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ABSTRACT

Time series forecasting predominantly focuses on modeling the mapping between
historical and future sequences, and existing improvements are often constrained to
optimizing model architectures to better capture this relationship. This essentially
reduces prediction residuals to mere optimization targets while overlooking their
informative structures such as systematic biases or nontrivial distributions that
could otherwise be exploited to directly reduce forecasting errors. Unfortunately,
discriminative models struggle to capture the complete residual structure and its
dynamic temporal dependencies when applied to residual learning. To fill this gap,
we introduce Conditional Guided Flow Matching (CGFM), a novel framework built
upon flow matching. CGFM innovatively leverages auxiliary predictions as the
source distribution and constructs two-sided conditional paths to prevent path cross-
ing, which enables the explicit learning of the full structure of prediction residuals
and thereby theoretically guarantees superior performance over discriminative mod-
els. Extensive experiments show that CGFM enhances diverse forecasting models
including state-of-the-art ones and demonstrates its effectiveness and generality.
Code link: https://anonymous.4open.science/r/CGFM-31DB.

1 INTRODUCTION

Time series forecasting, a fundamental task in time series analysis, has broad applications and
significant impact in domains such as finance, healthcare, and energy (Lim & Zohren, 2021). The
core objective is to learn the mapping from historical sequences to future sequences. Existing
models (Chen et al., 2025; Huang et al., 2025; Wang et al., 2025b) improve performance by refining
architectures to minimize the residuals between predictions generated from historical sequences and
the ground-truth future sequences, thereby better capturing the underlying temporal relationship.

However, this formulation treats prediction residuals merely as optimization targets, overlooking
their informative structures—such as systematic biases or nontrivial distributional patterns. This
raises a natural question: Can we explicitly learn from residuals to directly correct the errors of
forecasting models? Intuitively, if we can effectively model residuals, adding the learned residual
corrections back to the original predictions would refine the forecasts and enhance accuracy. A
straightforward idea is to use a discriminative model for residual learning. Yet both our theoretical
analysis and experimental results (Appendix A.2) demonstrate that such models are mathematically
constrained to fitting only first-order moments (conditional means) and struggle with integrating
historical context, leading to poor performance in residual learning.

To fill this gap, we draw on the strengths of generative models. These models (Kollovieh et al.,
2025; Li et al., 2025; Shen & Kwok, 2023b; Tashiro et al., 2021) have emerged as powerful tools for
time series forecasting, equipped with prediction distribution modeling capabilities and conditional
generation mechanisms. We build on flow matching (Esser et al., 2024; Kerrigan et al., 2023;
Lipman et al., 2023), a more flexible generative framework featuring adaptable initialization and
sampling paths. We develop Conditional Guided Flow Matching (CGFM), which enhances time
series forecasting by leveraging auxiliary predictions as the initial distribution to explicitly model
the complete residual structure, refines forecasting results, and theoretically guarantees superior
performance over discriminative models (Appendix A.2).
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Figure 1: Left: Since no model can predict with perfect accuracy, their prediction distribution
inevitably differs from the target, leading to residuals. CGFM learns the probabilistic structure of
these residuals. Right: CGFM reduces the residuals to be centered and concentrated around zero
(mean tending to zero with significantly reduced variance).

First, we utilize the distribution of a prediction model’s predictions as the source distribution, rather
than constraining it to simple noise. As illustrated in Figure 1, CGFM learns a transformation path
from the prediction distribution to the target distribution. We have proven (Proposition 4.2) that
this formulation integrates the explicit modeling of the full residual structure into the flow matching
framework, enabling end-to-end acquisition of enhanced forecasts directly. At the same time, using
the auxiliary prediction distribution as the source in flow matching not only preserves richer temporal
dependencies than a Gaussian prior but also provides the closest accessible approximation to the
target distribution, thereby reducing the difficulty of residual learning.

Second, the essence of forecasting lies in capturing the mapping from historical sequences to future
sequences. To this end, we incorporate historical information into both probability path construction
and velocity field learning. A key innovation is a two-sided conditional probability path, in which both
the source and target distributions are conditioned on the same historical data. This design, combined
with our choice of source distribution, model structure, and the flexibility of affine paths, theoretically
guarantees the avoidance of path crossing—a critical challenge in flow-based modeling (Tong et al.,
2024; Liu et al., 2022b). By preventing path crossing, our framework reduces prediction ambiguity
and information loss during sampling, which enhances forecasting accuracy. Historical data also
guides the velocity field to capture temporal dependencies, improving the alignment between source
and target distributions. In addition, reparameterizing the prediction target to directly optimize toward
the ground truth yields a further accuracy gain.

Our main contributions are as follows:

• We propose a novel formulation for time series forecasting that goes beyond simply minimizing
prediction errors to learning from residuals. Backed by theoretical analysis and proofs, our
framework outperforms discriminative models by explicitly capturing the full structure of
prediction residuals, thereby refining the auxiliary model’s forecasts.

• We theoretically adapt flow matching to the time series domain and propose CGFM, which inte-
grates historical data as two-sided conditions in both path construction and velocity field learning.
This theoretically grounded design avoids path crossing, enhances temporal dependency capture,
and achieves further gains through target reparameterization

• We conduct extensive experiments, demonstrating that CGFM consistently improves forecasting
performance validating its effectiveness and generality.

2 PRELIMINARIES

2.1 FLOW MATCHING

Note: The notations in this section are for theoretical illustration and are not the same as those
used for time series forecasting. Given a sample X0 drawn from a source distribution p such that
X0 ∼ p, in d-dimensional Euclidean space where X0 = (x10, . . . , x

d
0) ∈ Rd, and a target sample

X1 = (x11, . . . , x
d
1) ∼ q. Flow Matching (FM) constructs a probability path (pt)0≤t≤1 from the

known distribution p0 = p to the target distribution p1 = q, where pt is a distribution over Rd.
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Specifically, Flow Matching employs a straightforward regression objective to train the velocity field
neural network, which describes the instantaneous velocities of samples. The relationship between
the velocity field and the flow is defined as:

d

dt
ψt(x) = ut(ψt(x)), (1)

where ψt(x) represents the flow at time t, and ψ0(x) = x. The velocity field ut generates the
probability path pt if its flow ψt satisfies Xt := ψt(X0) ∼ pt for X0 ∼ p0. The goal of Flow
Matching is to learn a vector field uθ(t) such that its flow ψt generates a probability path pt with
p0 = p and p1 = q. The Flow Matching loss is defined as: LFM(θ) = Et,Xt

[∥∥ut(Xt)− uθt (Xt)
∥∥2] .

3 RELATED WORK

Flow Matching (FM) has gained attention in time series modeling for efficiently constructing con-
tinuous probability paths via velocity fields. Early work like CFM-TS (Tamir et al., 2024) explored
FM for generation using Brownian bridges and Gaussian processes, offering better stability than
neural ODEs. Later methods, however, share critical drawbacks: TSFlow (Kollovieh et al., 2024)
just uses historical data during inference (weak historical utilization), FM-TS (Hu et al., 2024) lacks
structured conditioning, and TFM (Zhang et al., 2024) relies on general priors and historical window
constraints (underutilizing temporal dependencies). Collectively, these reflect two core limitations:
weak historical data usage and reliance on generic priors. Treating the auxiliary prediction model
and CGFM as an integrated forecasting model advances time series forecasting by resolving these
issues. CGFM’s two-sided conditional design ensures temporal consistency, efficiency and flexibility.
It innovatively leverages the auxiliary model’s predictive distribution, which is inherently closer
to the target than Gaussian priors, to learn and correct residuals. Its core innovation is two-sided
conditional paths with affine interpolation, explicitly guided by historical data to capture complex
residual dynamics, avoid path crossing and boost predictive accuracy. And CGFM, through the design
of its probability path, theoretically and naturally ensures non-crossing paths in time series tasks,
which facilitates sampling and prediction—addressing a key challenge in flow matching (Zhang et al.,
2025; Tong et al., 2024).

4 METHODOLOGY

4.1 PROBLEM FORMULATION

In time series prediction tasks, the goal is to leverage historical data to predict future data. Let H ∈
RC×L ∼ pH denote the historical data, with samples represented by h. Similarly, let F ∈ RC×F ∼ q
represent the target future data, with samples denoted by f . The probability path is defined as pt,
where Xt ∼ pt represents the state of the data at time t. The objective is to generate more accurate
predicted data that closely approximates F . Specifically, at t = 1, X1 ∈ RC×F ∼ q, with samples
denoted by x1. At t = 0, the source data is given by X0 ∈ RC×F ∼ p, with samples represented by
x0. Fig. 2 provides an overview of the CGFM framework

4.2 TWO-SIDED CONDITIONAL GUIDED PREDICTION

In time series forecasting tasks, for a given h, there exists a correspondence between the samples
of the source distribution and the target distribution. Relying solely on one-sided conditioning, as
in previous flow matching methods, is therefore inadequate. To address this, we propose two-sided
conditionally guided probability paths, where a marginalization probability path is constructed and
integrated to obtain pt|H(x|h): pt|H(x|h) =

∫
pt|0,1,H(x|x0, x1, h)π0,1|H(x0, x1|h)dx0dx1. Here,

π0,1|H(x0, x1 | h) = q(x1 | h)p(x0 | h), indicating that x0 and x1 are independent given h, a
concept referred to as conditional independent coupling. Both are related to the historical data h.

The two-sided conditionally guided probability path is required to comply with the boundary
constraints p0|0,1(x|x0, x1, h) = δx0

(x) and p1|0,1(x|x0, x1, h) = δx1
(x). Here, δ denotes

the Dirac delta function. Subsequently, the velocity field can be obtained as: ut(x|h) =∫
ut(x|x0, x1, h)p0,1|t,H(x0, x1|x, h) dx0dx1. By Bayes’ Rule, it follows that:
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Figure 2: Visualization of CGFM Training. Prediction distribution deviates from target (no model is
ideal), so CGFM focuses on learning prediction residuals. Black line: two-sided conditional path
between x0 (auxiliary prediction) and x1 (ground-truth); gray line: historical data h that generates x0
and x1. Given h and x0, CGFM outputs the enhanced prediction x1.

p0,1|t,H(x0, x1|x, h) =
pt|0,1,H(x|x0, x1, h)π0,1|H(x0, x1|h)

pt|H(x|h) . (2)

Thus, the model learns ut(x|x0, x1, h) to obtain ut(x|h). According to Eq.(1), ut(x|x0, x1, h)
determines p0,1|t,H(x0, x1|x, h), and vice versa.

4.3 CGFM AND RESIDUAL LEARNING

To fully leverage the valuable information encoded in the prediction residuals, we harness the
flexibility of flow matching by setting X0 as the output generated by a predictive auxiliary model, i.e.,
X0 = Xaux = Φ(H). In this case, the distribution p conditioned on h can be expressed as p(x0 | h),
representing the distribution of the auxiliary model’s predictions. Target distribution q used during
training is derived from the inherent correspondence between future data F and historical data H
in the dataset, which can be formulated as q(x1 | h). Specifically, we design a probability path that
from the distribution of the auxiliary model’s predictions to the target distribution. This allows flow
matching to effectively learn from prediction residuals of the auxiliary model.

Since time series datasets are typically stored with a limited number of significant digits and consist
of a finite number of samples, even if the original time series is continuous, H can only be considered
to have an approximately continuous distribution in RC×L. In general, most models are differentiable,
and thus Φ(H) can also be approximated as C(RC×F ). However, this is insufficient to ensure that
p(x0 | h) satisfies the C1 smoothness condition in RC×L. This smoothness is a foundational premise
for justifying the flow matching construction, as formalized in Lemma 4.4. We therefore use Gaussian
noise to smooth p(x0 | h).
Proposition 4.1 (Noise Smoothing). Let X ∈ RC×F be a time series with distribution Pori. Define
the perturbed series R as: R = X + σϵ, where ϵ ∼ N (0, I) is additive Gaussian noise and σ > 0.
The perturbed series R follows the distribution Pper:

Pper(r) =

∫
PX(r − σϵ)Pϵ(ϵ) dϵ, (3)

which belongs to C1(Rd). Furthermore, Pper has a strictly positive density and possesses finite
second moments. The proof is given in Appendix A.3.

Intuitively, Pper can be regarded as the convolution of the original distribution PX(x) with a Gaussian
distribution Pϵ(ϵ). Since the Gaussian distribution is a C∞ function, PR(r) is thus not only C1 but
also C∞. When Φ(H) + σϵ is applied, the convolution with Gaussian noise significantly enhances
the smoothness of the distribution, eliminating sharp variations and discontinuities present in the
original distribution.
Proposition 4.2 (Equivalence of CGFM and Learning Residual Distribution via Flow Matching).
Under Proposition 4.1 (noise smoothing) and two-sided coupling π0,1|H = p(x0|h)q(x1|h), CGFM
equivalently learns residual ϵ = x1 − x0’s probabilistic characteristics via Flow Matching, with its
path and loss tied to ϵ’s evolution. The proof is given in Appendix A.5.

This equivalence highlights a critical advantage of CGFM: unlike discriminative models that directly
output residuals to add back to predictions, CGFM explicitly models the target distribution (of future
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sequences) by treating the auxiliary model’s predictions as the initial distribution. By learning the
transformation path from this initial prediction distribution to the target distribution via flow matching,
it naturally captures the full structure of residuals—all without explicitly outputting residuals. Instead,
enhanced forecasts are obtained by sampling directly from the learned target distribution.

A Discussion on Residual Learning Between CGFM and Discriminative Models We conducted a
theoretical analysis to further underscore CGFM’s superiority over discriminative models for residual
learning. As detailed in the proof in Appendix A.2, discriminative models— which minimize mean
squared error to learn deterministic mappings from auxiliary outputs X0 to residuals—suffer from
three inherent limitations. First, their loss function decomposes to only optimize the residual’s
conditional mean (first-order moment), inherently discarding critical higher-order distributional
structures such as variance and skewness. Second, their input is restricted to X0, rendering them
unable to integrate historical context H and thus incapable of capturing context-dependent residual
dynamics tied to temporal trends. Third, their point-estimation nature imposes an irreducible risk
lower bound (equal to the average conditional variance of residuals), which cannot be eliminated via
parameter optimization.

In contrast, CGFM overcomes these flaws by explicitly learning the full probabilistic characteristics of
residuals (Proposition 4.2), integrating historical context H through its two-sided conditional design,
and modeling the velocity field that governs residual evolution. This comprehensive framework
enables CGFM to capture both the distributional patterns of residuals and their temporal dependencies,
thereby explaining its consistent performance superiority.

4.4 VELOCITY FIELD OF MARGINAL PROBABILITY PATHS

Previous studies have primarily focused on the application of conditional optimal transport
flows (Kollovieh et al., 2025; Hu et al., 2025). In the scenario of a two-sided condition, this
can be formulated as: Xt ∼ pt|0,1,H = tX1 + (1 − t)X0. Conditional optimal transport
flows addresses the problem of kinetic energy minimization through the optimization formulation:
argminpt,ut

∫ 1

0

∫
Z
∥ut(x)∥2pt(x) dx dt, providing a principled approach to solving such problems.

However, in time-series forecasting, this may not identify the optimal predictive path, particularly
when the initial distribution is highly complex. Notably, conditional optimal transport can be regarded
as a special case within the broader family of affine conditional flows (Albergo & Vanden-Eijnden,
2023).

Xt ∼ pt|0,1,H = αtX1 + βtX0, (4)

where αt and βt : [0, 1] → [0, 1] are smooth functions, satisfying α0 = β1 = 0 and α1 = β0 = 1,
with α̇t > 0, and−β̇′

t > 0 for t ∈ (0, 1). Referring to Eq.(1), let x′ = ψt(x), and the inverse function
yields ψ−1

t (x′) = x. Consequently, Eq.(1) can be reformulated as:

ut(x
′) = ψ̇t(ψ

−1
t (x′)). (5)

Lemma 4.3 (Velocity Field of Marginal Probability Paths). Under mild assumptions, if ψt(·|x0, x1, h)
is smooth in t and forms a diffeomorphism in x0, x1, then the velocity field ut(x) can be represented
as

ut(x|h) = E
[
ψ̇t(X0, X1|H)|Xt = x,H = h

]
, (6)

for all t ∈ [0, 1). The proof is given in Appendix A.6.

According to Lemma 4.3, under the two-sided condition, the velocity field takes the form of:

ut(x|h) = E
[
α̇tX1 + β̇tX0 | Xt = x,H = h

]
. (7)

The choice of αt and βt enhances flexibility, making it better suited for complex source distributions
and more effective for predictive path construction. We further investigate the effects of different
parameterizations of αt and βt in Experiment 5.6.

4.5 NON-CROSSING OF PROBABILITY PATHS

After deriving the conditional velocity field ut(x|h) and the conditional probability path pt|H(x|h)
from the marginal velocity field, we must also ensure that ut(x|h) indeed generates pt|H(x|h).

5
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Lemma 4.4. Under mild assumptions, q has a bounded support and p is C1(Rd) with a strictly
positive density and finite second moments. These two are related by the conditional independent
coupling π0,1|H(x0, x1|h) = p(x0|h)q(x1|h). pt(x|h) is defined as Eq.(4.2), with ψt defined by
Eq.(4). Subsequently, the marginal velocity engenders pt that interpolates between p and q. The
proof is given in Appendix A.7.

According to Proposition 4.1, whether p represents the noise distribution or the output distribution of
the auxiliary model, appropriate operations can ensure that theC1 condition is satisfied. Consequently,
Proposition 4.4 guarantees the correctness of the flow matching construction.

Proposition 4.5 (Transportation and Non-crossing of Probability Paths). Under the assumptions
of Proposition 4.4, further suppose that the affine conditional path and the velocity field are given
by Eq. (4) and Eq. (7), respectively. Then All paths of the flow are non-crossing: there exist no
t ∈ [0, 1), z ∈ Rd, and distinct initial conditions X(1)

0 ̸= X
(2)
0 such that X(1)

t = X
(2)
t = z with

distinct evolution directions. The proof is given in Appendix A.8.

𝑿𝟎 𝑿𝟏

Independent                                   
Coupling

Conditional 
Independent Coupling

𝑿𝟎 𝑿𝟏

Figure 3: Illustration of CGFM’s path proper-
ties. Left: Independent coupling may produce
crossing paths. Right: CGFM’s conditional in-
dependent coupling ensures non-crossing paths
by conditioning both source and target on shared
history.

As visualized in Figure 3, this guarantee of non-
crossing paths is critical for time series forecasting,
as path crossing would lead to ambiguous map-
pings between the auxiliary model’s predictions x0
and the true future values x1 at intermediate time
steps t. Such ambiguity could cause information
loss or conflicting signals during the flow’s evo-
lution, undermining the model’s ability to refine
predictions consistently. For further discussion
and detailed elaboration, refer to Appendix A.9.

4.6 PARAMETERIZATION
OF THE PREDICTION TARGET

Numerous studies in the domains of time-series
forecasting and protein synthesis(Watson et al.,
2023; Shen et al., 2024; Shen & Kwok, 2023a),
have undertaken the reparameterization of predic-
tion targets. In the case of our two-sided condition’s affine path By using Eq.(4), we obtain:
X1 = Xt−βtX0

αt
, X0 = Xt−αtX1

βt
. Substituting it into Eq.(7) allows for the following reparame-

terization:

ut(x|h) = α̇tE[X1|Xt = x, h] + β̇tE[X0|Xt = x, h] (8)

=
β̇t
βt
x+

[
α̇t −

αtβ̇t
βt

]
E[X1|Xt = x,H = h] (9)

=
α̇t

αt
x+

[
β̇t −

βtα̇t

αt

]
E[X0|Xt = x,H = h]. (10)

Whereas Eq.(9) provides a parameterization of ut for predicting the target x1, where x1|t(x) =
E[X1|Xt = x] is defined as the x1-prediction. Eq.(10) offers a parameterization of ut for the source
x0, where x0|t(x) = E[X0|Xt = x] is defined as the x0-prediction. These equations introduce
two novel methods of parameterization. In light of pertinent literature (Watson et al., 2023) and
experimental observations, we discern that for sequence prediction tasks, considering our generation
target x1 as our training objective engenders enhanced outcomes.

4.7 LOSS FUNCTION

After obtaining the conditional guided probability path pt|H(x|h) and the velocity field ut(x|h), we
proceed to define the loss function, specifically the guided flow matching loss:

LGM (θ) = Et,H,Xt

[∥∥ut(Xt | H)− uθt (Xt | H)
∥∥2] , (11)

6
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where the velocity field ut(Xt | H) is defined by:ut(Xt | H) = E
[
gt(X0, X1)

∣∣∣∣ Xt = x,H = h

]
.

The prediction function gt(X0, X1) is specified based on the prediction target as follows:

gt(X0, X1) =


α̇tX1 + β̇tX0, ut-Prediction,
X0, X0-Prediction,
X1, X1-Prediction.

(12)

From Eq.(8), Eq.(9), and Eq.(10), it can be shown that the above three prediction methods are
mathematically equivalent. If the prediction objective isX1-prediction, then after training the velocity
field uθt to predict X1, it can be substituted into Eq. 9 to replace E[X1 | Xt = x,H = h], resulting
in the velocity field at time t. The same principle applies to x0. Furthermore, the conditional guided
flow matching loss function LCGM (θ) is defined as:

LCGM (θ) = Et,H,(X0,X1)∼π0,1|H

[∥∥∥gt(X0, X1)− uθ
t (Xt)

∥∥∥2
]
. (13)

Since gt(X0, X1) is explicitly specified and computable, the loss LCGM (θ) offers significant advan-
tages for optimization.
Proposition 4.6. The gradients of the guided flow matching loss and the conditional guided flow
matching loss coincide:

∇θLGM (θ) = ∇θLCGM (θ). (14)
Moreover, the minimizer of the Conditional Guided Flow Matching loss LCGM (θ) is the marginal
velocity ut(Xt | H). The proof is given in Appendix A.9.

5 EXPERIMENT

5.1 BASELINE AND DATASETS

To demonstrate the forecast enhancement effect and predictive superiority of CGFM, we employed
representative baselines. Among transformer-based models, we included Multipatchformer (Naghashi
et al., 2025), iTransformer (Liu et al., 2024), PatchTST (Nie et al., 2023), Pathformer (Chen et al.,
2024), Autoformer (Chen et al., 2021), and the classic FedFormer (Zhou et al., 2022). Additionally,
we incorporated MLP-based models, including RLinear (Li et al., 2023b), TimesNet (Wu et al.,
2022), Timemixer (Wang et al., 2024) and TiDE (Das et al., 2024). Furthermore, diffusion-based
models such as CSDI (Tashiro et al., 2021) and TimeDiff (Shen & Kwok, 2023a) were also evaluated.
Descriptions of the datasets and their statistical properties are detailed in the Appendix A.13.

5.2 EVALUATION METRICS

The experiments employed Mean Squared Error (MSE), Mean Absolute Error (MAE), and Continuous
Ranked Probability Score (CRPS) to evaluate the predictive performance of the models. To ensure the
robustness of the results, each experiment was repeated 10 times, and the outcomes were averaged.

5.3 AUXILIARY MODEL ENHANCED PERFORMANCE

As shown in Table 1, for an input length of 96, the auxiliary model is evaluated across a wide range
of mainstream forecasting models, including MLP-based, Transformer-based, and diffusion-based
architectures. Our proposed CGFM framework achieves significant performance improvements
across most benchmark datasets. Specifically, CGFM yields the most significant improvement when
using Rlinear as the auxiliary model, whereas gains for iTransformer and TimeDiff are comparatively
modest. This phenomenon is detailed in Figure 4, where the first three left panels show the PCA
of CGFM’s initial distributions (prediction distributions of Rlinear, iTransformer, and TimeDiff,
respectively), and the rightmost panel shows the PCA of the target (ground truth) distribution. The
PCA trajectory of Rlinear predictions closely aligns with the ground truth in both shape and continuity,
which facilitates CGFM’s learning of the transition from Rlinear’s prediction distribution to the ground
truth—resulting in substantial forecasting gains. In contrast, iTransformer and TimeDiff predictions

7
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Table 1: Forecasting errors under the multivariate setting. The bold values indicate better performance.
Note: Ex. = Exchange, Weath. = Weather. Comparison of four baseline models (Rlinear (2023),
iTransformer (2024), TimeDiff (2023), MultiPatchFormer (2025)

Methods Rlinear + CGFM iTrans. + CGFM TimeDiff + CGFM Multi. + CGFM
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.359 0.378 0.307 0.351 0.336 0.369 0.313 0.362 0.339 0.362 0.309 0.361 0.317 0.345 0.308 0.355
192 0.396 0.395 0.341 0.382 0.387 0.392 0.366 0.382 0.372 0.381 0.346 0.389 0.367 0.369 0.339 0.378
336 0.428 0.416 0.372 0.397 0.427 0.422 0.398 0.412 0.403 0.401 0.384 0.409 0.399 0.398 0.373 0.401
720 0.489 0.451 0.443 0.421 0.493 0.461 0.461 0.452 0.455 0.432 0.441 0.416 0.467 0.436 0.438 0.430

E
T

T
m

2 96 0.182 0.267 0.167 0.253 0.179 0.262 0.177 0.259 0.185 0.265 0.170 0.261 0.171 0.252 0.165 0.255
192 0.246 0.305 0.228 0.298 0.244 0.306 0.242 0.299 0.251 0.310 0.234 0.286 0.238 0.296 0.229 0.296
336 0.310 0.344 0.281 0.323 0.314 0.351 0.291 0.329 0.311 0.352 0.283 0.315 0.305 0.342 0.283 0.320
720 0.407 0.399 0.365 0.367 0.413 0.407 0.380 0.391 0.412 0.399 0.373 0.386 0.404 0.403 0.366 0.371

E
T

T
h1

96 0.382 0.398 0.363 0.372 0.389 0.408 0.368 0.388 0.383 0.391 0.371 0.386 0.378 0.389 0.365 0.371
192 0.439 0.424 0.409 0.417 0.443 0.441 0.410 0.423 0.437 0.429 0.415 0.421 0.434 0.422 0.422 0.435
336 0.480 0.448 0.425 0.430 0.489 0.461 0.428 0.437 0.475 0.449 0.423 0.432 0.473 0.445 0.439 0.48
720 0.484 0.475 0.461 0.457 0.506 0.498 0.503 0.497 0.502 0.512 0.476 0.495 0.476 0.470 0.462 0.461

E
T

T
h2

96 0.290 0.341 0.275 0.329 0.299 0.351 0.295 0.348 0.301 0.357 0.282 0.346 0.285 0.334 0.280 0.328
192 0.375 0.392 0.351 0.362 0.383 0.402 0.377 0.398 0.381 0.396 0.372 0.391 0.371 0.389 0.365 0.372
336 0.414 0.426 0.402 0.422 0.431 0.435 0.423 0.431 0.433 0.441 0.425 0.432 0.420 0.428 0.415 0.417
720 0.422 0.447 0.411 0.442 0.429 0.448 0.423 0.445 0.437 0.458 0.419 0.445 0.425 0.441 0.419 0.432

E
x.

96 0.095 0.215 0.081 0.204 0.089 0.218 0.082 0.206 0.087 0.212 0.082 0.203 0.085 0.206 0.080 0.201
192 0.182 0.308 0.175 0.304 0.177 0.301 0.174 0.308 0.176 0.311 0.174 0.307 0.178 0.297 0.173 0.302
336 0.349 0.432 0.306 0.395 0.336 0.421 0.306 0.397 0.310 0.427 0.305 0.399 0.307 0.399 0.304 0.394
720 0.890 0.719 0.830 0.683 0.851 0.693 0.837 0.690 0.847 0.706 0.844 0.701 0.897 0.702 0.844 0.685

Tr
af

fic

96 0.632 0.387 0.412 0.288 0.397 0.272 0.388 0.268 0.520 0.373 0.398 0.277 0.442 0.268 0.423 0.253
192 0.597 0.362 0.429 0.291 0.422 0.278 0.413 0.269 0.515 0.354 0.427 0.281 0.460 0.273 0.441 0.266
336 0.607 0.369 0.462 0.336 0.437 0.288 0.428 0.276 0.514 0.355 0.459 0.322 0.477 0.276 0.454 0.271
720 0.650 0.391 0.489 0.323 0.473 0.304 0.462 0.296 0.563 0.377 0.478 0.310 0.517 0.299 0.471 0.286

W
ea

th
. 96 0.189 0.230 0.152 0.191 0.178 0.217 0.154 0.193 0.181 0.217 0.156 0.191 0.157 0.197 0.151 0.186

192 0.244 0.275 0.201 0.226 0.224 0.259 0.204 0.241 0.228 0.257 0.202 0.239 0.207 0.242 0.195 0.221
336 0.295 0.309 0.259 0.272 0.281 0.298 0.270 0.289 0.288 0.303 0.273 0.292 0.277 0.293 0.243 0.254
720 0.368 0.355 0.339 0.332 0.359 0.350 0.343 0.334 0.364 0.358 0.347 0.340 0.351 0.342 0.332 0.321
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Figure 4: PCA visualization of predictions and ground truth, showing the PCA projections of RLinear
predictions, iTransformer predictions, TimeDiff predictions, and the ground truth, respectively.
exhibit irregular spatial distributions with discontinuous inter-point connections, indicating non-
smooth fluctuations in their high-dimensional representations. This increases CGFM’s learning
difficulty, leading to less pronounced improvements. Detailed procedures are provided in Appendix
A.7.2. Further results regarding CRPS are provided in Appendix A.10.

5.4 PERFORMANCE WITHOUT AUXILIARY MODEL

Table 2: Testing MSE in the multivariate setting. Number in brackets is the rank. CSDI runs out of
memory on Traffic.

Model Weather Traffic ETTh1 ETTh2 ETTm1 ETTm2 Exchange Avg Rank
CGFM 0.161(3) 0.430(2) 0.373(1) 0.286(2) 0.317(2) 0.173(2) 0.085(3) 2.142 (1)
TimeDiff 0.181(8) 0.520(7) 0.383(7) 0.301(7) 0.339(8) 0.185(8) 0.087(6) 7.125(7)
CSDI 0.301(13) - 0.503(13) 0.356(11) 0.601(13) 0.289(13) 0.258(13) 12.667(13)
iTransformer 0.178(6) 0.397(1) 0.389(10) 0.299(6) 0.336(6) 0.179(6) 0.089(7) 6.000(6)
Rlinear 0.189(9) 0.632(11) 0.382(5) 0.290(4) 0.359(9) 0.182(7) 0.095(8) 7.429(8)
FedFormer 0.219(11) 0.588(8) 0.376(3) 0.359(12) 0.379(11) 0.203(10) 0.147(11) 7.571(9)
TimeMixer 0.165(4) 0.461(4) 0.374(2) 0.294(5) 0.331(5) 0.175(4) 0.083(1) 3.571(4)
TimesNet 0.179(7) 0.593(9) 0.384(9) 0.340(9) 0.338(7) 0.188(9) 0.107(10) 8.571(10)
PatchTST 0.177(5) 0.462(5) 0.383(7) 0.304(8) 0.320(4) 0.175(4) 0.085(3) 5.142(5)
Autoformer 0.266(12) 0.613(10) 0.449(11) 0.345(10) 0.505(12) 0.255(12) 0.189(12) 11.286(12)
TiDE 0.202(10) 0.803(12) 0.478(12) 0.403(13) 0.366(10) 0.209(11) 0.093(8) 10.857(11)
Pathformer 0.156(1) 0.479(6) 0.382(5) 0.283(1) 0.319(3) 0.174(3) 0.083(1) 2.857(3)
MultiPatchFormer 0.158(2) 0.438(2) 0.378(4) 0.285(3) 0.315(1) 0.171(1) 0.085(3) 2.285(2)

To further validate the superiority of our proposed forecasting framework, we conducted an additional
experiment where the initial condition x0 was directly set as noise under the 96-to-96 prediction
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Table 3: MSE and MAE results for differ-
ent affine conditional paths on the ETTh1 and
ETTm1 datasets.

Dataset CondOT Poly-n VP Cosine
MSE MAE MSE MAE MSE MAE MSE MAE

ETTh1 (Rlinear) 0.368 0.376 0.363 0.372 0.379 0.387 0.380 0.396
ETTm1 (Rlinear) 0.314 0.363 0.307 0.351 0.336 0.376 0.332 0.371
ETTh1 (iTrans) 0.374 0.391 0.368 0.388 0.387 0.403 0.387 0.386
ETTm1 (iTrans) 0.326 0.367 0.313 0.362 0.331 0.372 0.334 0.376

Table 4: MSE and MAE results for different pre-
diction functions on ETTh1 and ETTm1 datasets.

Dataset ut-Prediction X0-Prediction X1-Prediction

MSE MAE MSE MAE MSE MAE

ETTh1 0.370 0.379 0.384 0.385 0.363 0.372
ETTm1 0.328 0.361 0.343 0.367 0.307 0.351

setting. CGFM achieved the best overall ranking, demonstrating the effectiveness and soundness of
its model architecture. Although it does not attain the best performance on every individual dataset,
as shown in Table 1, when combined with an auxiliary model, CGFM consistently achieves the best
results across all datasets. This highlights the crucial role of the CGFM auxiliary model in enhancing
forecasting performance.

5.5 CASE STUDY OF RESIDUAL LEARNING

As shown in Figure 5 and Figure 6, we evaluate the 96-to-96 prediction task on the ETTh1 dataset
using RLinear as the auxiliary model. The curves represent the mean sequences obtained by averaging
all predicted and ground truth windows of length 96. It can be observed that RLinear exhibits persistent
underestimation and large variance. In contrast, CGFM effectively learns the residual distribution,
substantially reducing both variance and systematic bias, resulting in predictions that closely align
with the ground truth. Detailed procedures are provided in Appendix A.14.1.

5.6 ANALYSIS OF PATH HYPERPARAMETER

We explore different parameterization schemes for affine probabilistic paths, including Optimal Trans-
port (CondOT), Polynomial (Poly-n), Linear Variance Preserving (LinearVP), and Cosine schedulers,
with their comparisons provided in Figure 7. Detailed formulas are provided in Appendix A.5.

Table 3 shows that the Poly-n scheduler, with velocity approaching zero near t ≈ 0, enables thorough
exploration around X0, similar to the denoising phase in diffusion models. This extension effectively
increases the model’s decision time, enhancing its ability to capture intricate details early on.

5.7 ANALYSIS OF PREDICTION FUNCTIONS
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Figure 5: Rlinear Without CGFM
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Figure 6: Rlinear With CGFM

To study different predic-
tion functions’ impact on
time-series forecasting, we
tested ETTh1 and ETTm1
datasets with RLinear as the
auxiliary model. Though
mathematically equivalent,
results (Table 4) show
X1-Prediction consistently
achieves the lowest MSE
and MAE, outperforming
X0- and ut-Prediction.
Intuitively, X1-Prediction directly targets the future series, X0-Prediction focuses on noise, and
ut-Prediction mixes both. While the equivalence is valid only under the theoretical optimum, in
practical training X1-Prediction generally exhibits faster convergence and greater ease of learning.
This aligns with prior work (Watson et al., 2023; Shen & Kwok, 2023a).

6 CONCLUSION

In this paper, we propose Conditional Guided Flow Matching (CGFM), a novel framework that
advances time series forecasting by explicitly modeling the full structure of prediction residuals.
Diverging from treating residuals as mere optimization targets, CGFM leverages flow matching’s
flexibility, using an auxiliary model’s output as the source distribution. We tailor the framework with
integrated innovations: an innovative two-sided conditional probability path, general affine paths
for flow construction, noise smoothing for robustness, and a velocity field adapted with specialized
prediction target parameterization for time series enhancement. This design is theoretically critical—it
avoids path crossing, preserves temporal consistency, and is proven superior to discriminative residual
learning models. Extensive experiments confirm CGFM’s effectiveness and generality: it improves
forecasting across datasets, acting as a robust refinement tool for time series forecasting.
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Weather, Traffic, ETT, Exchange) in strict compliance with their licensing agreements, ensuring no
personal/sensitive information is involved and maintaining data provenance transparency. We uphold
scientific integrity by accurately reporting experimental results, providing detailed reproducible
model implementations, and properly citing prior work. This research complies with institutional
ethics guidelines and core principles of responsible, transparent, and non-harmful research practice.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide anonymous source code for the CGFM framework as supple-
mentary material. Detailed experimental settings, Data preprocessing steps for all public datasets
and complete proofs of theoretical propositions are included in the supplementary materials and
Appendix, respectively. These resources enable reproduction of our results and verification of claims.
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A APPENDIX

A.1 PROOFS OF THE PROPOSITIONS

Lemma A.1 (Mass Conservation and Flow Generation). Let pt(x) be a probability density on Rd for
t ∈ [0, 1), and ut(x) a vector field satisfying: for all (t, x) ∈ [0, 1)×Rd, there exists a neighborhood
U ⊂ Rd where ut is Lipschitz in x.

∫ 1

0

∫
Rd ∥ut(x)∥pt(x)dxdt <∞.

1. The pair (ut, pt) satisfies the continuity equation:

∂

∂t
pt(x) +∇x ·

(
ut(x) pt(x)

)
= 0. (15)

2. The vector field ut generates pt through the flow map ψt, defined by:

ut generates pt if Xt = ψt(X0) ∼ pt for all t ∈ [0, 1). (16)

Furthermore, the flow map satisfies the integral representation:

ψt(x) = x+

∫ t

0

us(ψs(x))ds, (17)

This lemma is built upon the fundamental framework of flow matching (Lipman et al., 2023), integrat-
ing the core properties of the continuity equation and flow mapping.
Proposition A.2 (L2 Distance for Learning Conditional Expectations). Let X ∈ SX , Y ∈ SY be
random variables over state spaces SX , SY , and let g : Rp×SX → Rn be a function (θ, x)→ gθ(x),
where θ ∈ Rp denotes learnable parameters. Let ∥u− v∥2 denote the squared L2 distance. Then:

∇θEX,Y ∥Y − gθ(X)∥2 = ∇θEX∥E[Y |X]− gθ(X)∥2. (18)

In particular, for all x ∈ SX with pX(x) > 0, the global minimum of gθ(x) with respect to θ satisfies:

gθ(x) = E[Y | X = x]. (19)

Proof. Assume gθ is differentiable in θ, and that differentiation and integration can be interchanged.

∇θEX,Y ∥Y − gθ(X)∥2 = EX,Y

[
∇θ∥Y − gθ(X)∥2

]
= EXEY |X

[
2
(
gθ(X)− Y

)⊤∇θg
θ(X)

]
= EX

[
2
(
gθ(X)− E[Y |X]

)⊤∇θg
θ(X)

]
= ∇θEX∥E[Y |X]− gθ(X)∥2

This proposition is a direct generalization of the properties of least squares estimation in statistical
learning
Proposition A.3 (Noise Smoothing). Let X ∈ RC×F be a time series with distribution Pori. Define
the perturbed series R as

R = X + σϵ, (20)
where ϵ ∼ N (0, I) is additive Gaussian noise and σ > 0. Then, the perturbed series R follows the
distribution Pper:

Pper(r) =

∫
PX(r − σϵ)Pϵ(ϵ) dϵ, (21)

which belongs to C1(Rd). Furthermore, Pper has a strictly positive density and possesses finite
second moments.
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Proof. Assume X and ϵ are independent, and PX is a probability density function. By independence
of X and ϵ, the density of R = X + σϵ is given by the convolution:

Pper(r) =

∫
PX(r − σϵ)Pϵ(ϵ) dϵ. (22)

The Gaussian density Pϵ(ϵ) = (2π)−d/2e−∥ϵ∥2/2 is infinitely differentiable (C∞). Convolution with
PX preserves smoothness. Specifically:

∇rPper(r) =

∫
∇rPX(r − σϵ)Pϵ(ϵ) dϵ. (23)

Since Pϵ ∈ C∞ and decays exponentially, differentiation under the integral sign is justified by
dominated convergence. Thus, Pper ∈ C1(Rd). For any r ∈ Rd, since Pϵ(ϵ) > 0 everywhere and
σ > 0, there exists ϵ such that PX(r − σϵ) > 0. Hence:

Pper(r) =

∫
PX(r − σϵ)Pϵ(ϵ)dϵ > 0. (24)

E[∥X + σϵ∥2] = E[∥X∥2] + 2σE[X⊤ϵ] + σ2E[∥ϵ∥2]. (25)
By independence, E[X⊤ϵ] = E[X]⊤E[ϵ] = 0. Since ϵ ∼ N (0, I), E[∥ϵ∥2] = d < ∞.X is a time
series with E[∥X∥2] <∞, all terms are finite, implying E[∥R∥2] <∞.

Lemma A.4. Under the assumption that pt(x) > 0 for all (t, x), if ut(x|z) is conditionally integrable
and generates the conditional probability path pt(·|z), then the marginal velocity field ut(x) generates
the marginal probability path pt(x) for all t ∈ [0, 1).

Proof. We verify the two conditions of the Mass Conservation Lemma through the following contin-
uous derivation:

∂

∂t
pt(x) =

∫
∂

∂t
pt|Z(x|z)pZ(z)dz

= −
∫
∇x ·

[
ut(x|z)pt|Z(x|z)

]
pZ(z)dz

= −∇x ·
∫
ut(x|z)pt|Z(x|z)pZ(z)dz

= −∇x · [ut(x)pt(x)]

To verify integrability, apply vector Jensen’s inequality to the conditional integrability condition:∫ 1

0

∫
∥ut(x)∥pt(x) dxdt

≤
∫ 1

0

∫ (∫
∥ut(x|z)∥pt|Z(x|z)pZ(z) dz

)
dxdt

<∞. (26)

The Lipschitz continuity of ut(x) follows from theC1-smoothness of ut(x|z) and pt|Z(x|z), which is
preserved under convex combinations. By satisfying both the continuity equation and the integrability
condition, the marginal velocity ut(x) generates pt(x) via the flow map ψt(x) = x+

∫ t

0
us(ψs(x))ds.

This lemma is an extension of the flow matching framework (Lipman et al., 2023) to marginal
distributions.
Proposition A.5 (Equivalence of CGFM and Learning Residual Distribution via Flow Matching).
Under Proposition A.3 (noise smoothing) and two-sided coupling π0,1|H = p(x0|h)q(x1|h), CGFM
equivalently learns residual ϵ = x1 − x0’s probabilistic characteristics via Flow Matching, with its
path and loss tied to ϵ’s evolution.
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Proof. Let the affine path be defined by the random variable Xt = αtX1 + βtX0, with boundary
conditions α0 = 0, β0 = 1 and α1 = 1, β1 = 0. Let the residual be the random variable ϵ = X1−X0.

The core of the CGFM framework is the probability path pt(x|h), which is the probability density
function of the random variable Xt. The path interpolates between the source distribution p(x0|h) at
t = 0 and the target distribution q(x1|h) at t = 1. We can express the random variable Xt in terms
of the random variables X0 and ϵ by substituting X1 = X0 + ϵ:

Xt = αt(X0 + ϵ) + βtX0 = (αt + βt)X0 + αtϵ (27)

This equation shows that at any time t, the random variable Xt is a linear transformation of the
random variablesX0 and ϵ. The distribution ofXt, which is pt(x|h), is therefore a direct consequence
of the joint distribution of (X0, ϵ) and this time-dependent transformation.

The initial distribution of the path, p0(x|h), corresponds to X0, which is the auxiliary model’s
prediction. The final distribution, p1(x|h), corresponds to X1 = X0 + ϵ, which is the true value. The
entire sequence of distributions pt(x|h) for t ∈ [0, 1] is a continuous evolution from the prediction’s
distribution to the true value’s distribution. This evolution is driven by the transformation of the
residual ϵ. Therefore, learning the sequence of distributions pt(x|h) via Flow Matching is equivalent
to learning how the distribution of the residual ϵ evolves to correct the initial prediction.

The CGFM loss function trains a neural network uθt (xt|h) to match the target velocity field
gt(X0, X1) = d

dtXt. The velocity field represents the local probability flow that governs the
evolution of the distribution pt(x|h). We express the velocity field in terms of the random variables
X0 and ϵ:

gt(X0, X1) = α̇tX1 + β̇tX0 = (α̇t + β̇t)X0 + α̇tϵ (28)

The Flow Matching loss minimizes the difference between the model’s output and this target field.
By training the model to approximate gt, we are forcing it to learn a function that predicts the
instantaneous change in the random variables X0 and ϵ that constitutes the probability flow. This
process of learning the velocity field is equivalent to learning the probabilistic dynamics of the
residual—that is, how its statistical properties (e.g., mean, variance) evolve over time to correct the
initial prediction.

Proposition A.6 (Velocity Field of Marginal Probability Paths). Suppose the following conditions
hold:ψt(·|x0, x1, h) is smooth in t and forms a diffeomorphism over (x0, x1), π0,1|H(x0, x1|h) is the
joint distribution of (X0, X1) given H = h, pt|H(x|h) > 0 for all (t, x, h)

Then the velocity field of the conditional path is given by:

ut(x|h) = E
[
ψ̇t(X0, X1|h)

∣∣ Xt = x,H = h
]
, t ∈ [0, 1). (29)

Proof. Assume the flow map ψt is differentiable in t and that differentiation and integration can be
interchanged.

ut(x | h) =
∫
ut(x | x0, x1, h) p0,1|t,H(x0, x1 | x, h) dx0 dx1

=

∫
ψ̇t(x0, x1 | h)

pt|0,1,H(x | x0, x1, h)
pt|H(x | h)

× π0,1|H(x0, x1 | h) dx0 dx1

= EX0,X1|Xt=x,H=h

[
ψ̇t(X0, X1 | h)

]
= E

[
ψ̇t(X0, X1 | h)

∣∣Xt = x,H = h
]
.
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Proposition A.7 (Marginalization via Conditional Affine Flows). Under mild regularity conditions,
q have bounded support, and p be C1(Rd) with strictly positive density and finite second moments.
Given a conditional independent coupling π0,1|H(x0, x1|h) = p(x0|h)q(x1|h), define the marginal
probability path via affine interpolation:

pt(x|h) =
∫
pt|0,1,H(x|x0, x1, h)π0,1|H(x0, x1|h)dx0dx1, (30)

where Xt = αtX1+βtX0 with αt, βt ∈ C1([0, 1]). Then the marginal velocity field ut(x) generates
a probability path pt(x) interpolating p and q.

Proof. By Lemma A.4, it suffices to verify:

1. Conditional integrability:
∫ 1

0
E[∥ut(Xt|h)∥]dt <∞.

2. Boundary conditions: p0 = p and p1 = q

For the affine flow Xt = αtX1 + βtX0, the velocity field is:

ut(Xt|h) = α̇tX1 + β̇tX0

E[∥ut(Xt|h)∥] ≤ |α̇t|E[∥X1∥] + |β̇t|E[∥X0∥]

Since q has bounded support, E[∥X1∥] < Cq <∞. For p with finite second moments:

E[∥X0∥] ≤
√
E[∥X0∥2] <∞

The time integrals satisfy:∫ 1

0

(|α̇t|Cq + |β̇t|Cp)dt ≤ C(∥α̇∥L1 + ∥β̇∥L1) <∞

At endpoints:

t = 0 : X0 = 0 ·X1 + 1 ·X0 ∼ p(·|h)
t = 1 : X1 = 1 ·X1 + 0 ·X0 ∼ q(·|h)

Marginalizing over h preserves the boundary conditions.

Proposition A.8 (Transportation and Non-crossing of Probability Paths). Under the assumptions
of Proposition 4.4, further suppose that the affine conditional path is given by Xt = αtX1 + βtX0

with αt, βt ∈ C1([0, 1]), α̇t > 0, and −β̇t > 0 for t ∈ (0, 1). The velocity field is defined as

ut(x | h) = E
[
α̇tX1 + β̇tX0 | Xt = x,H = h

]
. Then all paths of the flow are non-crossing: there

exist no t ∈ [0, 1), z ∈ Rd, and distinct initial conditions X(1)
0 ̸= X

(2)
0 such that X(1)

t = X
(2)
t = z.

Proof. To establish the non-crossing property, we rely on the uniqueness of solutions to the probability
flow ODE:

dXt

dt
= ut(Xt | h). (31)

The existence and uniqueness of solutions for an ODE are guaranteed by the Picard-Lindelöf theorem
if the velocity field ut(x | h) is locally Lipschitz continuous with respect to the spatial variable x.

From the assumptions, we have the following:

1. The source distribution p(x0 | h) is C1(Rd) with a strictly positive density.

2. The affine path parameters αt, βt ∈ C1([0, 1]) with α̇t > 0 and −β̇t > 0.

These conditions ensure that the velocity field ut(x | h), being a conditional expectation of a smooth
function of (X0, X1) given the smooth transformation Xt = x, is locally Lipschitz continuous in
x for each t ∈ [0, 1). This is a standard result in the theory of conditional expectations and smooth
transformations.
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Now, we proceed with a proof by contradiction. Suppose there exist two distinct initial conditions
X

(1)
0 ̸= X

(2)
0 and a time t∗ ∈ (0, 1) such that their corresponding solution paths intersect at a point

z ∈ Rd. That is, X(1)
t∗ = X

(2)
t∗ = z.

At time t∗, we have two solutions to the ODE equation 31 that both pass through the same point
z. However, the uniqueness of solutions guaranteed by the Picard-Lindelöf theorem implies that if
two solution paths coincide at a single point in time, they must be identical for all subsequent times
s ≥ t∗. Moreover, since the affine transformation is invertible for t ∈ (0, 1), the uniqueness extends
backwards in time as well. Therefore, the two paths must be identical for all s ∈ [0, 1), which implies
that their initial conditions must also be identical: X(1)

0 = X
(2)
0 .

This contradicts our initial assumption that X(1)
0 ̸= X

(2)
0 . Therefore, no two distinct paths of the flow

can cross.

Proposition A.9 (Gradient Equivalence). Let t ∈ [0, 1],H ∼ pH , (X0, X1) ∼ π0,1|H , andXt be gen-
erated by a bridge process conditioned on (X0, X1, H). Define: LGM (θ) = Et,H,Xt

∥ut(Xt|H)−
uθt (Xt|H)∥2 , LCGM (θ) = Et,H,X0,X1

∥gt(X0, X1)− uθt (Xt|H)∥2

where ut(x|h) = E[gt(X0, X1)|Xt = x,H = h]. Then:

∇θLGM (θ) = ∇θLCGM (θ) (32)

The minimizer of LCGM (θ) satisfies:

uθt (x|h) = ut(x|h), ∀x, h, t with pt(x|h) > 0 (33)

Proof. Assume uθt is differentiable in θ, and differentiation commutes with integration. Fix t ∈ [0, 1]
and H = h, define:

X ≜ Xt|H = h ∼ pt(·|h). (34)

Y ≜ gt(X0, X1)|H = h with (X0, X1) ∼ π0,1|h. (35)

By Proposition A.2 applied to (X,Y ), we have:

∇θEX0,X1∥gt − uθt (Xt|h)∥2 = ∇θEX,Y ∥Y − uθt (X|h)∥2

= ∇θEX∥E[Y |X]− uθt (X|h)∥2

= ∇θEXt
∥ut(Xt|h)− uθt (Xt|h)∥2

Integrate over t ∼ U [0, 1] and H ∼ pH :

∇θLCGM (θ) = Et,H

[
∇θEX0,X1

∥gt − uθt ∥2
]

= Et,H

[
∇θEXt∥ut − uθt ∥2

]
= ∇θEt,H,Xt

∥ut − uθt ∥2

= ∇θLGM (θ).

For optimality, Proposition 1 implies that for each t, h, the minimizer satisfies:

uθt (x|h) = E[Y |X = x] = ut(x|h) a.s. over pt(x|h) > 0. (36)

A.2 CONTRASTING CGFM WITH DISCRIMINATIVE MODELS FOR RESIDUAL LEARNING

Another question arises: Does CGFM truly learn the residual patterns? What if we replace it
with a discriminative model—how would the performance differ? Given an auxiliary model’s
output and the target value, we can obtain the residual. CGFM naturally constructs a probabilistic path
from the auxiliary distribution to the target distribution, thereby learning their transition dynamics. In
contrast, a discriminative model (here referring to models that learn deterministic input-to-output
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mappings) typically treats the auxiliary output as input and directly learns a mapping to the residual
or target value.

To further verify CGFM’s capability in learning residual patterns, we compare its performance
with that of a discriminative model on the residual correction task. The discriminative model
learns a deterministic mapping from the auxiliary model’s output to the target (or residual), while
CGFM explicitly models the distributional transformation from the auxiliary distribution to the target
distribution through a continuous probabilistic path. Here, the discriminative model is defined as
RLinear : it takes the RLinear output (auxiliary output) as input, employs a parameterized structure
based on RLinear to directly predict the residual y = xtarget − xaux, and adds the predicted residual
back to the RLinear output to obtain the final prediction. Essentially, it performs deterministic
correction using RLinear’s parameterized mapping.

Experimental results (Table 5) consistently show that the discriminative model yields higher MSE
across all datasets compared to RLinear with CGFM, highlighting inherent limitations of the dis-
criminative paradigm in residual learning—limitations that can be rigorously explained through
mathematical analysis of the two models’ core designs.

First, the discriminative model’s optimization target is inherently constrained to fitting only the
first-order moment (conditional mean) of residuals, leading to the loss of critical distributional
information.

Formally, let the discriminative model’s loss function (based on RLinear’s parameterization) be
the standard mean squared error (MSE) between the true residual ϵ = X1 − X0 and the model’s
prediction fθ(X0):

Ldisc(θ) = EX0,X1

[
∥ϵ− fθ(X0)∥2

]
, (37)

where X0 denotes the auxiliary output (RLinear’s prediction), X1 denotes the target value, and
fθ(X0) denotes the RLinear-based parameterized function for residual prediction.

We decompose the joint expectation into a nested expectation overX0 and the conditional expectation
over X1 | X0:

Ldisc(θ) = EX0

[
EX1|X0

[
∥ϵ− fθ(X0)∥2 | X0

]]
. (38)

Expanding the squared term inside the inner expectation:

∥ϵ− fθ(X0)∥2 = ∥ϵ− E[ϵ | X0] + E[ϵ | X0]− fθ(X0)∥2 . (39)

By the linearity of expectation and the definition of conditional variance, the cross-term vanishes:

EX1|X0

[
(ϵ− E[ϵ | X0])

⊤
(E[ϵ | X0]− fθ(X0)) | X0

]
= 0. (40)

This is because E[ϵ − E[ϵ | X0] | X0] = 0, and E[ϵ | X0] − fθ(X0) is a function of X0 (constant
with respect to X1 | X0).

then, the loss function decomposes into two terms:

Ldisc(θ) = EX0

[
∥E[ϵ | X0]− fθ(X0)∥2 + V[ϵ | X0]

]
, (41)

where V[ϵ | X0] = EX1|X0

[
∥ϵ− E[ϵ | X0]∥2 | X0

]
is the conditional variance of the residual (a

non-negative term independent of the model parameter θ).

From this decomposition, we draw two critical conclusions:

1. The Irreducible Error: The term EX0 [V[ϵ | X0]] is independent of the model parameters θ. This
conditional variance is an intrinsic property of the residual distribution that the model cannot reduce
or eliminate.

2. The Target is the Mean: The only term that can be minimized is EX0

[
∥E[ϵ | X0]− fθ(X0)∥2

]
.

As a result, the global minimizer of Ldisc(θ) is proven to be f∗θ (X0) = E[ϵ | X0]. This means the
discriminative model’s optimal prediction is fundamentally limited to the conditional mean of the
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Table 5: Ablation Study on Mean Squared Error (MSE)

Model Weather Traffic ETTh1 ETTh2 ETTm1 ETTm2 Exchange

Rlinear with CGFM 0.152 0.412 0.363 0.275 0.307 0.167 0.081
Rlinear with Discriminative Corrector 0.195 0.642 0.383 0.287 0.367 0.183 0.094
Rlinear (baseline) 0.189 0.632 0.382 0.290 0.359 0.182 0.095

residual, ignoring any higher-order moments (e.g., variance, skewness) or non-trivial distributional
structures.

In stark contrast, Proposition 4.2 of the main text proves that CGFM, under noise smoothing and two-
sided coupling conditions, is mathematically equivalent to learning the full probabilistic characteristics
of residuals ϵ = X1 −X0. The CGFM loss function targets the velocity field of residual evolution:

LCGFM(θ) = E
[∥∥gt(X0, X1)− uθt (Xt)

∥∥2] , (42)

where gt(X0, X1) = α̇tX1 + β̇tX0 encodes the dynamic evolution of the entire residual distribution.
This design ties the learning process to the full distribution of ϵ, rather than a single moment—an
advantage mathematically unattainable for discriminative models.

Second, the discriminative model fails to incorporate temporal context, leading to incomplete con-
ditional modeling. Its input is restricted to the auxiliary output X0, so its prediction fθ(X0) (and
the underlying E[ϵ | X0]) is independent of historical data H . However, residual patterns in time
series are highly context-dependent. In contrast, CGFM’s two-sided conditional design binds both
the source distribution p(X0 | h) (RLinear’s output distribution) and target distribution q(X1 | h) to
shared historical data, constructing context-aware probability paths:

pt|H(x | h) =
∫
pt|0,1,H(x | x0, x1, h)p(x0 | h)q(x1 | h)dx0dx1. (43)

Its velocity field further integrates H to capture temporal dependencies:

ut(x | h) = E
[
α̇tX1 + β̇tX0 | Xt = x,H = h

]
. (44)

This ensures residual corrections align with historical trends, while the discriminative model’s
context-agnostic E[ϵ | X0] averages over dynamic patterns, leading to suboptimal performance.

Third, the discriminative model faces an unbreakable lower bound of expected risk due to its point-
estimation nature. And the minimal achievable expected prediction error of the discriminative model
is:

min
θ
Ldisc(θ) = EX0 [V[ϵ | X0]] , (45)

which is the average conditional variance of residuals—a non-negative value that is inherent to point
estimation (equality holds only if residuals are deterministic). For time series with heteroscedastic
residuals, this bound results in unavoidable prediction noise. CGFM circumvents this limitation by
optimizing distributional transformations. This explains why CGFM consistently outperforms the
discriminative model, even when RLinear provides smooth initial predictions. So the performance
gap stems from CGFM’s fundamental advantage in residual modeling: unlike the RLinear-based
discriminative model, which is mathematically constrained to fitting only the conditional mean of
residuals, CGFM leverages flow matching to learn the full probabilistic structure of residuals and
their temporal dependencies—validating that explicit residual distribution learning is critical for
improving time series forecasting accuracy.

Experimental results are summarized in Table 5. The discriminative model’s mean squared error
(MSE) is consistently higher than that of “Rlinear with CGFM” across all datasets:

These observations naturally indicate that it is challenging for a discriminative model to predict the
gap from the true value when provided with only a single value, as it often makes errors and leads to
poorer results. This further underscores the significance of residual learning in CGFM.
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Algorithm 2 X1-Prediction Sampling.

1: Input: History sample h, smoothing level σ, X1-Prediction network uθt , source mode: noise
or auxiliary output, prediction objective gt(x0, x1) = x1, time grid t = [t0, t1, . . . , tN ], where
t0 = 0 and tN = 1.

2: h ∼ pH
3: x0 ∼ p(x0|h)
4: if source mode == auxiliary output then
5: ε ∼ N (0, I)
6: x0 ← x0 + σε
7: end if
8: for i← 0 to N − 1 do
9: ti ← t[i], ti+1 ← t[i+ 1]

10: ∆ti ← ti+1 − ti
11: uti ←

β̇ti

βti
· xti +

(
α̇ti −

αti
β̇ti

βti

)
· uθt (xti |h)

12: xmid ← xti +
∆ti
2 · uti

13: umid ←
β̇ti+∆ti/2

βti+∆ti/2
· xmid +

(
α̇ti+∆ti/2 −

αti+∆ti/2
β̇ti+∆ti/2

βti+∆ti/2

)
· uθt (xmid|h)

14: xti+1 ← xti +∆ti · umid
15: end for
16: Output: x1

A.3 TRAINING AND SAMPLING ALGORITHM

Algorithm 1 CGFM Training

1: Input: History distribution pH , path parameters αt, βt, smoothing level σ, network uθt , source
distribution p(x0 | h), source mode: noise or auxiliary output, prediction objective gt, and target
distribution q(x1 | h).

2: repeat
3: h ∼ pH
4: x0 ∼ p(x0|h); x1 ∼ q(x1|h)
5: if source mode == auxiliary output then
6: ε ∼ N (0, I)
7: x0 ← x0 + σε
8: end if
9: t ∼ U(0, 1)

10: xt ← αtx1 + βtx0
11: LCGM (θ)←

∥∥gt(x0, x1)− uθt (xt|h)∥∥2
12: θ ← Update(θ,∇θLCGM (θ))
13: until converged
14: Return: uθt

The complete methodology, detailing the training and sampling procedures for CGFM, is presented
in Algorithm 1 (Training) and Algorithm 2 (Sampling).

A.4 MORE RELATED WORK

A.4.1 DEEP LEARNING FOR TIME SERIES FORECASTING: FROM EARLY PARADIGMS TO
FLOW MATCHING

Deep learning has propelled remarkable progress in time series forecasting, with a diverse array
of paradigms evolving to tackle the challenges of modeling temporal dependencies. RNN-based
models (Salinas et al., 2020; Du et al., 2021), characterized by their recurrent architectures, excel at
capturing sequential patterns but are plagued by error propagation when dealing with long-horizon
forecasting tasks. CNN-based models (Wang et al., 2023; Franceschi et al., 2019; Liu et al., 2022a)
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leverage convolutional kernels to extract local features; however, their receptive fields are inherently
constrained, restricting their capacity to model long-range dependencies effectively. Transformer-
based models (Zhou et al., 2021; Liu et al., 2023; Chen et al., 2021; Lu et al., 2025; Shi et al., 2025;
Liu et al., 2025; Chen et al., 2025; Wang et al., 2025b), empowered by self-attention mechanisms,
have attained state-of-the-art performance by capturing global temporal correlations, though their
quadratic time and memory complexity presents significant scalability hurdles. In contrast, MLP-
based models (Zeng et al.; Yi et al., 2024; Wang et al., 2024) , with their simpler architectural designs,
have recently demonstrated promising results in modeling cross-domain relationships across both
time and frequency domains, offering a lightweight alternative to more complex transformer-based
approaches. Similarly, KAN-based models (Huang et al., 2025), spiking neural networks (SHIBO
et al., 2025), as well as other works related to dynamical systems (Zheng et al., 2025; Wang et al.,
2025a), have also emerged.

As generative modeling gained prominence, diffusion-based models emerged as powerful tools
in time series forecasting. These models (Shen & Kwok, 2023a; Yuan & Qiao, 2024; Alcaraz
& Strodthoff, 2022; Zhong et al., 2025; Barancikova et al., 2025; Li et al., 2025) utilize iterative
denoising processes to transform noise into realistic future sequences, excelling in capturing complex
predictive distributions and enabling conditional generation . Their key strength lies in modeling
uncertainty and generating diverse forecasts, making them well-suited for scenarios demanding
probabilistic outputs. Nevertheless, diffusion models often suffer from slow sampling due to their
stepwise denoising process. Moreover, their reliance on simple Gaussian priors (Rasul et al., 2021)
and rigid constraints on sampling trajectories (Ho et al., 2020) limit their ability to capture the intricate
temporal structures inherent in real-world time series data .

Flow matching (Lipman et al., 2023), a state-of-the-art generative framework, addresses these
limitations and offers distinct advantages for time series forecasting. Compared to diffusion models,
flow matching (Albergo & Vanden-Eijnden, 2023) simplifies the generative process by learning
continuous velocity fields that directly map source to target distributions, enabling more efficient
sampling without the need for iterative denoising . It provides greater flexibility in the choice of initial
distributions—such as leveraging auxiliary model outputs instead of simple Gaussian noise—and in
the design of sampling trajectories, which is critical for aligning with the temporal characteristics of
time series data (Liu et al., 2022b).

A.4.2 RESIDUAL MODELING

Residuals have long been studied in time series forecasting, but their treatment varies significantly
across methods. Traditional statistical models (e.g., ARIMA (Shumway & Stoffer, 2017)) use
residuals to diagnose model fit but rarely model their probabilistic structure, treating them as white
noise. Deep learning models, such as residual networks (ResNets (He et al., 2016)) and Transformer
variants, use residual connections to mitigate training issues (e.g., vanishing gradients) but still reduce
residuals to optimization targets.

CGFM by explicitly learning the probabilistic characteristics of residuals via flow matching, treating
them as a bridge between auxiliary model predictions and true future values. This allows CGFM to
address systematic biases and non-trivial residual structures, which are common in real-world time
series but overlooked by existing methods.

A.4.3 FLOW MATCHING

Flow matching (Lipman et al., 2023) has developed through several key advancements to enhance
generative modeling capabilities. Rectified Flow (Esser et al., 2024) accelerates the generative process
by learning ”straight paths” in data space, simplifying trajectory optimization. However, it relies
on specialized training schemes to prevent path crossing, which limits its adaptability to time series
data with dynamic temporal structures . Stochastic Interpolants (Albergo et al., 2023) introduce
affine conditional flows to expand the space of feasible probability paths, offering greater flexibility
in mapping between source and target distributions. However, they differ from flow matching in
terms of modeling, and their loss functions are also different. Although they use affine paths, directly
migrating these paths to flow matching will encounter theoretical issues. OT-CFM (Tong et al., 2024)
leverages optimal transport plans to refine distribution alignment, reducing the gap between source
and target. However, the complex computational overhead of optimal transport and rigid transport
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Figure 7: The condOT path is linear with constant speed, the polynomial path is linear with increasing
speed, and the LinearVP path is a curve with increasing speed.

plans hinder its scalability for high-dimensional time series, limiting adaptability to dynamic temporal
patterns .

Our CGFM naturally avoids path crossing through two-sided conditional paths (where both the source
and target are conditioned on shared historical data) and affine path designs, thus eliminating the
need for specialized training schemes . By utilizing the auxiliary model’s predictions as the source
distribution—which is closer to the target distribution than generic priors—it effectively reduces the
difficulty of learning. Moreover, CGFM incorporates historical data into both the construction of
probability paths and the learning of velocity fields, ensuring temporal consistency and preserving
critical temporal dependencies.

A.5 THE PARAMETERIZATIONS OF AFFINE PATH αt AND βt

The parameterizations of αt and βt for the schedulers used in this work are defined as follows:

CondOT: αt = t, βt = 1− t,
Poly-n: αt = tn, βt = 1− tn,

LinearVP: αt = t, βt =
√

1− t2,

Cosine: αt = sin

(
πt

2

)
, βt = cos

(
πt

2

)
.

(46)

Here, t ∈ [0, 1] represents the normalized time step, and n in the Poly-n scheduler is a positive
hyperparameter controlling the polynomial degree. Each parameterization is designed to encode
distinct behaviors in the dynamics of the scheduling process.

Figure 7 illustrates the velocity vectors corresponding to different paths. CondOT exhibits uniformly
distributed arrows, while Poly-3 and LinearVP display sparse arrows in the early stages and denser
ones later. This dynamic velocity pattern ensures that the model avoids ”large-step” updates near X0,
thereby reducing the risk of local optima and improving convergence stability.

A.6 EVALUATION METRICS FOR TIME SERIES FORECASTING

A.6.1 MEAN SQUARED ERROR (MSE)

MSE quantifies the average of squared differences between predicted values and ground-truths,
emphasizing the impact of larger errors. It is defined as:

MSE =
1

C × L

C∑
c=1

L∑
t=1

(rct − r̂ct )
2 (47)
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Table 6: Ablation Study on Mean Squared Error (MSE)

Model Weather Traffic ETTh1 ETTh2 ETTm1 ETTm2 Exchange

CGFM 0.152 0.412 0.363 0.275 0.307 0.167 0.081
Without Flow Matching 0.193 0.635 0.386 0.299 0.368 0.192 0.096
CGFM Independent Coupling 0.158 0.424 0.370 0.283 0.314 0.171 0.084
CGFM One-Sided Condition 0.161 0.430 0.373 0.286 0.317 0.173 0.085

where: C = number of variates (e.g., multiple time series variables), L = length of the time series,
rct = ground-truth value of the c-th variate at timestep t, r̂ct = predicted value of the c-th variate at
timestep t.

Smaller MSE indicates closer alignment between predictions and ground-truths. The squaring
operation amplifies the penalty for large errors, making MSE sensitive to outliers.

A.6.2 MEAN ABSOLUTE ERROR (MAE)

MAE measures the average magnitude of absolute differences between predictions and observations,
avoiding the outlier bias of MSE. Its formulation is:

MAE =
1

C × L

C∑
c=1

L∑
t=1

|rct − r̂ct | (48)

MAE provides a straightforward interpretation of “average error size” and is robust to extreme
outliers, though less sensitive to their impact compared to MSE.

A.6.3 CONTINUOUS RANKED PROBABILITY SCORE (CRPS)

CRPS evaluates the quality of probabilistic forecasts by comparing the predicted cumulative distribu-
tion function (CDF) F with the empirical CDF of observations r. It is defined as:

CRPS =

∫
R

(
F (z)− I{r≤z}

)2
dz (49)

where I{r≤z} is an indicator function (1 if r ≤ z, 0 otherwise). For practical computation, use the
empirical CDF from simulated samples:

F̂ (z) =
1

n

n∑
i=1

I{Ri≤z} (50)

(R1, . . . , Rn are simulated samples of the predicted distribution). CRPS rewards forecasts where
F matches the true data distribution (minimum value = 0). Lower CRPS indicates better-calibrated
uncertainty.

A.7 ABLATION STUDY

A.7.1 ABLATION ON CGFM COMPONENTS

The proposed CGFM model consists of four main components: the choice of the initial distribution
via the Auxiliary Model, the selection of the probability path, the design of the prediction functions,
and the application of the flow matching method. The ablation study on the choice of the Auxiliary
Model is presented in Table 2 of the main text. The ablation study on the probability path is shown
in Table 3 of the main text, while the impact of the prediction functions is detailed in Table 4 of the
main text. Since both the probability path and prediction functions are integral to the flow matching
framework, they cannot be entirely removed from the model.

Thus, as shown in Table 6, we conducted experiments including the complete CGFM with RLinear,
the standalone velocity network (denoted as ”Without Flow Matching”), CGFM with independent
coupling, and CGFM with one-sided condition (which is equivalent to using a Gaussian initial
distribution). The results in the table indicate that each component of CGFM forms an indispensable
organic whole, collectively contributing to the improvement of model performance.
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A.7.2 SMOOTH PARAMETER FOR AUXILIARY MODEL

For the ETTh1 dataset, each sample’s prediction is treated as a high-dimensional vector (d = 96× 7),
capturing joint information across all channels over the 96-step prediction horizon. To analyze
prediction smoothness, Principal Component Analysis (PCA) was applied to the high-dimensional
data matrix X ∈ Rn×d, where n is the number of samples. The first two principal components
(PC1 and PC2) were retained to project the data into a 2D subspace for structural visualization.
Temporal continuity was assessed by visualizing the sequential trajectory of samples in the PCA
space, with color gradients representing sample indices and lines connecting points. As shown on
the left of Figure 4, the PCA trajectory of RLinear predictions closely aligns with the ground truth
in both shape and continuity, indicating that RLinear effectively captures the temporal evolution
of the underlying physical process. In contrast, iTransformer predictions and TimeDiff predictions
exhibit irregular spatial distributions, with discontinuities in inter-point connections. This suggests
non-smooth fluctuations in the high-dimensional representation of their predictions.

Table 7: Impact of Smooth Parameter (Noise Scale) on Model Performance (MSE) on ETTh1 Dataset.

Noise Scale 0.1 1 5 10 20 30

RLinear (MSE) 0.364 0.363 0.369 0.367 0.374 0.371
iTransformer (MSE) 0.370 0.368 0.379 0.460 0.466 0.431

A.8 ROBUST RESULT

We conducted a statistically robust variance analysis across ten different random seeds under the
conditions of Table 2 in the main text (Performance without Auxiliary Model). Specifically, the
Mean Squared Error (MSE) ± Standard Deviation (SD) values for each task were evaluated on seven
benchmark datasets. Lower MSE values indicate better performance, as shown in Table 8. The results
fully demonstrate the effectiveness of flow matching.

A.9 COMPARISON OF COUPLING METHODS

As illustrated in Figure 8, a critical distinction exists between independent and conditional independent
coupling in our proposed framework, with profound implications for the non-crossing property of the
probability flow. The left panel shows that independent coupling, which constructs a path by treating
the source distribution p(x0) and the target distribution q(x1) as unrelated, may produce crossing
paths. This is a consequence of the underlying mathematical problem: without a guiding context,
the flow may lack the necessary smoothness to ensure a unique solution to the probability flow
ODE. In such a scenario, the velocity field may not satisfy the local Lipschitz continuity condition, a
fundamental requirement for the uniqueness of ODE solutions. As a result, distinct initial conditions
X

(1)
0 and X(2)

0 could converge to the same point z at an intermediate time t, leading to ambiguous
mappings and information loss, which is particularly detrimental in time series forecasting.

In contrast, our CGFM method employs conditional independent coupling, as shown in the right
panel, which robustly addresses this issue. By conditioning both p(x0|h) and q(x1|h) on the shared
historical data h, we introduce a unified context that inherently structures the mapping from the
auxiliary model’s predictions to the true future values. This design ensures that the derived velocity
field is sufficiently smooth, which in turn guarantees the non-crossing property of the probability paths
(as rigorously established in Proposition 4.5). This approach is not merely a theoretical exercise; it is
a practical solution that ensures the model’s velocity field satisfies the key mathematical properties
required for a well-behaved and stable flow. By providing a coherent, history-driven context, CGFM
transforms a potentially chaotic and ill-posed transformation into an orderly and predictable flow,
which is essential for learning a consistent and effective mapping in complex time series forecasting
tasks.

A.10 CRPS COMPARISON

Given that CRPS is a metric tailored for probabilistic forecasting, it is not applicable to point
forecasting models like Rlinear and iTransformer in the absence of prior assumptions. Consequently,
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Table 8: Robust Result

Weather Traffic ETTh1 ETTh2 ETTm1 ETTm2 Exchange

CGFM 0.161± 0.0002 0.430± 0.0005 0.373± 0.0003 0.286± 0.0002 0.317± 0.0001 0.173± 0.0005 0.085± 0.0001

𝑿𝟎 𝑿𝟏

Independent                                   
Coupling

Conditional 
Independent Coupling

𝑿𝟎 𝑿𝟏

Figure 8: Difference between independent coupling and conditional independent coupling. In each
figure, the left end represents X0 and the right end represents X1. It can be observed that conditional
independent coupling helps reduce path crossings and establishes a one-to-one correspondence
between X0 and X1.

our comparison is restricted to the following probabilistic forecasting models: TimeDiff (Shen &
Kwok, 2023b), CSDI (Tashiro et al., 2021), SSSD (Alcaraz & Strodthoff, 2023), D3VAE (Li et al.,
2023a), TimeGrad (Rasul et al., 2021), and TSDiff (Kollovieh et al., 2023).

Table 9: Comparison of CRPS (↓) on Diverse Time Series Datasets. CGFM consistently improves
the performance of various baseline models (lower is better).

Model Weather Traffic ETTh1 ETTh2 ETTm1 ETTm2 Exchange

TimeDiff without CGFM 0.072 0.238 0.392 0.237 0.324 0.196 0.038
+CGFM 0.063 0.212 0.334 0.181 0.279 0.139 0.026

CSDI without CGFM 0.095 — 0.567 0.314 0.341 0.211 0.045
+CGFM 0.078 — 0.432 0.267 0.298 0.176 0.034

SSSD without CGFM 0.081 0.251 0.416 0.286 0.344 0.224 0.041
+CGFM 0.075 0.234 0.378 0.249 0.302 0.189 0.031

D3VAE without CGFM 0.102 0.242 0.546 0.305 0.395 0.246 0.052
+CGFM 0.084 0.221 0.429 0.271 0.352 0.213 0.039

TimeGrad without CGFM 0.165 0.256 0.589 0.451 0.649 0.528 0.077
+CGFM 0.092 0.239 0.457 0.322 0.408 0.276 0.046

TSDiff without CGFM 0.123 0.351 0.514 0.420 0.434 0.445 0.091
+CGFM 0.082 0.264 0.367 0.298 0.391 0.298 0.051

From Table 9, it can be observed that CGFM consistently boosts the probabilistic forecasting perfor-
mance of all baseline models, with lower CRPS values achieved across nearly all datasets. For every
evaluated model—including TimeDiff, CSDI, SSSD, D3VAE, TimeGrad, and TSDiff—the variant
with +CGFM outperforms its ”without CGFM” counterpart. The improvement is robust: even for
models with higher baseline CRPS (e.g., TimeGrad and TSDiff), CGFM drives substantial reductions.
This confirms CGFM’s strong generality and effectiveness in enhancing diverse probabilistic time
series forecasting models.
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A.11 THE RELATIONSHIP BETWEEN FLOW MATCHING AND DIFFUSION MODELS

A.11.1 TIME SETUP

The first distinction lies in the time setup between diffusion models and flow matching. In flow
matching, time ranges from 0 to 1, where the source distribution (possibly noise) is typically at t = 0,
and the target distribution (the desired outcome) is at t = 1. Conversely, for diffusion models, the
timeframe extends from +∞ to 0. At t = +∞, the diffusion model represents noise, whereas at
t = 0, it represents the target distribution.

Thus, a strictly decreasing function k can be employed here to map (0, 1] to [0,+∞) such that
k(1) = 0 and k(t) approaches +∞ as t approaches 0.

A.11.2 NOISE ADDITION PROCESS

Denoising diffusion models fundamentally operate on the concept of crafting a forward process that
deteriorates the data distribution. This notion aligns with a specific construction of a probability path,
as employed in Flow Matching (FM). The forward process, denoted as Xr, is articulated through the
Stochastic Differential Equation (SDE)

dXr = ar(Xr)dr + grdWr, X0 ∼ q, (51)

where q embodies the data distribution, Wr is a Brownian motion, a : R×Rd → Rd is a velocity
field (referred to as drift in SDE contexts), and g : R→ R≥0 is a diffusion coefficient.

Each SDE introduces a conditional probability path and a marginal probability path as follows:

p̃r|0(x|z) = P [Xt = x|X0 = z], p̃r(x) = P [Xt = x] (52)

pt|1(x|z) = p̃k(t)|0(x|z), pt(x) = p̃k(t)(x) (53)

In Equation 53, time is reparameterized into the FM time parameterization. Evidently, pt|1(x|z)
provides a conditional probability path. Moreover, the forward process is structured such that for
sufficiently large R, the distribution of XR approximates a Gaussian. The conditional probability
path pt|1(x|z) represents the distribution of the forward process SDE when initialized with X0 = z.

A.11.3 TRAINING AND SAMPLING

The loss function for Denoising Score Matching is fundamental for training diffusion models and is
expressed as follows:

LCM(θ) = Et,Z∼q,X0∼p

∥∥∥xθ0|t(αtX0 + σtZ)−X0

∥∥∥2
= Et,Z∼q,Xt∼pt|1(·|Z)σ

2
t

∥∥∥∥sθt (Xt)−
[
− 1

σ2
t

(Xt − αtZ)

]∥∥∥∥2
= Et,Z∼q,Xt∼pt|1(·|Z)σ

2
t

∥∥sθt (Xt)−∇ log pt|1(Xt|Z)
∥∥2 .

(54)

The first transformation involves reparameterizing the neural network as sθt = −xθ0|t/σt. The optimal
parameter θ∗ satisfies sθ

∗

t (x) = − 1
σt
E[X0 | Xt = x] = ∇ log pt(x).

In the context of sampling, we explore the relationship to sampling from FM or GM models. For
deterministic sampling, if the diffusion model is considered as an FM model, sampling is performed
by drawing from the marginal vector field, expressed via the score function for Gaussian paths:

ut(x) =
α̇t

αt
x− σ̇t

σt
− σ2

t

2

α̇t

αt
∇ log pt(x). (55)

We derive the equivalent identity:
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ut(x) = k̇(t)αtx−
g2t
2
∇ log pt(x). (56)

This can be directly inserted into the Continuity Equation. The corresponding ODE, also known as
the Probability Flow ODE, is given by:

dXt = k̇(t)αtXt −
g2t
2
sθt (Xt)dt, (57)

where sθt (x) = ∇ log pt(x) is the learned score function. The notation used here for ODEs is common
in SDEs, which becomes clear later. The addition of the term k̇(t) is due to time reparameterization.

For stochastic sampling with SDEs, adding Langevin dynamics to any CTMP generative model
results in a model following the same probability path. Applying this to the Probability Flow ODE
yields a family of SDEs generating the probability path pt:

dXt = k̇(t)αtXt +

(
β2
t −

k̇(t)g2t
2

)
∇ log pt(Xt)dt+ βtdWt. (58)

This results in stochastic sampling of a diffusion model. Theoretically, all models yield the same
marginals for each βt ≥ 0. Practically, simulating the SDE:

dXt = k̇(t)αtXt +

(
β2
t −

k̇(t)g2t
2

)
sθt (Xt)dt+ βtdWt (59)

Using a trained network sθt involves estimation errors (due to imperfect training of sθt ) and simulation
errors (due to imperfect sampling of the underlying SDE). Consequently, optimal noise levels βt
must be determined. ODE sampling for a Gaussian source with independent coupling, specified αt,
σt, and score parameterization equates sampling from a diffusion model using the Probability Flow
ODE to sampling from a Flow Matching (FM) model.

A.12 PREDICTION RESULTS VISUALIZATION

The visualization of the results for rlinear and itransformer, both with and without CGFM.
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Figure 9: Rlinear Without CGFM
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Figure 10: Rlinear With CGFM

Figure 11: Comparison of Prediction Results on ETTh2
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Figure 12: iTransformer Without CGFM
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Figure 13: iTransformer With CGFM

Figure 14: Comparison of Prediction Results on ETTh2
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Figure 15: Rlinear Without CGFM
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Figure 16: Rlinear With CGFM

Figure 17: Comparison of Prediction Results on ETTh1
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Figure 18: iTransformer Without CGFM
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Figure 19: iTransformer With CGFM

Figure 20: Comparison of Prediction Results on ETTh1
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A.13 DATASETS

(1) ETT dataset, which includes ETTh1, ETTh2, ETTm1, and ETTm2, contains data collected from
electricity transformers, including load and oil temperature measurements, from July 2016 to July
2018. (2) Electricity dataset contains the hourly electricity consumption of 321 customers from
2012 to 2014. (3) Exchange dataset records the daily exchange rates of eight different countries
from 1990 to 2016. (4) Traffic dataset comprises hourly data from the California Department of
Transportation, describing the road occupancy rates measured by various sensors on San Francisco
Bay Area freeways. (5) Weather dataset, recorded every 10 minutes throughout 2020, contains 21
meteorological indicators, such as air temperature and humidity. We followed standard protocols and
split all datasets into training, validation, and test sets in chronological order, with a ratio of 6:2:2 for
the ETT dataset and 7:1:2 for the other datasets.

Table 10: Summary of dataset statistics, including dimension, total observations, and sampling
frequency.

Dataset Dim # Observations Freq.
Weather 21 52,696 10 mins
Traffic 862 17,544 1 hour
Electricity 321 26,304 1 hour
ETTh1 7 17,420 1 hour
ETTh2 7 17,420 1 hour
ETTm1 7 69,680 15 mins
ETTm2 7 69,680 15 mins
Exchange 8 7,588 1 day

A.14 INFERENCE EFFICIENCY ANALYSIS

This section compares the inference efficiency of various time series models, focusing on the key
metric Infer per iter (inference time per iteration, batch=32), where lower values indicate faster
inference speed.

Table 11: Inference Efficiency of Various Time Series Models

Model Infer per iter
CGFM 0.026s
TimeDiff 0.083s
TSDiff 0.236s
TimesNet 0.035s
D3VAE 0.188s
CSDI 0.521s
RLinear 0.004s
iTransformer 0.009s
PatchTST 0.010s
Pathformer 0.023s
Informer 0.105s
Fedformer 0.216s
SSSD 0.227s
Autoformer 0.295s
TimeGrad 0.978s

As shown in the results Table 11, CGFM achieves the fastest inference speed among all diffusion-based
models, which can be attributed to its simple yet efficient design and the high inference efficiency
of flow matching. CGFM also outperforms most Transformer-based models in inference speed,

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

though it is slightly slower than some lightweight architectures such as RLinear or PatchTST. Overall,
CGFM demonstrates relatively fast inference, striking a favorable balance between performance and
efficiency.

A.14.1 CASE STUDY OF RESIDUAL LEARNING

Figures 5 ,6,21,22 are generated based on the 96-to-96 prediction task on the ETTh1 dataset. It
compares the performance of Rlinear and iTransformer, both with and without CGFM. Specifically,
the prediction results (preds) of Rlinear, iTransformer and the corresponding ground truth values
(trues) are collected first, both of which have dimensions [N, 96, C], where N is the total number
of samples and C = 7 is the number of channels in ETTh1. For each channel, the mean value
across all samples at each time step is calculated: the mean of preds[:, :, ch] along the
sample dimension (axis=0) yields the predicted mean sequence ; the same is done for trues[:,
:, ch] to obtain the ground truth mean sequence. This approach eliminates individual sample
fluctuations and highlights the overall trend.
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Figure 21: iTransformer Without CGFM
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Figure 22: iTransformer With CGFM

Figure 23: Comparison of Mean Sequences of iTransformer (Without vs. With CGFM)

A.15 uθt ARCHITECTURE

The proposed architecture integrates temporal embeddings with convolutional operations to effectively
model and forecast time series data. Given an input sequence x ∈ RB×C×N , where B is the batch
size, C is the number of input channels, and N is the sequence length, the network processes the data
in a sequential manner to produce accurate predictions.

First, the input sequence x is transformed using an input convolutional layer to extract local temporal
features. This operation produces a feature map Hinp ∈ RB×K×N , where K is the number of output
channels:

Hinp = InputConv(x).

To incorporate temporal information, temporal embeddings Dexpand ∈ RB×D×N are concatenated
with the extracted feature map Hinp, resulting in a fused representation Hcat ∈ RB×(K+D)×N :

Hcat = Concat(Hinp,Dexpand).

The concatenated features are passed through an encoder convolutional layer, which transforms them
into intermediate representations Henc ∈ RB×F×N , where F is the number of output channels of the
encoder:

Henc = EncoderConv(Hcat).

To incorporate conditional information, external conditional inputs c ∈ RB×M×N are projected
into a feature space that aligns with the prediction task. This projection is performed using a linear
transformation, producing O ∈ RB×P×N , where P is the projected dimension:

O = Linear(c).
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The encoded features Henc and the projected conditional features O are then concatenated and
processed through a combination convolutional layer to produce Hcomb ∈ RB×C′×N , where C ′ is
the number of output channels of the combination layer:

Hcomb = CombineConv(Concat(Henc,O)).

Finally, the combined features Hcomb are mapped to the target output space y ∈ RB×L×N , where L
is the number of output variables, using an output convolutional layer:

y = OutputConv(Hcomb).

Throughout the architecture, the SiLU (Sigmoid Linear Unit) activation function is applied to
introduce nonlinearity:

SiLU(x) = x · σ(x), σ(x) =
1

1 + e−x
,

where σ(x) is the sigmoid function. The use of SiLU improves gradient flow and enhances the
network’s ability to learn complex temporal patterns.

The design of the Velocity Net architecture ensures a comprehensive integration of temporal embed-
dings, conditional inputs, and convolution-based feature extraction, making it well-suited for time
series forecasting tasks.

A.16 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, large language models (LLMs) were used exclusively as a general-purpose writing
aid. Their role was limited to polishing the paper’s language and phrasing—including enhancing
the fluency of academic expressions, standardizing technical descriptions (e.g., refining the wording
of model formulations and experimental procedures), and sharpening logical coherence between
sections.

Notably, LLMs played no role in any core research activities: they did not contribute to research
ideation, the design of the Conditional Guided Flow Matching (CGFM) framework, the derivation of
theoretical propositions or proofs, experimental design, data analysis, or the drawing of conclusions.
As such, LLMs do not qualify as contributors to this research.

We affirm full responsibility for all content of the paper, including text refined by LLMs. We have
thoroughly reviewed and verified every section to ensure it is free of plagiarism, factual fabrication,
or other forms of scientific misconduct. In compliance with ICLR guidelines, LLMs are not listed as
authors. You may include other additional sections here.
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