dy
¯´1

b

´

ż

Ωpyq ln
ˇ

ˇ exp
`

χrpuptq d yq
˘
ˇ

ˇrys2dy
¯

(60)

where b stands for a matrix multiplication, χrpyq is the cumulant-generating function of the noise
distribution ρrpϵq, and uptq,vpr, tq satisfy the same conditions as in Eq. (29). Importantly, the
property of perturbation stability Stprq “ 0 is only possible to achieve for Gaussian perturbations
of a diagonal form: ρrpϵq “ N pϵ;0,diagpr2qq.

Proof. Based on Lemma F.1 and Proposition F.1, we can see there is no appropriate risk-sensitive
SDE to fully neutralize the negative impact of non-Gaussian noise distribution qpϵq. Therefore, we
aim to find an optimal (though not perfect) risk-sensitive SDE in this regard. Note that p0pxq is
arbitrarily selected in space L1pRDq, so condition sfpr, tq “ sfp0, tq still needs to hold. For sgp0, tq,
we first consider the objective function to optimize:

Ot “

ż

Ωpωq

ˇ

ˇ

ˇ
rχt,rpωq ´ χtpωq

ˇ

ˇ

ˇ

2

dω, (61)

where | ¨ | represents the magnitude of a complex number and Ωpωq : RD Ñ R` is a predefined
weight function. Considering Eq. (54) and Eq. (55), we have

Ot “

ż

Ωpωq

ˇ

ˇ

ˇ

1

2

D
ÿ

i“1

ω2
i sgip0, tq

2 ´
1

2

D
ÿ

i“1

ω2
i sgipr, tq

2 ` χrpsfpr, tq d ωq

ˇ

ˇ

ˇ

2

dω

“

ż

Ωpωq

ˇ

ˇ

ˇ

1

2

〈
ω2, sgp0, tq2 ´ sgpr, tq2

〉
` ln

ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ
` i ¨ arg

´

ϕrpsfpr, tq d ωq

¯
ˇ

ˇ

ˇ

2

dω

“

ż

Ωpωq

´1

2

〈
ω2, sgp0, tq2 ´ sgpr, tq2

〉
` ln

ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ

¯2

dω `

ż

Ωpωq arg
´

¨

¯2

dω,

(62)
where argp¨q and ă ¨, ¨ ą respectively represent the argument of a complex number and the inner
product of two vectors. Plus, χrp¨q and ϕrp¨q are respectively the cumulant-generating and charac-
teristic functions of noise distribution ρrpϵq.

Now, we denote sgp0, tq2 ´ sgpr, tq2 as a dummy variable y “ ry1, y2, ¨ ¨ ¨ , yDsJ. Then, we compute
the derivative of objective Ot with respect to every input entry yj , j P r1, Ds:

dOt

dyj
“

ż

´

Ωpωq ¨ ω2
j

´1

2

〈
ω2,y

〉
` ln

ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ

¯¯

dω. (63)
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Through setting dOt{dyj “ 0 for every j in r1, Ds, we can get〈”

ż

Ωpωqω2
jω

2
i dω

ıJ

iPr1,Ds
,y

〉
“ ´2

ż

Ωpωqw2
j ln

ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ
dω, (64)

where r¨sJ
iPr1,Ds

represents some column vector. By combining all results, we have

”

ż

Ωpωqω2
i ω

2
jdω

ı

i,jPr1,Ds
y “ ´2

”

ż

Ωpωq ln
ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ
ω2
i dω

ıJ

iPr1,Ds
, (65)

where r¨si,jPr1,Ds represents some matrix. For notational convenience, we denote
$

’

’

&

’

’

%

”

ż

Ωpωqω2
i ω

2
jdω

ı

i,jPr1,Ds
“

ż

ΩpωqrωωJs2dω

”

ż

Ωpωq ln
ˇ

ˇ

ˇ
ϕrp¨q

ˇ

ˇ

ˇ
ω2
i dω

ıJ

iPr1,Ds
“

ż

Ωpωq ln |ϕrp¨q|rωs2dω

. (66)

Considering that y “ sgp0, tq2 ´ sgpr, tq2 and sgpr, tq2 is always non-negative, we get

sgpr, tq2 “ max
´

sgp0, tq2 ` 2
´

ż

ΩpωqrωωJs2dω
¯´1´

ż

Ωpωq ln
ˇ

ˇ

ˇ
ϕrpsfpr, tq dωq

ˇ

ˇ

ˇ
rωs2dω

¯

,0
¯

.

(67)
For simplification, we introduce a new symbol Ψ as

Ψpfpr, tq, rq “ 2
´

ż

ΩpωqrωωJs2dω
¯´1´

ż

Ωpωq ln
ˇ

ˇ

ˇ
ϕrpsfpr, tq d ωq

ˇ

ˇ

ˇ
rωs2dω

¯

“ 2
´

ż

ΩpωqrωωJs2dω
¯´1´

ż

Ωpωq ln
ˇ

ˇ

ˇ
exp

`

χrpsfpr, tq d ωq
˘

ˇ

ˇ

ˇ
rωs2dω

¯

.

(68)

As a result, the optimal coefficient sgpr, tq can be formulated as

sgpr, tq2 “ max
´

sgp0, tq2 ` Ψpfpr, tq, rq,0
¯

, (69)

which finally proves the theorem.

With the above theorem, we can find the optimal risk-sensitive SDE for non-Gaussian perturbation,
though its coefficient gpr, tq might have a rather complicated form. In Sec. G, we apply this theorem
to Cauchy perturbation under the architecture of VE SDE (i.e., Corollary G.3). Our numerical exper-
iments in Appendix 5 also show that such a risk-sensitive VE SDE are very robust for optimization
with Cauchy-corrupted samples (i.e., Fig. 4).

G APPLICATIONS TO DIFFUSION MODELS

In this section, we aim to apply risk-sensitive SDE and our developed theorems to the practical
implementations of diffusion models. We will show how to extend a vanilla diffusion model to
its risk-sensitive versions under different noise perturbations and provide an efficient algorithm for
optimizing the score-based model with risk-sensitive SDE.

G.1 EXTENSIONS UNDER GAUSSIAN PERTURBATION

In terms of Theorem E.1, we have the following corollaries that extend two widely used diffusion
models to their risk-sensitive versions. One of them is VE SDE (Song et al., 2021).

Corollary G.1 (Risk-sensitive VE SDE for Gaussian Noises). Under the assumption of Gaussian
perturbation, the risk-sensitive SDE (as defined by Eq. (5)) for VE SDE, a commonly used risk-
unaware diffusion model, is parameterized as follows:

fpr, tq “ 0, gpr, tq “ 1pσptq21 Á σp0q21 ` r2q

c

dσptq2

dt
,
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where 1p¨q is an element-wise indicator function, Á represents the element-wise greater-than sign.
The stability interval T prq in this case is

T prq “

!

t P r0, T s | σptq2 ´ max
iPr1,Ds

r2i ą 0
)

.

In particular, for the case of zero risk r “ 0, the above risk-sensitive SDE reduces to the vanilla VE
SDE, with fp0, tq “ 0, gp0, tq “

a

dσptq2{dt1, and T “ r0, T s.

Proof. For VE SDE, its risk-unaware kernel is as
#

pt|0pxptq | xp0qq “ N pxptq;sfptq d xp0q,diagpsgp0, tq2qq

sfptq “ 1, sgp0, tq2 “ pσptq2 ´ σp0q2q1
,

where σptq : r0, T s Ñ R` is an exponentially increasing function. Considering our previous
conclusions (i.e., Eq. (37) and Eq. (28)) for Gaussian noises, the risk-unaware and risk-sensitive
SDEs for VE SDE are parameterized as follows:

$

’

’

&

’

’

%

dxptq “ gp0, tq d dwptq,gp0, tq “ 1

c

dσptq2

dt

drxptq “ gpr, tq d dwptq,gpr, tq “ 1pσptq21 Á σp0q21 ` r2q

c

dσptq2

dt

,

where 1p¨q is an element-wise indicator function. The risk-sensitive SDE of VE SDE is of perturba-
tion stability at iteration t P r0, T s iff the vector σptq21 ´ r2 is positive in each entry.

The other is VP SDE (Song et al., 2021), the continuous version of DDPM (Ho et al., 2020).
Corollary G.2 (Risk-sensitive VP SDE for Gaussian Noises). Under the assumption of Gaussian
perturbation, the risk-sensitive SDE for VP SDE is parameterized as follows:

fpr, tq “ ´
1

2
βptq1, gpr, tq “ 1

`

1 Á p1 ` r2qαptq
˘

a

βptq,

where αptq “ expp´
şt

0
βpsqdsq. The stability interval T prq in this case is

T prq “ tt P r0, T s | αptq´1 ą 1 ` max
1ďjďD

r2j u.

As expected, for the situation with zero risk r “ 0, the risk-sensitive SDE reduces to an ordinary VP
SDE, with fp0, tq “ ´1

2βptq1, gp0, tq “
a

βptq1.

Proof. For VP SDE, its risk-unaware kernel is as
$

’

’

’

’

’

&

’

’

’

’

’

%

pt|0pxptq | xp0qq “ N pxptq;sfptq d xp0q,diagpsgp0, tq2qq

sfptq “ 1 exp
´

´
1

2

ż t

0

βpsqds
¯

sgp0, tq2 “ 1 ´ 1 exp
´

´

ż t

0

βpsqds
¯

,

where βptq : r0, T s Ñ R` is a predefined curve. Similar to our discussion about VE SDE, by using
Eq. (37) and Eq. (28), the risk-unaware and risk-sensitive SDEs for VP SDE are as
$

’

’

&

’

’

%

dxptq “ pfptq d xptqqdt ` gp0, tq d dwptq, fptq “ ´
1

2
βptq1,gp0, tq “

a

βptq1

drxptq “ pfptq d rxptqqdt ` gpr, tq d dwptq,gpr, tq “ 1

´

1 Á p1 ` r2q exp
´

´

ż t

0

βpsqds
¯¯

a

βptq

.

The stability interval T prq is as tt P r0, T s | expp
şt

0
βpsqdsq ą 1 ` max1ďjďD r2j u.

One can apply the two corollaries to isotropic Gaussian noises by simply setting r “ r1, such that
coefficients fptq,gpr, tq will reduce to scalar functions. In Appendix 5, our numerical experiments
confirm that Risk-sensitive VP SDE can achieve stability under Gaussian perturbation (i.e., Fig. 2)
and it is indeed robust to Gaussian-corrupted samples (i.e., Fig. 3).
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G.2 OPTIMIZATION AND SAMPLING

In this part, we provide essential elements for applying risk-sensitive diffusion models in practice,
including the loss function, optimization algorithm, and sampling algorithm. Before diving into the
details, we will first prove a lemma about the stability condition.
Lemma G.1 (“Not Instable” means “Stable”). Provided with the definition of instability measure
Stprq in Eq. (6) and suppose that distributions p0pxq, ρrpϵq are continuous. If we have Stprq “ 0,
then rχt,rpyq “ χtpyq,@y P RD and rpt,rpxq “ ptpxq,@x P RD both hold.

Proof. We prove the first equality by contradiction. Suppose that rχt,rpyq ‰ χtpyq for some
point y1 P RD, then there is a closed region y1 P U Ă RD that satisfies |U | ą 0 and
rχt,rpyq ‰ χtpyq,@y P U because probabilistic densities rχt,rpyq,χtpyq are both continuous every-
where. Considering that the region U is a closed set, we have the below inequalities

ζ1 “ min
yPU

| rχt,rpyq ´ χtpyq| ą 0, ζ2 “ min
yPU

Ωpyq ą 0. (70)

With these results, we further have

Stprq ě

ż

U

Ωpyq
ˇ

ˇ

rχt,rpyq ´ χtpyq
ˇ

ˇ

2
dy ą

ż

U

ζ2ζ
2
1 “ |U |ζ2ζ

2
1 ą 0, (71)

which contradict the precondition Stprq “ 0. Hence, we have rχt,rpyq “ χtpyq,@y P RD. We can
also immediately get the second equality proved since probability densities are uniquely determined
by their cumulant-generating functions.

It is trivial that stability condition rpt,rpxq “ ptpxq indicates zero instability measure Stprq “ 0.
Therefore, an implication of the above lemma is that the two conditions are in fact equivalent if the
sample p0pxq and noise distributions ρrpϵq are both continuous.

Risk-free loss for noisy samples. In the following proposition, we derive the loss function for
risk-sensitive SDE to robustly optimize the score-based model sθpx, tq with noisy sample prxp0q, rq.
We also further simplify the loss for efficient computation.
Proposition G.1 (Risk-free Loss for Robust Optimization). Suppose that the risky sample prxp0q “

xp0q ` ϵ, rq is generated from clean sample pxp0q, r “ 0q with some perturbation noise ϵ „ ρrpϵq,
then the loss of standard (i.e., risk-unaware) diffusion models at time step t:

Lt,r“0 “ Ex„ptpxqr}sθpx, tq ´ ∇x ln ptpxq}2s,

is equal to the below new loss for non-zero risk r ‰ 0:

Lt,r “ Ex„rpt,rpxqr}sθpx, tq ´ ∇x ln rpt,rpxq}2s, (72)

if the noise distribution ρrpϵq is Gaussian and the time step t is within the stability interval T prq.
Importantly, the alternative loss Lt,r has another form:

Lt,r “ Ct ` E
rxp0q,η

“
›

›η { vpr, tq ` sθpuptq d rxp0q ` vpr, tq d η, tq
›

›

2‰

, (73)

where rxp0q „ rp0,rpxq, coefficients uptq,vpr, tq are as defined in Eq. (29), η „ N p0, Iq, and Ct is a
constant that does not contain the parameter θ.

Proof. Based on Theorem E.1 and Lemma G.1, we know that the stability condition rpt,rpxq “ ptpxq

is achieved in this setup. Therefore, we can derive

Lt,0 “ Er}sθpx, tq ´ ∇x ln ptpxq}22s “ Er}sθpx, tq ´ ∇x ln rpt,rpxq}22s “ Lt,r. (74)

Therefore, the first claim of this theorem is proved.

Secondly, we aim to derive another form of the loss Lt,r to make it computationally feasible. To
begin with, by expanding the definition of Lt,r, we have

Lt,r “ E
rxptq„rpt,rprxptqq

”

}sθprxptq, tq ´ ∇
rxptq ln rpt,rprxptqq}22

ı

“ E
”

}sθprxptq, tq}22 ` }∇
rxptq ln rpt,rprxptqq}22 ´ 2sθprxptq, tqJ∇

rxptq ln rpt,rprxptqq

ı

.
(75)
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Considering the following transformations:

∇
rxptq ln rpt,rprxptqq “

∇
rxptq rpt,rprxptqq

rpt,rprxptqq
“

∇
rxptq

ş

rp0,t,rprxp0q, rxptqqdrxp0q

rpt,rprxptqq

“
∇

rxptq

ş

rp0,rprxp0qqrpt|0,rprxptq | rxp0qqdrxp0q

rpt,rprxptqq

“

ş

rp0,t,rprxp0q, rxptqq∇
rxptq ln rpt|0,rprxptq | rxp0qqdrxp0q

rpt,rprxptqq

“

ż

rp0|t,rprxp0q | rxptqq∇
rxptq ln rpt|0,rprxptq | rxp0qqdrxp0q

“ E
rxp0q„rp0|t,rprxp0q|rxptqqr∇

rxptq ln rpt|0,rprxptq | rxp0qqs.

(76)

Combining the above two equations, we have

Lt,r “ E
rxptq

”

}sθp¨q}22 ` }∇
rxptq ln rpt,rprxptqq}22 ´ 2sθprxptq, tqJE

rxp0qr∇
rxptq ln rpt|0,rprxptq | rxp0qqs

ı

“ E
rxp0q,rxptq

”

}sθp¨q}22 ` }∇
rxptq ln rpt|0,rp¨q}22 ´ 2sθprxptq, tqJ∇

rxptq ln rpt|0,rprxptq | rxp0qq

ı

` Ct

“ E
rxp0q„rp0,rprxp0qq,rxptq„rpt|0,rprxptq|rxp0qq

”

}sθprxptq, tq ´ ∇
rxptq ln rpt|0,rprxptq | rxp0qq}22

ı

` Ct,
(77)

where Ct is a constant that does not contain parameter θ:

Ct “ E
rxp0q,rxptq

”

}∇
rxptq ln rpt,rprxptqq}22 ´ }∇

rxptq ln rpt|0,rprxptq | rxp0qq}22

ı

. (78)

Finally, we only have to simplify the derivative term:

∇
rxptq ln rpt|0,rprxptq | rxp0qq “ ∇

rxptq

´

lnN prxptq;sfpr, tq d rxp0q,diagpsgpr, tq2qq

¯

“ ∇
rxptq

´

´
D

2
lnp2πq ´

D
ÿ

j“1

ln sgjpr, tq ´
1

2

〈
prxptq ´ sfpr, tq d rxp0qq2, sgpr, tq´2

〉¯

“
sfpr, tq d rxp0q ´ rxptq

sgpr, tq2
.

(79)

To conclude, the risk-free loss has a simplified form as

Lt,r “ E
rxp0q„rp0,rprxp0qq,rxptq„rpt|0,rprxptq|rxp0qq

”
›

›

›
sθprxptq, tq ´

sfpr, tq d rxp0q ´ rxptq

sgpr, tq2

›

›

›

2

2

ı

` Ct. (80)

Similar to DDPM (Ho et al., 2020), we can further simplify this equation by Gaussian reparam-
eterization. With the reparameterization rxptq “ sfpr, tq d rxp0q ` sgpr, tq d ϵ, ϵ „ N p0, Iq, we
get

Lt,r “ E
rxp0q„rp0,rprxp0qq,ϵ„N p0,Iq

”
›

›

›
sθ

´

sfpr, tq d rxp0q ` sgpr, tq d ϵ, t
¯

`
ϵ

sgpr, tq

›

›

›

2

2

ı

` Ct, (81)

where time step t belongs to stability period T .

The expression of risk-free loss in Eq. (73) permits efficient computation in practice. Importantly
but as anticipated, for the case of zero risk r “ 0, the term reduces to the loss function of ordinary
risk-unaware diffusion models: Lt,0, for clean sample xp0q.

Optimization and sampling. We respectively show the optimization and sampling procedures in
Algorithm 3 and Algorithm 4. We also highlight in blue the terms that differ from vanilla diffusion
models. For the optimization algorithm, when the risk is 0, the algorithm reduces to the opti-
mization procedure of a vanilla diffusion model, with a trivial stability interval of T prq “ r0, T s.
When the risk is non-zero, the risk-sensitive coefficient vpr, tq and interval T prq will guarantee that
∇x ln ptpxq “ ∇x ln rpt,rpxq for t P T prq, such that the noisy sample prxp0q, r ‰ 0q can be used to
safely optimize the score-based model sθpx, tq.
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Algorithm 3 Optimization Algorithm
1: repeat
2: Sample prxp0q, r q from the dataset
3: Sample time step t from stability interval T prq

4: rxptq “ uptq d rxp0q ` vpr, tq d η ,η „ N p0, Iq

5: Update θ with ´∇θ

›

›η { vpr, tq ` sθprxptq, tq}2

6: until converged

Algorithm 4 Sampling Algorithm
1: Set time points ttM “ T, tM´1, ¨ ¨ ¨ , t2, t1 “ 0u

2: Set zero risk r “ 0
3: xptM q „ pT pxq « N px;0, Iq
4: for i “ M,M ´ 1, . . . , 2 do
5: pbpxptiq, tiq “ fpr, tiq d xptiq ´ gpr, tiq

2 d sθpxptiq, tiq

6: η „ N p0, pti ´ ti´1qIq

7: xpti´1q “ xptiq ´ pbpxptiq, tiqpti ´ ti´1q ´ gpr, tiq d η

8: end for
9: return xp0q

For the sampling algorithm, by setting zero risk r “ 0, the coefficients fpr, tq,gpr, tq become
compatible with the model sθpx, tq and together generate high-quality sample xp0q. Our model will
generate only clean samples pxp0q, r “ 0q, but it was already able to capture the rich distribution
information contained in noisy sample prxp0q, r ‰ 0q during optimization.

G.3 EXTENSION UNDER CAUCHY PERTURBATION

In terms of Theorem F.1, we provide a corollary that applies risk-sensitive diffusion to VE SDE,
letting it be robust to Cauchy-corrupted samples.
Corollary G.3 (Risk-sensitive VE SDE for Cauchy Noises). For the weight function Ωpyq “

|χtpyq|2 and a Cauchy noise distribution ρrpϵq that is specified by scales r (i.e., risk vector):

ρrpϵq “

D
ź

j“1

´

πrj

´

1 `
ϵ2j
r2j

¯¯´1

,

the minimally-unstable risk-sensitive SDE (defined by Eq. (5)) for VE SDE has a drift coefficient as
fpr, tq “ 0 and a diffusion coefficient as

gpr, tq “ 1pσptq21 Á σp0q21 `ψprqq

c

dσptq2

dt
,

where the term ψprq is defined as

ψprq “
`

r´2pr´2qJ ` diagp5r´4q
˘´1`

r´11Jr´1 ` 2r´2
˘

.

The vector r is element-wise non-negative. For r “ 0, the risk-sensitive SDE reduces to VE SDE,
with fp0, tq “ 0,gp0, tq “

a

dσptq2{dt.

Proof. Based on Theorem F.1, we aim to derive risk-sensitive SDEs for the noises sampled from
a multivariate Cauchy distribution. We first suppose a noise ϵ “ rϵ1, ϵ2, ¨ ¨ ¨ , ϵDsJ, with every
dimension j P r1, Ds being independent and following a univariate Cauchy distribution ρjpϵjq that
is parameterized by scale κj :

ρjpϵjq “
1

πκj

`

1 ` ϵ2j{κ2
j

˘ , ϕjpωjq “ exp
´

´ κj |ωj |

¯

, (82)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

where ϕjpωjq is the characteristic function of distribution ρjpϵjq. Then, because random variables
ϵ1, ϵ2, ¨ ¨ ¨ , ϵD are mutually independent, their joint distribution ρpϵq is equal to

śD
j“1 ρjpϵjq and

we can derive its characteristic function ϕpωq as

ϕpωq “ Eϵ„ρpϵqrexppiϵJωqs “

ż

ρpϵq exppiϵJωqdϵ

“

D
ź

j“1

´

ż

ρjpϵjq exppiϵjωjqdωj

¯

“ exp
´

´ κJ|ω|

¯

,

(83)

where κ “ rκ1, κ2, ¨ ¨ ¨ , κDs. Now, we can convert Eq. (66) into the following form:
”

ż

Γpωqω2
i ω

2
jdω

ı

i,jPr1,Ds

´

sgp0, tq2 ´ sgpr, tq2
¯

“ ´2
”

ż

Γpωq ln
ˇ

ˇ

ˇ
ϕpsfptq d ωq

ˇ

ˇ

ˇ
ω2
i dω

ıJ

iPr1,Ds

“ 2
”

ż

Γpωq

´

sfptq d κ
¯J

|ω|ω2
i dω

ıJ

iPr1,Ds
“ 2

”

ż

Γpωq|ωi|ω
2
jdω

ı

i,jPr1,Ds

´

sfptq d κ
¯

.

(84)
We set the weight function Γpωq as the magnitude of the characteristic function |ϕpωq| since it
indicates the importance of value ω. In this regard, consider the below five integrals:

ż

expp´κj |ωj |qdωj “
2

κj
,

ż

expp´κj |ωj |qw2
jdωj “

4

κ3
j

,

ż

expp´κj |ωj |q|ωj |dωj “
2

κ2
j

,

ż

expp´κj |ωj |qw4
jdωj “

48

κ5
j

,

ż

expp´κj |ωj |qw2
j |wj |dωj “

12

κ4
j

.

(85)
we can solve that linear equation as

sgp0, tq2 ´ sgpr, tq2 “

”1 ` 51pi “ jq

κ2
iκ

2
j

ı´1

i,jPr1,Ds

”1 ` 21pi “ jq

κiκ2
j

ı

i,jPr1,Ds

´

sfptq d κ
¯

. (86)

For demonstration purposes, let’s consider the case of D “ 1:

sgpr, tq2 “ sgp0, tq2 ´
1

2
sfptqκ2. (87)

For D ą 1, we can only have the below form with an inverse matrix:

sgpr, tq2 “ sgp0, tq2 ´ sfptq d

´

`

κ´2pκ´2qJ ` diagp5κ´4q
˘´1`

κ´11Jκ´1 ` 2κ´2
˘

¯

, (88)

where κ´n “ rκ´n
1 , κ´n

2 , ¨ ¨ ¨ , κ´n
D s, n P N`.

For risk-sensitive VE SDE under Cauchy Perturbation, the concept of stability interval does not
apply, though its coefficient gpr, tq is optimal in a sense that the instability measure Stprq is mini-
mized. For optimization, one can simply set T prq “ r0, T s and apply Algorithm 3. In Appendix 5,
our numerical experiments show that the risk-sensitive VE SDE are very robust for optimization
with Cauchy-corrupted samples (i.e., Fig. 4).
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